The following report presents results of a study conducted by a contract laboratory for the National Toxicology Program (NTP). The report may not have been peer reviewed. The findings and conclusions for this study should not be construed to represent the view of NTP or the U.S. Government.

	Human Recombinant Aromatase Assay: Final Report		
DATA REQU	UIREMENT(S):	OPPTS 890.1200	
AUTHOR(S)):		
STUDY CON	MPLETION DATE:	10 February 2012	
TEST FACII	LITY:	CeeTox, Inc. 4717 Campus Drive Kalamazoo, MI 49008 USA	
LABORATORY PROJECT ID:		Report Number: 9070-100107AROM Study Number: 9070-100107AROM Sponsor Contract No. HHSN273200900005C NIEHS Control No. N01-ES-00005	
SPONSOR(S	b):	NIEHS 530 Davis Drive, MD K2-12 PO BOX 12233 Durham, NC 27713	
STUDY MO	NITOR:	(ILS, Inc, Durham, NC)	

STATEMENT OF DATA CONFIDENTIALITY CLAIMS

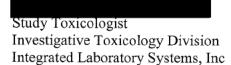
This page intentionally left blank.

Report Number: 9070-100107AROM

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

Study Number: 9070-100107AROM

Study Title: Human Recombinant Aromatase Assay


I, the undersigned, hereby declare that this study was conducted in compliance EPA GLP regulations (Title 40 Part 160) with the exception of section 160.113. Dose concentrations of test substance and control substances were not verified using analytical methods.

The study was conducted according to the procedures herein described and this report represents a true and accurate record of the results obtained. There were no deviations that impacted the quality or integrity of the study data. Any deviations that occurred during the course of the study will be noted in this report, with the full write-ups included in the study binder.

Study Director CeeTox, Inc.

10 FEBRUARY 2012 Date

Date

Report Number: 9070-100107AROM

FLAGGING STATEMENT

This page intentionally left blank.

QUALITY ASSURANCE STATEMENT

Study Title: Human Recombinant Aromatase Assay

Study Number: 9070-100107AROM

In accordance with CeeTox, Inc.'s policies and Quality Assurance standard operating procedures for Good Laboratory Practice (GLP), the conduct of this study has been audited as follows:

Date(s) of Inspection/Audit	Inspection/Audit	Date(s) reported to Study Director	Date(s) reported to Management
27 June 2011	Study Protocol	27 June 2011	27 June 2011
29 June 2011	In-Process	18 July 2011	18 July 2011
09 December 2011	Study Databook	09 December 2011	09 December 2011
07 February 2012	Draft Report	07 February 2012	07 February 2012

The signature below indicates the summary table is an accurate representation of Quality Assurance's involvement with this study.

10 Feb 2012 Date

Quality Assurance Auditor CeeTox, Inc. 4717 Campus Drive Kalamazoo, MI 49008

GENERAL INFORMATION

Contributors

The following contributed to this report in the capacities indicated:

Name	Title
	Study Director
	Director of Project Management
	Director of Laboratory Operations
	Senior Scientist/Endocrine Group Leader
	Scientist
	Scientist

Study Dates

Study initiation date: 24 June 2011 Experimental start date: 28 June 2011 Experimental termination date: 27 July 2011 Study completion date: 10 February 2012

Deviations from the Protocol

See Appendix 2. There were three deviations however they did not impact the integrity of the data in this report.

Retention of Samples

Test substances will be either returned to the Sponsor or destroyed following finalization of the study report.

Test Substance Reference Number

- 2-ethylhexyl p-methoxycinnamate, lot A0293319 (Referred to as Methoxycinnamate)
- 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, lot 01697MJ (Referred to as Octocrylene)
- Octyl salicylate, lot 44698PJ (Referred to as Octylsalicylate)
- 2-hydroxy-4-methoxybenzophenone, lot 20100801 (Referred to as Oxybenzone)

Data Retention and Archiving

At the study closure, all study records including all original raw data and original final report, will be shipped to the sponsor at the following address:

NTP Archives

615 Davis Drive, Suite 300 Durham, NC 27713

TABLE OF CONTENTS

STATEME	INT OF DATA CONFIDENTIALITY CLAIMS	2
GOOD LA	BORATORY PRACTICE COMPLIANCE STATEMENT	3
FLAGGIN	G STATEMENT	4
QUALITY	ASSURANCE STATEMENT	5
GENERAL	L INFORMATION	6
TABLE OF	F CONTENTS	7
1.0	EXECUTIVE SUMMARY	11
1.1	Study Design	11
1.2	Results	
1.3	Conclusion	
2.0	INTRODUCTION	12
2.1	Purpose	12
2.2	Regulatory Citations	
3.0	MATERIALS AND METHODS	12
3.1	Test Substances	12
3.2	Positive Control	14
3.3	Aromatase Substrate	15
3.3.1	Radiochemical Purity and Preparation of Substrate Solution for	or use in
	Aromatase Assay	
3.3.1.1	Calculations	
3.3.2	Preparation of Test Substances	
3.4	Microsomes	
3.4.1	Human Recombinant Microsomes	
3.4.2	Protein Assay	
3.4.3	Cytochrome P450 (CYP19) Aromatase Activity	18
3.4.4	Human Recombinant Microsome Preparation	18
3.5	Other Assay Components	18
3.5.1	Buffer	
3.5.2	Propylene Glycol	
3.5.3	NADPH	18
3.6	Test System	18
3.7	Aromatase Assay Method	19
3.8	Positive Control Assays and Determination of the Response of Acitivy to Test Substances	f Aromatase

3.8.1	4-OH ASDN Positive Control Analysis	20
3.8.2	Test Substance Analysis	21
3.9	Solubility Assessment of Test Substances	22
3.9.1	Solubility Assessment and Concentration Ranges	22
3.10	Data Evaluation	23
3.10.1	Aromatase Activity and Percent of Control Calculations	23
3.10.2	Model Fitting	23
3.10.3	Graphical and Analysis of Variance Comparisons Among Concer Response Curve Fits	
3.10.4	Quality Control-Analysis of Variance Comparisons of Full Enzyr Activity Control and Background Activity Control as Percent of C	Control
3.10.5	Data Interpretation	
3.11	Statistical Software and Analysis	25
4.0	RESULTS AND DISCUSSION	26
4.1	Concentration Range for the Test Substance	26
4.2	Aromatase Assay Acceptance Criteria	26
4.3	Quality Control Analysis Acceptance Criteria	26
4.4	Aromatase Assay Results	27
4.5	Discussion	27
5.0	CONCLUSIONS	27
6.0	REFERENCES	28
TABLES SEC	TION (RESULTS)	29
TABLE 11:	Results of Run 1 Aromatase Activity Assay: 40H-ASDN and Methoxycinnamate (28 June 2011)	30
TABLE 12:	Results of Run 2 Aromatase Activity Assay: 40H-ASDN and Methoxycinnamate (29 June 2011)	31
TABLE 13:	Results of Run 3 Aromatase Activity Assay: 40H-ASDN and Methoxycinnamate (27 July 2011)	32
TABLE 14:	Results of Run 1 Aromatase Activity Assay: 40H-ASDN and Oc (28 June 2011)	
TABLE 15:	Results of Run 2 Aromatase Activity Assay: 40H-ASDN and Oc (29 June 2011)	-
TABLE 16:	Results of Run 3 Aromatase Activity Assay: 40H-ASDN and Oc (27 July 2011)	
TABLE 17:	Results of Run 1 Aromatase Activity Assay: 40H-ASDN and Octylsalicylate (28 June 2011)	36

