

Open-access Data and Computational Tools to Investigate Chemical Bioactivity

12th ASCCT Annual Meeting 2023-10-25

Aswani Unnikrishnan, Victoria Hull, Alexandre Borrel, Kim T To, James T Auman

Inotiv, contractor's supporting NICEATM

Disclaimer: Inotiv staff provide technical support for NICEATM, but do not represent NIEHS, NTP, DTT, or the official positions of any federal agency.

National Institutes of Health • U.S. Department of Health and Human Services

Session Objectives

 Gain an understanding of the data within ICE and how to use ICE tools for data interpretation and exploration.

 Discover the utility of ChemMaps.com for supporting read-across analysis, risk assessment, and the exploration of unknown chemicals.

 Understand the purpose and functionality of the DASS App.

https://ice.ntp.niehs.nih.gov/

https://sandbox.ntp.niehs.nih.gov/chemmaps/

https://ntp.niehs.nih.gov/go/952311

Session Agenda

- 1. First Presentation: (30 mins)
 - Title: Overview of NICEATM's Integrated Chemical Environment (ICE) with detailed insight into its Search and structural similarity prediction tools.
 - Speaker: Aswani Unnikrishnan
- 2. Second Presentation: (30 mins)
 - Title: Using the Integrated Chemical Environment (ICE) to access interoperable computational tools and inform chemical hazard.
 - Speaker: Victoria Hull
- 3. ICE Q & A (10 mins)
- 4. Recess: (10 mins)
- 5. Third Presentation: (30 mins)
 - Title 1: ChemMaps.com v2.0 Exploring the Environmental Chemical Universe
 - Title 2: DASS App: A Web Application for Applying Defined Approaches for Skin Sensitization to Predict Hazard and Potency Categorization.
 - Speaker: Kim To
- 6. ChemMaps & Dass App Q & A (5 mins)

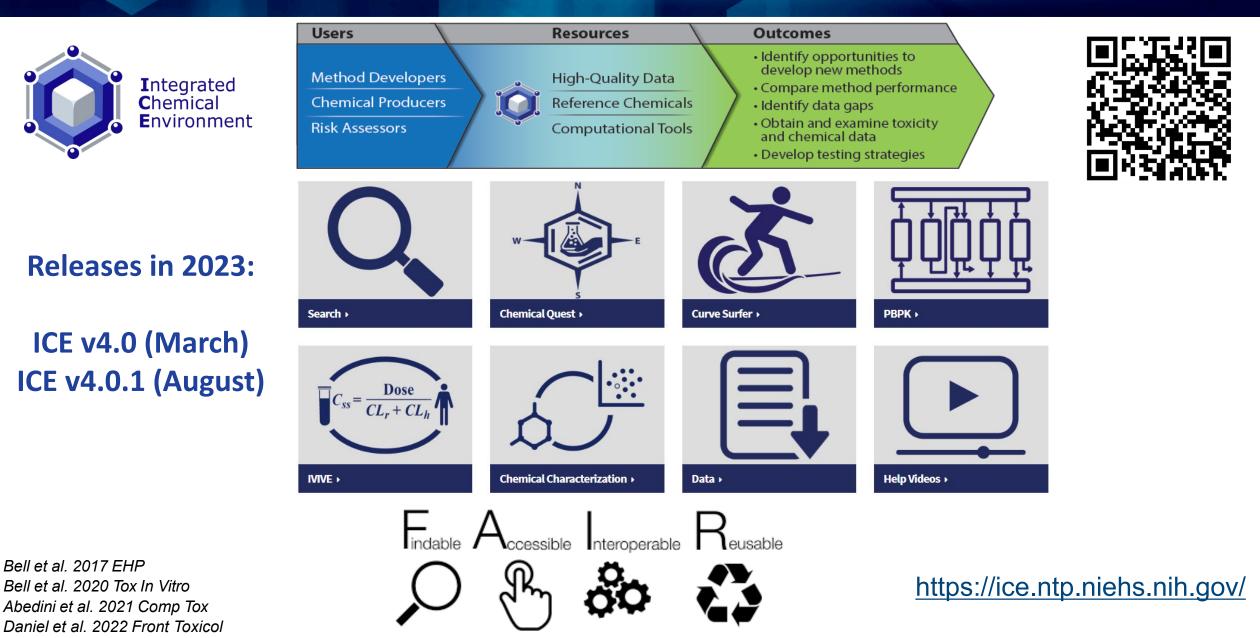
Overview of NICEATM's Integrated Chemical Environment (ICE) with detailed insight into its Search and structural similarity prediction tools

12th ASCCT Annual Meeting 2023-10-25

Presented by Aswani Unnikrishnan, Inotiv, contractor supporting NICEATM ICE-support@niehs-nih.gov

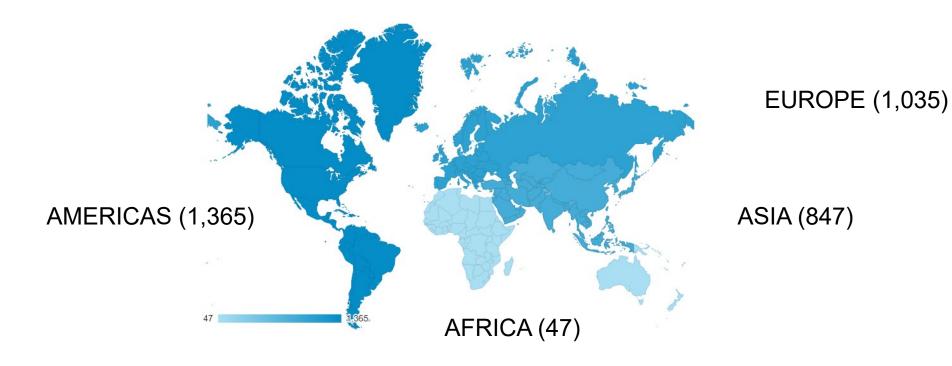
Disclaimer: Inotiv staff provide technical support for NICEATM, but do not represent NIEHS, NTP, DTT, or the official positions of any federal agency.

National Institutes of Health • U.S. Department of Health and Human Services



- 1. Introduction to ICE
- 2. ICE Data
 - In Vivo and In Vitro
 - In Silico Models/Integrated Approaches
 - OPERA Predictions in ICE
- 3. ICE Chemical Quick Lists
- 4. Accessing ICE Data
- 5. Accessing ICE Tools
- 6. ICE Tools Workflow
- 7. Demo ICE Walkthrough

- 8. Search Tool Overview
- 9. Demo Search Tool
- 10. Search Tool Summary
- 11. Chemical Quest Tool Overview
- **12. Demo** Chemical Quest Tool
- 13. Chemical Quest Tool Summary


ICE: Integrated Chemical Environment

Duration	Users	New Users
January 2023 – October 2023	3,342	706

Users From Around The World

Data organized by Toxicity Endpoint (TE) based on outcomes of regulatory concern.

Toxicity Endpoints	Toxicity Endpoints
Chemical Parameters	Skin Sensitization
Chemical randineters	Skin Irritation
ADME Parameters	Eye Irritation
Acute Toxicity	Endocrine
Cancer	cHTS
DART	Exposure

Example: cHTS data sourced from US Federal Tox21 and ToxCast, EPA's InvitroDB pipeline and annotated using controlled vocabularies.

		MOA		TE		MT		
A	В	С	D	E	F	G	н	1
1 AssayEndpointName	Assay_MOA	ModeofAction	MOA_ToxicityEndpoint	ToxicityEndpoint	Assay_MechanisticTarget	MechanisticTarget	MT_NCIm_term	MT_NCIm_term_ID
2 APR_HepG2_MicrotubuleCSK_1h_dn	mayInformOn	AcuteTox - Cytotoxicity	mayContributeTo	Acute Lethality	throughMechanisticTarget	Cell Morphology	Cell Viability Process	CUI:C1516362
APR_HepG2_MicrotubuleCSK_1h_up	mayInformOn	AcuteTox - Cytotoxicity	mayContributeTo	Acute Lethality	throughMechanisticTarget	Cell Morphology	Cell Viability Process	CUI:C1516362
APR_HepG2_MitoMass_1h_dn	mayInformOn	AcuteTox - Energy Metabolism Process	mayContributeTo	Acute Lethality	throughMechanisticTarget	Mitochondrial Function	Energy Metabolism Process	CUI:C0014272
APR_HepG2_MitoMass_1h_up	mayInformOn	AcuteTox - Energy Metabolism Process	mayContributeTo	Acute Lethality	throughMechanisticTarget	Mitochondrial Function	Energy Metabolism Process	CUI:C0014272
APR_HepG2_MitoMembPot_1h_dn	mayInformOn	AcuteTox - Energy Metabolism Process	mayContributeTo	Acute Lethality	throughMechanisticTarget	Mitochondrial Function	Energy Metabolism Process	CUI:C0014272
APR_HepG2_MitoMembPot_1h_up	mayInformOn	AcuteTox - Energy Metabolism Process	mayContributeTo	Acute Lethality	throughMechanisticTarget	Mitochondrial Function	Energy Metabolism Process	CUI:C0014272
APR_HepG2_p53Act_1h_dn	mayInformOn	AcuteTox - p53 Signaling Pathway	mayContributeTo	Acute Lethality	throughMechanisticTarget	p53 Modulation	p53 Signaling Pathway	CUI:C2984306
APR_HepG2_p53Act_1h_up	mayInformOn	AcuteTox - p53 Signaling Pathway	mayContributeTo	Acute Lethality	throughMechanisticTarget	p53 Modulation	p53 Signaling Pathway	CUI:C2984306
0 APR_HepG2_CellLoss_24h_dn	mayInformOn	AcuteTox - Cytotoxicity	mayContributeTo	Acute Lethality	throughMechanisticTarget	Cell Viability	Cell Viability Process	CUI:C1516362
1 APR_HepG2_MicrotubuleCSK_24h_up	mayInformOn	AcuteTox - Cytotoxicity	mayContributeTo	Acute Lethality	throughMechanisticTarget	Cell Morphology	Cell Viability Process	CUI:C1516362
a ADD Handa MitaMass 34h dn	maulaformOn	AsutaTay - Energy Matshelics Dresses	mauContributoTo	Asuta Lathalitu	throughttochanisticTorgot	Mitachandrial Function	Energy Metabolicm Dresses	CUILCO014272

ICE Data (In Vivo and In Vitro)

Toxicity endpointChemical ParametersADME ParametersAcute ToxicityCancerDARTSkin Sensitization	Assays	# of chemic	als
Chemical Parameters	Experimental physicochemical properties	~20000	
ADME Parameters	Fu, intrinsic clearance, Caco2 permeability	~3000	Harmonized
Acute Toxicity	In vivo acute oral, dermal, and inhalation toxicity	~10000	and updated
Cancer	In vivo and in vitro cancer, and Weight of Evidence	3038	datasets!
DART	In vivo and in vitro DART	628	
Skin Sensitization	In vivo and in vitro skin sensitization	1771	
Skin Irritation	In vivo and in vitro skin irritation/corrosion	595	
Eye Irritation	In vivo and in vitro eye irritation/corrosion	455	
Endocrine	In vivo and low throughput in vitro data on AR and ER agonist and antagonist activity	384	
cHTS	Curated US EPA's ToxCast and Federal Tox21 assays (In vitro)	~10000	

Data

E ICE Data (In Silico Models/Integrated Approaches)

Endpoint	Model	# of	chemicals
Physicochemical Properties	OPEn (q)saR App (OPERA) Mansouri et al. J Cheminform 2018	1M+	
Structural Properties	OPEn (q)saR App (OPERA) Mansouri et al. J Cheminform 2018	1M+	
Predicted ADME Properties	OPEn (q)saR App (OPERA) Mansouri et al. J Cheminform 2018	1M+	
Environmental Fate	OPEn (q)saR App (OPERA) Mansouri et al. J Cheminform 2018	1M+	
Acute Oral Toxicity	Collaborative Acute Toxicity Modeling Suite (CATMoS) - Rat acute oral toxicity. Mansouri et al. EHP 2021	1M+	
	Estrogen Receptor pathway Model. Browne et al. ES&T 2015	1812	
Frada arina	Androgen Receptor Pathway Model. Kleinstreuer et al. Chem Res Tox 2017	1855	
Endocrine	Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). Mansouri et al. EHP 2016	1M+	
	Collaborative Modeling Project for Androgen Receptor Activity (COMPARA). Mansouri et al. EHP 2020	1M+	New exposure
Exposure Predictions	Systematic Empirical Evaluation of Models (US EPA'S SEEM3). Ring et al. Environ Sci Technol 2019	475,000+	predictions!

Data

alendar & Events News & Media National Toxicology Program Q Search the NTP Website SEARCH U.S. Department of Health and Human Serv Home Search Tools **News & Events ICE includes Property Predictions** from OPERA ICE v4.0.1 Release Learn more about QSAR property predictions ICE updates include: generated by OPERA. New resources and site improvements Major updates in the data visualizations for Search tool query summary results (beta version Availability of population-level exposure predictions across multiple pathways through the ICE Search tool in addition to the ICE REST API and IVIVE tool PERA PAUSE Functional use categories added to ICE Chemical Characterization tool Learn about ICE updates UPDATES

Data

Research article | Open access | Published: 08 March 2018

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri 🖾, Chris M. Grulke, Richard S. Judson & Antony J. Williams

Journal of Cheminformatics 10, Article number: 10 (2018) Cite this article

20k Accesses | 261 Citations | 25 Altmetric | Metrics

Open Structure-Activity/Property Relationship App (OPERA)

OPERA Predictions in ICE

- OPERA is a free and open-source quantitative structureactivity relationship (QSAR) tool.
- OPERA predictions include:
 - Physicochemical Properties
 - Structural Properties
 - Environmental Fate Properties
 - ADME properties
 - Models for Toxicity Endpoints
 - CERAPP: Collaborative Estrogen Receptor Activity Prediction Project
 - CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity
 - CATMoS: Collaborative Acute Toxicity Modeling Suite

https://ntp.niehs.nih.gov/go/opera https://doi.org/10.1186/s13321-018-0263-1

https://github.com/NIEHS/OPERA

ICE Chemical Quick Lists

Reference Chemical List

AR In Vitro Agonist

AR In Vitro Antagonist

ER In Vivo Agonist

ER In Vitro Agonist

Eye Irritation-Corrosion

Genotoxicity

OECD Defined Approach to Skin Sensitization: Human

OECD Defined Approach to Skin Sensitization: LLNA

Skin Corrosion

Non-reference Chemical List

AR In Vivo Agonists

AR In Vivo Antagonists

EPA Pesticide Active Ingredients

EPA Pesticide Inert Ingredients, Food and Nonfood Use

EPA IRIS Cancer Assessment

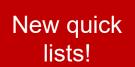
EPA IRIS Non-Cancer Assessment

IARC Classifications

Mixtures and Formulations in ICE

NTP Cancer Bioassay Chemicals

RoC Classifications

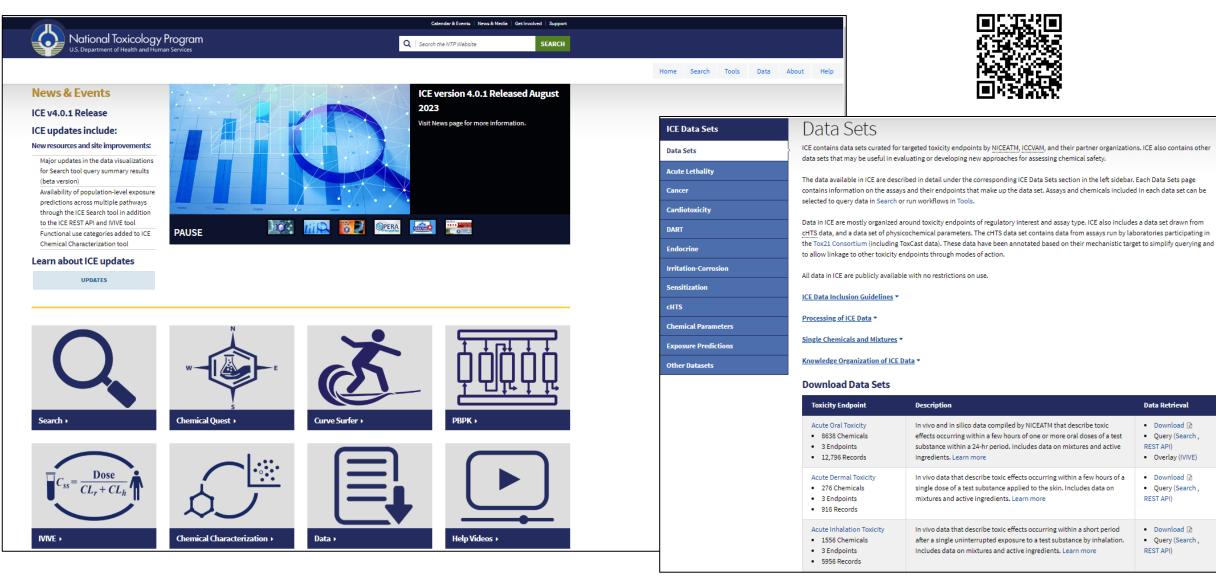

Steroidogenesis - Androgen

Steroidogenesis - Estrogen

Thyroid

Tox21

ToxCast Phase I, Phase II, and e1k



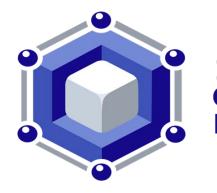
Data

https://ice.ntp.niehs.nih.gov/

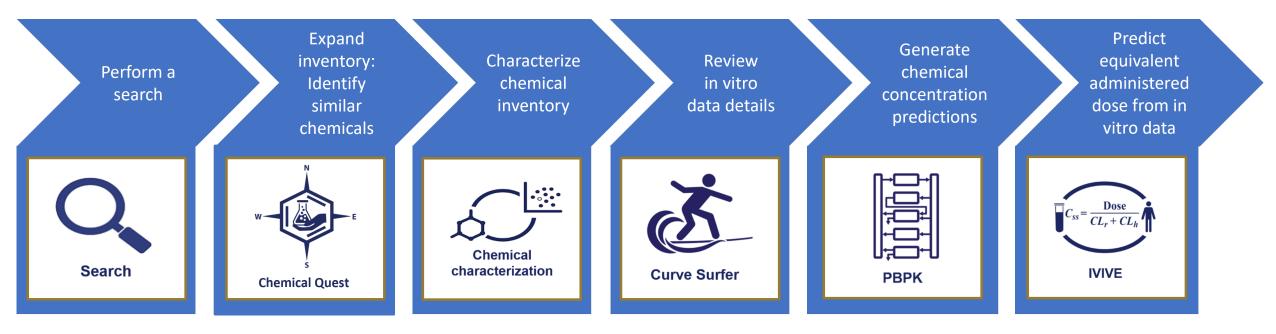
- For one or more chemical ids, return a list of Assay/Endpoint objects.
 - Query one chemical id using GET
 - Query multiple chemicals using POST
- Results are formatted in JSON
 - Same data structure for POST and GET REST requests.
 - Array of Assay/Endpoint objects per chemical.
 <u>https://ice.ntp.niehs.nih.gov/api/v1/search</u>

Newly added Rest API User guide provides more details and example codes!!

