


National Institute of **Environmental Health Sciences** Division of Translational Toxicology

Advancing Flexibility for Defined Approach Guidelines: Developing Performance Standards to Incorporate Alternate Information Sources into the Defined Approach for Skin Sensitization Guideline

K. Sullivan¹, E. Reinke², D.S. Macmillan^{3*}, H. Raabe¹, D. Germolec⁴, D. Allen^{2*}, E. Choi⁵, J. Filipovska⁶, N. Kleinstreuer⁴ ¹Institute for In Vitro Sciences, Gaithersburg, MD; ²Inotiv, RTP, NC; ³Humane Society International, Washington, DC; ⁴NIH/NIEHS/DTT/NICEATM, RTP, NC; ⁵Organisation for Economic Co-operation and Development (OECD), Paris, France; ⁶Independent Researcher and Consultant, Ohrid, North Macedonia

Introduction

- Skin sensitization (also known as allergic contact dermatitis, ACD) occurs following repeated skin contact with an allergen. • The key biological events underlying skin sensitization initiated by covalent binding to proteins have been summarized as an adverse outcome pathway (AOP) by the Organisation for Economic Co-operation and Development (OECD 2014). The AOP begins with a molecular initiating event, leading to intermediate key events (KE), and terminating with the adverse effect, ACD (Figure 1)
- OECD has accepted mechanistically based in chemico and in vitro assays addressing the first three KEs of the skin sensitization AOP (OECD 2022, 2023c, 2023d). These assays have in turn been incorporated into defined approaches (DAs).
- A DA consists of a defined set of information sources (e.g., in silico predictions, in chemico or in vitro data) used in a fixed data interpretation procedure (e.g., a mathematical model or rule-based approach) to provide predictions without the need for expert judgment.
- Several skin sensitization DAs were published in 2021 by OECD under Guideline No. 497 (OECD 2023a; Figure 1), each achieving equivalent or better predictions of the human response than the relevant animal test(s) (Kleinstreuer et al. 2018).
- 2 out of 3 (2o3): uses in chemico (KE1) and in vitro (KE2/KE3) data to predict hazard. • Integrated testing strategy (ITS): uses in chemico (KE1) and in vitro (KE3) data and in silico predictions to predict hazard
- and potency. • Performance standards (PS) provide a consistent means to evaluate "me-too" methods: proposed methods that have a
- similar mechanistic basis and applicability domain as accepted methods. PS are incorporated into several OECD guidelines to improve flexibility and access to a variety of equivalent approaches.
- In 2022, the OECD Expert Group on Skin Sensitization began considering the addition to Guideline 497 of KE-based test methods included in OECD TG 442C/D/E as alternate information sources in the DAs. This project is also investigating the substitution of the in silico information sources used in the ITS DA with other in silico models.
- In order to facilitate ongoing and future efforts for Guideline 497, development of PS for the defined approaches for skin sensitization is necessary. This poster presents the proposed PS for Guideline 497.

Table 1. "Me-Too" Methods Under Consideration									
	Method type	KE 1	KE 2	KE 3	l				
	Original	Direct peptide reactivity assay (DPRA)	KeratinoSens™	Human cell line activation test (h-CLAT)	C C				
	Alternate method	Amino acid derivative reactivity assay (ADRA)	LuSens™	IL-8 Luc U-SENS™ GARD®skin	is L S				

Organism Respons Adverse Outcome nflammation upon challenge with allergen Guinea Pig From OECD (2014) In Silico est Specific Criteria Score Prediction Score Positive Negative KE1 or KE2 In Silico Prediction Combined Score Potency 2 | 1B 2-4 1B 0-1 Inconclusive 1 Inconclusive n silico model

Derek Nexus OECD QSAR Toolbox iSafeRat _eadscope Model Applier StopTox

Development of Performance Standards, Reference Chemicals, Borderline Ranges, and Decision Scores

- It is typical to have around 20 PS reference chemicals to evaluate the performance of a new "me-too" method. plus 7 additional chemicals, totaling 21 chemicals from the reference list be used.
- The proposed PS reference substance list for in chemico or in vitro methods is a flexible list of 40 chemicals selected from the original 196 reference chemicals in Annex 2 of the Supporting Document to the Guideline on DAs for Skin potencies, and chemical reactivity domains and are available on the open market.
- In silico methods will be expected to provide predictions for all reference chemicals.
- the prediction model developed for the original 203 information sources.
- Performance criteria are being developed for the new information sources that will require specific balanced accuracy OECD Expert Group.
- data on these chemicals from the Reference Chemical list

