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Introduction

Understanding how human populations interact with, and are exposed to, chemicals is key to
prioritizing chemicals for risk assessment, as risk is the intersection of chemical hazard and

Pathways of Exposure for Chemicals in ICE

For the ~480,000 chemicals within the domain of applicability, SEEM3 exposure pathway
predictions were used to create near-field and far-field annotations in the ICE data set (Fig. 3).
>80% of chemicals do not have a known pathway, as chemical use information is often limited.

Curation of Functional Use Data

* Functional use can inform what products a chemical might be used in if product use category is
not known and help estimate how much of a chemical is in a product and potential alternatives.
» Two types of functional use information were pulled from CPDat, including reported functional
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Future Additions: ClassyFire Chemical Taxonomies

» ClassyFire (Djoumbou et al. 2016, Wishart Research Group) is an automated,
structure-based, hierarchical chemical taxonomy with 4,285 classifications organized
into as many as 11 levels of classification.

exposure (Wambaugh et al. 2019).
« Many chemicals lack measured exposure estimates and chemical use information.

» High-throughput exposure simulations and structure-based chemical-use models can inform
exposure scenarios for data-poor chemicals-but can be difficult to interpret for users with limited
computational experience.

» NICEATM seeks to curate complex datasets and present approachable and interactive use and
exposure data in the Integrated Chemical Environment (ICE; https://ice.ntp.niehs.nih.gov/), an
open-access resource containing toxicologically relevant data and computational tools.

» Functional use (role a chemical plays in a product) and product use (products a chemical
has been found in) categories were curated from the Environmental Protection Agency’s

» We are linking chemical use categories within ICE to ClassyFire taxonomies,
allowing ICE users to identify the most abundant chemical classifications.
« Identifying chemical classifications of interest can help focus follow-up
investigations or aid in the selection of alternative chemicals.
» As an example, we applied the ClassyFire taxonomy to 100 chemicals within the
OECD functional use of "biocides”, which mapped to 88 chemicals within the
ClassyFire Kingdom "Organic Compounds" (shown below).

use harmonized to Organization for Economic Co-operation and Development (OECD)
categories and predicted functional use as predicted by quantitative structure—use relationship
models (QSUR, Phillips et al. 2017; Fig. 6).
» As part of the curation process, reported use was harmonized to OECD use by the
NICEATM team for ~2,000 chemicals.
» For predicted functional use, the prediction probability was limited to 280% to ensure
high-confidence results.
* The functional use dataset in ICE has 77 OECD uses for 9,395 chemicals and 37 QSUR-
predicted uses for 192,438 chemicals.
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Dietary Only Table 1. ClassyFire Taxonomies Applied to OECD Biocides in ICE. Includes SuperClass and
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Figure 1. Overview of SEEM3 Model (Adapted from Ring et al. 2019). A) An overview of the SEEM3 model inputs
and outputs. B) Exposure pathways predicted by the SEEM3 model and their respective high-throughput exposure
models.

» This includes exposure predictions for ~480,000 chemicals, OECD functional
use categories for nearly 10,000 chemicals, and predicted functional use data
for approximately 192,000 chemicals.

« Data can be directly downloaded from the ICE data sets page or visualized in the

substances; color of the cell corresponds with the chemical input list (red or blue for individual
chemical input lists; purple for both lists), and a figure legend is generated to help identify
submitted query input chemical lists.

Figure 4. ICE IVIVE Tool Output with Boxplots Showing EAD and SEEM3 Predictions. 4 chemicals with EAD,
calculated using curated High Throughput Screening (cHTS) in vitro data, and human exposure prediction overlays.
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Figure 2. SEEM3 Predictions. Median SEEM3 predictions in mg/kg/day for 479,866 chemicals within the model’s
https://ntp.niehs.nih.qgov/go/niceatm

domain of applicability. Error bars represent the 51" and 95t percentile of exposure. Chemicals are ranked by 95%
percentile.

Figure 5. ICE Chemical Characterization Tool Visualizations of Product Use.
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