

U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND – CHEMICAL BIOLOGICAL CENTER

Soldier-on-a-chip: interrogating the effects of chemical and biological threat agent exposure using a multi-organ microphysiological system

Tyler Goralski, Ph.D. Research Biologist, Threat Agent Science

The views expressed in this presentation are those of the author(s) and do not necessarily reflect the official policy of the Department of Defense, Department of the Army, U.S. Army Medical Department or the U.S. Government.

Use of trademarked name(s) does not imply endorsement by the U.S. Army but is intended only to assist in identification of a specific product.

WHY USE ORGANS-ON-A-CHIP?

Problem

 Establishing a physiologically relevant biomimetic human model that will <u>accurately</u>, <u>reliably</u>, <u>timely</u>, and <u>economically</u> represent human organ-organ interactions. Historically this work has been performed in traditional tissue culture and animal models which can be time consuming, costly, and lack physiological accuracy and precision.

Solution

 Micro-physiological systems (MPS) technology offers a high throughput process that overcomes the drawbacks to both conventional *in vitro* and animal modeling by supplying cuttingedge Organs-on-a-chip (OOC) that imitate human tissue-tissue interfaces, chemical and mechanical microenvironments specific to <u>living human organs</u>.

Goal

 Provide an ideal alternative and/or replacement to traditional tissue culture and animal models for a "human surrogate" toxicity and efficacy testing.

MicroPhysiological Systemsuman Surrogate

FUNCTIONAL SYSTEMS FOR PREDICTIVE TOXICOLOGY AT THREAT AGENT SCIENCE

VX Effects of Beating Cardiomyocytes 1 mg/mL 0.5 mg/mL Operational 0.25 mg/ml50mM APAP 5mM APAP - Cardiac (RTCA, organoids) - Liver (2D, 3D, MPS) Smoke, Aerosol, Liquid, Gas - CNS (2D) Cell Culture - Lung (2D, 3D) Insert - Dermal (3D) Tissue -Lung (MPS) Medium - Kidney (MPS) - Intestinal (3D, MPS) Culture Medium is fed throu In Development - CNS (3D organoids) -BBB (MPS) Kuppfer **LSECs**

CURRENT ORGAN-ON-A-CHIP DESIGNS

Human organs-on-chips for disease modelling, drug development and personalized medicine, Don Ingber.

CURRENT DEVCOM CBC SYSTEMS

TissUse

HUMIMIC Chip4

CN BIO PHYSIOMIMIX

CURRENT DEVCOM CBC SYSTEMS

TissUse

EMULATE CHIP OVERVIEW

CURRENT DEVCOM CBC SYSTEMS

TISSUSE HUMIMMIC MOC SYSTEM

Each HUMIMIC Chip3plus circuit contains three 500 µm thick pump membranes, which are operated by a change of pressured air and vacuum. This leads to opening and closing the valves.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

MULTIOMIC ANALYSIS OF THREAT AGENTS USING MOC

TissUse Chip3+:

- Size of a standard microscope slide, suitable for iPSC-derived cells, primary cells, 3D tissues and cell lines. 3 organ systems on 1 chip.
- Uses on-chip micro-pump enabling pulsatile flow.

Current Efforts:

- Expose various tissue combinations to biological and chemical agents.
- Perform downstream analysis using the MOC technology.

Analyses includes but is not limited to...

- Proteomics/Transcriptomics, Metabolomics Machine learning driven feature detection, global metabolite system perturbation analysis, broad screening based on multiple chemometric profiles.
- Staining and imaging (both live and dead cell microscopy).
- ELISA and other immunoassays
- Electrophysiology
- And many more!

15 -

CARFENTANIL EXPOSURE

Sample	High Confident proteins Found	Significantly Changing Proteins				
Cardiac	158	31				
Skin	982	231				
Lung	1580	299				
Cardiac	Lung	Skin				
	15-					

CARFENTANIL SKIN: CELL STRUCTURE

Cornifelin: Part of the insoluble cornified cell envelope (CE) of stratified squamous epithelia.

Keratin: It is the key structural material making up scales, hair, nails, feathers, horns, claws, hooves, and the outer layer of skin among vertebrates. Keratin also protects epithelial cells from damage or stress.