Table 2. Proposed Reference Chemical List

Chemical Name	CASRN	PS chem. used for evaluation	Human GHS	LLNA GHS	2o3 pred. (hazard)	ITS pred. (GHS)
Benzylidene acetone*	122-57-6	Y	1A	1	1	1A
Cinnamaldehyde*	104-55-2	Y	1A	1A	1	1A
Diethyl maleate	141-05-9	N	1A	1B	1	1A
DNCB*	97-00-7	Y	1A	1A	1	1A
Formaldehyde*	50-00-0	Y	1A	1	1	1A
Tetrachlorosalicylanilide*	1154-59-2	Y	1A	1A	1	1A/1B
Aniline*	62-53-3	Y	1B	1B	NC	1B
Chlorpromazine	50-53-3	Ν	1B	1	NC	1B
Cinnamic alcohol	104-54-1	Y	1B	1B	1	1B
Dibenzoyl peroxide	94-36-0	Ν	1B	1A	NC	1B
Eugenol	97-53-0	Y	1B	1B	1	1B
Farnesol*	4602-84-0	Y	1B	1B	1	1B
Isoeugenol*	97-54-1	Y	1B	1A	1	1B
2-Mercaptobenzothiazole*	149-30-4	Y	1B	1A	1	1A
Neomycin sulfate*	1405-10-3	Y	1B	N/A	N/A	1B
Penicillin G	61-33-6	Ν	1B	1B	1	1B
Phenyl benzoate	93-99-2	Ν	1B	N/A	1	1B
Sulfanilamide	63-74-1	Ν	1B	NC	NC	NC
4-aminobenzoic acid*	150-13-0	Y	NC	N/A	NC	NC
Citronellol	106-22-9	Ν	NC	1B	1	1B
Hexyl salicylate*	6259-76-3	Y	NC	1	NC	1B
Hydrocortisone*	50-23-7	Y	NC	N/A	1	1B
n-Hexane	110-54-3	Y	NC	NC	NC	NC
Propylene glycol*	57-55-6	Y	NC	NC	NC	NC
α-Hexylcinnamaldehyde	101-86-0	Ν	N/A	1B	NC	NC
p-Benzoquinone	106-51-4	Ν	N/A	1A	1	1A
Bromothalonil	35691-65-7	Y	N/A	1A	1	1A
Butan-1-ol	71-36-3	Y	N/A	NC	NC	NC
Citral	5392-40-5	Ν	N/A	1B	1	1A
EGDMA	97-90-5	Y	N/A	1B	1	1B
Ethylene diamine (free base)	107-15-3	Ν	N/A	1B	1	1B
Glycerol	56-81-5	Ν	N/A	NC	NC	NC
4-Hydroxybenzoic acid	99-96-7	Ν	N/A	NC	NC	NC
Isopropanol	67-63-0	Ν	N/A	NC	NC	NC
Lactic acid	50-21-5	Ν	N/A	NC	NC	NC
4-Nitrobenzyl bromide	100-11-8	Ν	N/A	1A	1	1A
Propyl gallate	121-79-9	Y	N/A	1A	1	1A
Resorcinol	108-46-3	Ν	N/A	1B	NC	1B
Salicylic acid	69-72-7	Ν	N/A	1B	NC	NC
Vanillin	121-33-5	Ν	N/A	NC	NC	NC

All predictions are extracted from Annex 2 of Guideline 497, *indicates proposed "Core Chemical"

• A proposed addition for the in chemico and in vitro information sources is that a set of 14 required "core" chemicals

Sensitisation (OECD 2023b; Table 2). These chemicals were chosen to represent a range of physicochemical properties,

For each new test method under consideration for addition into the 2o3 DA, borderline ranges are calculated by adapting

For each new information source (test method or in silico tool) under consideration for addition into the ITS DA, a scoring rubric was created. The scoring was determined using a similar protocol to the original methods/in silico tools.

minimums and are dependent on the reference benchmark species (mouse or human) and are under evaluation by the

