

BfR Evaluation of Skin Sensitization Classification Rules to Reflect Human Potency 🐼 🌄 U.S. FOOD & DRUG M. Herzler¹, K.T. To², J. Abedini³, D.G. Allen², A.M. Api⁴, D. Germolec⁵, J. Gordon⁶, N. Kleinstreuer⁵, H-S. Ko⁷, J. Matheson⁶, H-J. Thierse¹, J. Truax², J.T. Vanselow¹, J. Strickland²

Introduction			Weight-of-Evidence Appro	aches A	pplie	d			
 and Development (OECD; OECD 20 We deemed data from 2255 HPPTs, according to the United Nations Glob (Figure 1a). Approaches currently used to assign and not the frequency of induced ser To address these limitations, we dev classification and also addresses united and the series of the se	21), we collected historical human predict representing 1366 different substances, a bally Harmonized System (GHS) of Classic skin sensitizers to GHS potency subcate nsitization in human subjects. Variations in eloped a modified approach to GHS class certainty in assay results (Table 1). ing these classifications in a weight-of-evic	Sensitization published by the Organisation for Economic Co-operation tive patch test (HPPT) data for use as reference data. As sufficiently reliable to assign skin sensitization potency classifications fication and Labelling of Chemicals criteria and guidance (UN 2021) gories consider only the dose inducing the skin sensitization response a conduct of assays may introduce uncertainty into otherwise valid data. ification (Figure 1b) that incorporates a frequency metric into potency dence (WoE) approach with animal reference data, when classifications	1. Weight-of-Evidence Score • The WoE Score approach scores each EC outcome an scores to classify a substance (Figure 2). • NC/1 results are excluded from the combined chemical Individual Test Data Combined C EC Score 1A 2 1A- 1.75 POS 1.5 1B+ 1.25	classification. hemical Classificati Classification Mod	on le	lual	 Hoffmann for descri Test resu Test resu An RV wa is the EC RVs were 	n et al. (201 ibing skin s ults with NC ults with PO as assigned 2. e ordered fr e at the me	5 Cation Para 18) described a " sensitizer potency C/1 or NC/1B EC OS EC outcomes ed to each test res from low to high p
Modification of t	the Standard GHS	Classification System	1B 1 1.26-1.49 NC/1B 0.5 0.76-1.25	1B	1B	3.	Mediar	ı Sensiti	ization Pote
	Table 1. Modifications to the standa	ard GHS classification system	NC/1 NA 0.26-0.75 NA NC 0 0-0.25 NC		C/1B NC		insufficier	ntly conserv	zation potency es rvative in some ca
Standard GHS Classification	Challenge	Modified GHS Classification	Calculate				• The MSP	PE was calc	h NC/1 EC outco culated by sorting
 Substances classified as skin sensitizers are assigned potency subcategories using the dose per skin area (DSA) as the dose metric. <u>DSA</u>: the amount in micrograms of chemical per cm² (µg/cm²) of skin area. 	Potency subcategorization does not account for the number of sensitized individuals contributing to a positive result, thereby ignoring an important measure of potency.	 To incorporate this measure into classification, we examined two additional dose metrics: <u>DSA1+</u>: the hypothetical DSA that sensitizes one test subject. <u>DSA05</u>: the hypothetical DSA that sensitizes 5% of test subjects. 	Weight-of-Evidence Score Figure 2. WoE Score approach for classifying substances w NA = not applicable, not assigned NA = not applicable, not assigned Evaluation of Classification				NC The value in Table 3	e at the me 3.	\rightarrow DSA1+/DSA0 edian position of t
 A positive result at DSA ≤ 500 µg/cm² results in classification as a 1A, strong sensitizer. A positive result at DSA > 500 µg/cm² results in classification as a 1B, weak sensitizer. 	 Variability and uncertainty associated with the HPPT data may lead to ambiguous 1A or 1B classifications. A positive result at DSA > 500 μg/cm² would indicate a 1B sensitizer, but 1A cannot be ruled out because a lower dose could produce a positive result. 	 We derived a DSA1+/DSA05 borderline range of [375625] µg/cm² (± 25% around the 500 µg/cm² cut-off between 1A and 1B). Substances testing positive at [500 µg/cm² < DSA1+/DSA05 ≤ 625 µg/cm²] are classified as 1B+, indicating moderate sensitization potential (1B) with some likelihood of underclassification. Substances testing positive at [375 µg/cm² < DSA1+/DSA05 ≤ 500 µg/cm²] are classified as 1A-, indicating strong sensitization potential (1A) with some likelihood of overclassification. 	 Using DSA1+ (or DSA05) as the dose metric, 287 (288), 27 and GHS_{BORDER} classifications, respectively (Table 4). Among these substances, 143 (141), 134 (135), and 18 WoE approaches for GHS_{BIN}, GHS_{SUB}, and GHS_{BORDER} Table 4. Summary of substances classified with the model Number of Substances (N = 1366) 	33 (180) substances h classification (Table dified GHS classificat	nad discorda 4). ion approac DSA ²	ant HPPT test	t results and	d were eval ence appro DSA05	luated with the baches
