

Assessing the credibility of computational modeling and simulation for medical devices: Final FDA Guidance

Pras Pathmanathan, PhD Division of Biomedical Physics Office of Science and Engineering Laboratories (OSEL) Center for Devices and Radiological Health (CDRH) FDA

Acknowledgements

Kenneth Aycock OSEL/DAM Kenneth.Aycock@fda.hhs.gov

Brent Craven OSEL/DAM Brent.Craven@fda.hhs.gov

Pras Pathmanathan OSEL/DBP Pras.Pathmanathan@fda.hhs.gov

ICCVAM Communities of Practice webinar, Jan 2024

What is computational modeling and simulation (CM&S)?

Data-driven models

- Statistical methods, e.g., regression
- Machine learning and AI

Hybrid methods

- First-principles model with data-driven sub-model(s)
- Train ML model to first-principles model results
- Physics-informed neural networks

First-principles models

- Physics-based models
- Mechanistic models

Mathematical models

What is computational modeling and simulation (CM&S)?

Hybrid methods

- First-principles model with data-driven sub-model(s)
- Train ML model to first-principles model results
- Physics-informed neural networks

First-principles models

- Physics-based models
- Mechanistic models

Statistical methods, e.g., regression

Machine learning and AI

Data-driven models

Mathematical models

CM&S in regulatory submissions

In Silico Device Testing

Simulate device to generate safety/ effectiveness evidence

CM&S in device software

Algorithm in device software takes in patient data and simulates the patient

CardioInsight

In Silico Clinical Trial

Device performance is evaluated using a 'virtual cohort' of simulated patients.

CM&S-based MDDT

IMAnalytics

Timeline

Assessing the credibility of computational modeling and simulation for medical devices

Key Definitions

Paraphrased from Credibility Guidance, originally from ASME V&V40 2018:

- Credibility "the trust, based on all available evidence, on the predictive capability of a computational model"
- Context of use (COU) "the role and scope of the computational model in answering the question of interest"

Scope of the guidance

In scope

- First principles-based models
- For hybrid models:
 - First-principles model components

Out of scope models

- Standalone statistical or data-driven models
- Models with no simulation, e.g., anatomical models

Also out of scope

- How to perform modeling studies
- Technical details for how to perform credibility assessment
- Specific level of credibility needed for regulatory submissions

ASME V&V40 2018

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Guidance – key points and approach

- Consistent with ASME V&V40-2018
 - Risk-informed credibility assessment
 - Can follow Guidance by following V&V40
 - Emphasis on question of interest, context of use and model risk
- Provides a general framework for model credibility assessment
 - Intended to be applicable to all CM&S models, applications and types of regulatory submission
 - Not prescriptive
- Framework extends approach of ASME V&V40 2018
 - ASME V&V40 implicitly assumes validation against prospective well-controlled bench tests

Guidance – key points and approach

- Consistent with ASME V&V40-2018
 - Risk-informed credibility assessment
 - Can follow Guidance by following V&V40
 - Emphasis on question of interest, context of use and model risk
- Provides a general framework for model credibility assessment
 - Intended to be applicable to all CM&S models, applications and types of regulatory submission
 - Not prescriptive
- Framework extends approach of ASME V&V40 2018
 - ASME V&V40 implicitly assumes validation against prospective well-controlled bench tests

Guidance – key points and approach

- Consistent with ASME V&V40-2018
 - Risk-informed credibility assessment
 - Can follow Guidance by following V&V40
 - Emphasis on question of interest, context of use and model risk
- Provides a general framework for model credibility assessment
 - Intended to be applicable to all CM&S models, applications and types of regulatory submission
 - Not prescriptive
- Framework extends approach of ASME V&V40 2018
 - ASME V&V40 implicitly assumes validation against prospective well-controlled bench tests

Framework

Guidance

Figure 1:

Step 1: State question of interest Step 2: State context of use (COU): Refer to Refer to Example (abridged): Is the device family resistant to fatigue fracture under Example: Finite element analysis will be performed to identify worst-case device sizes Section VI.A.(1) anticipated worst-case radial loading conditions? for fatigue fracture. These devices will then be tested on the bench. Section VI.A.(2) Step 3: Assess model risk: Refer to Overall risk: choose 1. Decision consequence: e.g., the severity of possible harm is ..., probability of occurrence is ..., so overall decision consequence is ... Section VI.A.(3) from e.g., low to high 2. Model influence: e.g., model results will be a major but not only source of information in making the decision, so model influence is ... Step 5 (continued): State gradations and Step 5: State credibility factors: Step 4: Identify credibility evidence to be collected: select credibility goals: Software quality assurance e.g. Numerical code verification (NCV) Code verification results (Cat. 1): testing to confirm that, (a) NCV not performed. numerical algorithms and associated code have been Goodness of fit* (b) Solution compared to a solution correctly implemented without errors Quality of experimental data* from another verified code. Relevance of calibration results to COU^{*} (c) Discretization error quantified by Model calibration results (Cat. 2): results showing that Refer to comparison to an exact solution the constitutive model output matches experimental Section VI.B (d) Observed order of accuracy stress-strain measurements when material parameters Model form Ì۲ quantified and compared to the are calibrated accordingly. Model inputs theoretical order of accuracy. Test samples Bench test validation results (Cat. 3): comparison of Test conditions Selected Credibility Goal (based on model results with experimental measurements of force- Equivalency of inputs displacement on the bench. assessed model risk): level ... • ... Calculation verification results using COU simulations Refer to Plan for achieving Credibility Goal: ... Discretization error (Cat. 8): mesh convergence analysis using the final COU Section Numerical solver error simulations VI.C Use error Refer to Step 6: Perform prospective adequacy assessment Section VI.D Rationale for why the planned evidence will be sufficient to support using the model for the COU given the risk assessment. NO See Section V Rationale sufficient? for options Refer to Optional: Submit pre-submission to receive FDA feedback on proposed plan. YES Appendix 2 Step 7: Generate credibility evidence by executing proposed study(ies) and/or analyzing previously generated data Results and analysis for studies listed above. Step 8: Perform post-study adequacy assessment Step 9: Prepare final Credibility Assessment Report YES Rationale Refer to Refer to Rationale for why all the evidence collected supports Report using the recommended structure, summarizing results sufficient? Section VI.D Appendix 2 using the model for the COU given the risk assessment. of previous steps, to be included in the regulatory submission. NO