Elafin: Elastase inhibitor. Already being used as a biomarker for graft versus host disease, which is shown to be upregulated compared to those without. May function in TNF-alpha activation. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

E3 ubiquitin ligase: E3s polyubiquitinate their substrate with Lys48-linked chains of ubiquitin, targeting the substrate for destruction by the proteasome However, many other types of linkages are possible and alter a protein's activity, interactions, or localization. Ubiquitination by E3 ligases regulates diverse areas such as cell trafficking, DNA repair, and signaling.

TNF alpha receptor factor 6: adaptor protein that mediates a wide array of protein-protein interactions via its TRAF domain and a RING finger domain that possesses non-conventional E3 ubiquitin ligase activity. Could be compensating for down regulation of E3.

CARFENTANIL CARDIAC:CALCIUM FLUX

Stanniocalcin: family of hormones which regulate calcium and phosphate balance in the body.

Homerin: aids in coupling surface receptors to intracellular calcium release.

Sample	High Confident proteins Found	Significantly Changing Proteins
Lung	4338	340
Skin	2452	239
Cardiac	1334	303
Cardiac	Lung	Skin
	68J 1011	
Data Source: Proteins : Abundances (Normalized) Jostance Function: Euclidean Indeap Method: Complete Eaching: Scale Before Clustering 3.1 0.3 3.7	Lig2Rato Data Source: Proteins : Abundances (Normalized) Distance Functione: Euclidean Uscaling: Scale Before Clustering Scaling: Scale Before Clustering	58 Down, 71 up Significantly in 100ug/mL Exposure Data Source: Proteins: Adundances (Normalized) Distance Function: Eucléean Lindage Méthod: Complée Scalm; Scale Below Clustering -2.8 0.2 3.2 -2.8 0.2 3.2
Tugini. P83	■ rugimL ■ tugimL ■ PBS	Exposus Level 100xg/mL PtoymL P53

Mitochondrial fission and fusion play critical roles in maintaining functional mitochondria when cells experience metabolic or environmental stresses. Fusion helps mitigate stress by mixing the contents of partially damaged mitochondria as a form of complementation. Fission is needed to create new mitochondria, but it also contributes to quality control by enabling the removal of damaged mitochondria and can facilitate apoptosis during high levels of cellular stress. Disruptions in these processes affect normal development, and they have been implicated in neurodegenerative diseases, such as Parkinson's.

The adaptor protein FIS1 is involved recruiting Drp1 in peripheral division.

<u>Science.</u> Author manuscript; available in PMC 2016 Feb 22. *Published in final edited form as:* <u>Science. 2012 Aug 31; 337(6098): 1062–1065.</u> doi: <u>10.1126/science.1219855</u>

Mitochondrial Fission, Fusion, and Stress

Richard J. Youle^{1,*} and Alexander M. van der Bliek^{2,*}

Author information
 Copyright and License information
 Disclaimer

PMCID: PMC4762028 NIHMSID: NIHMS757703 PMID: <u>22936770</u>

MITOCHONDRIAL DYSFUNCTION

Skin

Accession	Description	Size		ize Overlap		Overlap Expected F		Fold Enrichment	p-Value ·		 log 2 (p-Value) 	
II	🔳 mito 🔹 🖓				•	•	= -	=	*	•	,	
GO:0042775	mitochondrial ATP synthesis coupled electron transport	4	11		3	0.4	7.88	3	0.00631		7.3	
GO:0034642	mitochondrion migration along actin filament		1		1	(100		0.00929		6.7	
GO:0010821	regulation of mitochondrion organization	5	51		3	0.5	6.33	3	0.0115		6.4	
GO:0046602	regulation of mitotic centrosome separation		2		1	(53.8	3	0.0185		5.7	
GO:0046604	positive regulation of mitotic centrosome separation		2		1	(53.8	3	0.0185		5.7	
GO:0007084	mitotic nuclear membrane reassembly		4		1	(26.9		0.0366		4.7	
GO:0101024	mitotic nuclear membrane organization		4		1	(26.9		0.0366		4.7	
GO:0006121	mitochondrial electron transport, succinate to ubiquinone		4		1	(26.9		0.0366		4.7	
GO:1901030	positive regulation of mitochondrial outer membrane permeabilization involv		5		1	(21.5	5	0.0456		4.4	
GO:0007064	mitotic sister chromatid cohesion		5		1	(21.5	5	0.0456		4.4	