TABLE 18:	Results of Run 2 Aromatase Activity Assay: 40H-ASDN and Octylsalicylate (29 June 2011)	
TABLE 19:	Results of Run 3 Aromatase Activity Assay: 40H-ASDN and Octylsalicylate (27 July 2011)	
TABLE 20:	Results of Run 1 Aromatase Activity Assay: 40H-ASDN and Oxybenzon (28 June 2011)	e
TABLE 21:	Results of Run 2 Aromatase Activity Assay: 40H-ASDN and Oxybenzon (29 June 2011)	e
TABLE 22:	Results of Run 3 Aromatase Activity Assay: 40H-ASDN and Oxybenzon (27 July 2011)	e
TABLE 23:	Hill Slope, LogIC ₅₀ , Top of Curve (%), and Bottom of Curve (%) Values for the Reference Chemical 4OH- ASDN	
TABLE 24:	Individual and Mean Full Activity Control and Background Activity Control Values for the Assay Runs (Methoxycinnamate Runs)43	
TABLE 25:	Individual and Mean Full Activity Control and Background Activity Control Values for the Assay Runs (Octocrylene Runs)44	
TABLE 26:	Individual and Mean Full Activity Control and Background Activity Control Values for the Assay Runs (Octylsalicylate Runs)45	
TABLE 27:	Individual and Mean Full Activity Control and Background Activity Control Values for the Assay Runs (Oxybenzone Runs)46	
TABLE 28:	Solubility Results	
FIGURES SE	CTION 48	
FIGURE 1:	Runs 1-3: Methoxycinnamate and 4OH-ASDN	
FIGURE 2:	Runs 1-3: Octocrylene and 4OH-ASDN	
FIGURE 3:	Runs 1-3: OctylSalicylate and 4OH-ASDN	
FIGURE 4:	Runs 1-3: Oxybenzone and 4OH-ASDN	
FIGURE 5:	Mean Response of Runs 1-3: Methoxycinnamate and 4OH-ASDN53	
FIGURE 6:	Combined Response of Runs 1-3: Methoxycinnamate and 4OH-ASDN.	
FIGURE 7:	Combined Response of Mean and Runs 1-3: Methoxycinnamate and 4OH ASDN	-
FIGURE 8:	Mean Response of Runs 1-3: Octocrylene and 4OH-ASDN54	
FIGURE 9:	Combined Response of Runs 1-3: Octocrylene and 4OH-ASDN54	
FIGURE 10:	Combined Response of Mean and Runs 1-3: Octocrylene and 4OH-ASDN 	1
FIGURE 11:	Mean Response of Runs 1-3: OctylSalicylate and 4OH-ASDN55	
FIGURE 12:	Combined Response of Runs 1-3: OctylSalicylate and 4OH-ASDN55	
FIGURE 13:	Combined Response of Mean and Runs 1-3: OctylSalicylate and 4OH- ASDN	
FIGURE 14:	Mean Response of Runs 1-3: Oxybenzone and 4OH-ASDN56	

FIGURE 15:	Combined Response of Runs 1-3: Oxybenzone and 4OH-ASDN	N56
FIGURE 16:	Combined Response of Mean and Runs 1-3: Oxybenzone and 4	OH-ASDN
		56
APPENDICES	SECTION	57
APPENDIX 1:	Run Assay Information and Raw and Normalized DPM Data	58
APPENDIX 2:	Deviation Forms	118
APPENDIX 3:	Certificates of Analysis	121
APPENDIX 4:	Protocol and Protocol Amendments	130

1.0 EXECUTIVE SUMMARY

1.1 Study Design

The objective of this study was to evaluate the ability of four test substances to act as inhibitors of aromatase activity using human CYP19 (aromatase) and P450 reductase Supersomes TM purchased from Gentest TM as the test system. The substrate for the assay is androstenedione (ASDN), which is converted by aromatase to estrone.

Final concentrations of each test substance tested in the aromatase assay were 10^{-10} , 10^{-9} , 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} , $10^{-4.5}$, 10^{-4} , and 10^{-3} M. Test substances were:

- 2-ethylhexyl p-methoxycinnamate, lot A0293319 (Referred to as Methoxycinnamate)
- 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, lot 01697MJ (Referred to as Octocrylene)
- Octyl salicylate, lot 44698PJ (Referred to as Octylsalicylate)
- 2-hydroxy-4-methoxybenzophenone, lot 20100801 (Referred to as Oxybenzone)

Three independent runs of the aromatase assay were conducted. In each independent run, each concentration of test substance was tested in triplicate. In addition, the positive control inhibitor 4-hydroxyandrostenedione (4OH-ASDN) was included each time the aromatase assay was performed. Increasing concentrations of 4OH-ASDN decrease the aromatase activity in a concentration dependent manner. The OPPTS 890.1200 guideline outlines the preferred performance criteria for each run.

1.2 Results

In three independent runs of the assay, increasing concentrations of methoxycinnamate, octocrylene, and octylsalicylate showed negligible decreases in aromatase activity (all \geq 90% of control values). Oxybenzone was 51% of control value at 10⁻⁴ M. All test substances were soluble in the assay buffer at concentrations of \leq 10⁻⁴ M. Thus, the suitable top concentration for all test substances for use in the aromatase assay was established at 10⁻⁴ M.

1.3 Conclusion

The guidelines require that the mean aromatase enzyme activity level at the highest test concentration be used to determine whether the test substance is an inhibitor, non-inhibitor, or equivocal for activity at the aromatase enzyme. According to the data interpretation procedure outlined by the EPA for aromatase inhibition (Table 10, Section 3.10.5 Data Interpretation Criteria; OPPTS 890.1200), Methoxycinnamate, Octocrylene, and Octylsalicylate, were classified as non-inhibitors, with mean aromatase activities of 100% (\pm 6% SD), 94% (\pm 1% SD), and 90% (\pm 2% SD), respectively, at the highest soluble test concentration of 10⁻⁴ M. Oxybenzone was classified as equivocal, as it produced a mean aromatase activity level of 51% control activity \pm 13% SD at the highest soluble test concentration of 10⁻⁴ M.

2.0 INTRODUCTION

2.1 Purpose

The objective of this study was to evaluate the ability of four test substances to inhibit the catalytic activity of aromatase. This assay is a Tier 1 screening tool intended to identify test substances that may affect the endocrine system (e.g., steroidogenesis) by inhibiting catalytic activity of aromatase, the enzyme responsible for the conversion of androgens to estrogens.

The results of this study are intended to be used in conjunction with results from other Tier 1 screening studies (OPPTS 890 test guideline series) that constitute the full screening battery under the Endocrine Disruptor Screening Program (EDSP). Together, the results from the screening battery will be used by the US EPA to identify substances that have the potential to interact with the estrogen, androgen, or thyroid system. Results of the Tier 1 screening battery, along with other scientifically relevant information, are to be used in a weight-of-evidence determination of a substance's potential to interact with these systems. The fact that a substance may interact with a hormone system does not mean that when the substance is used, it will cause adverse effects in humans or ecological systems. The Tier 1 battery is intended for screening purposes only and should not be used for endocrine classification or risk assessment.

2.2 Regulatory Citations

OPPTS 890.1200: Endocrine Disruptor Screening Program, *in vitro* Aromatase (Human Recombinant).