Substances that test negative are assigned a GHS designation of NC .	NC classifications may be ambiguous because a substance was tested at a concentration too low to produce a positive result.	 We defined a DSA cut-off at 625 μg/cm² (the upper boundary of the DSA1+/DSA05 borderline range) and a test concentration cut-off of at least 25% (the 99th percentile of the top concentrations of negative tests). Substances testing negative at concentrations < 25% and DSA ≥ 625 μg/cm² are assigned NC/1B, an ambiguous outcome that excludes strong skin sensitization potential. Substances testing negative at concentrations < 25% and DSA < 625 μg/cm² are assigned NC/1, an ambiguous outcome 	 → Without overall classification → With overall classification → From 1 HPPT test result. → From > 1 HPPT test results → That are concordant. → That are discordant → And evaluated with only 1 WoE approach. → And evaluated with > 1 WoE approaches 	1079 287 122 165 22 143 143 15	 1092 274 119 155 21 134 17 	57 57 1309 1009 300 117 183 37 146	1078 288 122 166 25 141 10 131	1089 277 119 158 23 135 123	57 1309 1009 300 120 180 37 143
a. No sensitized ≥1 s	b.	that provides no information on skin sensitization potential.	 → That are concordant. → That are discordant and classified by expert 1 → That are discordant and classified by consen Bold values indicate the final decision step used to class 	udgement. na sus. na	110 7	55 2 89	131 na na	119 4 na	53 2 88
	t subject test su DSA ug/cm ²) ≥ 25 < 2 SA not vailable ≤ 500	ntration 6) 25 na SA	 The majority of substances did not have sufficient data to prevent of GHS_{BORDER} provides information on the uncertainty of C substances received the ambiguous GHS_{BORDER}, classifier evaluation of test data indicated that the majoric concentrations/DSA values that a positive result at a high comparison between DSA1+- and DSA05-based classificate 287 substances could be assigned GHS_{BIN} classification and DSA05 were concordant (Table 5a). 274 substances could be assigned GHS_{SUB} classification DSA1+ and DSA05 were concordant (Table 5b). Table 5. Confusion matrices comparing classifications derivations of the substances comparing classifications derivations derivations of the substances comparing classifications derivations derivat	GHS _{BIN} and GHS _{SUB} . fication of NC/1B (Tak ty of test results in the gher concentration/DS ions demonstrated hi ns with both DSA1+ a	Using DSA ole 5c). HPPT data SA could no gh concorda and DSA05. and DSA05	1+ (or DSA05) abase were no ot be ruled out ance: . The 287/287 5. The 258/274), 1021 out o egative but with sufficie (100%) GF 4 (94.16%) 0	of 1366 (10 obtained at ent certaint -IS _{BIN} outco GHS _{SUB} ou	at such low test ty. omes for DSA1+ utcomes for
incidence as well as ambiguous/bo metrics is explained in Table 1. DSA	1 1A NC NC NC NC NC NC NC NC	ified approach we developed, shown in (b), incorporates sensitization plied to this approach: DSA1+ or DSA05. Derivation of the dose	(b) GHS_{SUB} , and (c) GHS_{BORDER} . Values indicate substance b. GHS_{BIN} a. GHS_{BIN} b. GHS_{BIN} b. GHS_{III} b. GHS_{III} b. GHS_{III} b. GHS_{IIII} b. GHS_{IIII} b. GHS_{IIII} b. GHS_{IIIII} b. GHS_{IIIII} b. $GHS_{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	e counts. S _{SUB} OSA05 B NC na Total	1A 1B NC/1 NC na Total	c. G 1A 1 1A 1 41 7 3 15 5 1 B 0 0 0 0 0 0 0 0 0 0 0	Sincation n HS _{BORDER} DSA05 1B NC/1 4 0 9 0 149 0 1 1021 0 0 0 0 163 1021	IB NC n 0 0 0 0 0 0 1 0 0 533 0 0 5	Total
 We applied the modified GHS class 	ification approach to the 2255 HPPT resu	Its to derive extrapolated classifications (ECs) for the 1366 substances	Total 233 33 1076 1300 Total 02 10	- 33 1003 1300	Total	23 C		- <u>55</u> 5	
using both the DSA1+ and DSA05 ofTest results for each substance wer	dose metrics. re evaluated to assign overall classification	ns using three different modes based on GHS categories:	Reproducibility of HPPT-b	ased Wo	E Cla	assific	atior	IS	
	n a binary manner as Category 1 (sensitize o one of three classes: 1A sensitizer, 1B s		 For substances with more than two unambiguous test results, reproducibility was estimated by comparing the 	Table 6. Reproducik substances with at I	•				