See Section V for options

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Framework

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Step 1: state the Question of Interest

"the specific question, decision, or concern that is being addressed"

- Should be about the real world
- Not about the model
- Should not be overly broad (i.e., not "Is the device safe?")

Device testing example

Is the device resistant to fatigue fracture under anticipated worst-case radial loading conditions?

Step 2: state the Context of Use

"the role and scope of the computational model in answering the question of interest"

- what is modeled and how model outputs used to answer the question of interest
- type of modeling, key inputs and outputs
- whether other information (e.g., bench/animal/clinical) will be used to answer the question of interest

Device testing example

Combine computational modeling predictions and empirical fatigue testing observations to estimate device fatigue safety factors under anticipated worst-case radial loading conditions [...]

Assessing the credibility of computational modeling and simulation for medical devices

Step 3: assess Model Risk

"the possibility that the computational model and the simulation results may lead to an incorrect decision that would lead to an adverse outcome"

- Broken down into model influence and decision consequence
- Decision consequence
 - significance of an adverse event following an incorrect decision
 - essentially "Risk" as defined in ISO 14971
 - Therefore, recommend sponsors consider probability of occurrence and severity of harms

Framework

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Step 4: Identify Credibility Evidence to be collected

"any evidence that could support the credibility of a computational model"

- Evidence categorization provided (right)
- Details and device-specific examples for each category provided in Section VI.B
- Specific recommendations for each category in Appendix 1

1	Code verification results	
2	Model calibration evidence	
3	Bench test validation results	
4	In vivo validation results	
5	Population-based validation results	
6	Emergent model behavior	
7	Model plausibility evidence	
8	Calc. verification/UQ using COU conditions	

Assessing the credibility of computational modeling and simulation for medical devices

Step 5: Credibility Factors

For each set of evidence:

- Define credibility factors (some recommended factors provided)
- For each factor
 - Define a gradation of activities
 - Choose a target level based on the risk assessment

Example

Gradation from ASME V&V40 2018

(a) A single sample was used.
(b) Multiple samples were used, but not enough to be statistically relevant.
(c) A statistically relevant number of samples were used.

Assessing the credibility of computational modeling and simulation for medical devices

Step 5: Credibility Factors

For each set of evidence:

- Define credibility factors (some recommended factors provided)
- For each factor
 - Define a gradation of activities
 - Choose a target level based on the risk assessment

Example

Gradation from ASME V&V40 2018

(a) A single sample was used.
(b) Multiple samples were used, but not enough to be statistically relevant.
(c) A statistically relevant number of samples were used.

Framework

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Step 8: Rationale for Adequacy

Does the credibility evidence support using the model for the COU given risk assessment?

- Subjective decision based on all available evidence and engineering/clinical judgement
- Considerations
 - All relevant model features tested?
 - If credibility goals not met, consider providing a rationale for why results still adequate
 - How do predictions with uncertainties compare to decision/safety thresholds?
 - Discuss limitations of model

Overview of related efforts

Regulatory Science Tools

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Regulatory Science Tools

- "A peer-reviewed resource for medical device companies to use where standards and qualified Medical Device Development Tools (MDDTs) do not yet exist"
- Can be used by industry to generate data in support of device safety/effectiveness
- OSEL primary type of deliverable

See OSEL website for current regulatory science tools

DA U.S. FOOD & DRUG

Home / Medical Devices / Science and Research | Medical Devices / Catalog of Regulatory Science Tools to Help Assess New Medical Devices

Catalog of Regulatory Science Tools to Help Assess New Medical Devices

f Share 🛛 🗙 Post 🛛 in Linkedin 🔤 Email 🔒 Print

Content current as of: 11/06/2023

Q Search

≡ Menu

FDA

Regulated Product(s) Medical Devices

Assessing the credibility of computational modeling and simulation for medical devices

ICCVAM Communities of Practice webinar, Jan 2024

Summary and Key Points

- Mathematical modeling has a plethora of possible regulatory applications for medical devices
 - In silico device testing
 - Within device software including digital twins
 - In silico clinical trials
- For CM&S, there are many possible ways to evaluate the models
 - Challenging to develop a coherent and comprehensive regulatory strategy
- FDA is addressing this through Guidance providing a general framework relevant to all modeling fields and submission types
 - Not prescriptive
 - Further assistance for industry provided through Regulatory Science Tools
 - There is a need for future field/device-specific prescriptive standards

Thank you for your attention

Acknowledgments

- Kenny Aycock (FDA)
- Andreu Badal (FDA)
- Jeff Bodner (Medtronic)
- Ramin Bighamian (FDA)
- Brent Craven (FDA)
- Suran Galappaththige (FDA)
- Richard Gray (FDA)
- Caroline Mendonca Costa (King's College London)
- Tina Morrison (FDA)
- Steve Niederer (Imperial)