3.0 MATERIALS AND METHODS

3.1 Test Substances

Table 1 (A-D) contains identity and property information provided by the Sponsor for four test substances:

- 2-ethylhexyl p-methoxycinnamate, lot A0293319 (Referred to as Methoxycinnamate)
- 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, lot 01697MJ (Referred to as Octocrylene)
- Octyl salicylate, lot 44698PJ (Referred to as Octylsalicylate)
- 2-hydroxy-4-methoxybenzophenone, lot 20100801 (Referred to as Oxybenzone)

Test Substance Name:	Methoxycinnamate
	(octyl 4-methoxycinnamate; or
	2-ethylhexyl p-methoxycinnamate)
Manufacturer:	Acros Organics (cat # 29116)
CAS Number:	5466-77-3
Description:	Clear colourless to yellow liquid
Solvent Used:	DMSO
Lot Number:	A0293319
Expiry Date:	Not provided
Purity:	99.8%
Molecular Formula:	$C_{18}H_{26}O_3$
Molecular Weight:	290.39
Storage Conditions:	Room temp (e.g., ambient)

 Table 1A. Test Substance 2-ethylhexyl p-methoxycinnamate, lot A0293319

 (Referred to as Methoxycinnamate)

Table 1B. Test Substance 2-ethylhexyl 2-cyano-3,3-diphenylacrylate, lot 01697M.	J
(Referred to as Octocrylene)	

Test Substance Name:	Octocrylene
	(2-ethylhexyl 2-cyano-3,3-diphenylacrylate)
Manufacturer:	Sigma-Aldrich (cat # 415820)
CAS Number:	6197-30-4
Description:	Viscous yellow liquid
Solvent Used:	DMSO
Lot Number:	01697MJ
Expiry Date:	Not provided
Purity:	99.2%
Molecular Formula:	$C_{24}H_{27}NO_2$
Molecular Weight:	361.48
Storage Conditions:	Room temp (e.g., ambient)

Table 1C. Test Substance octyl salicylate, lot 44698PJ (Referred to as Octylsalicylate)

Test Substance Name:	Octyl salicylate	
	(2-Ethylhexyl salicylate; or Octylsalicylate)	
Manufacturer:	Sigma-Aldrich (cat # W514500)	
CAS Number:	118-60-5	
Description:	Colourless liquid	
Solvent Used:	DMSO	
Lot Number:	44698PJ	
Expiry Date:	Not provided	
Purity:	99.6%	
Molecular Formula:	$C_{15}H_{22}O_3$	
Molecular Weight:	250.33	
Storage Conditions:	Room temp (e.g., ambient)	

Test Substance Name: Oxybenzone	
	(2-hydroxy-4-methoxybenzophenone)
Manufacturer:	Ivy Fine Chemicals Corp. (cat # HH13-026)
CAS Number:	131-57-7
Description:	Light yellow powder
Solvent Used:	DMSO
Lot Number:	20100801
Expiry Date:	1 August 2012
Purity:	99.9%
Molecular Formula:	$C_{14}H_{12}O_3$
Molecular Weight:	228.25
Storage Conditions:	Room temp (e.g., ambient)

 Table 1D. Test Substance 2-hydroxy-4-methoxybenzophenone, lot 20100801

 (Referred to as Oxybenzone)

Note: A certificate of analysis was provided by the Sponsor, stored in the study data and appended to the study report (Appendix 3). Confirmation of the identity of the test chemical, characterization and stability were verified by the Sponsor. Test chemical will be either returned to the Sponsor or destroyed following finalization of the study report.

3.2 Positive Control

The known aromatase inhibitor, 4-hydroxyandrostendione (4OH-ASDN), was used as the positive control for aromatase inhibition. Table 2 contains identity and property information for 4OH-ASDN (Formestane).

 Table 2. Positive Control Substance

Table 2. Positive Control Substance	
Positive Control Name:	40H-ASDN
	(Formestane)
Positive Control Manufacturer:	Sigma-Aldrich (cat # F2552)
CAS Number:	566-48-3
Description:	White powder, slightly crystalline
Solvent Used:	DMSO
Batch Number:	081K2133
Expiry Date:	March 2015
Purity:	99.6%
Molecular Formula	$C_{19}H_{26}O_3$
Molecular Weight:	302.41
Storage Conditions:	-4°C

A certificate of analysis for 4OH-ASDN is stored in the study data binder and appended to the study report, (Appendix 3).

The 4OH-ASDN was formulated in 100% dimethylsulfoxide (DMSO; lot RNBB7617, expires 2/2013). Fresh dilutions of the stock solution were prepared on the day of use. Dilutions were prepared such that the target concentrations of control substance (Table 2) could be achieved by

the addition of 20 μL of the dilution to a 2 mL total assay volume with final DMSO concentrations \leq 1%.

3.3 Aromatase Substrate

The substrate for the aromatase assay was androstenedione (4-Androstene-3,17-dione or ASDN). Non-radiolabeled and radiolabeled androstenedione ($[1\beta^{-3}H]$ -androstenedione, $[^{3}H]$ ASDN) were used. The non-radiolabeled ASDN was 99.8% pure. The radiolabeled $[^{3}H]$ ASDN stock was >97% radiochemically pure and was supplied at a specific activity of 26.3 Ci/mmol.

Table 5. Non-radiolabeled Substrate	
Substrate Name (Non-	Androstenedione
radiolabeled):	(4-Androstene-3,17-dione, or ASDN)
Substrate Manufacturer:	Steraloids, Inc. (cat # A6030-100)
CAS Number:	63-05-8
Description:	White powder, slightly crystalline
Solvent Used:	Ethanol
Batch Number:	L1712
Expiry Date:	April 2016
Purity:	99.8%
Molecular Formula	$C_{19}H_{26}O_2$
Molecular Weight:	286.41
Storage Conditions:	Room temp (e.g., ambient)

 Table 3. Non-radiolabeled Substrate

A certificate of analysis for ASDN is stored in the study data binder and appended to the study report, (Appendix 3).

Substrate Name (Radiolabeled):	[1β- ³ H]-Androstenedione,
	or [³ H] ASDN
Substrate Manufacturer:	Perkin Elmer (cat # NET-926)
CAS Number:	63-05-8
Description:	White powder, slightly crystalline
Solvent Used:	Ethanol
Batch Number:	619344
Expiry Date:	10 Jan 2012
Radiochemical Purity:	>97%
Molecular Formula	$C_{19}H_{26}O_2$
Molecular Weight:	286.41
Storage Conditions:	-80°C
Specific Activity (Lot):	26.3 Ci/mmol
Specific Activity (Stock):	15-30 Ci/mmol

Table 4. Radiolabeled Substrate

A certificate of analysis for [³H]ASDN is stored in the study data binder and appended to the study report, (Appendix 3).

3.3.1 Radiochemical Purity and Preparation of Substrate Solution for use in Aromatase Assay

The radiochemical purity of the [³H] ASDN was >97% percent. The specific activity of the stock, [³H]ASDN, was too high for direct use in the assay. Therefore, a solution containing a mixture of the nonradiolabeled and radiolabeled ASDN was prepared. The 1 mCi/ml [³H] ASDN stock was diluted to 0.3 to 0.5 Ci/mmol by the addition of buffer (0.1 M sodium phosphate, pH 7.4) and radioinert ASDN. This substrate solution had a concentration of 2 μ M ASDN and a radiochemical content of about 1 μ Ci/ml. The final concentration of the ASDN in the assay was 100 nM and the amount of tritium added to each incubation tube was approximately 0.1 μ Ci.