- GIDSUB. Substance assigned to one of three classes. TA sensitizer, TB sensitizer, of NC.
- GHS_{BORDER}: substance assigned to one of five classes: 1A sensitizer, 1* (sensitizer, but subclassification not possible), 1B sensitizer, NC/1B ambiguous (substance may or may not be a sensitizer, but 1A can be ruled out), or NC.
- For substances with discordant EC outcomes, overall classifications were assigned by combining the multiple results using three weight-of-evidence (WoE) approaches: • WoE score: average of individual scored test outcomes (Figure 2).
- Median-like location parameter (MLLP): value at the median position of individual test outcomes, sorted by potency (adapted from Hoffmann et al. 2018) (Table 2).
- Median sensitization potency estimate (MSPE): a slightly modified version of the MLLP (Table 3). Results from the three approaches were evaluated for concordance. If a WoE approach did not return a result for a substance, results from the
- remaining one or two approaches were evaluated. • If results from the WoE approaches agreed or there was only one result, then the concordant outcome was used as the overall classification. • If results from the WoE approaches disagreed, results from the WoE Score, MLLP, and MSPE approaches were evaluated using a consensus classification scheme or expert judgement.

¹BfR, Berlin, Germany; ²Inotiv, RTP, NC; ³RTI International, RTP, NC; ⁴RIFM, Woodcliff Lake, NJ; ⁵NIH/NIEHS/DTT/NICEATM, RTP, NC; ⁶CPSC, Rockville, MD; ⁷FDA/CDER, Silver Spring, MD

WoE-based overall classification. • The mean reproducibility of the GHS_{BIN} classification was on the order of 99%, indicating that very few of the available test results disagreed with the overall classification outcome (Table 6).