← → C A https	://ice.ntp.niehs.nih.gov/api/v1/search?chemid=DTXSID7032004						
JSON Raw Data Headers	5						
Save Copy Collapse All Expan	d All (slow) V Filter JSON						
▶ 1568:	{}						
▶ 1569:	{}						
▶ 1570:	{}						
▶ 1571:	{}						
▶ 1572:	{}						
▶ 1573:	{}						
▼ 1574:							
assay:	"Rat Acute Oral Toxicity"						
endpoint:	"LD50"						
substanceType:	"Chemical"						
casrn:	"13311-84-7"						
qsarReadyId:	"MKXKFYHWDHIYRV-UHFFFAOYSA-N"						
value:	"787.0"						
unit:	"mg/kg"						
species:	"Rat"						
receptorSpecies:							
route:	"NA"						
sex:							
strain:	uu						
lifeStage:	HH :						
tissue:	uu -						
lesion:	111						
location:	uu						
assaySource:							
<pre>inVitroAssayFormat:</pre>	uu -						
reference:	"NLM ChemIDplus TEST (undated)"						
referenceUrl:	"https://chem.nlm.nih.gov/chemidplus/"						
dtxsid:	"DTXSID7032004"						
<pre>substanceName:</pre>	"Flutamide"						
pubMedId:	"NA"						
▶ 1575:	{}						
▶ 1576:	{}						
▶ 1577:	{}						
▶ 1578:	{}						
▶ 1579:	{}						
v 1580:							
assay:	"NVS_MP_rPBR"						
endpoint:	"Top of curve"						
substanceType:	"Chemical"						



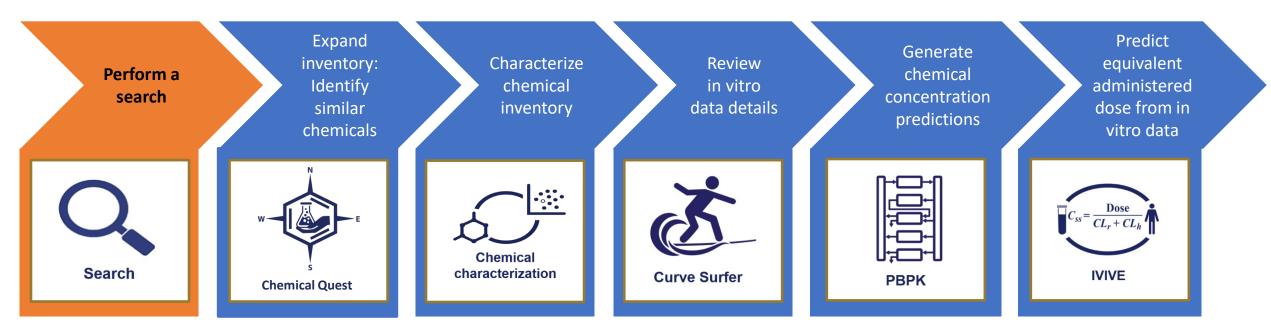
Accessing ICE Tools



ICE Tools Workflow

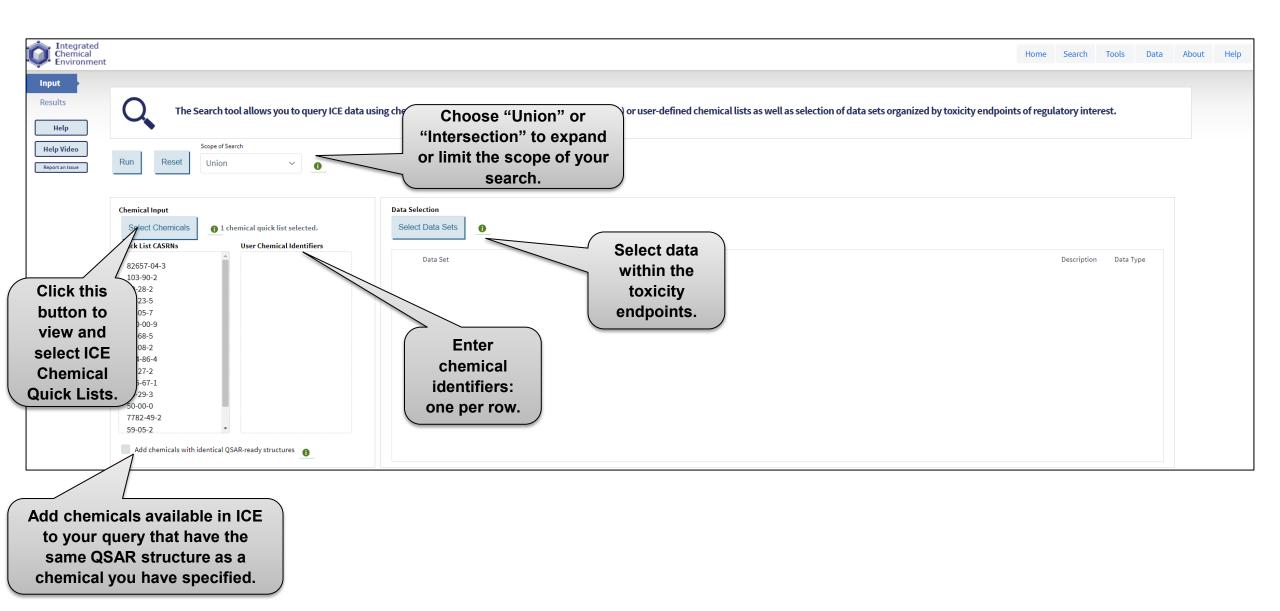
Integrated Chemical Environment

Exploring ICE

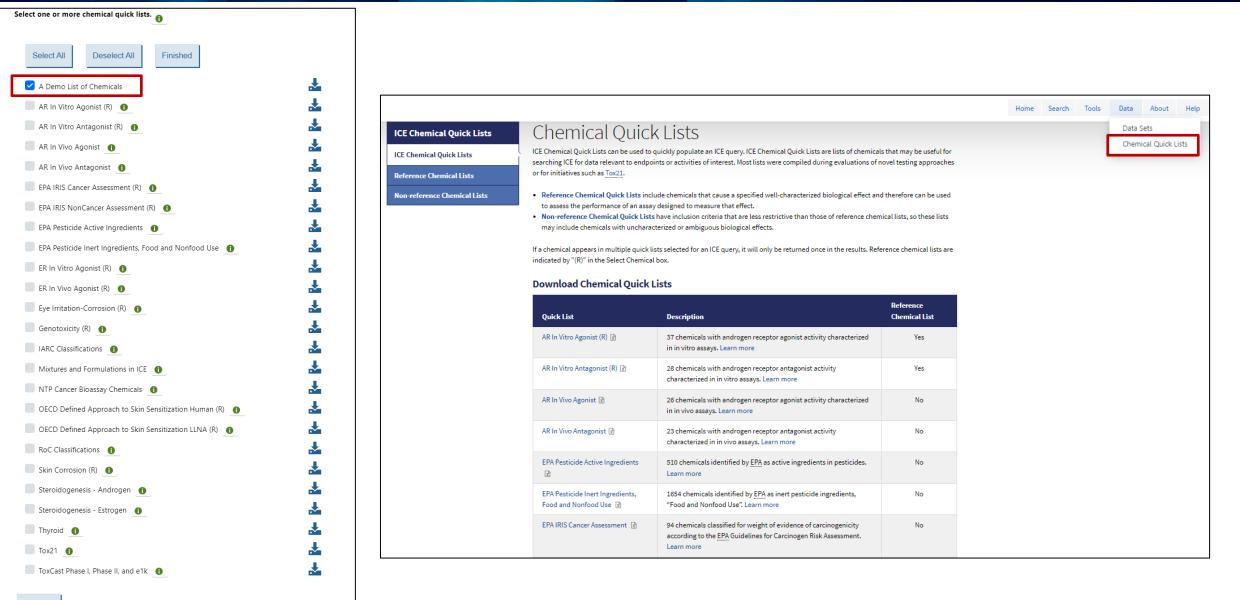

https://ice.ntp.niehs.nih.gov/



ICE Search tool allows integration of data from different models and testing systems to provide an overall view of chemical bioactivity for regulatory endpoints of interest.



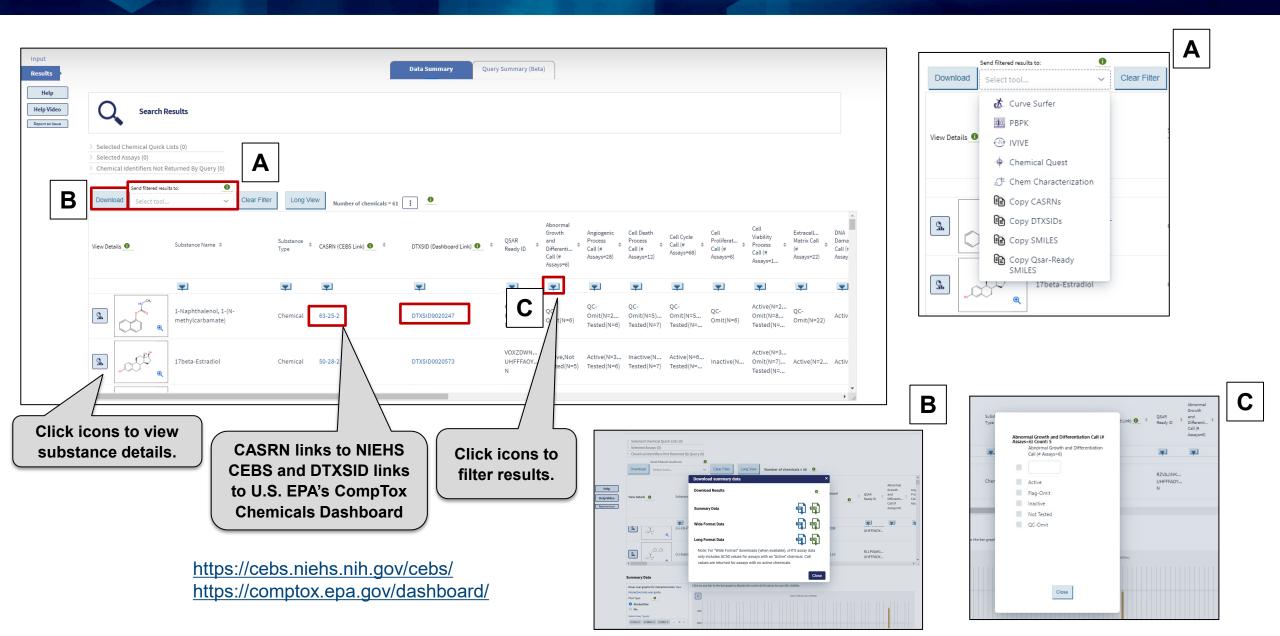
https://ice.ntp.niehs.nih.gov/



National Institute of Environmental Health Sciences

Division of Translational Toxicology

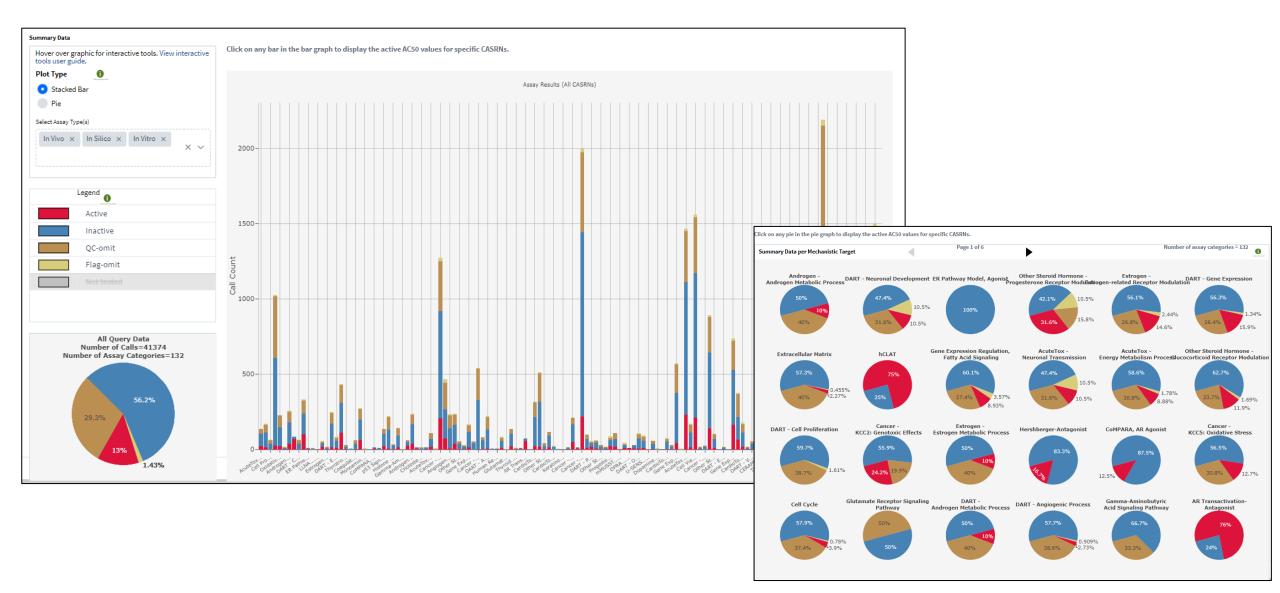
ICE Chemical Quick Lists



Search organized by Toxicity Endpoint

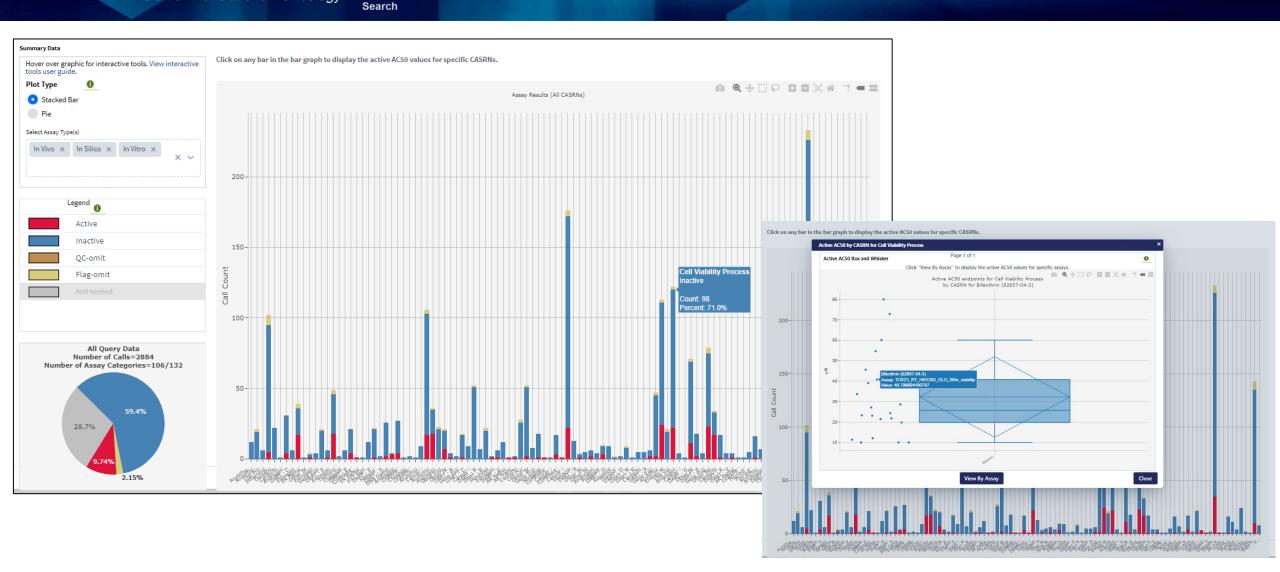
Integrated Chemical Environment Home Search Results Q. The S Select Data Sets Help **Chemical Properties** Irritation/Corrosion DART Help Video cHTS Acute Lethality Sensitization Endocrine Cancer Cardiotoxicity Exposure Run Reset Report an Issue 0 ✓ cHTS Abnormal Growth and Differentiation 0 in vitro Each tab Chemical Input Angiogenic Process 0 in vitro Select Chemicals represents > Cellular Processes 0 Quick List CASRNs 0 > Cellular Stress Response an assay > Endocrine-Related Processes in vitro 0 category. Energy Metabolism Process 0 Select Data Sets 👔 > Epigenetic Process 0 cHTS **Acute Lethality** Sensitization Irritation/Corrosion Endocrine Cancer Cardiotoxicity DART > Gene Expression 0 0 > Immune and Inflammatory Response > Neuronal Transmission O v Acute Lethality Xenobiotic Metabolism 0 > Dermal AcuteTox - Cytotoxicity Unannotated 0 This MOA describes assays relating to cell survival and cell viability. It is > Inhalation composed of assays relating to ✓ Oral Finished Add chemicals with Cell Survival CUI:C0007620 > In Vivo Acute Oral Toxicity Assays > In Silico Acute Oral Toxicity Predictions Cell Viability Process CUI:C1516362 ✓ Mode of Action Cellular Morphology CUI:C1521816 0 AcuteTox - Cytotoxicity n vitro Cellular Processes CUI:C1325880 0 AcuteTox - Energy Metabolism Process n vitro 0 AcuteTox - Immune and Inflammatory Respon n vitro Close AcuteTox - Neuronal Transmission 0 n vitro AcuteTox - Oxidative Stress 0 in vitro 0 AcuteTox - p53 Signaling Pathway in vitro AcuteTox - Steroid Hormone Metabolism 0 in vitro Finished

Search Results - Summary Table



National Institute of Environmental Health Sciences

Division of Translational Toxicology

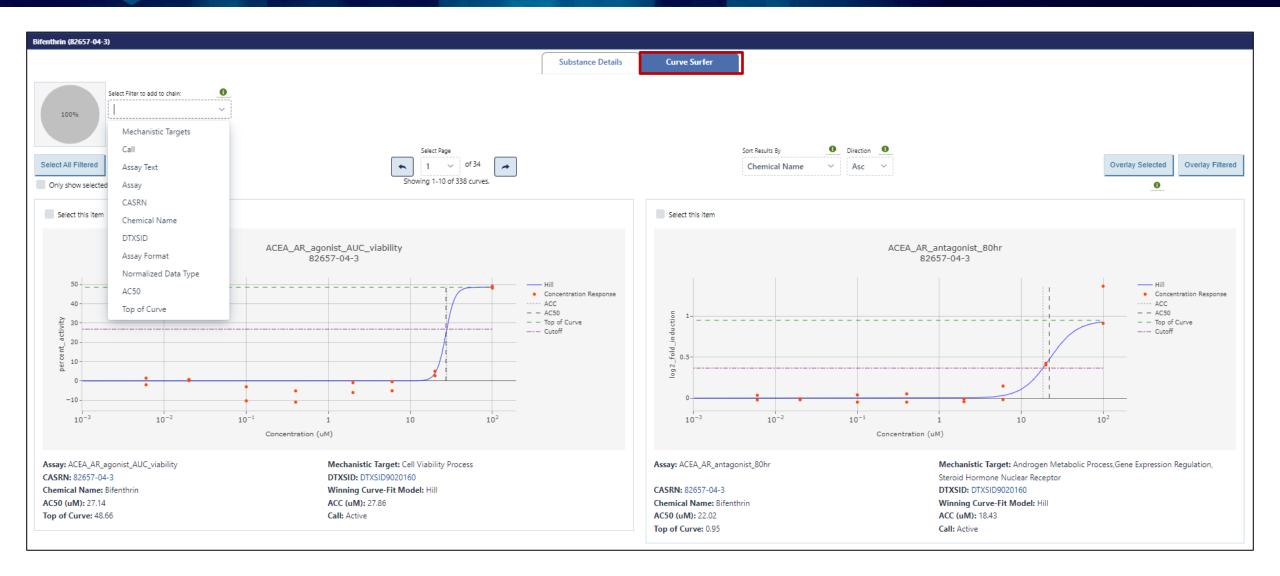

Search Results – Bioactivity Summary

Search Results – Bioactivity Summary (Single Chemical)

Division of Translational Toxicology

Active AC50 Plot for Assay Chemical Combo

Detail View for Single Chemical



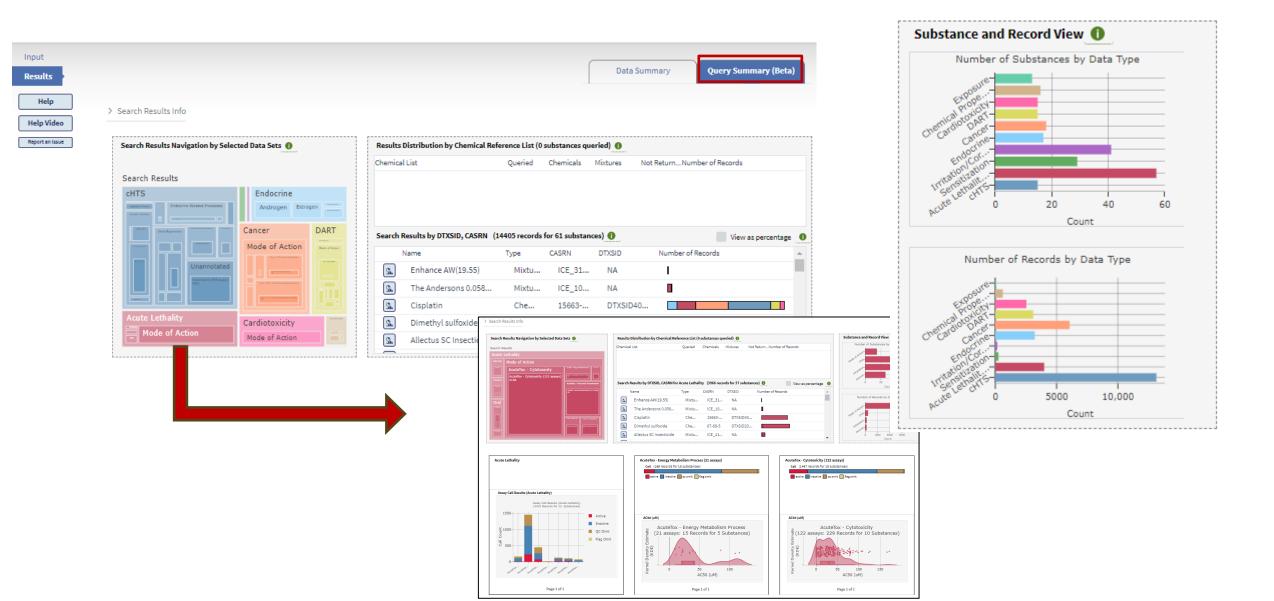
National Institute of Environmental Health Sciences