3.3.1.1 Calculations

Calculations for Specific Activity Adjustment for [³H]ASDN:

[³H]ASDN, NET-926 (Lot# 619344; MW 286.41; Specific Activity 26.3 Ci/mmol)

- 1 mCi/mL
- 0.974 TBq/mmol
- 37 MBq/mL EtOH
- $= \frac{37 \text{ MBq/mL}}{0.974 \text{ TBq/mmol}} = 37.99 \text{ }\mu\text{M} \text{ in Ethanol}$

Adjustment of specific activity to be between 0.3 and 0.5 Ci/mmol:

Prepared 1:100 dilution of the [³H] ASDN so that aliquots contained 10 μ Ci/mL at 380 nM, or 0.00872 μ g ASDN. Aliquots prepared and stored frozen.

Aliquots thawed and combined with 1 μ g/mL radioinert ASDN and assay buffer to prepare the ASDN Substrate Solution (8 mL):

= 0.8 mL [³H] ASDN (10 μ Ci/mL at 0.38 μ M) = 4.6 mL Unlabeled ASDN (1 μ g/mL, or 3.5 μ M) = 2.6 mL Assay Buffer

This resulted in a 2 μ M ASDN (2 nmol/mL) solution with approximately 1 μ Ci/mL (a specific activity between 0.3 mCi/mmol and 0.5 mCi/mmol).

The non-decayed nominal tritium activity in a 20 μ L sample (read in Packard TriCarb LSC) should be 44,400 DPM, and thus 1 mL = 1 μ Ci = 2,220,000 DPM (e.g., 50 x 44,400 dpm).

Thus, the above ASDN stock of 2 nmol/mL should be 0.5 mCi/mmol.

Accuracy of the activity of the solution was checked by determining the DPM in the LSC and comparing it to the decayed nominal activity (e.g., it should be off by no more than 6%).

EXAMPLE:

- Average of 20 μ L reads = 42,390 DPM with nominal decayed activity calculated as 43,180 DPM/20 μ L
- This was determined to be 98.2% of nominal activity, so no adjustment needed.
- 42,390 DPM x 50 (to get from 20 μ L to 1 mL) = 2,119,500 DPM
- 2,119,500 DPM / 2,220,000 DPM = 0.955
- $1 \mu Ci = 2,220,000 \text{ DPM}$ so the stock is 0.955 μCi , with 2 nmol/mL ASDN
- Specific activity of stock is thus 0.477 µCi/nmol, or 0.477 Ci/mmol

3.3.2 Preparation of Test Substances

Test substances were formulated in dimethylsulfoxide (DMSO). The total volume of DMSO used in each assay was 1% of the total assay volume (20 μ L in 2 mL total assay volume) in order to minimize the potential of this vehicle to inhibit the aromatase enzyme (CYP19). Fresh dilutions of the stock solution of test substances were prepared on the day of use such that the target concentration (10⁻¹⁰, 10⁻⁹, 10⁻⁸, 10⁻⁷, 10⁻⁶, 10⁻⁵, 10^{-4.5}, 10⁻⁴, and 10⁻³ M) was achieved by the addition of 20 μ L of the dilution to a 2 mL total assay volume. Dose concentrations of test and control substances were not verified using analytical methods as outlined in the protocol and GLP compliance statement of this report.

DMSO was chosen over ethanol as the solvent of choice for the following reasons: 1) DMSO was listed as one of the vehicles acceptable for use in OPPTS 890.1200 guideline; 2) DMSO was not as volatile as ethanol and so evaporation was less of a concern in the assay, and 3) DMSO was more accurate to pipette because of density and viscosity.

3.4 Microsomes

3.4.1 Human Recombinant Microsomes

Human recombinant microsomes were purchased from GentestTM (Woburn, MA: <u>www.gentest.com</u>). The product name was Human CYP19 (Aromatase) and P450 reductase Supersomes TM (Runs 1-2: catalog number 456260, lot 03897; Run 3: catalog number 456260, lot 19701). The vendor package inserts (batch data sheets) provided values for protein concentration, cytochrome c reductase activity, and aromatase activity and is included in the report (Appendix 3). Microsomes were stored at $-80 \pm 10^{\circ}$ C.

3.4.2 Protein Assay

Protein content of the microsomes was supplied by the vendor (BD Gentest; 7.4 mg/mL for lot 03897 and 3.7 mg/mL for lot 19701; Appendix 3).

3.4.3 Cytochrome P450 (CYP19) Aromatase Activity

Aromatase activity of the microsome preparation was provided by the vendor (BD Gentest; 6.0 pmol product/(min x pmol P450) for lot 03897 and 5.7 pmol product/(min x pmol P450) for lot 09701; Appendix 3).

3.4.4 Human Recombinant Microsome Preparation

Initial preparation of the human recombinant microsomes involved thawing the microsomes rapidly in a $37 \pm 2^{\circ}$ C water bath and performing a two-step dilution. Following thawing, microsomes were placed in an ice bath and diluted to 0.8 mg/mL with buffer (0.1 M sodium phosphate, pH 7.4). Microsomes were further diluted to 0.008 mg/mL and aliquoted into individual vials. After aliquoting the microsomes into individual vials, the vials were returned to the -80 ± 10°C freezer for storage (information regarding stability to freeze thaw cycles was provided on the batch data sheet). This minimized freeze-thaw cycles to no more than one.

The assay used vials containing 0.008 mg/mL protein and final concentration was approximately 0.004 mg/mL of microsomal protein per assay tube. Rate of conversion of androstanedione to ${}^{3}\text{H}_{2}\text{O}$ was checked in each run to ensure suitability of microsomes. All runs met the acceptance criteria of 0.100 nmol/mg-protein/min minimum activity as forth in OPPTS 890.1200 guideline.

3.5 Other Assay Components

3.5.1 Buffer

The assay buffer was 0.1 M sodium phosphate buffer, pH 7.4. Sodium phosphate monobasic (Sigma S5011, lots 019K01021 and 70M001962V) and sodium phosphate dibasic (Sigma S5136, lots 077K01281 and 050M02174V) were used to prepare this buffer. 0.1 M solutions of each reagent were prepared in purified water and then combined to achieve a final pH of 7.4.

3.5.2 Propylene Glycol

Propylene glycol (Spectrum P1456, lot YE1040) was added to the assay directly as described below.

3.5.3 NADPH

NADPH (β -nicotinamide adenine dinucleotide phosphate, reduced form, tetrasodium salt) was the required co-factor for CYP19. A 6 mM stock solution was prepared in assay buffer (0.1 M sodium phosphate, pH 7.4) and the final concentration in the assay was 0.3 mM NADPH (Calbiochem 481973, lot D00102947). NADPH was prepared fresh each day the assay was performed and was kept on ice prior to use in the assay.

3.6 Test System

As per guideline (OPPTS 890.1200) recombinant microsomes (Human CYP19 + P450 Reductase SupersomesTM) were used as the test system for this study.

