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Introduction

Guideline rodent carcinogenicity studies' generally require about 500 rodents, cost an

3. JANUS Carcinogenicity Model

7. Chemicals Predicted to be Carcinogens

< ) The JANUS carcinogenicity model® is a consensus model implemented in a decision tree. A structural analysis of chemicals
average of $1.1 million, and generate results of questionable relevance to humans. It includes both classification machine learning-based models and chemical substructure predicted by DeepCarc to be
* Drug-induced liver injury (DILI) is a major cause of failure for new drugs in clinical trials alert searches. It is available on VegaHub . Tox21- 43'2,“& ST S carcinogenic with probability >0.8
and is poorly predicted by rodent studies. B showed that these have a significantly

The JANUS training data included:
- Chemicals in the Carcinogenic Potency Database with animal bioassay data (805

lower molecular weight (<150 Da) than
the average molecular weight of all

* New approach methodologies (NAMs) are available that use in silico and in vitro
methods to predict carcinogenicity and DILI.

: - : )
 Quantitative structure—activity relationship (QSAR) approaches have been developed chemicals) _ o _ chemicals in Tox21.
that can identify potentially carcinogenic and hepatotoxic chemicals. These methods can - ANTARES carcinogenicity data set (1,543 chemicals)® DecpCarc l o We show below the structures of some
provllde .|nS|ghjts into bloact.lwty of povgl chemicals and may have potential regulatory - 986 rodent carcinogens® chemicals that DeepCarc and JANUS
applications given appropriate validation. ; 250 500 75 predicted highly likely to be carcinogens
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This presentation:

« Compares the predictions of the two carcinogenicity models (JANUS and
DeepCarc) to the set of known carcinogens and discusses model limitations.

4. DeeleLl - Hepatoxicity Model 8. Tox21 Hepatoxicity Predictions

* |dentifies chemicals that are predicted to be carcinogens with high probability,
including those in the Tox21 set.

DeepDILI" predicts chemicals that can induce liver injury. It was developed using a We used DeepDILI to identify chemicals in the

* ldentifies chemicals from Tox21 that are predicted highly likely to induce DILI. similar approach as DeepCarc via a combination of machine learning approaches in a g - B Tox21 library that might be hepatotoxins. Over
neural network. The training set was 1,002 drugs extracted from DrugBank'! and - 2,000 chemicals are predicted with a high
FDAlabel' databases. E 8 probability (>0.9) to induce liver injury. Most of
- - 8 these are drugs, see below.
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9. Hepatoxic Chemicals
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We used ChemMaps.com’ to compare the properties of chemicals predicted to induce
DILI with other chemical sets: approved drugs (green in above graphic), high-risk
chemicals (gray), and withdrawn drugs (purple). The overlap between the Tox21
chemicals predicted by DeepDILI to be potential hepatotoxins (PD > 0.8) with the drug
chemical space shows that many drugs should still be considered for DILI as a side effect.

2. DeepCarc Carcinogenicity Model

Number of Compounds in IARC (Group 1)
Number of Compounds in IARC (Group 1)

863 Compounds (561 positive, 302 negative)

Predicted Probabilities Predicted Probabilities

Kennard-Stone

( I ) Conclusions

In the histograms above, chemicals assigned a probability of greater than 0.5 are

az\ée::%%nir:nsdf: Training set: 454 compounds (360 positive, 194 negative) 1711%S;S§Ends considered to be predicted carcinogens. DeepCarc correctly predicted 21 of 41 « We applied DeepCarc and JANUS to the Tox21 chemical set and found that ~5% of the
(90 pogitive (111 pozitive chemicals, while JANUS correctly predicted 26 of 27 chemicals. Tox21 chemicals are predicted with high probability by both models to be carcinogens.
48 negative) & Mold2, MACCS, Moi2vec 60 negative)  The comparison of these carcinogenicity models showed that DeepCarc performs

This difference can be explained by the data sets used to build the models. While some
of the same chemicals were used in the training sets for both models, DeepCarc focused
on liver carcinogens while JANUS was developed more broadly from a consensus
modeling of a more diverse set of chemicals.

better at predicting liver carcinogens, while JANUS predicts carcinogenicity more

B lassifiers devel t
ase classifiers developmen broadly.

KNNs LRs SVMs RFs XGBoosts

* When we applied DeepDILI to the Tox21 chemical set we found that 23.5% of the
chemicals were predicted to have a high probability of inducing DILI; most are drugs.

« The overlap with the drug space and the highly predicted DILI shown that many
approved drugs could induce DILI.

& Mold2, MACCS, Mol2vec
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The training set was built from chemicals in the NCTR’s Liver Cancer Database* and
included mostly liver carcinogens.

We then used DeepCarc and JANUS to identify chemicals in the Tox21 library that
might be carcinogens. Overall JANUS predicted more chemicals to be carcinogenic
(probability > 0.5) than DeepCarc. However, DeepCarc predicted more high-risk
carcinogens (probability > 0.8).
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