Division of Translational Toxicology

Dose Response Curves

National Institute of Environmental Health Sciences

Division of Translational Toxicology



Close

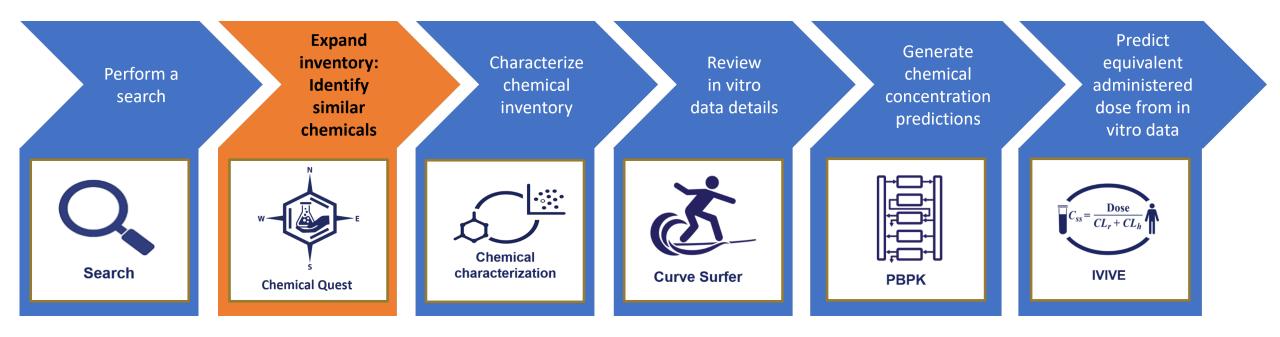
ls 0	Details Clear Filter	r Endpoint Re	ecord Count: 16399	0									× 253 A Bignaling A Pathway ¢ C Lall (# Lasays=12) A	4	/18	ch	emi	cals	s ->	
	Record ID \$	Chemical Name 💠	Substance Type	CASRN \$	DTXSID ¢	QSAR Ready ID	Assay 🛊	Endpoint :	Response	¢ Unit ¢	Species \$	Receptor	s s	A	ctiv	/e				
WCR.		T	¥.	¥.	Ţ	Ţ	Ţ	Ţ		¥	¥.	F	nactive(N Ir	(-		x91	D.	т∟	ΙEΚ	` つ(
	R_328211	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	OPERA, Number of rings	nbRing	2.0	count			Dmit(N=10) C	-					iabil	
AP(R_000001	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	OPERA, Boiling Point	BP	315.0	C			Active(N=7			0_(5011	'_ ' '		ΠĊ
ita	R_406241	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	TOX21_DT	Top of curve	93.3395	% activity										
r graphic for int guide.	R_406241	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	TOX21_PX	Top of Det curve												
ked Bar	R_406241	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	TOX21_A	Top of curve			int Record Count: 16	199 0	-						Receptor	
ay Type(s)	R_406241	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247	CVXBEEM UHFFFAO N	TOX21_C	Top of curve		¥]	Type	¢ CASRN ¢	Assay Count: 1179, Selected Rows = 1 Assay			e Response	• Unit •	Species o	Receptor Species	• ROU
	R_406241	1-Naphthalenol, 1-(N- methylcarbamate)	Chemical	63-25-2	DTXSID9020247		TOX21_DT	Ten of	K_328211 m	Naphthalenol, 1-(N- ethylcarbamate)	Chemic	al 63-25-2	TOX21_RT_HEK293_FLO_40hr	2	of nbRing	2.0	count			
Legend		1-Nanhthalenol 1-/N-				N CVXBEEM				Naphthalenol, 1-(N- ethylcarbamate)	Chemic	al 63-25-2	TOX21_RT_HEK293_GLO_00hr TOX21_RT_HEK293_GLO_08hr		BP	315.0	С			
Active	R_406241 ∢		Chemical	63-25-2	DTXSID9020247	UHFFFAO	TOX21_ER			Naphthalenol, 1-(N- ethylcarbamate)	Chemic	al 63-25-2	TOX21_RT_HEK293_GL0_16hr TOX21_RT_HEK293_GL0_24hr		T Top of curve	93.3395	% activity			
Inactive								_		Naphthalenol, 1-(N- ethylcarbamate)	Chemic	al 63-25-2	TOX21_RT_HEK293_GL0_32hr TOX21_RT_HEK293_GL0_32hr		C Top of curve	30.4428	% activity			
OC-omit		11								Naphthalenol, 1-(N- ethylcarbamate)	Chemic	al 63-25-2	TOX21_RT_HEPG2_FLO_00hr_c TOX21_RT_HEPG2_FLO_08hr		Top of curve	32.808	% activity			
QC-omit										Naphthalenol, 1-(N-	Chemic	al 63-25-2			Top of	52 2265				
QC-omit									n	ethylcarbamate)			Close		curve	33.2303	% activity			

Search Query Summary Results

Exploring ICE Search using "A Demo List of Chemicals"

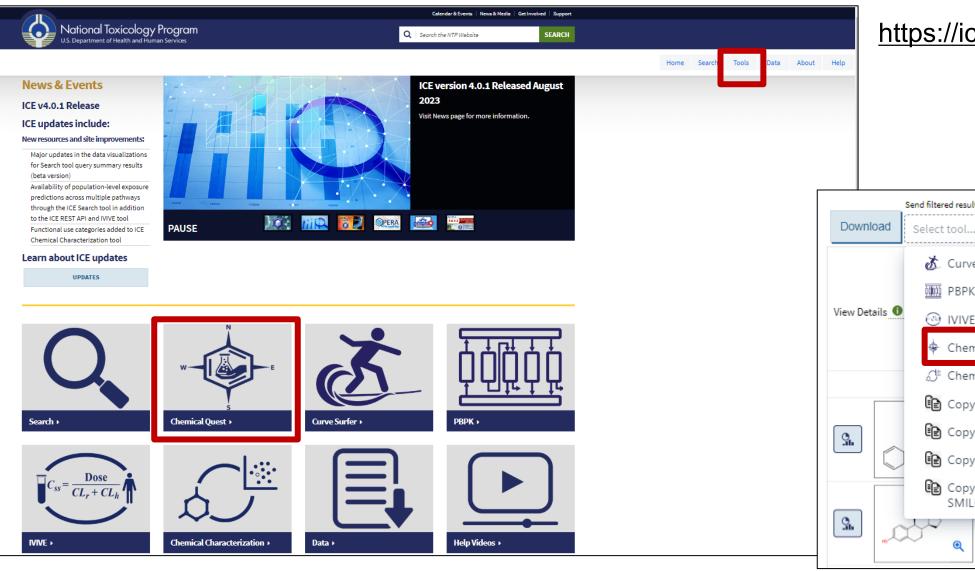
https://ice.ntp.niehs.nih.gov/

- Identify information on a set of chemicals regarding their toxicity and biological effects.
 - Users can query by CASRN, DTXSID, Chemical Name, InChiKey or SMILES.
 - Option to query on the parent structure as opposed to a specific salt form.
 - Detailed view of single chemicals and mixtures.
 - Explore all data from both animal and non-animal tests.
 - Interactive graphs visualize substance bioactivity in an assay.
 - AC50 plots for Active chemicals.
 - Downloadable results and graphs.
 - Sending results to other tools to run further queries and analysis.

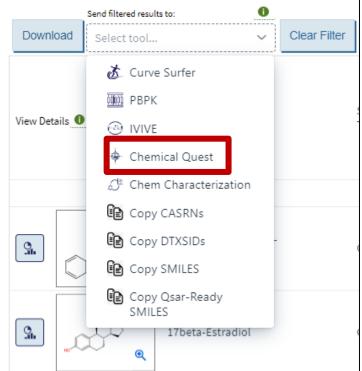


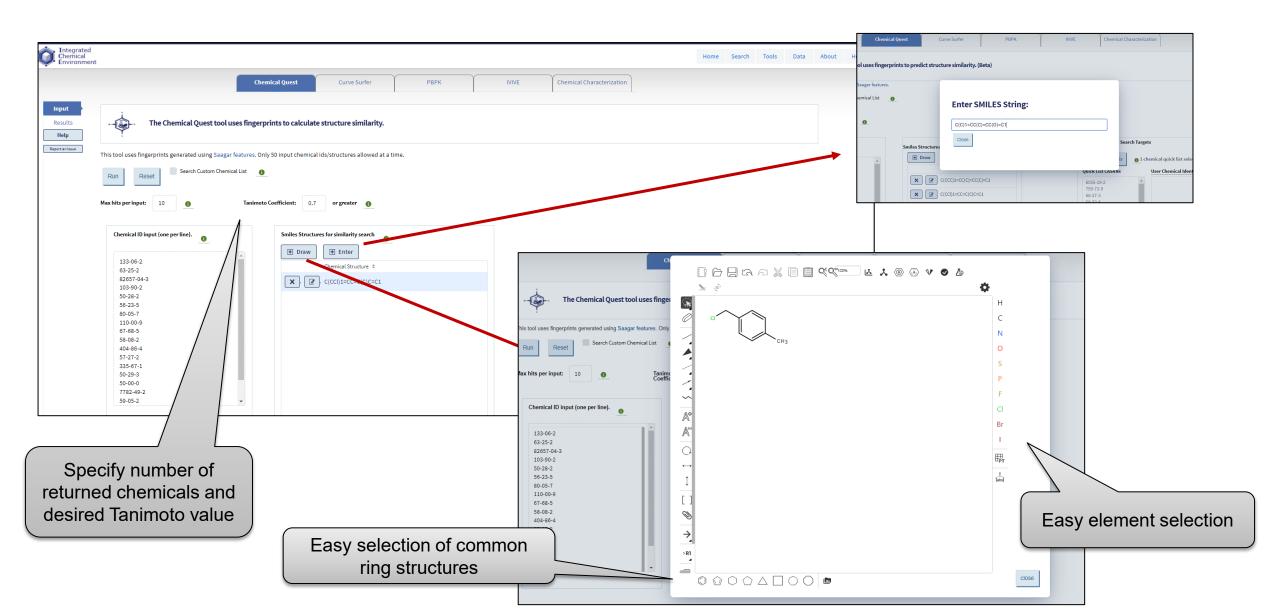
ICE Tools Workflow - Chemical Quest

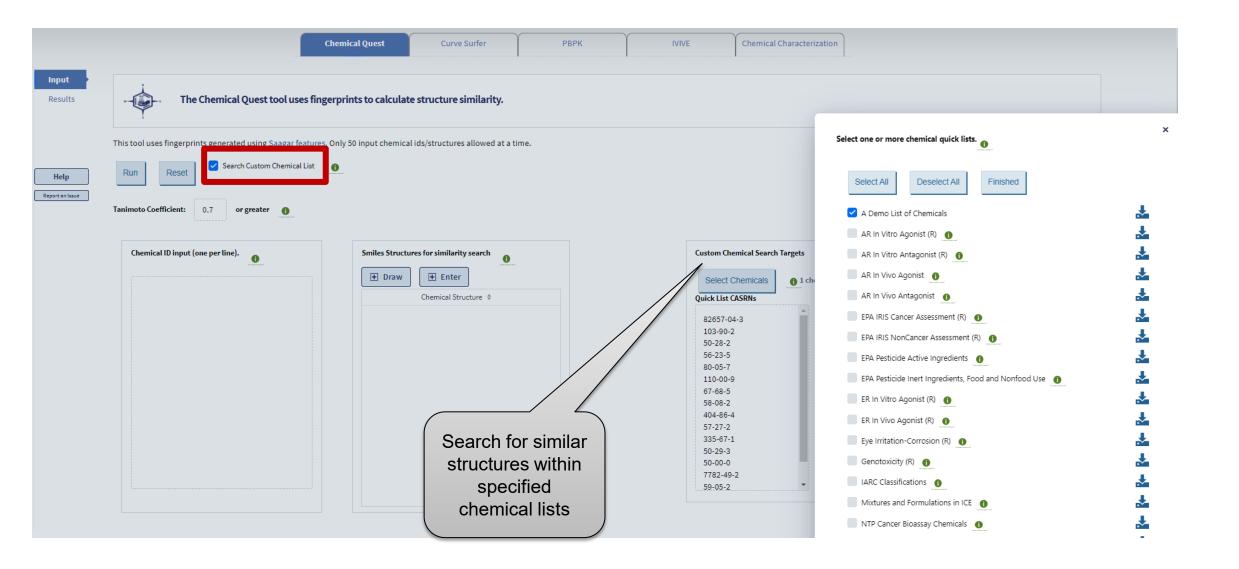
Integrated Chemical Environment The Chemical Quest tool allows for identification of structurally similar chemicals for potential property and biological interactions.


- Molecular Descriptors
 - Mathematical representations of the chemical structure.
 - Molecular weight, LogP, Bond Count
- Molecular Fingerprints
 - Code representation of molecular descriptors typically binary digits (bits).
- Saagar
 - Specific set of molecular fingerprints focused on ADME (absorption, distribution, metabolism and excretion) and toxicological properties.
- Tanimoto Value
 - Compare the molecular fingerprint bits for similarity.
 - Values range from 0 (not similar) to 1 (similar).

National Institute of Environmental Health Sciences

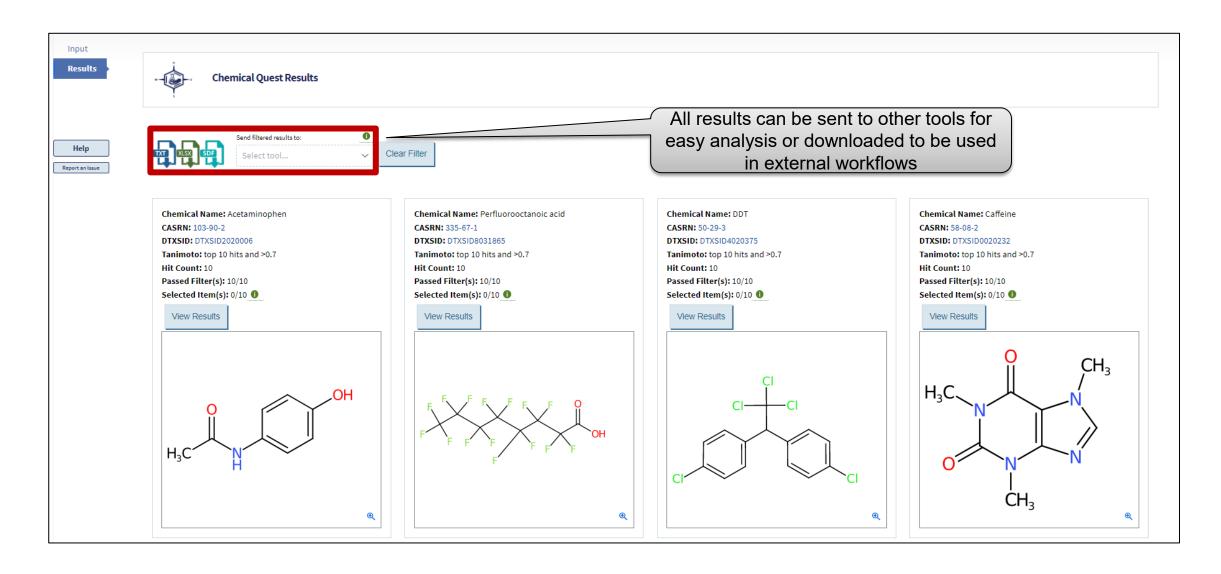

Division of Translational Toxicology


https://ice.ntp.niehs.nih.gov/

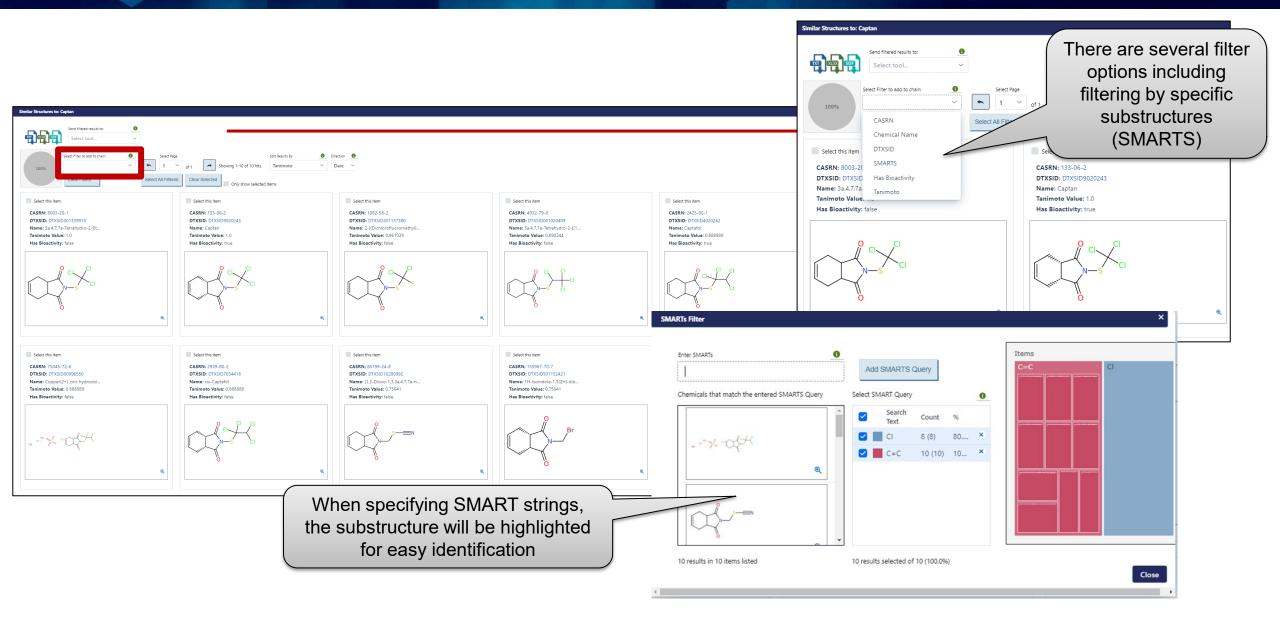


National Institute of Environmental Health Sciences

Division of Translational Toxicology


Chemical Quest - Specified Chemical Lists

National Institute of Environmental Health Sciences - Chemical Quest Output - Similar Structure Results


Division of Translational Toxicology

W-

Chemical Quest Output - Filtering

Exploring ICE Chemical Quest using "A Demo List of Chemicals"

https://ice.ntp.niehs.nih.gov/

Supports identification of information for data poor chemicals

- Identify structurally similar chemicals within the ICE database or a specific list of chemicals
- Users to query chemicals by drawing and editing 2D chemical structures or by chemical identifiers (CASRN, DTXSID, Chemical Name, InChiKey or SMILES)
- Identifying structural features that may be driving factors in assay performance
- Sending all identified chemicals to other tools to understand potential links between structure and chemical characteristics or assay information

Acknowledgments

https://ice.ntp.niehs.nih.gov/

The NICEATM Group

Using the Integrated Chemical Environment (ICE) to access interoperable computational tools and inform chemical hazard

12th ASCCT Annual Meeting 2023-10-25

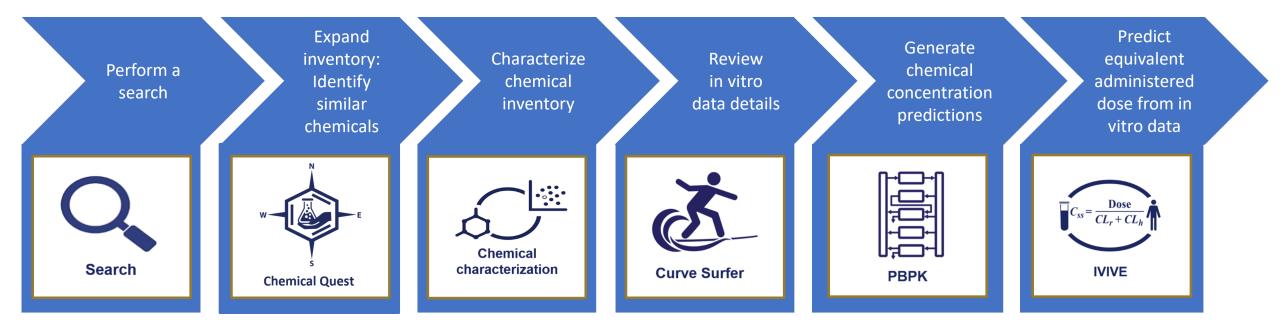
Victoria Hull, Inotiv, Inc., Contractor Supporting the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM)

> Disclaimer: Inotiv staff provide technical support for NICEATM, but do not represent NIEHS, NTP, or the official positions of any federal agency.