3.7 Aromatase Assay Method

The assays were performed in 13 x 100 mm test tubes maintained at $37 \pm 2^{\circ}$ C in a shaking water bath. Propylene glycol, [³H] ASDN, NADPH, and assay buffer were combined in the test tubes, with or without test substances or the positive control chemical for a total volume of 1 mL. The final concentrations for the major components of the assay are presented in Table 5 below. The test tubes and microsomal suspensions were placed at $37 \pm 2^{\circ}$ C in the water bath for approximately 5 minutes prior to the initiation of the assay by the addition of 1 mL of the diluted microsomal suspension. The total assay volume was 2 mL. The tubes were then incubated for approximately 15 minutes at $37 \pm 2^{\circ}$ C. The reactions were then terminated by the addition of 2 mL of ice-cold methylene chloride and vortex-mixed for approximately 5 seconds and placed on ice. The tubes were then re-vortex-mixed for an additional 20 to 25 seconds to extract the unreacted ASDN. The methylene chloride layer was removed (bottom layer) and discarded and the aqueous layer was extracted two more times, as outlined above. Two 0.5 mL aliquots of the top aqueous layers were then transferred to duplicate liquid scintillation vials containing 10 mL of liquid scintillation cocktail and then mixed.

Assay Factor (units)	Human Recombinant
Microsomal Protein (mg/mL)	0.004
NADPH (mM)	0.3
[³ H]ASDN (nM)	100
Propylene glycol	5%
Incubation Time (min)	15

|--|

Analysis of the samples was performed using a Packard TriCarb LSC (model 2910TR, serial DG03117657). Radioactivity found in the aqueous fractions is from the ${}^{3}\text{H}_{2}0$ formed upon hydrolysis of [${}^{3}\text{H}$] ASDN. One H₂0 molecule is released per molecule of ASDN converted to estrone in a stereospecific reaction. Therefore, the amount of estrone product formed was determined by dividing the total amount of ${}^{3}\text{H}_{2}0$ formed by the specific activity of the [${}^{3}\text{H}$] ASDN substrate (expressed in dpm/mL). Results are presented as the activity of the enzyme reaction and expressed in nmol (mg protein)⁻¹ min ⁻¹.

Three types of control samples were included for each run. These included:

- Full enzyme (aromatase) activity controls (substrate, NADPH, propylene glycol, buffer, vehicle (used for preparation of test substance solutions) and microsomes).
- Background activity controls (all components that are in the full aromatase activity controls except NADPH).
- Positive controls (40H-ASDN run at 8 concentrations in same manner as test substance).

Prior to conducting this assay using test substances, a full-scale assay consisting of three independent runs were conducted using the positive control (4OH-ASDN) and the four proficiency chemicals outlined in the OPPTS 890.1200 guideline. The results of this proficiency demonstration are maintained at CeeTox. Proficiency was demonstrated when the positive

control met the performance criteria outlined in Section 3.8 below and by the correct classification of the proficiency chemicals.

3.8 Positive Control Assays and Determination of the Response of Aromatase Activity to Test Substances

Positive control 4-OH ASDN and test substances were tested in three independent runs, and for each run, eight concentrations were tested in triplicate (N=3). Four full activity controls and four background activity controls were included with each run of the assay. All controls were split in half so that two tubes (for full and background activity) were run at the beginning of the assay and two of each (full and background activity) were run at the end of each assay.

 Table 6. Tubes Needed for Determination of CYP19 Aromatase Assay

Sample Type	Repetitions (tubes)	Description
Full Activity Control	4	All test components ^(a) plus solvent vehicle
Background Activity Control	4	Same as full activity control, but no NADPH

(a) The complete assay ("all test components") contains buffer, propylene glycol, microsomal protein, [3H]ASDN, and NADPH.

As set forth in OPPTS 890.1200 guideline, the mean aromatase activity in the full activity control samples must be ≥ 0.100 nmol/mg-protein/min for the assay run to be considered acceptable. In addition, the mean background control activity must be $\leq 15\%$ (Tables 24-27) of the full activity control and the concentration response curve data generated for 4OH-ASDN must meet the performance criteria conditions listed in Table 7 below (see Table 23 for 4OH-ASDN proficiency results).

Table 7.	Performance	Criteria	for the	Positive	Control

	Parameter	Lower Limit	Upper Limit
Positive Control	Slope	-1.2	-0.8
	Top (%)	90	110
	Bottom (%)	-5	+6
	Log IC ₅₀	-7.3	-7.0

3.8.1 4-OH ASDN Positive Control Analysis

The positive control 4-OH ASDN (Formestane) was used to demonstrate that the assay was being conducted properly for each run. The positive control was tested in the aromatase assay according to the methods described in Section 3.7 and 3.8 above using the study design shown in Table 8 below.

Sample Type	Repetition (tubes)	Description	4OH-ASDN Conc. (M)
Full Activity Control	4	All test components. No inhibitor	N/A
Background Activity Control	4	Same as full activity control, but no NADPH	N/A
40H-ASDN Conc 1	3	Complete assay with 4-OH ASDN (positive control) added	1X10 ⁻⁵
40H-ASDN Conc 2	3	same	1X10 ⁻⁶
4OH-ASDN Conc 3	3	same	1X10 ^{-6.5}
40H-ASDN Conc 4	3	same	1X10 ⁻⁷
40H-ASDN Conc 5	3	same	1X10 ^{-7.5}
40H-ASDN Conc 6	3	same	1X10 ⁻⁸
40H-ASDN Conc 7	3	same	1X10 ⁻⁹
40H-ASDN Conc 8	3	same	1X10 ⁻¹⁰

Table 8. Positive Control Study Design

3.8.2 Test Substance Analysis

Test substances were tested in three independent runs and each run was conducted independently of the other runs using the aromatase assay methods described in Section 3.7 and 3.8 above with the study design shown in Table 9 below.

After completion of the first run, the data were reviewed and solubility assessed by visual inspection to determine if test concentrations of test substances should be adjusted for subsequent runs of the assay (See Section 3.9 Solubility Assessment below).

Sample Type	Repetition	Description	Reference or Substance Conc (M)
Full Activity Control	4	All test components plus solvent vehicle*	N/A
Background Activity Control	4	Same as full activity control, but no NADPH	N/A
Positive Control Conc1	2	Complete assay with 4OH-ASDN added	1X10 ⁻⁵
Positive Control Conc2	2	same	1X10 ⁻⁶
Positive Control Conc3	2	same	1X10 ^{-6.5}
Positive Control Conc4	2	same	1X10 ⁻⁷
Positive Control Conc5	2	same	1X10 ^{-7.5}
Positive Control Conc6	2	same	1X10 ⁻⁸
Positive Control Conc7	2	same	1X10 ⁻⁹
Positive Control Conc8	2	same	1X10 ⁻¹⁰
Test substance Conc1	3	Compete assay with test substance added	1X10 ⁻³
Test substance Conc2	3	same	1X10 ⁻⁴
Test substance Conc3	3	same	1X10 ⁻⁵
Test substance Conc4	3	same	1X10 ⁻⁶
Test substance Conc5	3	same	1X10 ⁻⁷
Test substance Conc6	3	same	1X10 ⁻⁸
Test substance Conc7	3	same	1X10 ⁻⁹
Test substance Conc8	3	same	1X10 ⁻¹⁰

Table 9. Test Substance Study Design

N/A = not applicable

Conc = concentration

*The complete assay ("all test components")

3.9 Solubility Assessment of Test Substances

Solubility of the test substance was assessed in the first run of the assay by visual observation using the precipitation code shown below:

0 = Negative + = Small Amount ++ = Moderate Amount +++ = Substantial Amount

3.9.1 Solubility Assessment and Concentration Ranges

• If insolubility (cloudiness or a precipitate) was visually observed at the highest concentration (10⁻³ M), then the highest concentration would be adjusted for the second and third runs at the highest concentration that appeared soluble using log or half-log concentrations; i.e., 10^{-4.5} M, 10⁻⁴ M, etc. Concentrations lower than 10⁻⁵ M for the highest concentration were not tested.