results, reproducibility was estimated by comparing the

individual ECs to the GHS_{BIN} and GHS_{SUB} classifications

• GHS_{BIN} and GHS_{SUB} are used as the "true" reference

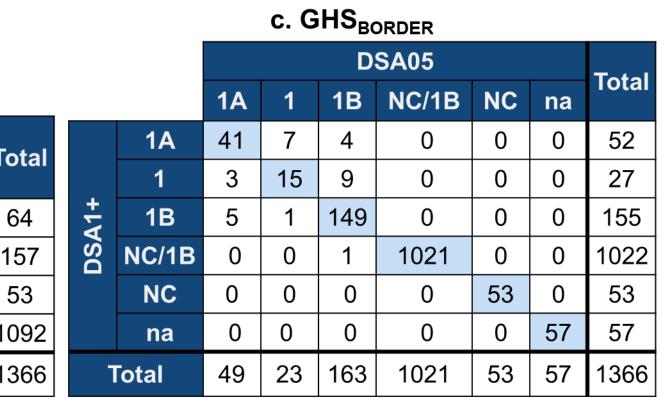
• Reproducibility for a substance is estimated as the

fraction of unambiguous EC outcomes equal to the

(Table 6).

classification.

 For GHS_{SUB}, the mean reproducibility was on the order of 80%, ranging from 76 to 84%.