National Institutes of Health • U.S. Department of Health and Human Services

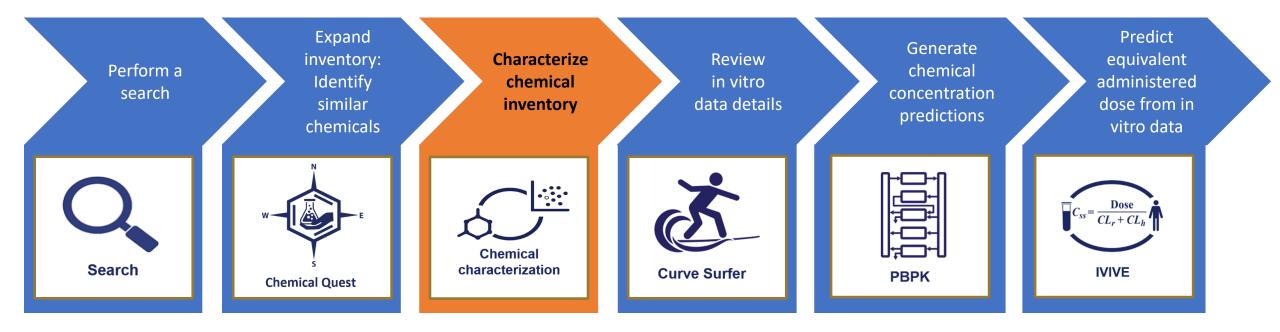
Presentation Outline

- 1. Introduction
- 2. Chemical Characterization Walkthrough and Demo
- 3. Curve Surfer Walkthrough and Demo
- 4. PBPK Walkthrough and Demo
- 5. IVIVE Walkthrough and Demo
- 6. Summary
- 7. ICE Q&A


Introduction

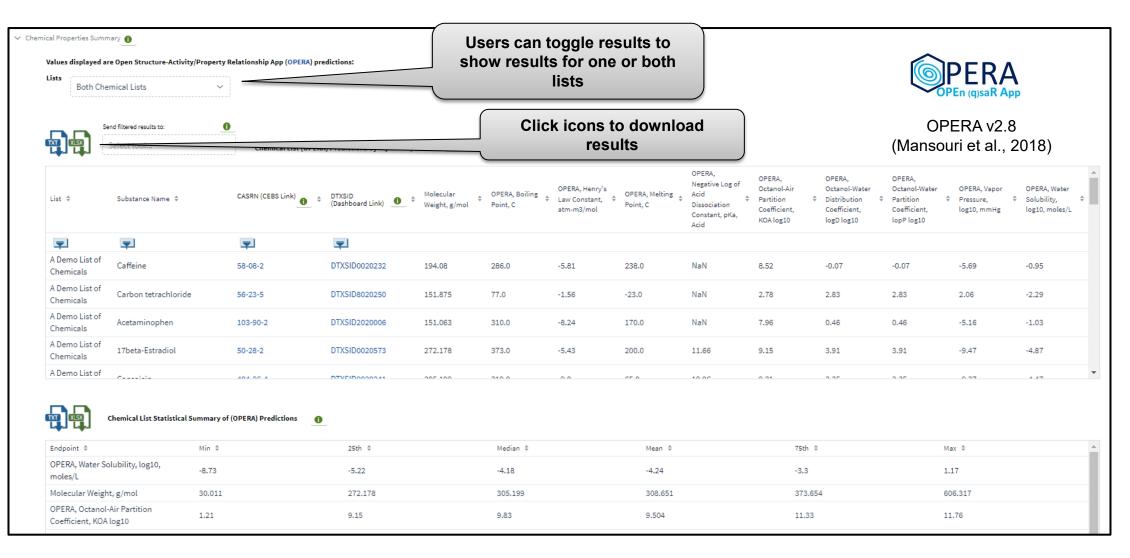
- In the previous presentation, we introduced the ICE interface, explored ICE data sets, visualized various endpoints in Search, and used Chem Quest to expand chemical queries.
- Now we will explore interactive, interoperable tools in ICE that enable users to interpret large amounts of toxicologically relevant data and implement complex models through a user-friendly interface.
 - These tools include Chemical Characterization, Curve Surfer, Physiologically-based Pharmacokinetic models (PBPK), and In Vitro to In Vivo Extrapolation (IVIVE).
- We will build upon the case studies from the first presentation to demonstrate the use of these tools for exploring data and understanding potential chemical bioactivity.

ICE Tools Workflow

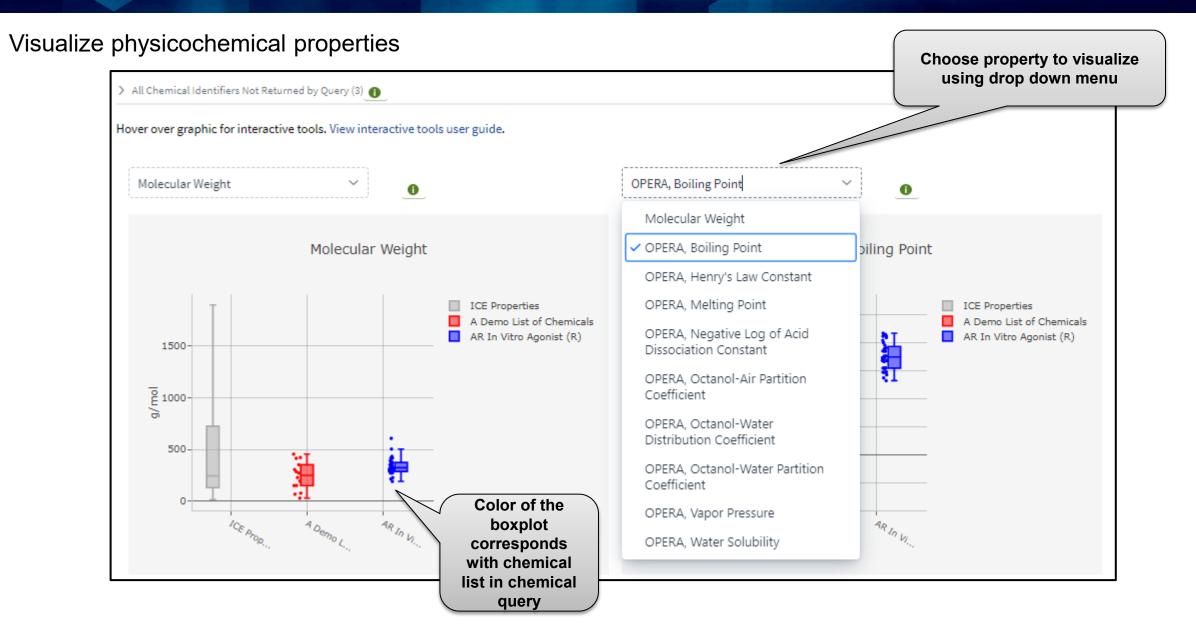


ICE Tools Workflow

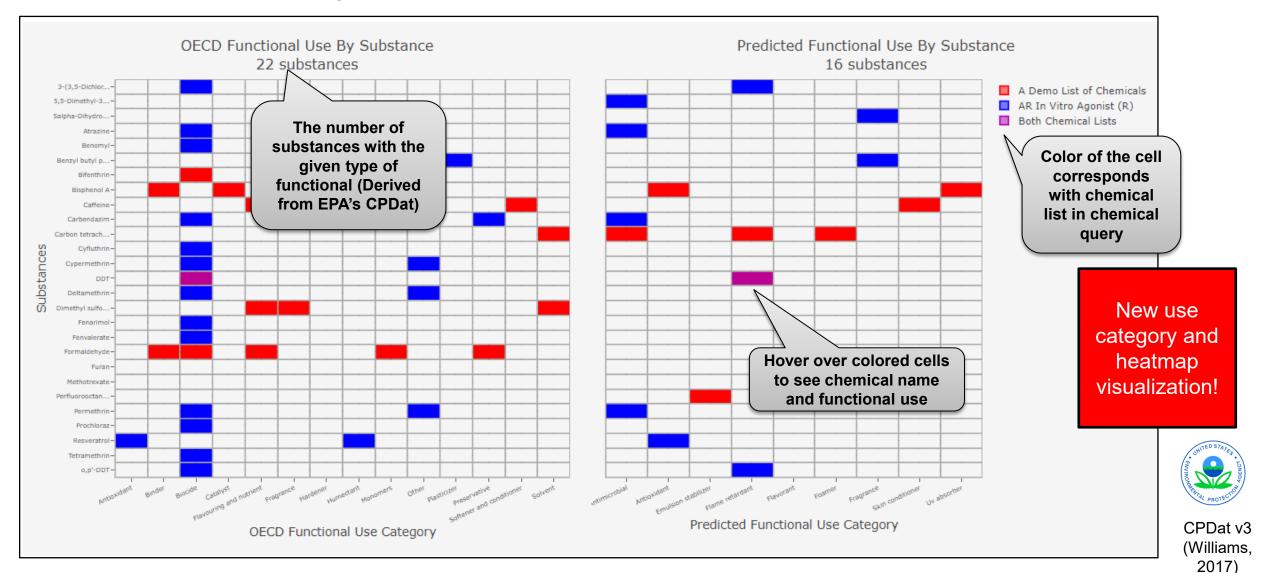
The Chemical Characterization tool can help compare chemical properties and chemical use categories.

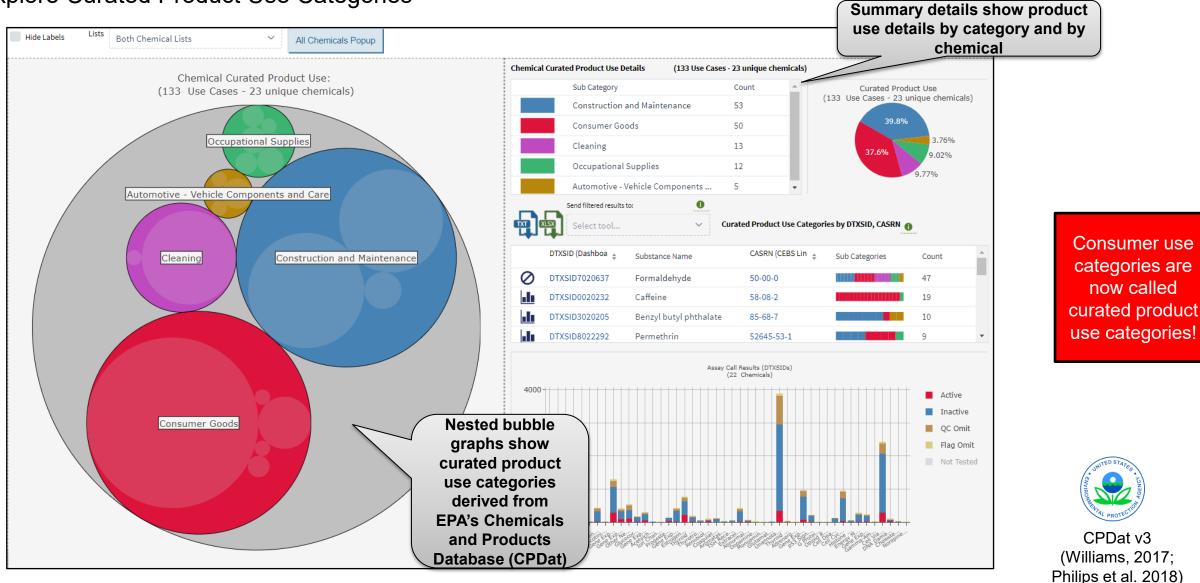

Compare phys-chem properties and use categories of two chemicals lists

Results Help	The Chemical Ch	aracterization tool allows y	ou to explore phys-chem prop	erties and chemical use cates	gories.
Report an Issue	Run Reset				Insert a second chemical li
nput Demo List of Chemicals		ical quick list selected.	Select Chemicals	ro Agonist (R) 1 chemical quick list selected.	
	Quick List CASRNs U	Jser Chemical Identifiers	Quick List CASRNs	User Chemical Identifiers	
	82657-04-3		427-51-0		
	103-90-2		76-43-7		
	50-28-2		10161-33-8		
	56-23-5		51-98-9		
	80-05-7		58-18-4		
	110-00-9		58-22-0		
	67-68-5		68-22-4		
	58-08-2		797-63-7		
	404-86-4		965-93-5		
	57-27-2		10540-29-1		
	335-67-1		10605-21-7		
	50-29-3		129453-61-8		
	50-00-0		13311-84-7		
			13311-84-7 17804-35-2 1912-24-9	-	



View and download chemical properties for individual chemicals or summarize chemical lists




Explore Functional Use Categories

Explore Curated Product Use Categories

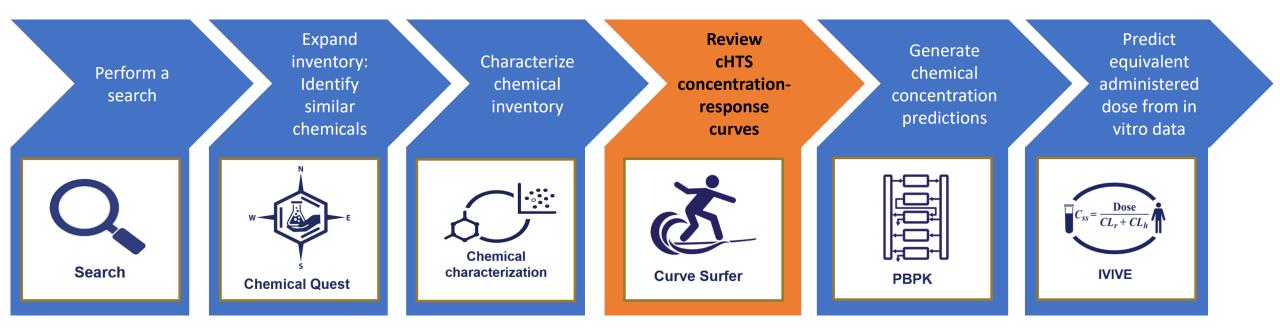
Demo

Chemical Characterization

https://ice.ntp.niehs.nih.gov/

Chemical Characterization Summary

- Comparison tool that allows users to look at the property distribution and chemical use cases between one or two lists of chemicals
- Examine what properties may be driving differences in performance of chemicals in assays
- Explore different the role a chemical may play in a product and what products a chemical has been found in
- Characterize the differences between lists to identify possible redundancy or define the range of property coverage in preparation for testing

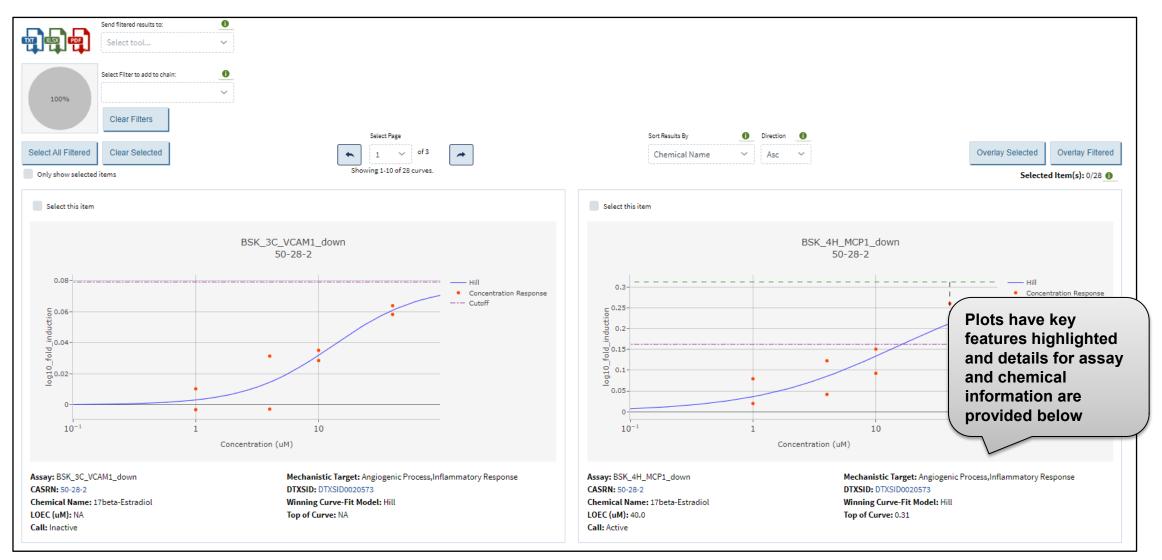

ICE User Guide	Chemical Characterization Tool
Search	Table of Contents:
Chemical Quest	Introduction
Curve Surfer	 Building a Chemical Characterization Query Chemical Input
РВРК	 Run Chemical Characterization Tool Viewing Chemical Characterization Results
IVIVE	 Chemical Properties Summary Download Results
Chemical Characterization	 Visualization of Chemical Properties Interactive PCA Plots
Interactive Graphs	Static PCA Plots Dynamic PCA Plots
Rest API	 Functional Use Explorer Curated Product Use Explorer
	 Chemical Curated Product Use Circle Plot Chemical Curated Product Use Details Using Results to Query Other ICE Tools

ICE Tools Workflow

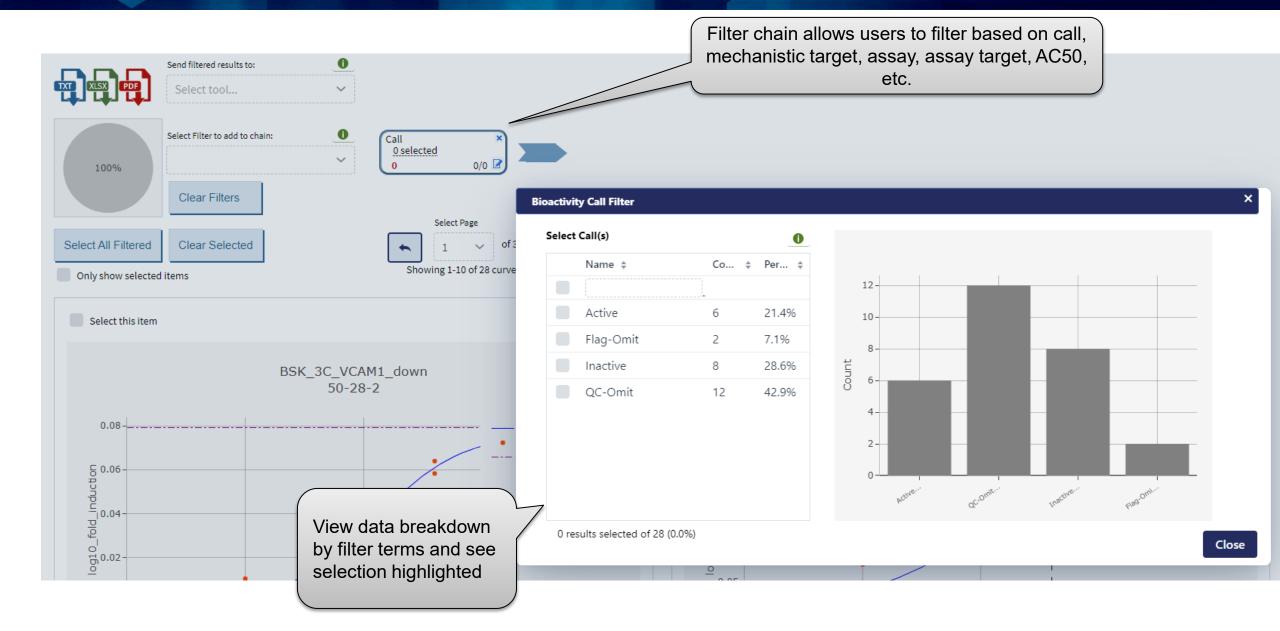
Integrated Chemical Environment The Curve Surfer tool provides concentration-response curves for curated High Throughput Screening (cHTS) data, providing detailed information on EPA's ToxCast and Tox21 assays.

