Share This:
https://ntp.niehs.nih.gov/go/16327

Abstract for TR-532 - Bromodichloromethane (CASRN 75-27-4)

Abstract

Toxicology and Carcinogenesis Studies of Bromodichloromethane (CAS No. 75-27-4) in Male F344/N Rats and Female B6C3F1 Mice (Drinking Water Studies)

Link to the full study report in PDF. If you have difficulty accessing the document, please send email to the NTP Webmaster [ Send Email ] and identify documents/pages for which access is required.  

 

 

Structure

Chemical Formula: CHBrCl2 Molecular Weight: 163.83

Bromodichloromethane is a by-product of the chlorination of drinking water. It is formed by the halogen substitution and oxidation reactions of chlorine with naturally occurring organic matter (e.g., humic or fulvic acids) in water containing bromide. Bromodichloromethane has been shown to be carcinogenic at multiple sites in rats (large intestine and kidney) and in mice (liver and kidney) after administration by gavage in corn oil. To further characterize its dose-response relationships for evaluations of human risk, bromodichloromethane was nominated to the NTP by the United States Environmental Protection Agency for toxicity and carcinogenicity studies in rats and mice by drinking water exposure. Male F344/N rats and female B6C3F1 mice were exposed to bromodichloromethane (greater than 98% pure) in drinking water for 3 weeks or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, L5178Y mouse lymphoma cells, cultured Chinese hamster ovary cells, mouse bone marrow cells, and mouse peripheral blood erythrocytes.

3-WEEK STUDY IN RATS

Groups of 10 male F344/N rats were exposed to target concentrations of 0, 43.7, 87.5, 175, 350, or 700 mg/L bromodichloromethane (equivalent to average daily doses of approximately 0, 6, 12, 20, 38, or 71 mg bro-modichloromethane/kg body weight) in drinking water for 3 weeks. All rats survived to the end of the study. The mean body weight gains of 350 and 700 mg/L rats were significantly less than that of the controls. Concentration-related decreases in water consumption were evident during the first week on study. Relative kidney weights of rats in the 175, 350, and 700 mg/L groups were significantly greater than that of the controls. There were no significant chemical-related histopathological changes

3-WEEK STUDY IN MICE

Groups of 10 female B6C3F1 mice were exposed to target concentrations of 0, 43.7, 87.5, 175, 350, or 700 mg/L bromodichloromethane (equivalent to average daily doses of approximately 0, 6, 10, 16, 29 or 51 mg/kg) in drinking water for 3 weeks. All mice survived to the end of the study. Final mean body weights of the 175, 350, and 700 mg/L mice and mean body weight gains of 350 and 700 mg/L mice were significantly less than those of the controls. These decreases were attributed to decreased water consumption. There were significant concentration-related decreases in water consumption by groups exposed to 87.5 mg/L or greater throughout the study; these decreases were attributed to poor palatability of the dosed water. Relative liver, kidney, and thymus weights of mice in the 350 and 700 mg/L groups were significantly greater than those of the controls. Absolute lung weights of mice in the 350 and 750 mg/L groups were significantly less than that of the controls. There were no significant chemical-related histopathological changes.

2-YEAR STUDY IN RATS

Groups of 50 male F344/N rats were exposed to target concentrations of 0, 175, 350, or 700 mg/L bromodichloromethane (equivalent to average daily doses of approximately 0, 6, 12, or 25 mg/kg) in drinking water for 2 years. Survival of exposed groups was similar to that of the controls. Mean body weights of all exposed groups were generally similar to those of the controls throughout the study. Water consumption by exposed rats was less than that by the controls throughout the study; the decreases were attributed to poor palatability of the dosed water.

There were no increased incidences of neoplasms that were attributed to bromodichloromethane. The incidences of chronic inflammation in the liver of the 350 and 700 mg/L groups were significantly greater than that in the controls; however, the biological significance of these increases is uncertain.

