


National Institute of **Environmental Health Sciences** Division of Translational Toxicology

# **Application of Skin Allergy Risk Assessment-Integrated Chemical Environment Defined Approach to a Diverse Chemical Set – a Comparative Study** E.N. Reinke<sup>1</sup>,T. LaPratt<sup>1</sup>, J. Strickland<sup>1</sup>, D. Germolec<sup>2</sup>, J. Truax<sup>1</sup>, J. Reynolds<sup>3</sup>, G. Reynolds<sup>3</sup>, N. Gilmour<sup>3</sup>, D.G. Allen<sup>1\*</sup>, G. Maxwell<sup>3</sup>, N. Kleinstreuer<sup>2</sup> <sup>1</sup>Inotiv, Research Triangle Park, NC; <sup>2</sup>NIH/NIEHS/DTT/NICEATM, Research Triangle Park, NC, <sup>3</sup>SEAC Unilever, Sharnbrook, United Kingdom

## Introduction

- sensitization potential.

- assay, human cell line activation test (h-CLAT), or U-SENS<sup>™</sup> assay.
- the ED01.
- hazard and GHS potency classification (UN, 2021).
- accepted DAs (Figure 1):



## Acknowledgments

freely copied.

\*D.G. Allen's current affiliation is with the International Collaboration on Cosmetics Safety, New York, NY.

This project is a collaboration between NICEATM and Unilever plc.

| anced<br>curacy | False Positive<br>Rate | False Negative<br>Rate | Number of Chemicals<br>Predicted | Inconclusive<br>(LLNA GHS 1/NC) |
|-----------------|------------------------|------------------------|----------------------------------|---------------------------------|
| .73%            | 53%                    | 24%                    | 159                              | 9 (6/3)                         |
| .01%            | 67%                    | 15%                    | 149                              | 18 (8/10)                       |
| .16%            | 77%                    | 13%                    | 164                              | 0                               |
| .23%            | 47%                    | 17%                    | 110                              | 63 (33/30)                      |

| Potency Performance Compared to LLNA |          |                |               |                                     |                                        |  |  |  |
|--------------------------------------|----------|----------------|---------------|-------------------------------------|----------------------------------------|--|--|--|
| Defined<br>Approach                  | Accuracy | Underpredicted | Overpredicted | Number of<br>Chemicals<br>Predicted | Inconclusive<br>(LLNA GHS<br>1A/1B/NC) |  |  |  |
| ITSv2                                | 41%      | 26%            | 33%           | 102                                 | 19 (4/6/9)                             |  |  |  |
| KE 3/1 STS                           | 46%      | 21%            | 33%           | 122                                 | 0                                      |  |  |  |
| SARA-ICE                             | 59%      | 18%            | 23%           | 78                                  | 51 (7/18/26)                           |  |  |  |

## Abstract 4324 **Poster P108**

## Results

- Binary classification performance of the SARA-ICE Model with P > 0.8 decision thresholds resulted in an inconclusive rate of around 20% for Class 1 and 17% for Not Classified against LLNA benchmarks. Sensitivity, specificity, and balanced accuracy for conclusive predictions were 83%, 53%, and 68%, respectively, versus LLNA benchmarks.
- Comparatively, hazard prediction of the other DAs against the LLNA ranged from 76-87%, 23-47%, and 55-62% for sensitivity, specificity, and balanced accuracy. Concordance (e.g., how many times two models agreed on an outcome) between the models ranged from 63–96%, with highest concordance between SARA-ICE and ITS. Against all the DAs, SARA-ICE was at least 88% concordant, as compared to 75% concordant with the LLNA (Figure 3).
- Using the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), classification of the SARA-ICE model against LLNA benchmarks resulted in an inconclusive rate of around 5% for Category 1A, 14% for Category 1B, and 20% for NC. Accuracy for LLNA GHS classification was 59% for the SARA-ICE Model, as compared to 41 - 46% for the ITSv.2 or KE 3/1 STS.
- SARA-ICE underpredicted GHS categories 18% of the time and overpredicted GHS categories 23% of the time. SARA-ICE had the highest concordance against the LLNA as compared to the ITSv.2 and KE 3/1 STS. When compared to the other DAs, SARA-ICE demonstrated 76% and 64% concordance (Figure 4).

### Discussion

- SARA-ICE is a probabilistic model that integrates multiple skin sensitization data inputs in various combinations.
- SARA-ICE supports classification of skin sensitizers according to the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (GHS), and provides a human-relevant point of departure, with quantified uncertainty, for quantitative risk assessment.
- Currently, SARA-ICE is undergoing evaluation via the OECD Defined Approach Skin Sensitisation (DASS) Expert Group for potential inclusion in Guideline 497: Defined Approaches on Skin Sensitisation (OECD, 2021).
- Ultimately, the SARA-ICE Model will be publicly available as a containerized version available in GitHub and eventually housed on the NICEATM ICE platform (https://ice.ntp.niehs.nih.gov/).
- These data were compiled for chemicals or substances that were nominated by multiple U.S. federal agencies with the intention of understanding their skin sensitization potential. SARA-ICE provides additional confidence in assessing these chemicals, at least when compared to LLNA benchmark data, as compared to the already accepted OECD guideline DAs.
- The use of this diverse range of substances aids in further characterizing the applicability of NAMs to skin sensitization assessments.

## References

- EPA 2018. Interim Science Policy (KE 3/1 STS). https://www.regulations.gov/document/EPA-HQ-OPP-2016-0093-0090.
- Hoffmann et al. 2022. Reg Toxicol Pharmacol 131:105169. https://www.sciencedirect.com/science/article/pii/S0273230022000563.
- OECD 2021. Supporting Document to the OECD Guideline 497 on Defined Approaches for Skin
- Sensitisation. https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/CBC/MONO(2021)11& docLanguage=En.
- OECD 2021. Guideline No. 497: Defined Approaches on Skin Sensitization (203, ITSv2). https://www.oecd-ilibrary.org/environment/guideline-no-497-defined-approaches-on-skinsensitisation b92879a4-en.
- Reynolds et al. 2019. Comput Toxicol 9:36-49.
- https://www.sciencedirect.com/science/article/pii/S2468111318300872.
- Reynolds et al. 2022. Reg Toxicol Pharmacol 134:105219. https://www.sciencedirect.com/science/article/pii/S0273230022001064.
- Strickland et al. 2022. Appl In Vitro Toxicol 8(4):117-128.
- https://www.liebertpub.com/doi/abs/10.1089/aivt.2022.0014.
- UN 2021. Globally Harmonised System of Classification and Labelling of Chemicals (GHS). https://unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs rev04/English/ST-SG-AC10-30-Rev4e.pdf.

NICEATM Presentations at SOT 2024



Unilever **Presentations** at SOT 2024



To get announcements of NICEATM activities, visit the NIH mailing list page for NICEATM News and click "Subscribe."