Select chemical list and assay mechanistic target

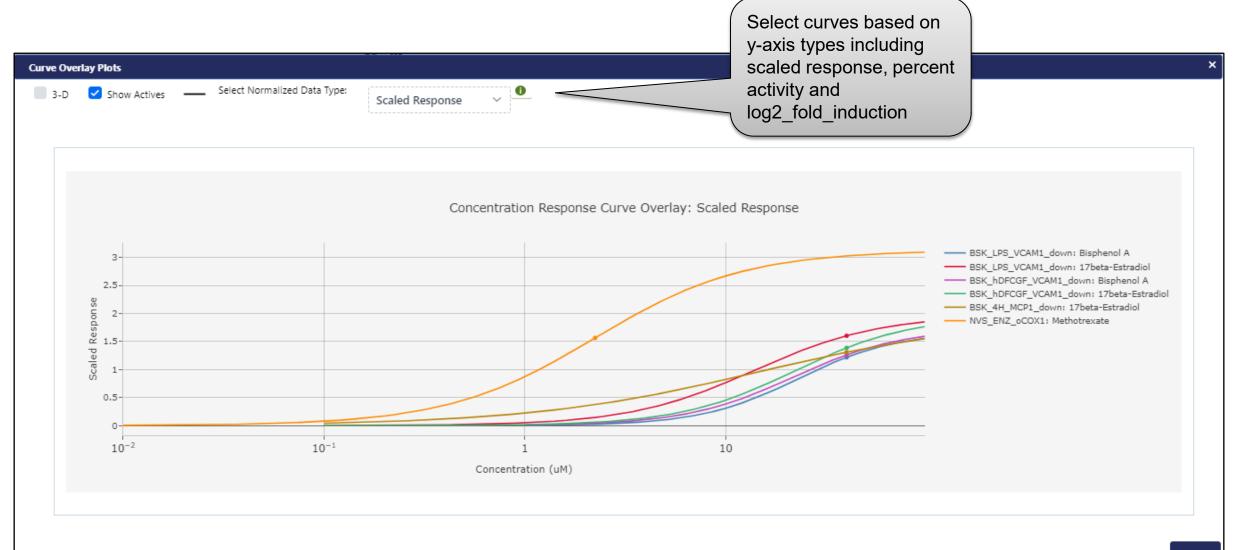
The Curve Surfer tool allows you to view and i	nteract with concentration response curves from cHTS.	CHTS Mode of Action	
Run Reset			
		Abnormal Growth and Differentiation	in vit
Chemical Input	Data Input	Angiogenic Process	in vit
Select Chemicals 1 chemical quick list selected.	Select Data Sets 0	Cellular Processes	
Quick List CASRNs User Chemical Identifiers		Cellular Stress Response	
82657-04-3	Data Set	Endocrine-Related Processes	in vit
103-90-2 50-28-2	Angiogenic Process	Energy Metabolism Process	in vit
56-23-5 80-05-7		Epigenetic Process	in vit
110-00-9		Gene Expression	in vi
67-68-5 58-08-2		Immune and Inflammatory Response	in vit
404-86-4		Neuronal Transmission	
57-27-2 335-67-1		Xenobiotic Metabolism	in vit
50-29-3 50-00-0		Unannotated	in vit


Select chemical list and assay mode of action

	Chemical Quest Curve Surfer	PBPK IVIVE Chemical Characterization	
Input Results Help	and interact with concentration response curves from cHTS	5.	
elp Video Run Reset		Select Data Sets CHTS Mode of Action	×
Chemical Input Select Chemicals Quick List CASRNs User Chemical Identifiers	Data Input Select Data Sets	 Mode of Action Acute Lethality MOAs Endocrine MOAs 	
Quick List CASRNs User Chemical Identifiers 82657-04-3 103-90-2 50-28-2 56-23-5 80-05-7 110-00-9 67-68-5 58-08-2 404-86-4 57-27-2 335-67-1 50-29-3 50-00-0 7782-49-2 59-05-2	Data Set	Carcier MOAs Cardiotoxity MOAs DART MOAs Finished	CHTS in vitro



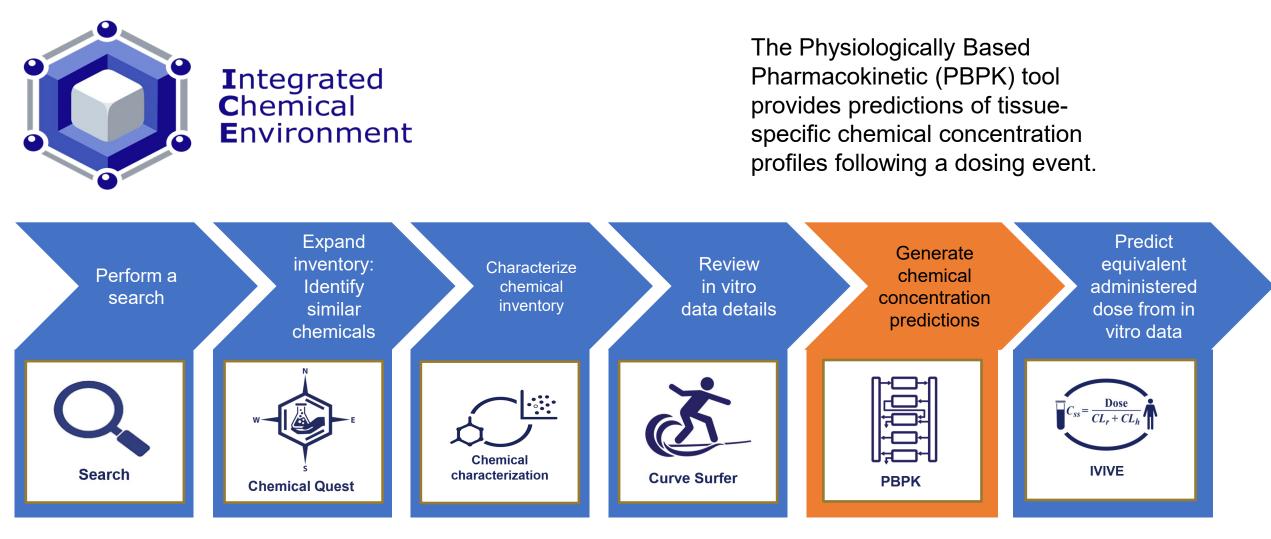
View concentration-response curves, bioactivity, and assay information for cHTS data



Demo

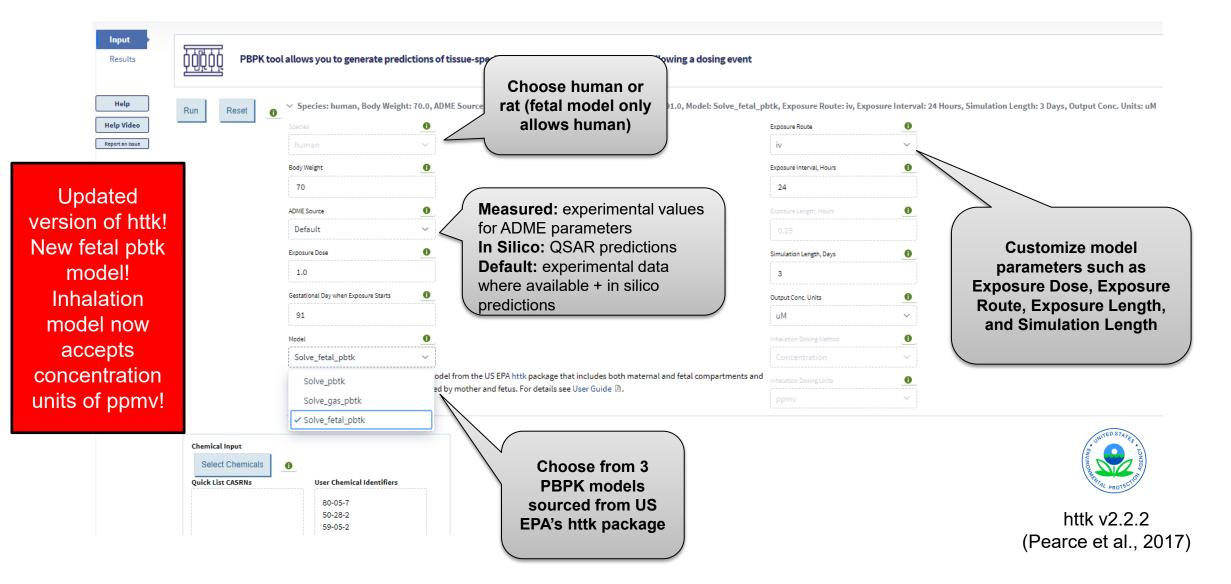
Curve Surfer

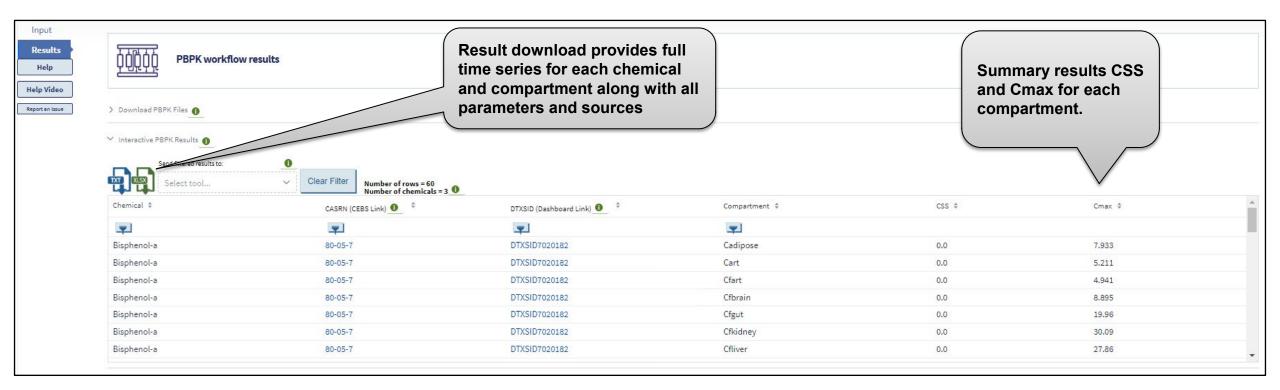
https://ice.ntp.niehs.nih.gov/

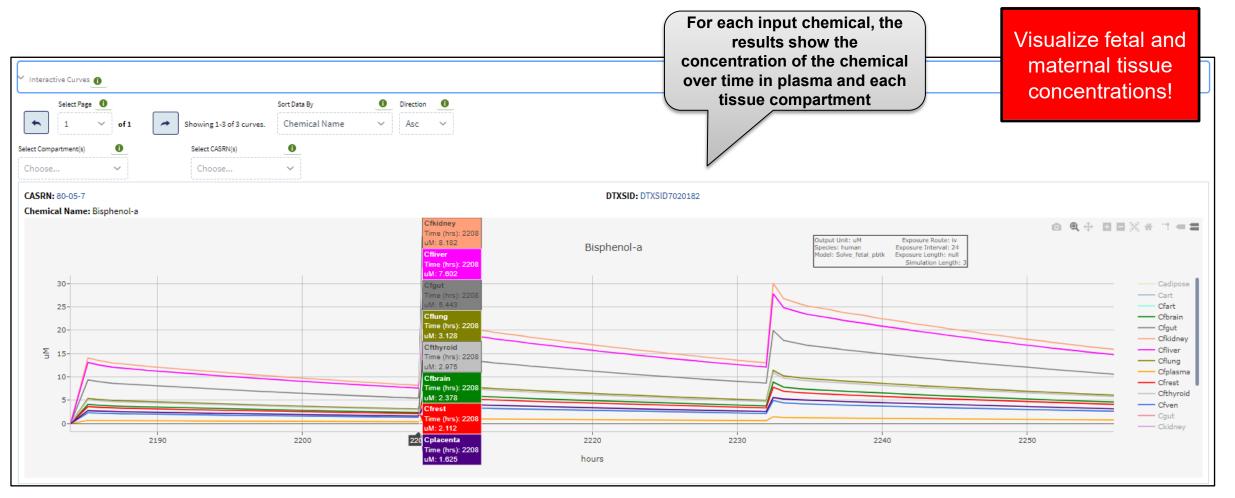

Curve Surfer Summary

- Visualize concentration response-curves for curated high-throughput screening (cHTS) data derived from ToxCast and Tox21
- Explore bioactivity calls, including actives, inactives, flag-omits, and QC-omits
- Relate assays to biological processes • through annotations for mode of action and mechanistic target
- Use filtering to narrow down on assay ٠ data of interest for reviewing concentration-response curves

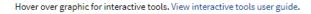
ICE User Guide	Curve Surfer
Search	Table of Contents:
Chemical Quest	IntroductionBuilding a Curve Surfer Query
Curve Surfer	 Chemical Input
РВРК	 Data Input Run Curve Surfer Tool
IVIVE	 Viewing Curve Surfer Results Interactive Plots
Chemical Characterization	Sort, Filter, and Select CurvesOverlay Curves
Interactive Graphs	 Download Results Using Results to Query Other ICE Tools
Rest API	Accessing Curve Surfer from Other ICE Tools

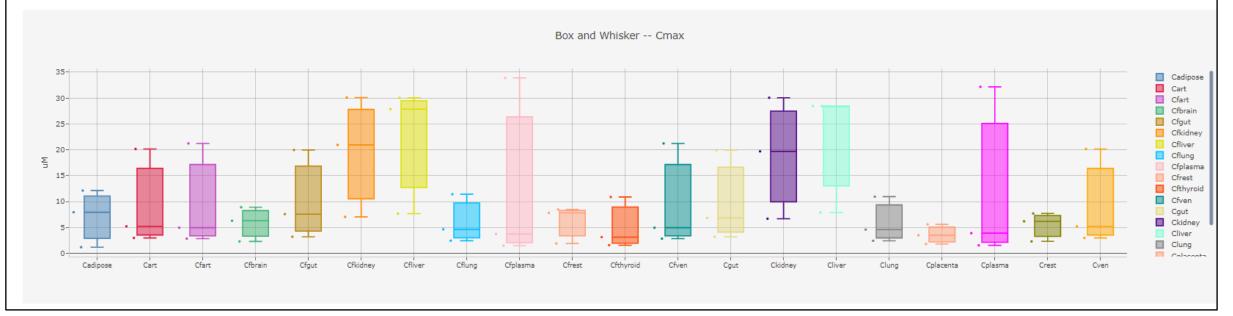

ICE Tools Workflow


Parameterize PBPK models for a chemical list


View PBPK results in an interactive table

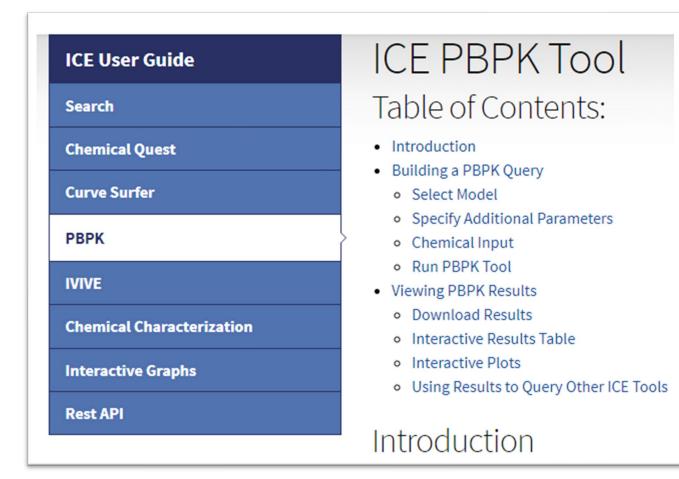
Visualize PBPK results





Visualize PBPK results

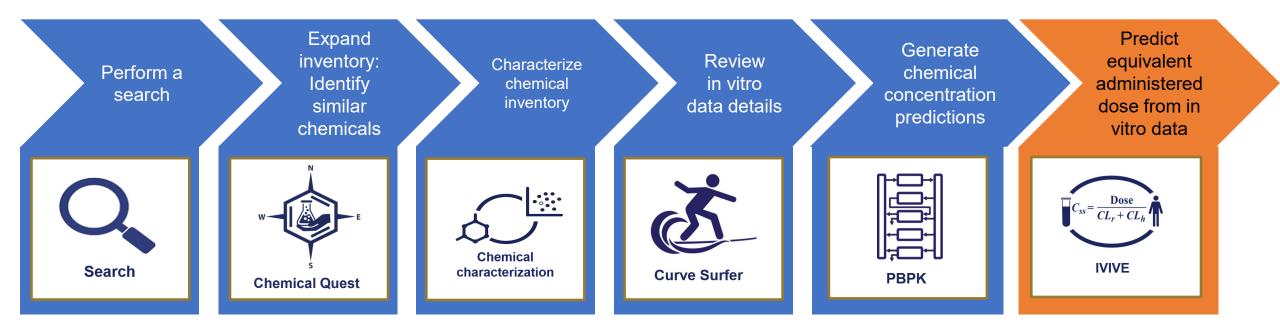
Demo PBPK



https://ice.ntp.niehs.nih.gov/


PBPK Demo

- <u>P</u>hysiologically <u>Base P</u>harmaco<u>k</u>inetic (PBPK) models describe:
 - Absorption, Distribution, Metabolism, and Excretion
- ICE PBPK tool uses multiple generalized models from U.S. EPA's httk R package
 - Includes 3 different exposure routes
- PBPK allows users to:
 - Relate external doses to internal concentrations
 - Screen for chemicals that may accumulate
 - Predict residence time for chemical/drug exposures



ICE Tools Workflow

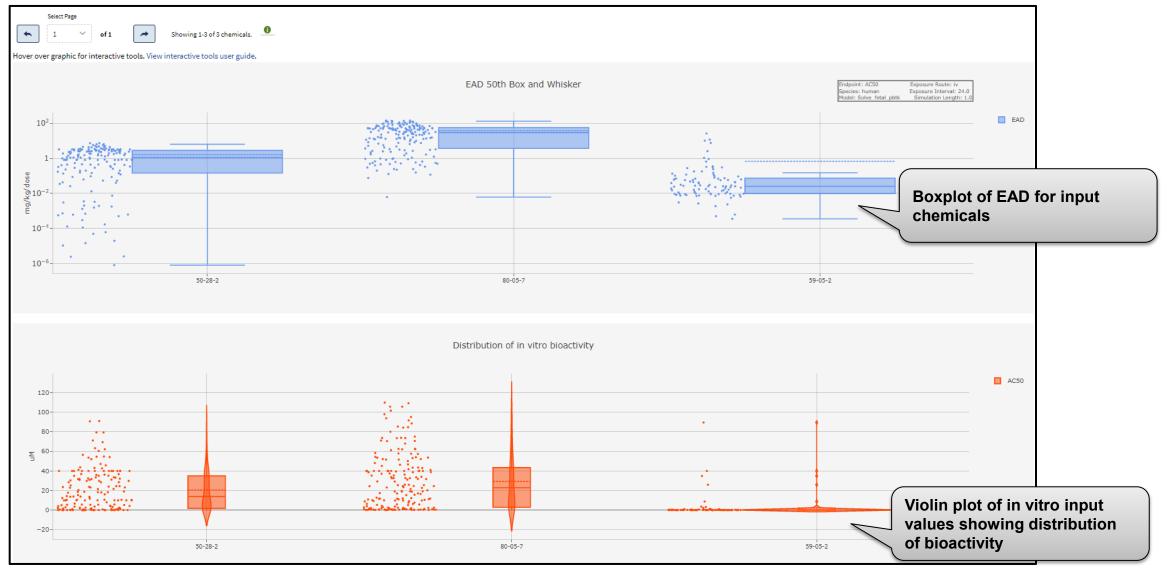
Integrated Chemical Environment IVIVE tool allows the estimation of daily equivalent administered dose (EAD) that would result in the plasma concentration of a chemical equal to the active concentration in a given in vitro assay.