Accession	Description	Siz	e	Overlap	Expected	Fold Enrichment	p-Value	-log 2 (p-Value)
-	🔳 mitoch 🔹 🏹		•		• •			-
GO:0010821	regulation of mitochondrion organization		33	6	1.3	4.7	0.0014	9.48
GO:0070584	mitochondrion morphogenesis		5	2	0.2	10.3	0.0137	6.18
GO:0051646	mitochondrion localization		6	2	0.2	8.62	0.0201	5.64
GO:0010822	positive regulation of mitochondrion organization		17	3	0.7	4.56	0.0258	5.27
GO:0090199	regulation of release of cytochrome c from mitochondr		7	2	0.3	7.39	0.0274	5.19
GO:0035794	positive regulation of mitochondrial membrane permea		8	2	0.3	6.47	0.0357	4.81
GO:1903146	regulation of autophagy of mitochondrion		8	2	0.3	6.47	0.0357	4.81
GO:0006264	mitochondrial DNA replication		1	1	0	25.9	0.0387	4.69
GO:0048312	intracellular distribution of mitochondria		1	1	0	25.9	0.0387	4.69
GO:0090149	mitochondrial membrane fission		1	1	0	25.9	0.0387	4.69
GO:0140141	mitochondrial potassium ion transmembrane transport		1	1	0	25.9	0.0387	4.69
GO:0003374	dynamin family protein polymerization involved in mitc		1	1	0	25.9	0.0387	4.69
GO:0062156	mitochondrial ATP-gated potassium channel activity		1	1	0	25.9	0.0387	4.69
GO:0006390	mitochondrial transcription		1	1	0	25.9	0.0387	4.69
GO:0048311	mitochondrion distribution		1	1	0	25.9	0.0387	4.69
GO:1905446	regulation of mitochondrial ATP synthesis coupled elec		1	1	0	25.9	0.0387	4.69
GO:1905448	positive regulation of mitochondrial ATP synthesis coup		1	1	0	25.9	0.0387	4.69
GO:0007005	mitochondrion organization		86	7	3.3	2.1	0.047	4.41

	Accession	Description	Size		Overlap	0	Expe	cted	Fold Enrichm	nent	p-Value		-log 2 (p-Va	lue)	
_	• •	🗉 mit 🔹 🖓		*	•	,		*		-		•		•	
	GO:0042775	mitochondrial ATP synthesis coupled electron transport		65		4		0.4		9.8	(0.000721		10.44	
	GO:0006123	mitochondrial electron transport, cytochrome c to oxyg		12		2		0.1		26.5		0.00246		8.67	
	GO:1903673	mitotic cleavage furrow formation		1		1		0		100		0.00628		7.32	
	GO:0045165	cell fate commitment		29		2		0.2		11		0.0141		6.14	
	GO:0002363	alpha-beta T cell lineage commitment		5		1		0		31.9		0.031		5.01	
	GO:0006390	mitochondrial transcription		6		1		0		26.5		0.0371		4.75	
	GO:0060795	cell fate commitment involved in formation of primary		6		1		0		26.5		0.0371		4.75	
	GO:1990456	mitochondrion-endoplasmic reticulum membrane teth		6		1		0		26.5		0.0371		4.75	
	GO:0001711	endodermal cell fate commitment		6		1		0		26.5		0.0371		4.75	
	GO:0002360	T cell lineage commitment		7		1		0		22.8		0.0431		4.53	
	GO:0045039	protein insertion into mitochondrial inner membrane		7		1		0		22.8		0.0431		4.53	

Cardiac

Lung

TOP DYSFUNCTIONS: SKIN

TOP DYSFUNCTIONS: CARDIAC

MOA

TOP DYSFUNCTIONS: LUNG

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Independent Holistic Air-Liquid Exposure System (InHALES)

Additional MOC Projects

ADME MOC

FUNCTIONAL SYSTEMS FOR PREDICTIVE TOXICOLOGY AT THREAT AGENT SCIENCE

Molecular Toxicology

Dylan Fudge Erin Gallagher Tyler Goralski Jen Horsmon Priscilla Lee Morgan Minyard

BioDefense

Dan Angelini Maria Arevalo Liz Dhummakupt Conor Jenkins Amber Pugh Todd Sickler