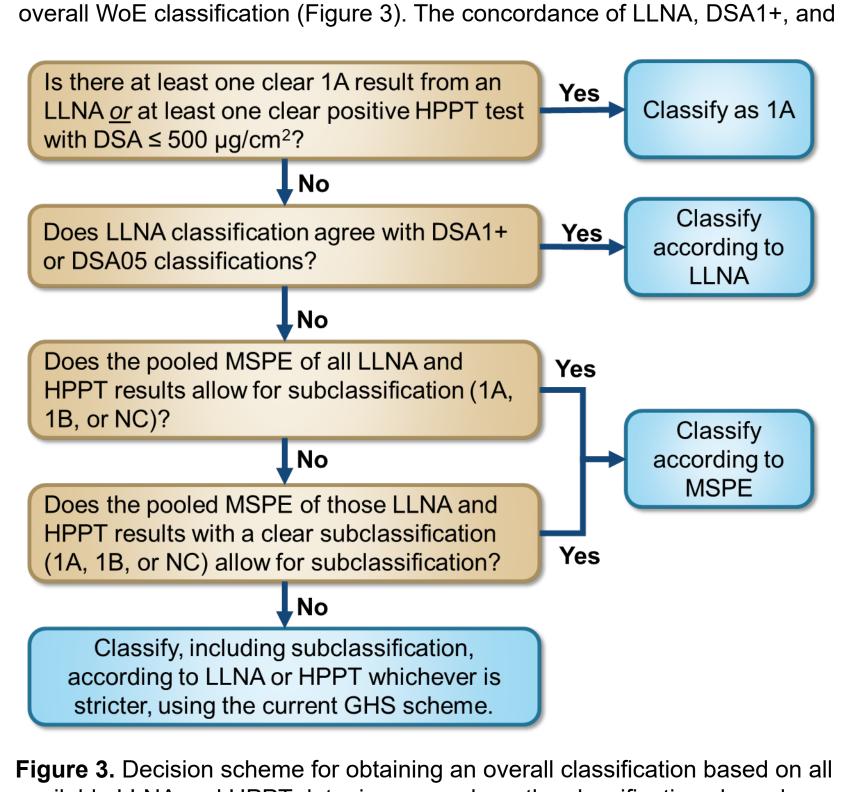

	2. Median-like Location Parameter
age of the individual	 Hoffmann et al. (2018) described a "median-like location parameter" (MLLP) approach to estab for describing skin sensitizer potency of substances with multiple test results.
	 Test results with NC/1 or NC/1B EC outcomes were excluded if the DSA was less than the med
	 Test results with POS EC outcomes were excluded from GHS_{SUB} and GHS_{BORDER} classification
fication Mode	 An RV was assigned to each test result. For positive outcomes, the RV is the DSA1+/DSA05. If is the EC.
GHS _{BORDER}	 RVs were ordered from low to high potency in the following order, with DSA1+/DSA05 values in
	$NC \rightarrow NC/1B \rightarrow NC/1 \rightarrow DSA1+/DSA05$
1A 1*	 The value at the median position of the ordered RVs is designated the MLLP and used to class in Table 2.
1B	3. Median Sensitization Potency Estimate
NC/1B	 The median sensitization potency estimate (MSPE) approach was developed due to concern the insufficiently concernative in some cases.
NC	insufficiently conservative in some cases.
	 Test results with NC/1 EC outcomes were excluded. Test results with POS EC outcomes were excluded.
	 The MSPE was calculated by sorting all values from low to high potency in the following order, descending order:
	NC \rightarrow NC/1B \rightarrow DSA1+/DSA05 for 1B and 1B+ test results \rightarrow POS \rightarrow DSA1+/DSA05 fo
	• The value at the median position of the ordered P\/s is designated the MSPE and used to class

of the ordered RVs is designated the MSPE and used to classify substances as summarized

Classifica

Mode

GHS_s


substances with at least two test results relevant to the respective classification mode.

Number of	Number of	substances	Reproducibility (%) Mean (SD)			
test results available		Substances				
	DSA1+	DSA05	DSA1+	DSA05		
> 1	97	98	99.4 (3.6)	99.1 (4.9)		
> 2	53	54	98.9 (4.9)	98.3 (6.5)		
> 3	37	37	98.5 (5.8)	98.5 (5.8)		
> 4	27	27	99.8 (1.1)	99.8 (1.1)		
> 1	96	97	82.5 (22.3)	84.2 (22.6)		
> 2	53	57	79.7 (21.7)	79.2 (23.6)		
> 3	40	39	77.2 (21.5)	77.3 (22.9)		
> 4	28	28	76.4 (21.0)	77.3 (23.0)		
	test results available > 1 > 2 > 3 > 4 > 1 > 2 > 3 > 4 > 1 > 2 > 3 > 4 > 1 > 2 > 3	Number of s available > 1 $DSA1+$ > 1 97 > 2 53 > 3 37 > 4 27 > 1 96 > 2 53 > 3 40	Number of substancesbase of substancesDSA1+DSA05 > 1 9798 > 2 5354 > 3 3737 > 4 2727 > 1 9697 > 2 5357 > 3 4039	Number of substances availableMean Mean $2 > 1$ DSA1+DSA05DSA1+> 1979899.4 (3.6)> 2535498.9 (4.9)> 3373798.5 (5.8)> 4272799.8 (1.1)> 1969782.5 (22.3)> 2535779.7 (21.7)> 3403977.2 (21.5)		

National Institutes of Health • U.S. Department of Health and Human Services

Integrating Data from HPPT and Local Lymph Node Assay

both DSA1+ or DSA05 outcomes. DSA1+ and 58% for DSA05 outcomes.

available LLNA and HPPT data, in cases where the classifications based on LLNA, DSA1+, and DSA05 do not fully agree.

Summary

• We collected a large data set of historical HPPT studies from the scientific literature to use as reference data for development of OECD Guideline 497. • We developed a new approach for hazard and potency classification of these tests based on GHS categories (Figure 1b).

- either DSA1+ or DSA05 as the dose metric (Table 6).
- (Figure 3).
- considering potency and uncertainty.

References

- OECD. 2021. Test Guideline No. 497. https://doi.org/10.1787/b92879a4-en.
- ghs-rev9-2021

Acknowledgments and More Information

The Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) supported this poster. Technical support was provided by Inotiv under NIEHS contract HHSN273201500010C. The views expressed above do not necessarily represent the official positions of any Federal agency. Since the poster was written as part of the official duties of the authors, it can be freely copied.