IVIVE

Parameterize IVIVE models for a chemical list

Input Results	Run Reset 0	× In Vitro Endnoint: AC50. Species	els to predict the equivalent administered dose (EAD) from		Route: iv, Exposure Interval: 24.0 Hours, Simulation Length: 1.0 Day	
Help Help Video Report en issue		In Vitro Endpoint AC50 Species human Body Weight 70 ADME Source Default Gestational Day when Exposure Starts	• Type of activity con • AC50 or ACC	IC		ew fetal pbtk model! Inhalation model now accepts oncentration
			● > BPK model from the US EPA httk package that includes both maternal shared by mother and fetus. For details see User Guide ⊉.	Concentration Inhalation Dosing Units ppmv al and fetal compartments and a		ad 🛛
	Chemical Input Select Chemicals Quick List CASRNs	0 User Chemical Identifiers 80-05-7 50-28-2 59-05-2	Data Input Select Data Sets Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image:	Upload Custom In Vivo or Exposure Data to Overlay O Charts Upload Drop file here Uploaded Files File Name MIME Type Upload Custom In Vitro Data	through IVIVE	httk v2.2.2 (Pearce et al., 2017)

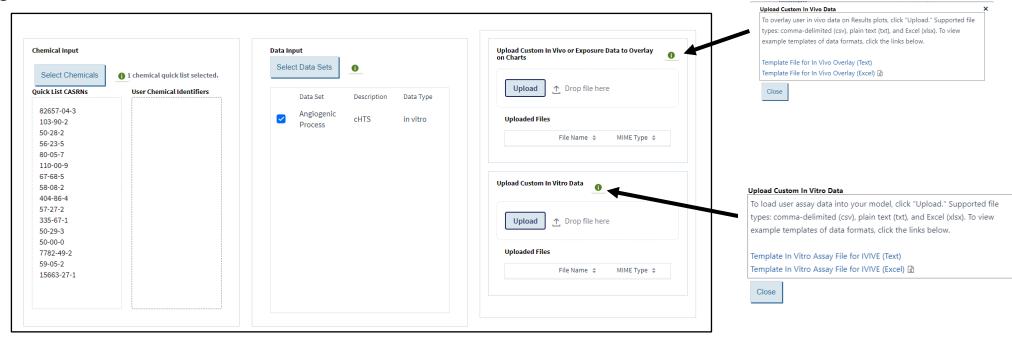
View and download IVIVE results


Report an Issue > Download IVIVE Files AC50 a < IVIVE Results each a	ary results for and EAD for issay and
Send filtered results to: Select tool Clear Filter Number of rows = 449 Number of chemicals = 3	
Chemical ϕ CASRN (CEBS Link) ϕ DTXSID (Dashboard Link) ϕ Flag ϕ Assay ϕ Mode of Action ϕ Mechanistic Targets ϕ ACSO (uM)	I) EAD 50th Percen EAD FMax 50th P
Image:	
L 17 beta-Estradiol 50-28-2 DTXSID0020573 fu is zero, likely d ACEA_AR_agonist_80 hr Androgen Receptor Androgen Metabolic Process, Ge 0.007	5.66E-4 5.359877488514
ITbeta-Estradiol 50-28-2 DTXSID0020573 fu is zero, likely d LTEA_HepaRG_TGFB1_up Unannotated 71.138	5.756 5.44701378254211
L 17beta-Estradiol 50-28-2 DTXSID0020573 fu is zero, likely d LTEA_HepaRG_SULT2A1_up Unannotated 35.154	2.844 2.69173047473201
Letter 17 beta-Estradiol 50-28-2 DTXSID0020573 fu is zero, likely d LTEA_HepaRG_PEG10_dn Unannotated 18.293	1.48 1.40068912710567

IVIVE


Visualize IVIVE results

IVIVE Results Visualizations



×

IVIVE

Run IVIVE Using Custom Data

Custom In vitro data template

casrn	user assay1	user assay2	user assay3	user assay4
115-32-2	1.2	1.3	1.5	1.7
117-81-7	2.2	2.3	2.5	2.7
120-47-8	3.6	3.7	3.8	3.9
13311-84-7	4.1	4.2	4.3	4.4
140-66-9	5.1	5.2	5.3	5.4
57-85-2	1.2	1.3	1.5	1.7
10161-33-8	2.2	2.3	2.5	2.7
58-22-0	3.6	3.7	3.8	3.9
58-18-4	4.1	4.2	4.3	4.4
57-85-2	5.1	5.2	5.3	5.4
10161-33-8	3.6	3.7	3.8	3.9
58-22-0	4.1	4.2	4.3	4.4

Custom In vitro data template

casn	dxsid	chem name	dataset	assay1	assay2	assay3	assay4	assay5	assayб	assay7	assay8	assa9	assay10	assay11
115-32-2	dtxsid1	17-Methyltes	dataset 1	1	23	4	213	8	9		98	9	9	
117-81-7	dtxsid2	Testosterone	dataset 1	55	65	55	4	3	466		66	88	8	986
120-47-8	dtxsid2	17beta-Tren	dataset 1	788	887	997	778	997	997	56	7	76	677	2
13311-84-7	dtxsid2	Testosterone	dataset 1	9876	7687	877	679	547	123	234	45	456	67	56
140-66-9	dtxsid1	17-Methyltes	dataset 2	987	76	987	4	54	54	556	456	567	778	23
57-85-2	dtxsid2	Testosterone	dataset 2	98		9	98			98			98	98
10161-33-8	dtxsid2	17beta-Tren	dataset 2	123		2345	567	567			45		566	6
58-22-0	dtxsid2	Testosterone	dataset 2	876			87		6443	345		678		322
58-18-4	dtxsid1	17-Methyltes	dataset 3	987	234	23	567	775	445	7878	123	456	8	6
57-85-2	dtxsid2	Testosterone	dataset 3	1	23	4	213	8	9		98	9	9	
10161-33-8	dtxsid2	17beta-Tren	dataset 3	55	65	55	4	3	466		66	88	8	986
58-22-0	dtxsid2	Testosterone	dataset 3	788	887	997	778	997	997	56	7	76	677	2

Demo IVIVE

https://ice.ntp.niehs.nih.gov/

IVIVE Summary

- The <u>In Vitro to In Vivo</u> <u>Extrapolation (IVIVE) tool</u> estimates the administered dose needed to achieve in vitro bioactivity concentrations within the body
 - 4 models from EPA's httk, 1 in-house model from ICE
- Use in vivo and exposure overlays to place predictions in larger context

ICE User Guide
Search
Chemical Quest
Curve Surfer
РВРК
IVIVE
Chemical Characterization
Interactive Graphs
Rest API

IVIVE Tool Table of Contents:

- Introduction
- Building an IVIVE Query
 - Select In Vitro Endpoint, PK Model Type, and Parameter Settings
 - Chemical Input
 - Data Input
 - Options to Upload Custom Data
 - Run IVIVE Tool
- Viewing IVIVE Results
 - Download Results
 - Interactive Results Table
 - Interactive Plots
 - Using Results to Query Other ICE Tools

Summary

- ICE is an open-access computational tool with highly-curated data and interoperable computational tools intended to support the development, application, and evaluation of New Approach Methodologies
- ICE is continuously updated to address evolving stakeholder needs. This includes, but is not limited to, the following updates released in 2023:
 - The ability to search using chemical names and synonyms
 - Population-level exposure predictions from EPA's SEEM3 model
 - Gestational models from EPA's httk package (v2.2.2) in PBPK and IVIVE tools
 - Functional use categories derived from EPA's Chemical and Products Database
 - New quick lists for mixtures and ToxCast chemicals
- Let us know what you would like to see!

Acknowledgments

The NICEATM Group

NIEHS/DTT Contributors

Subscribe to NICEATM News

https://list.nih.gov/cgibin/wa.exe?SUBED1=niceatm-I&A=1

https://ice.ntp.niehs.nih.gov/

https://github.com/NIEHS/OPERA

Questions?

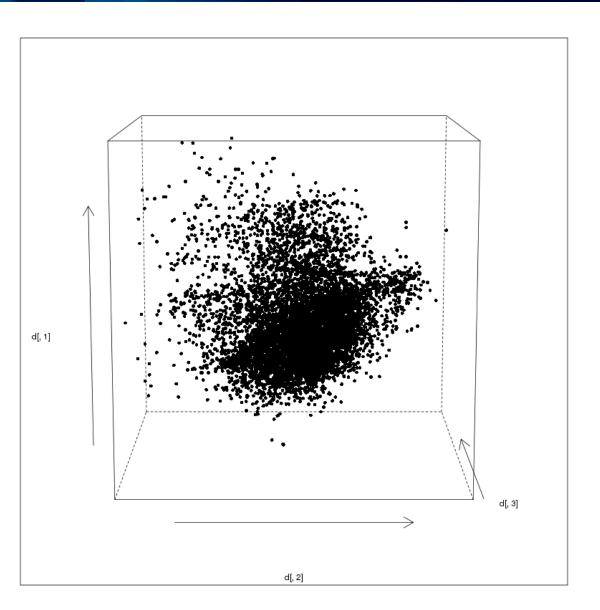
Contact: ICE-support@niehs.nih.gov

National Institutes of Health • U.S. Department of Health and Human Services

ChemMaps.com v2.0 – Exploring the Environmental Chemical Universe

12th ASCCT Annual Meeting 2023-10-25

Alexandre Borrel, Inotiv, contractor supporting NICEATM Presented by Kim To, Inotiv, contractor supporting NICEATM


Disclaimer: Inotiv staff provide technical support for NICEATM, but do not represent NIEHS, NTP, DTT, or the official positions of any federal agency.

National Institutes of Health • U.S. Department of Health and Human Services

The Chemical Space

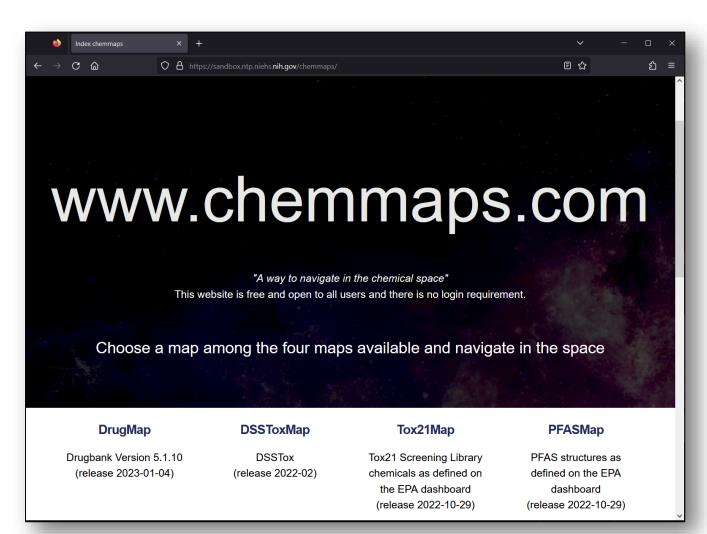
- The chemical space is a multidimensional space defined by a set of molecular descriptors, within which chemicals are projected.
- Defining the chemical space allows exploration of chemical properties and search for chemical analogues.

The Chemical Space

- Chemical biological databases provide large amounts of information that can be leveraged to define the chemical space.
- The rapid growth of such databases presents a challenge to researchers who wish to interpret large databases to contextualize their chemicals of interest.

ORUGBANK

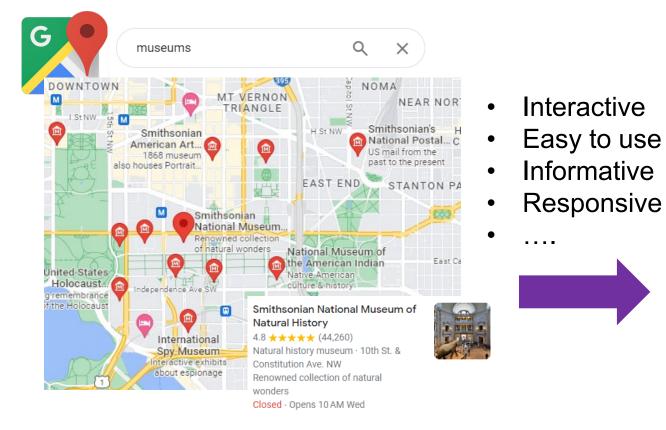
CompTox Chemicals Dashboard

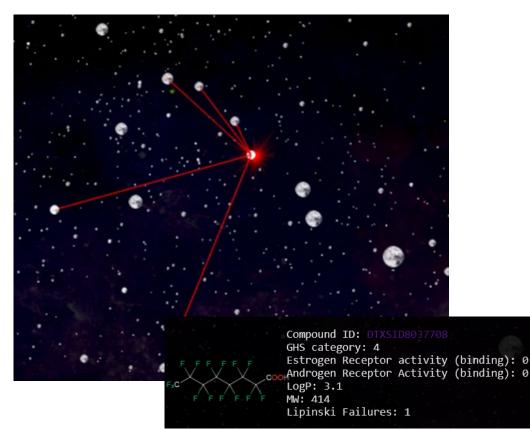


ChemMaps.com

- ChemMaps.com was developed to support visual browsing and inspection of a given chemical space.
- ChemMaps.com v2.0 features four chemical space maps

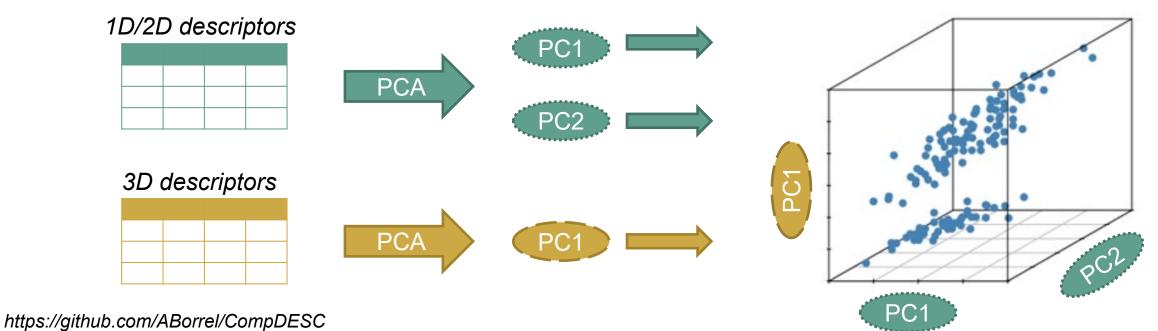
https://sandbox.ntp.niehs.nih.gov/chemmaps/


Borrel et al. 2018. Bioinformatics. Borrel et al. 2023. Nucleic Acids Research.



ChemMaps.com

- ChemMaps applies a "Google Maps approach" to chemical space navigation.
- Users can easily explore the chemical space through an interactive interface.



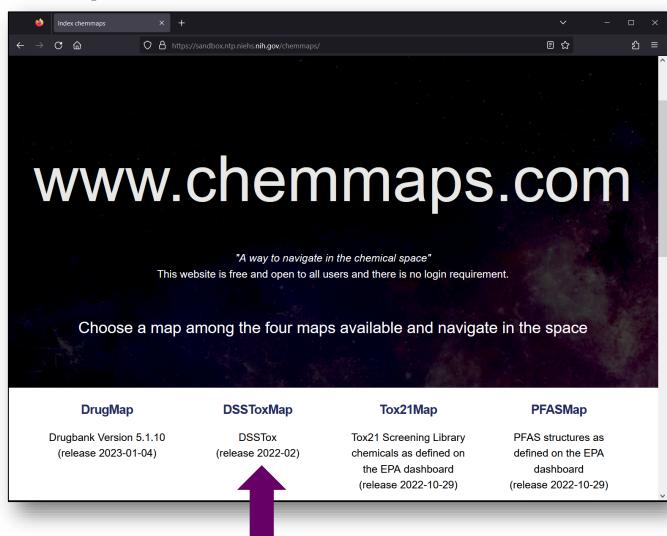
ChemMaps.com: Mapping chemicals

- For the chemicals in each data source, 1D, 2D, and 3D molecular descriptors are computed using RDKIT.
- · Chemical coordinates are defined by principal components analysis of the molecular descriptors.

https://sandbox.ntp.niehs.nih.gov/chemmaps/

ChemMaps.com

DrugMap DSSToxMap 10,805 drug entries from the ~1M chemicals from the ٠ ٠ DrugBank database **DSSTox** database Visualize experimental ٠ Visualize predicted acute ٠ physicochemical properties oral toxicity and physicochemical properties **PFASMap** Tox21Map 8,236 chemicals that were tested in the Tox21 and 14,629 PFAS chemicals identified • in the EPA's PFAS master list ToxCast high-throughput screening programs Visualize chemical bioactivity ٠



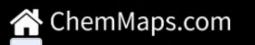
"Demo"

Exploring the PFOA chemical space

PFOA on DSSToxMap

https://sandbox.ntp.niehs.nih.gov/chemmaps/

PFOA on DSSToxMap

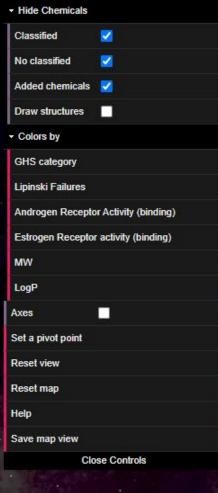

Select up to 5 features you would like put on the map:

- Chemical classification
- EPA category
- LD50 (mg/kg)
- Toxicology prediction
- Acute Tox (very toxic)
- Acute Tox (no toxic)
- Acute Tox (EPA)
- Acute Tox (GHS)
- Acute Tox (LD50)
- Estrogen Receptor activity (Agonist)
- Estrogen Receptor activity (binding)
- Hepatic clearance

- Androgen Receptor Activity (Antogonist)
- Androgen Receptor Activity (binding)
- Physicochemical prediction
- Plasma fraction unbound
- Henry's Law constant (atm-mol3/mole)
- KM (biotransformation rate)
- Log Octanol/air partition coefficient
- Log Soil adsorption coefficient (L/Kg)
- Log Fish bioconcentration factor
- LogD
- LogP

- Melting Point (C)
- Pka acid
- Pka basic
- Biodegradability
- HPLC retention time
- Log vapor pressure (mmHg)
- Log Water solubility
- Log Atmospheric constant (cm3/molsec)
- Biodegradation half-life
- Boiling Point

- Descriptors
- MM 🔽
- Lipinski Failures
- Chemical in the center of the map (DTXSID):
- DTXSID8031865
 - Generate DSSToxMap



DSSToxMap displays

projections for 10,000


chemicals

Center chemical: DTXSID8031865

374 chemicals		
5/4 Chemicals		Connect 1 🗸
	Compound ID: DTXSID8031865	
	GHS category: NA	Extract 1 🛩
COOH	Lipinski Failures: 1	
c c coon	Androgen Receptor Activity (binding): 0 Estrogen Receptor activity (binding): 0	Draw chemical
	MW: 414	
	LogP: 3.1	Download neighbors
		Link to DSSTOXMap

National Toxicology Program U.S. Department of Health and Human Services

DTXSID8031865

Chemicals are represented by planets or stars.

Stars indicate that the chemical has acute toxicity information available.