The lowest concentration to be tested was 10^{-10} M. Low concentrations were required to obtain the "top of the curve". That is, the full enzymatic activity was obtained at the two lowest concentrations of the test substance in order to define the top of the concentration-response curve.

3.10 Data Evaluation

3.10.1 Aromatase Activity and Percent of Control Calculations

Relevant data was entered into the aromatase assay spreadsheet for calculations of aromatase activity and percent control (see Tables 11-22 and Appendix 1: Raw and Normalized DPM Data). The spreadsheet was created in Excel and calculated the DPM/mL for each aliquot of the extracted aqueous incubation mixture, average DPM/mL and total DPM for each aqueous portion (after extraction). The volume (mL) of substrate solution added to the incubation multiplied by the substrates specific activity (DPM/mL) yielded the total DPM present in the assay tube at initiation. The total DPM remaining in the aqueous portion after extraction divided by the total DPM present in the assay tube at initiation times 100 yielded the percent of the substrate that was converted to product. The total DPM remaining in the aqueous portion after extraction was corrected for background by subtracting the average DPM present in the aqueous portion of the background activity control tubes (Appendix 1: Raw and Normalized DPM Data). This corrected DPM was then converted to nmol product formed by dividing by the substrate specific activity (DPM/nmol). The activity of the enzyme reaction was expressed in nmol (mg product)⁻¹min⁻¹ and was calculated by dividing the amount of ³H₂O formed (nmol) by the product of mg microsome protein used times the incubation time (15 minutes). Average activity in the full activity control samples was calculated. Percent of control activity remaining in the presence of the various test chemical concentrations, including the positive control, was calculated by dividing the aromatase activity at a given concentration by the average full activity control and multiplying by 100.

Nominally one might expect the percent of control activity values for an inhibitor to vary between approximately 0 percent near the high inhibition concentrations and approximately 100 percent near the low inhibition concentrations. However due to experimental variation, individual observed percent of control values sometimes extended slightly below 0 percent or above 100 percent.

3.10.2 Model Fitting

The response curves were fitted by weighted least squares nonlinear regression analysis with weights equal to 1/Y. Model fits were carried out using a 4-parameter regression model (XLfit; IDBS; Version 5.2.0.0; Fit Model 208) and Tukey's Bi-Weight statistical analysis for outlier analysis.

Concentration response trend curves were fitted to the percent of control activity values within each of the replicate tubes at each test chemical concentration. Concentration was expressed on the log or half-log scale.

The following concentration response curve was fitted to relate percent of control activity to logarithm of concentration within each run using equation:

$$Y = B + (T-B) + 1 + 10^{(\log IC_{50} - X)\beta + \log[(T-B/50-B)-1]}$$

The above equation is equivalent to the XLfit Model 208 (IDBS; Version 5.2.0.0), or the 4 Parameter Logistic Model.

Concentration response models were fitted for each test run for each test substance and control(s).

Y = percent of control activity in the inhibitor tube.

X = Logarithm (base 10) of the concentration.

T = average DPMs across the repeat tubes with the same test substance concentration that define the Top of the curve.

B = average DPMs across the repeat tubes with the same test substance concentration that define the Bottom of the curve.

 β = slope of the concentrations response curve (β will be negative).

 $\mu = \log_{10}IC_{50}$ (IC₅₀ is the concentration corresponding to percent of control activity equal to 50%).

3.10.3 Graphical and Analysis of Variance Comparisons Among Concentration Response Curve Fits

For each run for each test substance the individual percent of control values were plotted versus logarithm of the test chemical concentration. The fitted concentration response curves were superimposed on the plot. Individual plots were prepared for each run for each test substance (Figures 1-4) along with plotted means (Figures 5, 8, 11, and 14).

Additional plots for each test substance were prepared to compare the percent of control activity values across runs. For each run the average percent of control values versus logarithm of test chemical concentration were plotted on the same plot. Plotting symbols distinguished among runs for a given test substance. The fitted concentration response curves for each run were superimposed on the plots (Figures 6, 9, 12, and 15). On separate plots the average percent of control values for each run were plotted versus logarithm of test substance concentration. The average concentration response curve across runs was superimposed on the same plot for each test substance (Figures 7, 10, 13, and 16).

3.10.4 Quality Control-Analysis of Variance Comparisons of Full Enzyme Activity Control and Background Activity Control as Percent of Control

Within each run of each test substance quadruplicate repetitions were made of the control tubes (Full Activity Control and Background Activity Control). Half the repetitions were carried out at the beginning of the run and half at the end. Control responses were adjusted for background DPMs, divided by the average of the (background adjusted) full activity (TA) control values, and expressed as percent of control. The average of the four background activity controls (NSB) within a run had to be approximately 0 % (with an acceptable range of -5 to +6%) and the average of the four full activity controls (TA) within a run had to be approximately 100% (with an acceptable range of 90 – 110%).

The mean background activity control also had to be $\leq 15\%$ of the full activity control, the limit established in the guidelines (Tables 24-27).

3.10.5 Data Interpretation

Data from this assay were used to classify the test substances according to their ability to inhibit aromatase. To be classified as an inhibitor, the data must fit the 4-parameter regression model to yield an inhibition curve and result in greater than 50% inhibition at the highest concentration. The value of the inhibition curve at each of three runs at the highest concentration were averaged and compared with the following criteria. If the data did fit the model, the average activity of the data points at the highest concentration was used.

	Criteria	Classification
Data fit 4-parameter	Curve crosses 50%	Inhibitor
nonlinear regression model	Average lowest portion of curves across runs is between 50% and 75% Activity	Equivocal
	Average lowest portion of curves across runs is greater than 75%	
Data do not fit the model		Non-inhibitor

 Table 10. Data Interpretation Criteria

3.11 Statistical Software and Analysis

Concentration curves were fitted to the data using non-linear regression analysis features in a commercial software package (e.g., IDBS XLfit v5.2.0.0). For data generated at CeeTox, basic statistical analysis was performed on the data, which included means of replicates, standard deviation of the mean, standard error of the mean, and coefficient of variation.

4.0 RESULTS AND DISCUSSION

4.1 Concentration Range for the Test Substance

In the first run of the aromatase activity assay, test substances were tested at following concentrations: 10^{-10} , 10^{-9} , 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} , 10^{-4} and 10^{-3} M. In general, test substances were found to be soluble at concentrations of $\leq 10^{-4}$ M (see Table 28). Consequently, runs 2 and 3 of the assay were conducted test concentrations of 10^{-10} , 10^{-9} , 10^{-8} , 10^{-7} , 10^{-6} , 10^{-5} , $10^{-4.5}$ and 10^{-4} M.

4.2 Aromatase Assay Acceptance Criteria

In three independent runs of the positive control assay (4OH-ASDN) (see Table 23), the mean Hill slope, IC_{50} , bottom curve (%), and top curve (%) were calculated. The range of values achieved for these parameters in three independent runs of the assay are shown below, along with the performance criteria ranges established in the OPPTS 890.1200 guideline. All values were within the acceptable ranges specified in Section 3.8 (see Table 7), with the following minor exception below:

• In Run 2 of the assay, the IC50 was marginally higher than the specified range (log IC50 = -7.46) compared to the specified guideline range of -7.3 to -7.0, and the Hill Slope was marginally lower than specified range (slope = -0.75) compared to the specified guideline range of -1.2 to -0.8.