2-YEAR STUDY IN MICE

Groups of 50 female B6C3F1 mice were exposed to target concentrations of 0, 175, 350, 700 mg/L bromodichloromethane (equivalent to average daily doses of approximately 9, 18, or 36 mg/kg) in drinking water for 2 years. Survival of exposed groups was similar to that of the controls. Mean body weights of all exposed groups were generally less than those of the controls from week 4 through the end of the study. Water consumption by exposed mice was less than that by the controls throughout the study; the decreases were attributed to poor palatability of the dosed water.

The incidences of hepatocellular adenoma or carcinoma (combined) occurred with a negative trend, and the incidence in the 700 mg/L group was significantly decreased relative to the control group. The incidence of hemangiosarcoma in all organs was significantly decreased in the 350 mg/L group.

GENETIC TOXICOLOGY

The results of in vitro mutagenicity tests with bromodichloromethane were mixed. Bromodichloromethane did not induce mutations in any of several tester strains of Salmonella typhimurium, with or without exogenous metabolic activation (S9 liver enzymes). In contrast to the negative results in Salmonella, tests for mutation induction in mouse lymphoma L5178Y/tk+/-cells were positive in the presence of induced rat liver S9; no mutagenic activity occurred in tests conducted without S9. In cytogenetic tests with cultured Chinese hamster ovary cells, bromodichloromethane induced a small increase in sister chromatid exchanges (SCEs) in one of four trials conducted in the presence of induced rat liver S9 enzymes; no significant increase in SCEs occurred without S9, and no induction of chromosomal aberrations occurred in bromodichloromethane-treated Chinese hamster ovary cells with or without S9.

Results of in vivo tests for chromosomal damage were negative. No increases in the frequency of micronucleated erythrocytes were seen in bone marrow of male B6C3F1 mice administered bromodichloromethane by intraperitoneal injection for 3 days. In addition, no induction of micronuclei was observed in circulating erythrocytes of female B6C3F1 mice administered up to 700 mg/L bromodichloromethane in drinking water for 3 weeks.

CONCLUSIONS

Under the conditions of this 2-year drinking water study, there was no evidence of carcinogenic activity of bromodichloromethane in male F344/N rats exposed to target concentrations of 175, 350, or 700 mg/L. There was no evidence of carcinogenic activity of bromodichloromethane in female B6C3F1 mice exposed to target concentrations of 175, 350, or 700 mg/L.

Synonym: Dichlorobromomethane


Summary of the 2-Year Carcinogenesis Studies of Bromodichloromethane

 


 
Male
F344/N Rats
Female
B6C3F1 Mice
Concentrations in drinking water 0, 175, 350, or 700 mg/L 0, 175, 350, or 700 mg/L
Body weights Exposed groups similar to the control group Exposed groups less than the control group
Survival rates 29/50, 28/50, 29/50, 26/50 36/50, 36/50, 33/50, 39/50
Nonneoplastic effects

None

None

Neoplastic effects

None

None

Equivocal findings

None

None
Decreased incidences

None

None
Level of evidence of carcinogenic activity No evidence No evidence
Genetic Toxicology of Bromodichloromethane
Assay Test System Results
Bacterial Mutagenicity Salmonella typhimurium gene mutations: Experiment 1: negative in TA100, TA1535, TA1537, and TA98 with and without S9
Bacterial Mutagenicity Salmonella typhimurium gene mutations: Experiment 2: negative in TA100, TA1535, TA97, and TA98 with and without S9
Mammalian Cell Mutagenicity Mouse lymphoma gene mutations: Negative without S9, positive with S9
Sister chromatid exchanges Cultured Chinese hamster ovary cells in vitro: Negative without S9, equivocal with S9
Chromosomal aberrations Cultured Chinese hamster ovary cells in vitro: Negative with and without S9
Micronucleated erythrocytes Mouse bone marrow in vivo: Negative
Micronucleated erythrocytes Mouse peripheral blood in vivo: Negative


Report Date: February 2006

Pathology Tables, Survival and Growth Curves from NTP 2-year Studies

Target Organs & Incidences from 2-year Studies