Center chemical: DTXSID8031865

Reset view Reset map Help

Save map view

- Hide Chemicals

<

1

Estrogen Receptor activity (binding) Androgen Receptor Activity (binding)

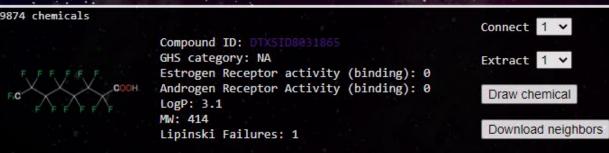
Classified

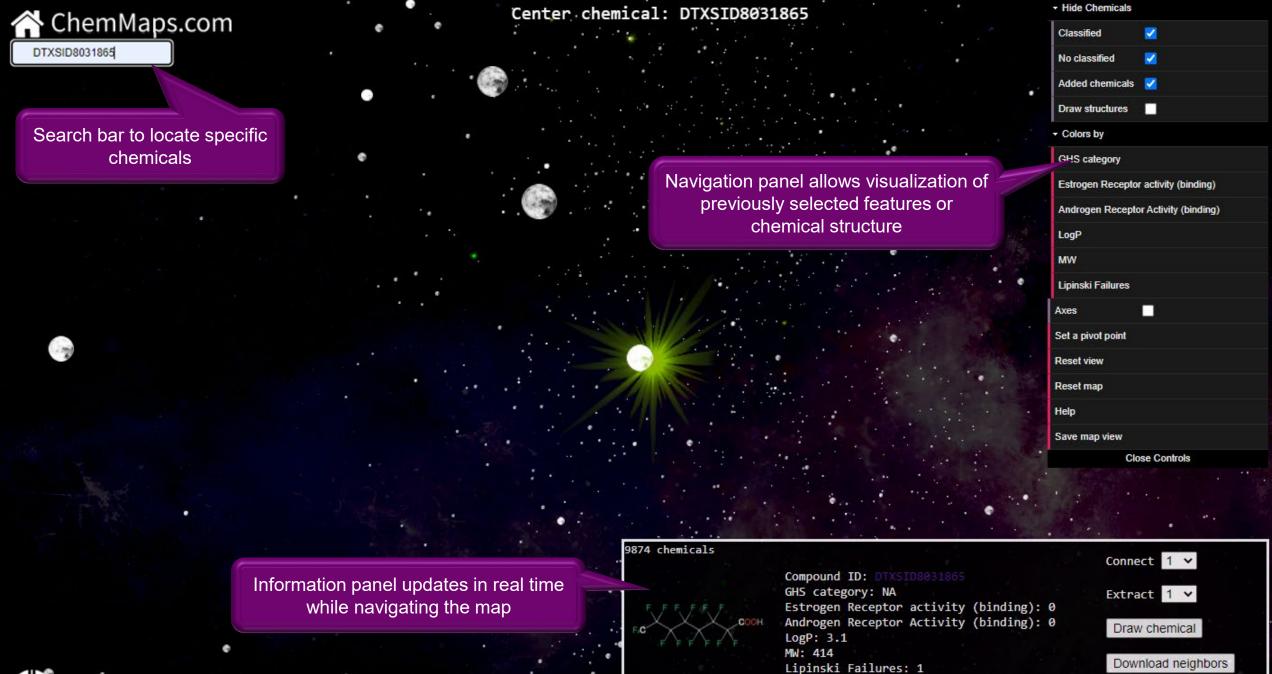
- Colors by

LogP MW

Axes

GHS category

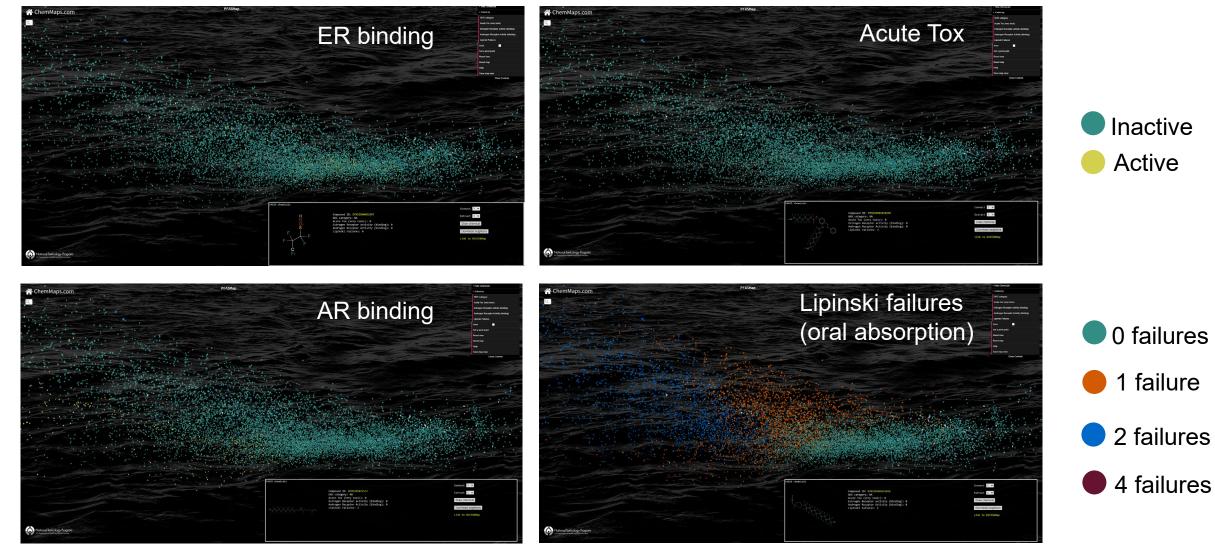

Lipinski Failures

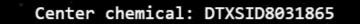

Set a pivot point

No classified

Added chemicals Draw structures

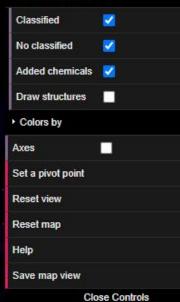
Close Controls





National Toxicology Program

Visualizing Features



63

•

Highlight closest PFOA neighbors

74 chemicals	
Face F	Compound GHS cate Lipinski Androgen Estrogen MW: 414 LogP: 3.

1

Compound ID: DTXSID50896576	
GHS category: NA	
Lipinski Failures: 1	
Androgen Receptor Activity (binding):	0
Estrogen Receptor activity (binding):	0
MW: 414	
LogP: 3.9	

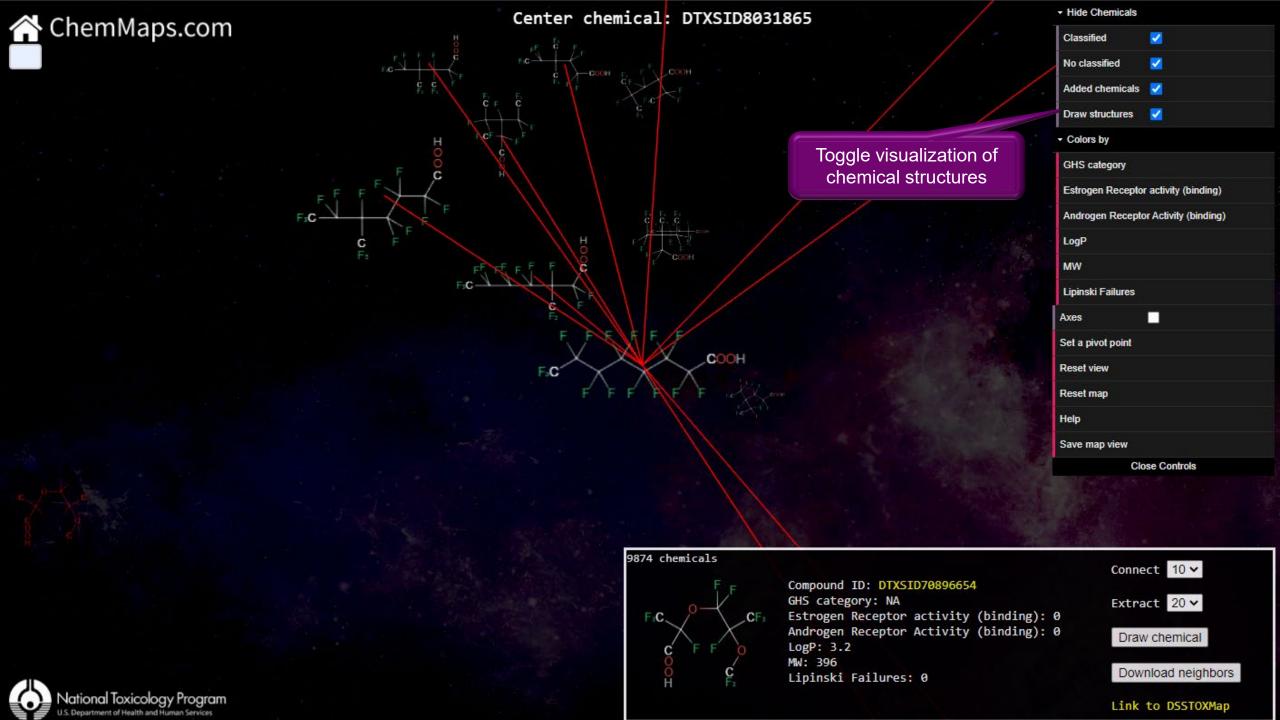
62

œ

A ChemMaps.com

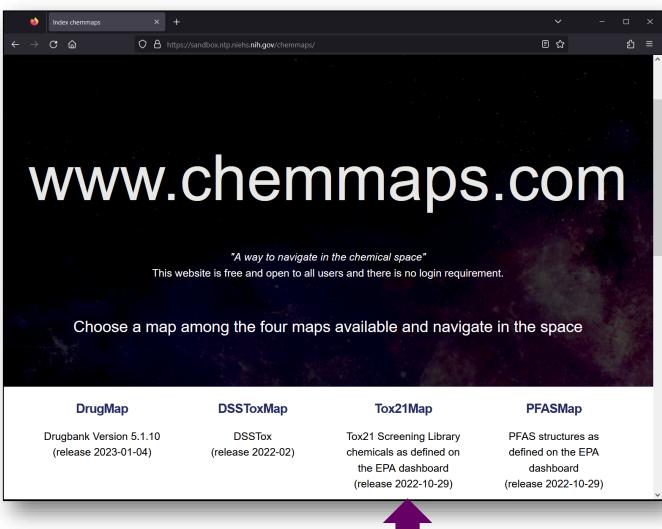
0

.


Q

Download neighbors

Connect 10 ~


Extract 20 🗸

Draw chemical

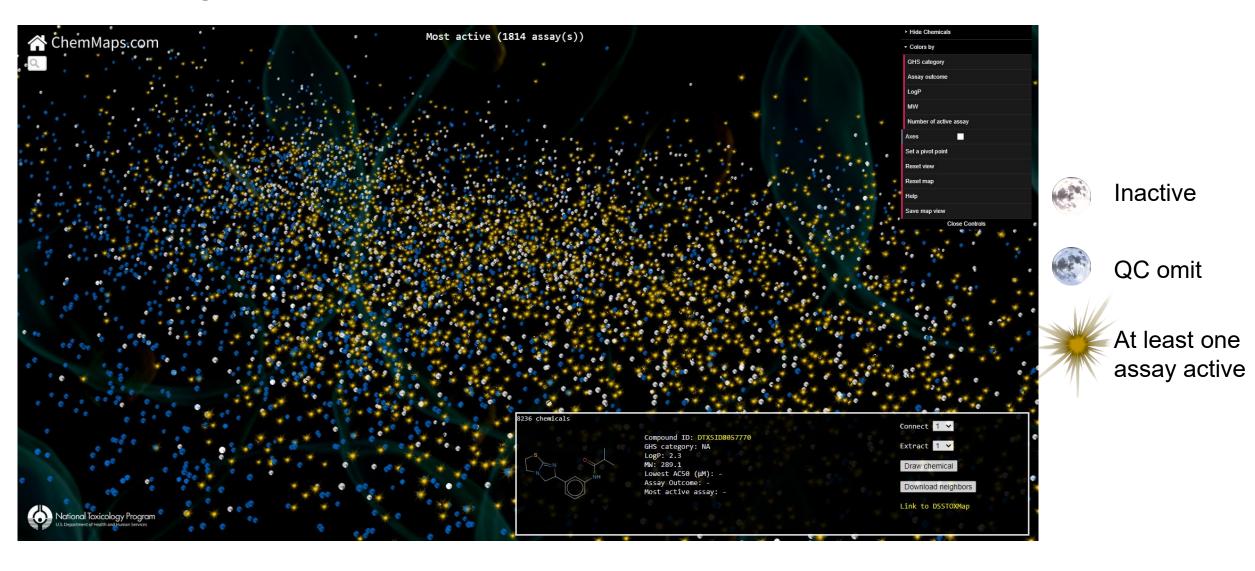
PFOA on Tox21Map

Tox21Map

Choose a assay protocol or an assay target. Assay target will provide you a concensus of all Tox21 assays that target the same gene. Tox21 assay results have been extracted from the Integrated Chemical Environement ...

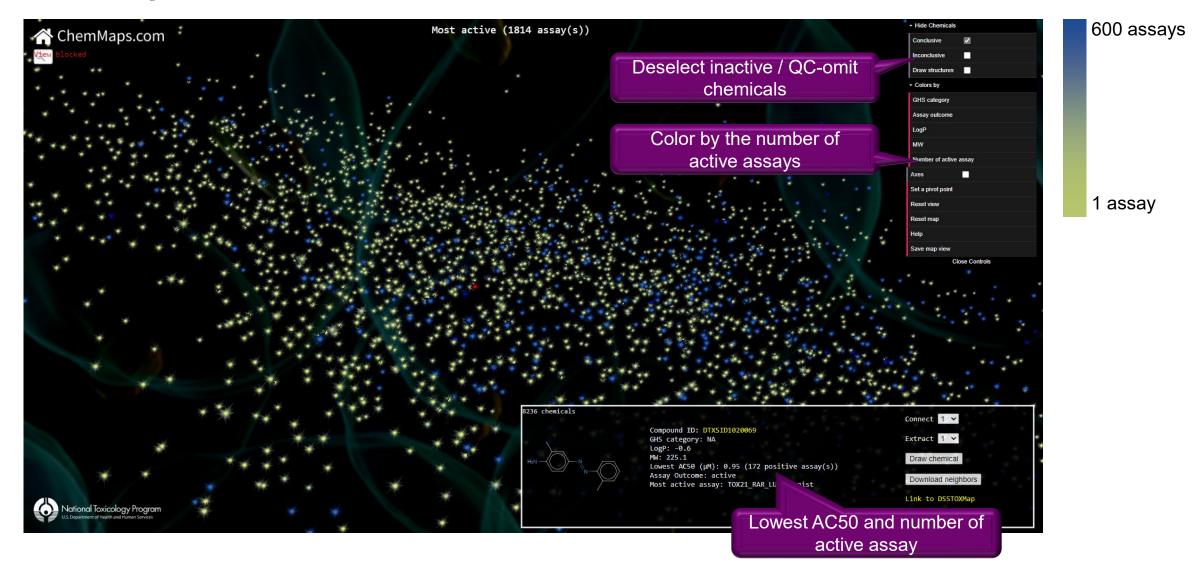
Assay	Species	Tissue	Cell line	Gene	Mechanistic target
ACEA_ER_80hr	human	breast	cell line(T47D)	ESR1	CardioTox_ER Alpha,Estrogen Re 4
APR_HepG2_MicrotubuleCSK_1h_dn	human	liver	cell line(HepG2)	TUBA1A	Cell Morphology
APR_HepG2_MicrotubuleCSK_1h_up	human	liver	cell line(HepG2)	TUBA1A	Cell Morphology
APR_HepG2_MitoticArrest_1h_dn ₪	human	liver	cell line(HepG2)	H3F3A ⊠	Cell Cycle
APR_HepG2_MitoticArrest_1h_up ₽	human	liver	cell line(HepG2)	H3F3A ⊿	Cell Cycle
APR_HepG2_P-H2AX_1h_dn ₪	human	liver	cell line(HepG2)	H2/X Z	Oxidative Stress
APR_HepG2_P-H2AX_1h_up ☑	human	liver	cell line(HepG2)		Oxidative Stress
APR_HepG2_p53Act_1h_dn ⊠	human	liver	cell line(HepG2)		p53 Modulation
APR_HepG2_p53Act_1h_up I™	human	liver	cell line(HepG2)	Project assays with the same	p53 Modulation
APR_HepG2_StressKinase_1h_dn	human	liver	cell line(HepG2)	target gene	Oxidative Stress
APR_HepG2_StressKinase_1h_up	human	liver	cell line(HepG2)	JUN ₽	Oxidative Stress
APR_HepG2_N/ubuleCSK_24h_dn г₂	human	liver	cell line(HepG2)	TUBA1A 🖙	Cell Morphology
ADD Hong? Jocef 24h up 57	human	livor	coll line(HonG2)	THDA1A ra	Coll Morphology

Project a unique assay result

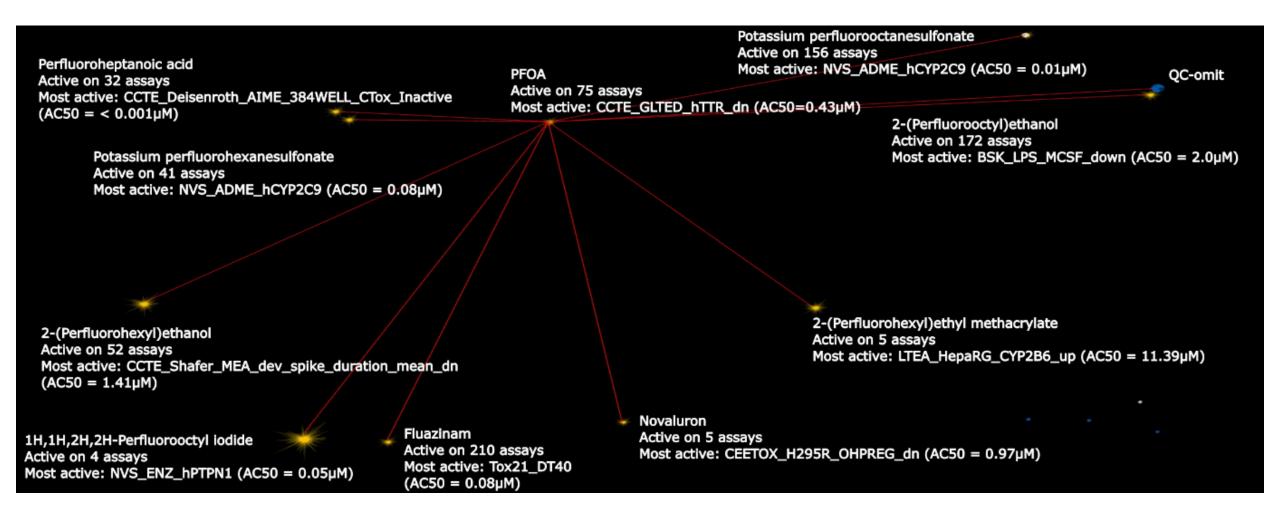

✓ Project by chemical the most active assay

Only the most active assay result is projected for each chemical.

Project the assay result with the lowest AC50



Tox21Map – Lowest AC50



Tox21Map – Lowest AC50

PFOA on Tox21Map

Summary

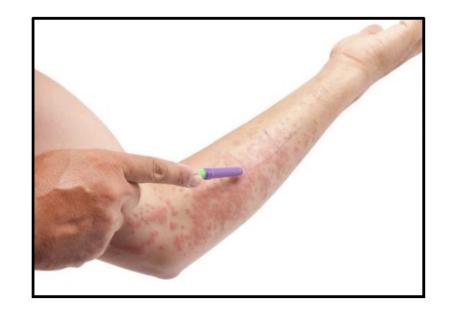
- ChemMaps.com is an open-source tool that enables interactive exploration of large chemical spaces.
- ChemMaps v2.0 introduced DSSToxMap comprising an expanded library of environmental chemicals from the EPA's DSSTox database.
 - PFASMap and Tox21Map are subsets of DSSToxMap that allow exploration of specific data subsets.

