Skip to Main Navigation
Skip to Page Content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

ICCVAM Communities of Practice Webinar 2016

Fundamentals of Using Quantitative Structure-Activity Relationship Models and Read-across Techniques in Predictive Toxicology

January 26, 2016


Many commercial and environmental chemicals lack toxicity data necessary for users and risk assessors to make informed decisions about their potential health effects.  Computational methods use data about structure, properties, and toxicity from tested chemicals to make predictions about the characteristics of untested chemicals.  These methods include QSAR models, which predict the activities of chemicals with unknown properties by relating them to properties of known chemicals, and read-across, which uses toxicity data from a known (source) chemical to predict toxicity for another (target) chemical, usually but not always on the basis of structural similarity.  Predictions made using these methods about toxicity of untested chemicals can help set priorities for future in vitro or in vivo testing, ensuring that the most important hazards are characterized first and that testing resources are used efficiently.


Fundamentals of QSAR Modeling: Basic Concepts and Applications
Alex Tropsha, Ph.D., University of North Carolina at Chapel Hill

Tropsha explained how QSAR models allow chemical compounds to be characterized mathematically, enabling statistical predictions about the properties of untested chemicals. He emphasized the importance of curation of chemical and biological databases, pointed out some common errors in QSAR development, and reviewed case studies in which QSARs were used to predict toxicities such as skin sensitization and liver toxicity.

Application of QSAR Principles in the Regulatory Environment: The U.S. EPA New Chemicals Program
Louis (Gino) Scarano, Ph.D., Office of Pollution Prevention and Toxics, EPA

Scarano reviewed how EPA uses quantitative tools and models to generate predictions about carcinogenicity, exposure potential, aquatic toxicity, and other toxic effects of new chemicals. These predictions are then used to make occupational risk assessments and identify where further testing might be needed.

Federal Register notice announcing webinar (80 FR 79051, December 18, 2015) — View as webpage