The above differences were minor and not considered to reflect a true deviation from the specified ranges. Therefore, all independent runs of the assay were considered to have met the assay acceptance criteria and were considered to be definitive.

Top of Curve = 97.51% to 103.96%	(Guideline Range = 90% – 110%)
Bottom Curve = -1.85% to 0.78%	(Guideline Range = -5% to 6%)
Hill Slope = -0.98 to -0.75	(Guideline Range = -1.2 to -0.8)
Log IC ₅₀ = -7.46 to -7.26	(Guideline Range = -7.3 to -7)

4.3 Quality Control Analysis Acceptance Criteria

In three independent runs of the assay, the average of the four background activity controls (NSB) within a run had to be approximately 0 % (with an acceptable range of -5 to +6%) and the average of the four full activity controls (TA) within a run had to be approximately 100% (with an acceptable range of 90 - 110%).

All runs were within specifications. In addition, the mean background activity controls were \leq 15% of the full activity controls, the limit established in the guidelines (Tables 24-27).

The mean aromatase activity values in the full activity control samples were at least 0.241 nmol/mg-protein/min in the runs, well above the 0.100 nmol/mg-protein/min minimum acceptable activity limit set forth in OPPTS 890.1200 guideline.

4.4 Aromatase Assay Results

The four test substances were evaluated in three independent runs of the assay conducted on 28 June 2011, 29 June 2011, and 27 July 2011. Solubility/precipitation of test substances in the assay buffer was assessed visually in the first run of the assay. The results of these analyses are presented in Tables 11-22. Based on these results, the suitable top concentration of test substances for use in the aromatase assays was determined to be 10⁻⁴ M and concentrations of the test substance used in the latter runs were adjusted accordingly. The positive control inhibitor 4OH-ASDN was included with each run each time the aromatase assay was performed to ensure results passed the performance criteria as set forth in OPPTS 890.1200 guidelines. In three independent runs of the aromatase assay, mean aromatase activity was determined to be:

Methoxycinnamate:	100% (\pm 6% SD) of control activity	= Non-inhibitor
Octocrylene:	94% (\pm 1% SD) of control activity	= Non-inhibitor
Octylsalicylate:	90% (\pm 2% SD) of control activity	= Non-inhibitor
Oxybenzone:	51% (\pm 13% SD) of control activity	= Equivocal

4.5 Discussion

In three independent runs of the assay, test substances were tested at final concentrations of 10^{-10} to 10^{-4} M. Methoxycinnamate, octocrylene, and octylsalicylate were shown to be non-inhibitors. Oxybenzone was within the 50-75% range of the EDSP guideline (Table 10, Section 3.10.5 Data Interpretation). As such, oxybenzone was classified as equivocal in its response.

5.0 CONCLUSIONS

Methoxycinnamate, octocrylene, and octylsalicylate were determined to be non-inhibitors, and Oxybenzone was determined to be equivocal in its response as defined by EDSP guideline OPPTS 890.1200 (Table 10, Section 3.10.5 Data Interpretation).

6.0 **REFERENCES**

- Endocrine Disruptor Screening Program Test Guidelines OPPTS 890.1200: Aromatase (Human Recombinant); US EPA 740-C-09-004 (October 2009).
- Integrated Summary Report on Aromatase; Battelle and US EPA (December 11, 2007).

TABLES SECTION (RESULTS)

Concentration of	Aromatas	•	Individua	al Aromatase	e Activity	
40H-ASDN (M)	(% of Mean	SD	Value 1	(% of VC) Value 2	Value 3	
ТА	103.52	0.432	103.83	103.21	ND	
NSB	-0.01	0.000	-0.01	-0.01	ND	
10 ⁻⁵	0.77	0.033	0.79	0.74	ND	
10 ⁻⁶	5.97	0.119	6.05	5.88	ND	
10 ^{-6.5}	16.53	0.062	16.57	16.48	ND	
10 ⁻⁷	35.79	0.261	35.60	35.97	ND	
10 ^{-7.5}	65.95	0.422	65.65	66.25	ND	
10 ⁻⁸	85.77	0.332	86.01	85.54	ND	
10 ⁻⁹	100.51	1.219	101.38	99.65	ND	
10 ⁻¹⁰	103.02	3.648	100.44	105.60	ND	
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity	
Methoxycinnamate (M)	(% of	VC)		(% of VC)		
	Mean	SD	Value 1	Value 2	Value 3	
ТА	96.48	2.030	95.04	97.92	ND	
NSB	0.01	0.057	-0.03	0.05	ND	
10-3	97.68	0.802	98.16	96.75	98.12	
10-4	101.59	4.127	101.30	97.61	105.85	
10 ⁻⁵	102.66	0.981	102.36	103.75	101.86	
10 ⁻⁶	98.67	3.083	100.40	100.50	95.11	
10 ⁻⁷	92.94	7.517	94.51	99.55	84.76	
10-8	98.64	7.715	96.37	92.31	107.23	
10 ⁻⁹	98.85	4.193	95.61	97.35	103.58	
10 ⁻¹⁰	95.52	4.213	90.66	98.11	97.79	

TABLE 11:Results of Run 1 Aromatase Activity Assay:40H-ASDN and Methoxycinnamate (28 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation

ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatas (% of	•	Individu	al Aromatase (% of VC)	e Activity		
	Mean	SD	Value 1	Value 2	Value 3		
ТА	104.45	4.576	101.22	107.69	ND		
NSB	-0.02	0.037	0.01	-0.04	ND		
10 ⁻⁵	0.67	0.064	0.62	0.71	ND		
10 ⁻⁶	5.19	0.172	5.31	5.07	ND		
10 ^{-6.5}	13.58	0.347	13.83	13.34	ND		
10-7	30.99	0.219	30.84	31.15	ND		
10 ^{-7.5}	57.15	3.254	59.45	54.85	ND		
10 ⁻⁸	68.54	23.821	85.39	51.70	ND		
10 ⁻⁹	101.09	0.495	101.44	100.74	ND		
10 ⁻¹⁰	100.79	4.589	97.55	104.04	ND		
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity		
Methoxycinnamate (M)	(% of	f VC)		(% of VC)	% of VC)		
	Mean	SD	Value 1	Value 2	Value 3		
ТА	95.55	5.198	91.87	99.22	ND		
NSB	0.02	0.027	0.03	0.00	ND		
10 ⁻⁴	105.03	1.873	106.70	105.38	103.01		
10 ^{-4.5}	98.51	9.561	103.91	104.16	87.48		
10 ⁻⁵	104.32	2.705	105.45	106.27	101.23		
10 ⁻⁶	95.69	10.187	96.67	105.35	85.05		
10 ⁻⁷	100.98	1.079	101.67	101.53	99.73		
10 ⁻⁸	80.49	20.984	101.08	59.14	81.24		
10 ⁻⁹	91.24	16.736	72.20	97.93	103.60		
10 ⁻¹⁰	98.71	1.101	97.85	99.95	98.32		

TABLE 12:Results of Run 2 Aromatase Activity Assay:40H-ASDN and Methoxycinnamate (29 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation ND = Not Determined