For more information, contact: Alexandre.Borrel@inotivco.com

The DASS App: A Web Application to Predict Skin Sensitization Using Defined Approaches

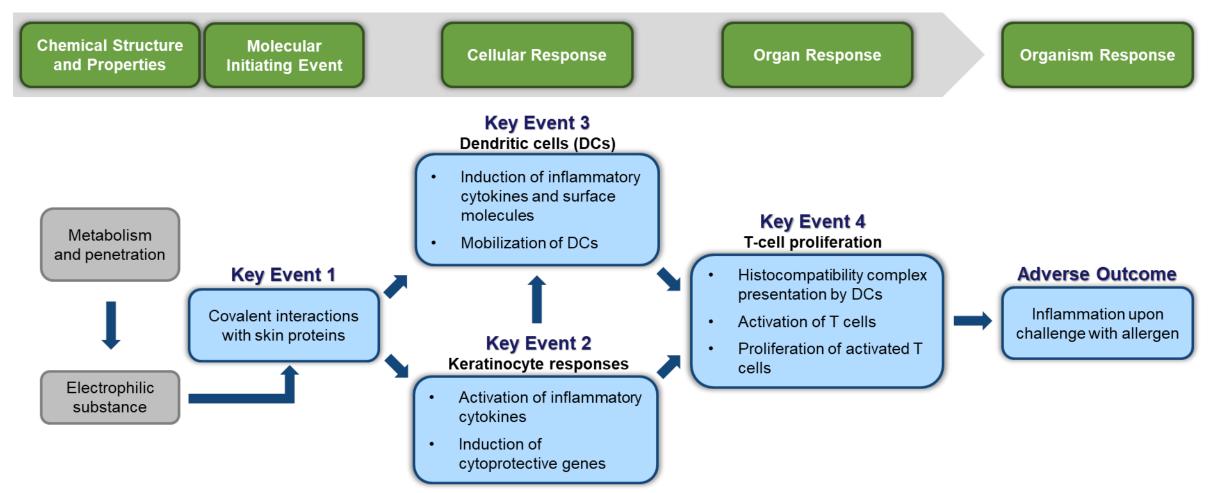
12th ASCCT Annual Meeting 2023-10-25

Presented by Kim To, Inotiv, contractor supporting NICEATM

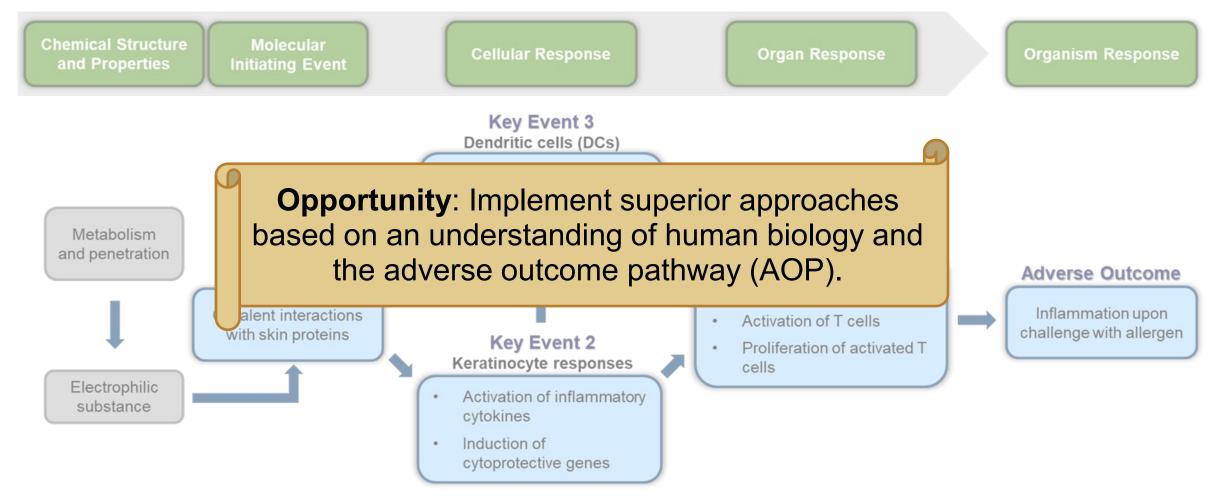

Disclaimer: Inotiv staff provide technical support for NICEATM, but do not represent NIEHS, NTP, DTT, or the official positions of any federal agency.

National Institutes of Health • U.S. Department of Health and Human Services

Skin Sensitization

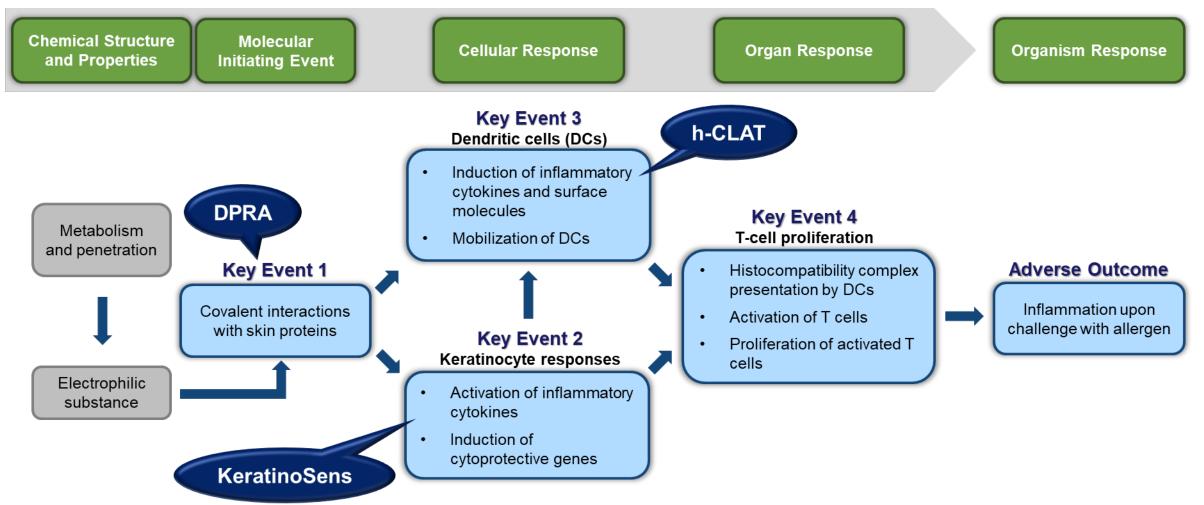

- Up to 20% of the population suffer from skin sensitization reactions¹.
- Historically, skin sensitization has been tested using in vivo methods such as the local lymph node assay (LLNA) or the guinea pig maximization test (gPMT).
- Regulatory frameworks, e.g., REACH, ask for information on predicting skin sensitization potential in humans.

Adverse Outcome Pathway for Skin Sensitization

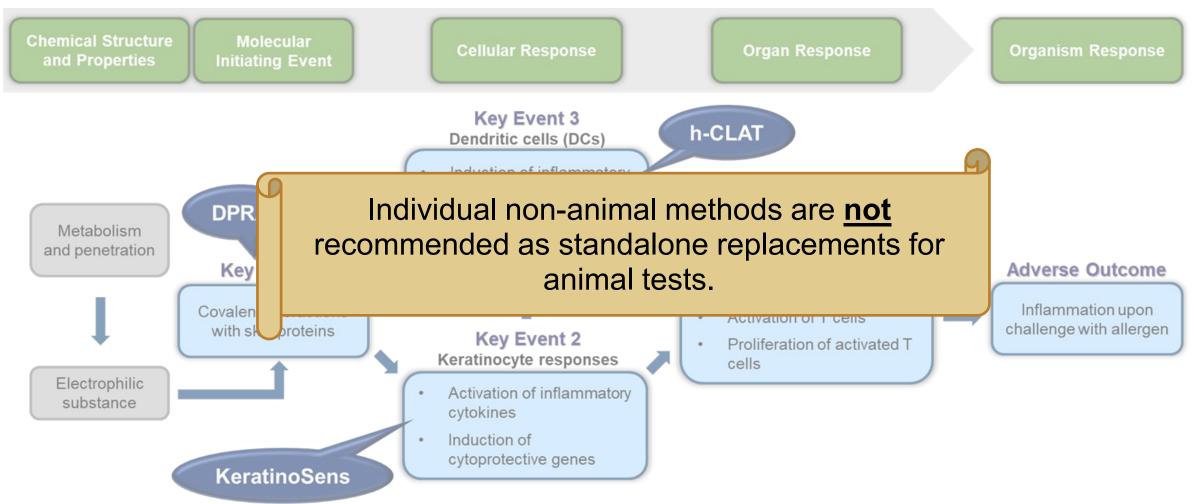

For sensitization initiated by covalent binding to proteins

Adverse Outcome Pathway for Skin Sensitization

For sensitization initiated by covalent binding to proteins

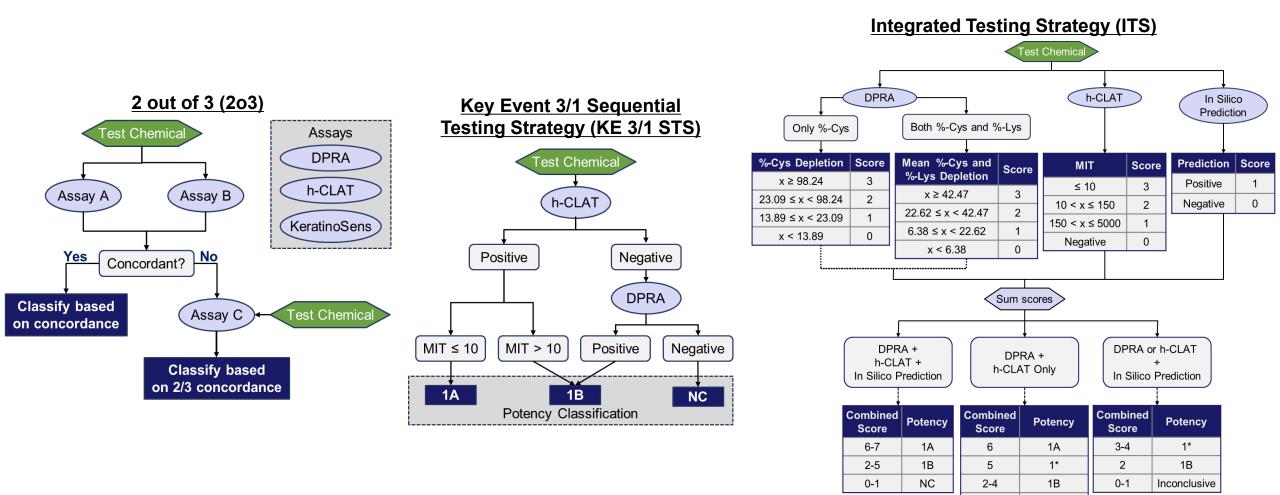

Non-animal methods for evaluating skin sensitization

- Mechanistically based methods that address key events in the skin sensitization AOP
 - Direct peptide reactivity assay (DPRA)
 - KeratinoSens[™] (KS)
 - Human cell line activation test (h-CLAT)



Non-animal methods for evaluating skin sensitization

Non-animal methods for evaluating skin sensitization


Defined Approaches

- Results from multiple assays can be combined to predict skin sensitization hazard and potency using defined approaches (DAs).
- DAs combine data from a pre-determined set of information sources via fixed data interpretation procedures to derive toxicity predictions.
- Defined approaches for skin sensitization
 (DASS) have been developed and accepted by the OECD for hazard and potency predictions and by the U.S. EPA for hazard predictions.

Defined Approaches for Skin Sensitization (DASS)

Inconclusive NC

0

Accuracy of Methods Against Human Reference Data

• The DAs show higher or equivalent accuracy than the LLNA when compared to human reference data.

	Accuracy	
LLNA	74.20%	
KS	75.80%	
h-CLAT	78%	Potency
DPRA	73.40%	
203		Accuracy
(KS + h-CLAT + DPRA)	77.20%	LLNA 59.4%
ITSv1	85%	ITSv1 69.2%
(h-CLAT + DPRA + DEREK)		(h-CLAT + DPRA + DEREK)
KE 3/1 STS (h-CLAT + DPRA)	80.20%	KE 3/1 STS 63.5% (h-CLAT + DPRA) 63.5%

Hazard Identification

Kleinstreuer et al. 2018 Crit Rev Tox Hoffmann et al. 2018 Crit Rev Tox

The DASS App

- DASS logic can be easily implemented in a coding environment (e.g., R, Python)
- The DASS App is an open-source web application that enables users to apply these validated non-animal approaches to their own data
- No account is required, and no data are retained by the application

Welcome to the DASS App!

The DASS App applies defined approaches on skin sensitization (DASS) that are described in OECD Guideline No. 497 🔮 and the U.S. EPA's Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing 🔮 . The defined approaches (DAS) predict skin sensitization hazard (either a sensitizer or non-sensitizer) and potency by integrating data from in vitro assays that represent key events in the Adverse Outcome Pathway (AOP) for Skin Sensitisation Initiated by Covalent Binding to Proteins 🗳 and in silico hazard predictions.

More details are available in the User Guide ピ .

For more information or to report a problem with the app, please contact NICEATM at ICEsupport@niehs.nih.gov.

Access the DASS App https://ntp.niehs.nih.gov/go/952311

https://github.com/NIEHS/DASS To et.al 2023. Cambridge Open Engage. Preprint.

National Institute of Environmental Health Sciences Division of Translational Toxicology

Demo

Evaluating data from OECD GL497

https://ntp.niehs.nih.gov/go/952311

DASS App Demo

- 1. Navigate to the DASS App: <u>https://ntp.niehs.nih.gov/go/952311</u>
- 2. Select the DAs you would like to apply. Additional information about the DAs can be found by clicking on the green information circles.

Step 1: Select the Defined Approaches to Apply	
To begin, select the DAs to be implemented. Click on the green information buttons to view a description of the DA and the test mehods required to implement the DA.	
Select All Deselect All	
2 out of 3 (203)	
Integrated Testing Strategy (ITS)	
✓ Key Event 3/1 (KE 3/1) Sequential Testing Strategy (STS)	

DASS App Demo

3. The app accepts .csv, .txt, and .xlsx file extensions. Check the box for "Use demo data" to load a demo data set sourced from OECD GL 497.

	Step 2: Upload Data
9	Before uploading your file, ensure that the data meet the data and formatting requirements.
endpoin	template is provided in tab-delimited or Excel format. The template contains columns for every possible assay it. If an assay endpoint will not be used, the corresponding column can be deleted but that is not required. The template is not required.
	ad Data Template (.xlsx) ad Data Template (.txt)
	demo data

DASS App Demo

- 5. Select the columns corresponding to a given assay endpoint.
 - Using the demo data will pre-populate the selection boxes with the appropriate column name.
- 6. Click "Done" at the bottom of the Step 3 module.

Step 3: Select Data Columns for Predictions

The assay endpoints that are required for the selected DAs are shown below. Use the dropdown lists to select the columns from your data that correspond to the given endpoints. Columns are automatically selected for an endpoint if the column name matches the corresponding column name in the data template. A column must be selected for each endpoint shown. When you are finished, click 'Done'.

Click on the in information buttons next to the assay endpoint names to view information about the endpoints and data formatting requirements. Values that are incorrectly formatted or invalid will be treated as missing data and may affect the results. More details are given in the User Guide.

-

-

DPRA Call 🚱

Data Source

- Use DPRA Binary Call
- Use %-Depletion Values

DPRA Binary Call Column

dpra call

DPRA % Depletion 😧

DPRA %-Cysteine Depletion Column

dpra_pC

DPRA %-Lysine Depletion Column

dpra pK

h-CLAT Binary Call 😣

h-CLAT Binary Call Column

hCLAT_call

DASS App Demo

- 7. Review the selected columns.
 - The column "dpra_pC" is flagged due to non-numeric data.
- 8. Click "Run" to apply the DAs using the selected data.
- 9. A pop-up window will appear to confirm that the DAs will be applied to flagged data. Click "Run".

Step 4: Review Selection

Warning: Selected data columns have been flagged for invalid values.

Review the selected columns and flags in the table below. Upload an updated dataset or select new columns.

Click 'Run' to run DASS anyway. Invalid values will be considered missing (NA) and will **not** be used to evaluate skin sensitization hazard identification or potency.

Variable	Selected Column	Flag
DPRA Hazard Call	dpra_call	
DPRA %C-Depletion	dpra_pC	Must be numeric
DPRA %K-Depletion	dpra_pK	
h-CLAT Hazard Call	hCLAT_call	
h-CLAT MIT	hCLAT_MIT	
KeratinoSens™ Hazard Call	KS_Call	
In Silico Hazard Call	insilico_call	
In Silico Applicability Domain	insilico_ad	

The selected columns have been flagged for invalid values. Invalid values will be considered missing (NA) and will **not** be used to evaluate skin sensitization hazard identification or potency. Continue?

Run Cancel

DASS App Demo

Download Results -

Column visibility

10. DA predictions are appended to the original data.

- Use the "Column visibility" menu to toggle the columns shown
- Results can be downloaded as a .txt or .xlsx file.

CASRN	SMILES	DA ITS Call	DA ITS Potency	DA 2o3 Call	DA KE 3/1 STS Call	DA KE 3/1 STS Potency
514-10-3	CC(C)C1CC[C@H]2C(=CC[C@@H]3[C@]2(C)CCC[C@@]3(C)C(O)=O)C=1	1	1B	1	1	1B
100-06-1	COc1ccc(cc1)C(C)=O	0	NC	0	0	NC
874-23-7	CC(=O)C1CCCCC1=O	1	1B	1	1	1B
140-67-0	COc1ccc(CC=C)cc1	1	1B	1	1	1B
7493-74-5	C=CCOC(=O)COc1ccccc1	0	NC	0	0	NC
150-13-0	Nc1ccc(cc1)C(O)=O	0	NC	0	0	NC
2835-99-6	Cc1cc(O)ccc1N	1	1A	1	1	1B
2835-95-2	Cc1ccc(N)cc1O	1	1A	1	1	1B
95-55-6	Nc1ccccc1O	1	1A	1	1	1A
591-27-5	Nc1cccc(O)c1	1	1B	0	1	1B

DASS App Demo

- 11. Users may supply reference data to evaluate the DA results. The demo data include LLNA and Human reference data. In the Performance Metrics module, select:
 - Type of comparison: Hazard
 - Prediction columns: DA ITS Call, DA 2o3 Call, DA KE 3/1 STS Call
 - Reference columns: LLNA.Call, Basketter_human_Call
- 12. Click the "Compare" button.

Supplemental. Compare Results
The dropdown menus show column names from your uploaded data and column names from the DA output. You may calculate accuracy of a DA result against reference data. Reference data should be included in your uploaded data. Select the prediction and reference columns to be compared.
Select type of comparison
Hazard
O Potency
Select Prediction Column(s)
DA ITS Call DA 203 Call
DA KE 3/1 STS Call
Select Reference Column(s)
LLNA.Call Basketter_human_Call
Compare

DASS App Demo

- 13. Confusion matrices and performance metrics will be shown for every comparison. Use the drop-down menu to view specific comparisons.
- 14. Click the "Download" button to open a pop-up and download a PDF of the tables.

Select Output

llnacall_daitscall	-
llnacall_daitscall	
linacall_da2o3call	
llnacall_dake3/1stscall	
basketter_human_call_daitscall	
basketter_human_call_da2o3call	
basketter_human_call_dake3/1stscall	

Confusion Matrix and Performance Metrics

Reference Column: LLNA.Call Prediction Column: DA ITS Call

		Reference	
		0	1
Predicted	0	23	15
	1	10	117

ienus show column names nom your uploaded data and column names nom the DA outp	ui. 100 1	
Download Performance	×	
Select tables to download		
Inacall_daitscall		
Inacall_da2o3call		
Inacall_dake3/1stscall		
basketter_human_call_daitscall		
basketter_human_call_da2o3call		
basketter_human_call_dake3/1stscall		F
🛓 Download		
Clo	se	

Metric	Value
N	165
Accuracy	85%
Balanced Accuracy	79%
F1 Score	90%
True Positive Rate	89%
False Positive Rate	30%
True Negative Rate	70%
False Negative Rate	11%

Summary

- The DASS App provides access to validated non-animal testing strategies from international OECD guidelines and U.S. federal policies.
- Additional assays are being evaluated for inclusion in the DASS data interpretation procedures.
 - The DASS App will be updated to include these alternate assays.

Conclusion

- NICEATM provides open-source data-driven computational tools to support chemical safety assessment.
- ICE provides curated toxicologically relevant data and contains tools for data interpretation and exploration.
- **OPERA** features models for predicting physicochemical properties and environmental fate endpoints.
- **ChemMaps.com** enables exploration of the environmental chemical space and integrates data from OPERA models and ICE.
- The DASS App supports implementation of validated non-animal approaches.

National Institute of Environmental Health Sciences Division of Translational Toxicology

Acknowledgments

The NICEATM Group

NIEHS/DTT Contributors

∫Ci**⊘**me

Subscribe to NICEATM News

https://list.nih.gov/cgibin/wa.exe?SUBED1=niceatm-l&A=1

https://ice.ntp.niehs.nih.gov/

https://github.com/NIEHS/OPERA

https://sandbox.ntp.niehs.nih.gov/ chemmaps/

The DASS App https://ntp.niehs.nih.gov/ go/952311