Table 3 shows the range of performance values for the different permutations of the DAs based on a common set of 21 chemicals, indicated as a "Y" in **Table 2**. These chemicals were selected becausee all test methods under evaluation had

National Institutes of Health • U.S. Department of Health and Human Services

Chemicals

DA/Method	Information Sources *	Capability	Hazard Performance vs. LLNA	Hazard Performance vs. Human	Potency Performance vs. LLNA	Potency Performance vs. Human
203 DA	KE1: ADRA, DPRA KE2: KeratinoSens [™] , LuSens KE3: GARDskin, h-CLAT, IL-8 Luc, U-SENS [™]	Hazard	96-100% BA 92-100% Se 100% Sp	78-95% BA 89-100% Se 67-100% Sp	_	-
ITS DA	KE1: ADRA, DPRA, KE3: GARDskin, h-CLAT, U- SENS [™] In silico: Derek Nexus, iSafeRat, Leadscope Model Applier, OECD QSAR Toolbox, StopTox	Hazard, Potency	97-100% BA 93-100% Se 100% Sp	71-88% BA 92-100% Se 50-75% Sp	95-100% NC 84-94% 1B 83-93% 1A	70-83% NC 73-83% 1B 85-95% 1A
LLNA (for comparison)	In vivo	Hazard, Potency	_	67% BA, 100% Se 33% Sp	_	100% NC 83% 1B 88% 1A

*One each per KE and/or in silico, where applicable. BA = balanced accuracy, Se = sensitivity, Sp = specificity.

Significance of the PS for Guideline 497

- (iSafeRat, Leadscope Model Applier, StopTox).
- used in any combination.

References

Toxicology. https://doi.org/10.1080/10408444.2018.1429386.

Acknowledgments

NIEHS contract HHSN273201400017C.

To get announcements of NICEATM activities, visit the NIH mailing list page for NICEATM News at ttps://list.nih.gov/cgi-bin/wa.exe?SUBED1=niceatm-l&A=1 and click "Subscribe."

Abstract 4576 Poster P411

Table 3. Performance of New Methods With Proposed PS

Evaluated against a subset of up to 21 substances from the Proposed Reference Chemicals List (Table 2) e.g. fewer substances with potency data mean that the ITS DA potency performance may have been evaluated against less than 21.

• Several new methods are being evaluated for inclusion into OECD Guideline 497. These methods include assays that cover KE1 (ADRA), KE2 (LuSens), KE3 (GARDskin, IL-8 Luc, U-SENS[™]) as well as new in silico information sources

• Performance standards can expedite the inclusion of additional methods that address the same KEs into existing DAs. • Each drop-in permutation of "me-too" information sources (e.g. using ADRA in place of DPRA in the 2o3) is under evaluation for performance in the DAs already published in Guideline 497, with the intention that the methods could be

• Once completed, the performance standards could also be used to evaluate new DAs. • Efforts to include new DAs that predict points-of-departure for risk assessment in Guideline 497 are underway.

Kleinstreuer et al. 2018. Non-animal methods to predict skin sensitization (II): an assessment of defined Approaches. Critical reviews in

- OECD 2014. Guidance Document No. 168. https://doi.org/10.1787/9789264221444-en. OECD 2023a. Guideline No. 497: Defined Approaches on Skin Sensitisation. https://doi.org/10.1787/b92879a4-en.
- OECD 2023b. Supporting document to the Guideline (GL) on Defined Approaches (DAs) for Skin Sensitisation https://one.oecd.org/document/ENV/CBC/MONO(2021)11/En/pdf.
- OECD 2023c. Test No. 442C: In Chemico Skin Sensitisation (DPRA). https://doi.org/10.1787/9789264229709-en.
- OECD 2022. Test No. 442D: In Vitro Skin Sensitisation (KS). https://doi.org/10.1787/9789264229822-en. OECD 2023d. Test No. 442E: In Vitro Skin Sensitisation (h-CLAT). https://doi.org/10.1787/9789264264359-en.

- The Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) supported this poster. Technical support was provided by Inotiv-RTP under NIEHS contract HHSN273201500010C and by Burleson Research Technologies, Inc., under
- *D.S. MacMillan and D. Allen are currently affiliated with the International Collaboration on Cosmetics Safety, New York, NY.
- The views expressed above do not necessarily represent the official positions of any federal agency Since the poster was written as part of the official duties of the authors, it can be freely copied.