Table 2. MLLP approach for classifying substances with multiple discordant te							
ablish a representative value (RV)	MLLP	Classification Mode					
edian DSA1+ of the positive tests.	(µg/cm²)	GHS BIN	GHS SUB	GHS _{BORDER}			
ons.	≤ 375		1A	1A			
. For negative outcomes, the RV	375 < MLLP ≤ 500		17.	1*			
in deconding order:	500 < MLLP ≤ 625 > 625		1B	1B			
in descending order:	NC/1B	NA	NA	NC/1B			
ssify substances as summarized	NC	NC	NC	NC			
Table 3. MSPE approach for classifying substances with multiple discordant term							
	MSPE	Classification Mode					
that the MLLP approach was	(μg/cm ²)	GHS _{BIN}	GHS _{SUB}	GHS _{BORDER}			
	≤ 375		1 Δ	1A			
were included.	375 < MSPE ≤ 500		1A				
r, with DSA1+/DSA05 values in	POS	1	NA	1*			
for 1A- and 1A test results	500 < MSPE ≤ 625		1B	40			
issify substances as summarized	> 625 NC/1B	NΔ	NΔ	1B NC/1B			

To further explore the utility of our proposed classification approach, we evaluated the concordance of HPPT-based classifications with classifications using LLNA data for the set of reference chemicals in OECD Guideline 497 (OECD 2021). • For GHS_{BIN}, 56/196 OECD reference chemicals had classifications based on both HPPT and LLNA data. Concordance of HPPT with LLNA was 82% for

• For GHS_{SUB}, 47/196 OECD reference chemicals had classifications based on both HPPT and LLNA data. Concordance of HPPT with LLNA was 60% for

• We then developed a strategy to integrate HPPT-based reference classifications using DSA1+ or DSA05 with those obtained using LLNA data to develop an overall WoE classification (Figure 3). The concordance of LLNA, DSA1+, and DSA05 classifications with overall WoE classifications is shown in Table 7.

> Table 7. Comparison of LLNA, DSA1+, DSA05, and overall WoE outcomes for the (a) GHS_{BIN} and (b) GHS_{SUB} classification modes for OECD reference substances with both LLNA- and HPPT-based classifications.

NC

NC

a. GHS _{BIN}					
		Overall WoE			
		1	NC		
LLNA	1	49	2		
LLNA	NC	3	2		
DSA1+	1	47	0		
DSAT	NC	5	4		
DSA05	1	47	0		
DSAUS	NC	5	4		

b. GHS _{SUB}						
	Overall WoE					
	1A	1B	NC			
	1A	12	0	0		
LLNA	1B	3	25	2		
	NC	0	3	2		
	1A	12	4	0		
DSA1+	1B	3	20	0		
	NC	0	4	4		
	1A	10	3	0		
DSA05	1B	5	21	0		
	NC	0	4	4		

NC/1B

NC

• The modified GHS classification approach addresses uncertain or borderline results, incorporates the number of sensitized subjects to better inform on potency, and considers the validity of negative test results tested at low concentrations (Table 1). • WoE approaches were applied to resolve multiple discordant results for single substances. The WoE approaches provided reproducible results using

• Overall, substance classifications based on HPPT results were consistent with LLNA classifications. • We developed a stepwise strategy that integrates LLNA results with HPPT results to address cases where there is higher uncertainty in the HPPT results

• We conclude that using a modified GHS approach to classifying HPPT data provided good reproducibility and concordance with animal reference data while

• Hoffmann et al. 2018. Crit Rev Toxicol 48(5):344-358. https://doi.org/10.1080/10408444.2018.1429385

• UN. 2021. Globally Harmonized System of Classification and Labelling of Chemicals. https://unece.org/transport/standards/transport/dangerous-goods/

To get announcements of NICEATM activities, visit the NIH mailing list page for NICEATM News at https://list.nih.gov/cgi-bin/wa.exe?SUBED1=niceatm-I&A=1 and click "Subscribe."