Report Number: 9070-100107AROM

Concentration of	Aromatas	e Activity	Individu	al Aromatase	e Activity
40H-ASDN (M)	(% of VC)		(% of VC)		
	Mean	SD	Value 1	Value 2	Value 3
ТА	102.63	0.904	103.27	101.99	ND
NSB	-0.01	0.015	-0.02	0.00	ND
10 ⁻⁵	1.41	0.032	1.38	1.43	ND
10 ⁻⁶	5.79	0.096	5.73	5.86	ND
10 ^{-6.5}	15.66	0.132	15.75	15.57	ND
10-7	34.42	0.747	34.95	33.89	ND
10 ^{-7.5}	63.78	0.164	63.66	63.90	ND
10 ⁻⁸	85.09	2.195	86.64	83.54	ND
10 ⁻⁹	99.58	1.353	100.54	98.62	ND
10 ⁻¹⁰	103.52	1.370	102.55	104.49	ND
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity
Methoxycinnamate (M)	(% of	fVC)	(% of VC)		
	Mean	SD	Value 1	Value 2	Value 3
ТА	97.37	5.820	93.25	101.48	ND
NSB	0.01	0.002	0.01	0.00	ND
10 ⁻⁴	93.95	2.156	91.46	95.09	95.29
10 ^{-4.5}	98.39	0.923	99.41	98.13	97.62
10 ⁻⁵	98.14	1.324	99.67	97.31	97.44
10 ⁻⁶	90.47	17.341	98.68	102.17	70.54
10 ⁻⁷	101.32	1.232	100.07	102.53	101.37
10 ⁻⁸	103.87	1.042	103.35	105.07	103.19
10-9	99.57	1.803	98.09	99.04	101.58
10 ⁻¹⁰	100.16	1.269	100.85	98.70	100.94

TABLE 13:Results of Run 3 Aromatase Activity Assay:40H-ASDN and Methoxycinnamate (27 July 2011)

VC = Vehicle Control TA = Full Activity Control NSB = Background Activity Control SD = Standard Deviation

ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatase Activity (% of VC)		Individu	Individual Aromatase Activity (% of VC)			
	Mean	SD	Value 1	Value 2	Value 3		
ТА	102.19	0.426	102.49	101.89	ND		
NSB	-0.01	0.000	-0.01	-0.01	ND		
10 ⁻⁵	0.75	0.033	0.78	0.73	ND		
10 ⁻⁶	5.89	0.117	5.97	5.80	ND		
10 ^{-6.5}	16.31	0.061	16.35	16.27	ND		
10 ⁻⁷	35.32	0.258	35.14	35.50	ND		
10 ^{-7.5}	65.10	0.417	64.81	65.40	ND		
10 ⁻⁸	84.67	0.328	84.90	84.44	ND		
10 ⁻⁹	99.22	1.203	100.07	98.37	ND		
10 ⁻¹⁰	101.69	3.601	99.15	104.24	ND		
Concentration of	Aromatas	e Activity	Individua	al Aromatas	e Activity		
Octocrylene (M)	(% of	fVC)		(% of VC)	Č,		
	Mean	SD	Value 1	Value 2	Value 3		
ТА	97.81	1.297	98.73	96.89	ND		
NSB	0.01	0.005	0.01	0.01	ND		
10-3	83.84	5.278	89.01	78.46	84.07		
10 ⁻⁴	93.39	3.647	95.11	89.20	95.85		
10-5	98.75	3.082	98.62	95.74	101.90		
10 ⁻⁶	99.75	0.312	99.60	100.11	99.55		
10-7	97.24	0.944	96.22	98.08	97.42		
10-8	98.47	4.894	94.50	103.94	96.97		
10-9	95.51	6.819	100.48	98.32	87.74		
10 ⁻¹⁰	96.77	0.988	95.91	97.85	96.55		

TABLE 14:Results of Run 1 Aromatase Activity Assay:40H-ASDN and Octocrylene (28 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation ND = Not Determined

Concentration of 4OH-ASDN (M)	Aromatase Activity (% of VC)		Individua	al Aromatase (% of VC)	e Activity		
40 H -A5DN (M)	Mean			Value 2	Value 3		
ТА	97.97	4.292	Value 1 94.94	101.01	ND		
NSB	-0.02	0.035	0.00	-0.05	ND		
10-5	0.62	0.060	0.58	0.66	ND		
10 ⁻⁶	4.86	0.161	4.97	4.74	ND		
10 ^{-6.5}	12.73	0.325	12.96	12.50	ND		
10-7	29.06	0.205	28.92	29.21	ND		
10 ^{-7.5}	53.60	3.052	55.76	51.44	ND		
10 ⁻⁸	64.29	22.345	80.09	48.49	ND		
10 ⁻⁹	94.81	0.464	95.14	94.48	ND		
10^{-10}	94.54	4.305	91.49	97.58	ND		
			1				
Concentration of	Aromatas	e Activity	Individua	al Aromatase			
Octocrylene (M)	(% of	fVC)		(% of VC)	(C)		
	Mean	SD	Value 1	Value 2	Value 3		
ТА	102.03	12.608	93.11	110.95	ND		
NSB	0.02	0.009	0.02	0.03	ND		
10 ⁻⁴	94.55	1.491	93.53	93.86	96.27		
10 ^{-4.5}	95.14	1.632	96.81	93.54	95.07		
10-5	94.91	1.807	95.14	93.00	96.60		
10 ⁻⁶	93.18	1.853	91.30	95.01	93.24		
10-7	97.07	3.863	98.37	100.11	92.72		
10 ⁻⁸	105.68	5.635	107.79	99.30	109.95		
10 ⁻⁹	93.72	0.179	93.74	93.53	93.89		
10 ⁻¹⁰	106.76	7.512	98.33	112.74	109.20		

TABLE 15:Results of Run 2 Aromatase Activity Assay:40H-ASDN and Octocrylene (29 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation

ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatase Activity (% of VC)Individual Aromatase Activity (% of VC)			e Activity		
	Mean	SD	Value 1	Value 2	Value 3	
ТА	102.05	0.899	102.69	101.42	ND	
NSB	-0.01	0.015	-0.02	0.00	ND	
10 ⁻⁵	1.39	0.032	1.37	1.41	ND	
10 ⁻⁶	5.75	0.096	5.69	5.82	ND	
10 ^{-6.5}	15.56	0.131	15.66	15.47	ND	
10 ⁻⁷	34.22	0.743	34.75	33.70	ND	
10-7.5	63.42	0.163	63.30	63.53	ND	
10 ⁻⁸	84.61	2.182	86.15	83.07	ND	
10 ⁻⁹	99.02	1.346	99.97	98.07	ND	
10 ⁻¹⁰	102.94	1.362	101.98	103.90	ND	
			1			
Concentration of	Aromatase Activity		Individua	al Aromatase	e Activity	
Octocrylene (M)	(% of	CVC)		(% of VC)		
	Mean	SD	Value 1	Value 2	Value 3	
ТА	97.95	6.424	102.49	93.40	ND	
NSB	0.01	0.039	-0.01	0.04	ND	
10 ⁻⁴	94.08	0.595	93.79	94.76	93.68	
10 ^{-4.5}	92.67	0.865	92.74	93.50	91.77	
10 ⁻⁵	87.05	9.674	91.88	93.36	75.92	
10 ⁻⁶	93.90	0.338	93.58	93.85	94.25	
10 ⁻⁷	103.61	1.051	103.91	104.48	102.44	
10 ⁻⁸	94.35	18.234	103.72	105.99	73.33	
10-9	101.17	0.558	100.71	101.79	101.02	
10 ⁻¹⁰	97.10	7.261	101.69	88.73	100.89	

TABLE 16:Results of Run 3 Aromatase Activity Assay:40H-ASDN and Octocrylene (27 July 2011)

VC = Vehicle Control TA = Full Activity Control NSB = Background Activity Control SD = Standard Deviation

ND = Not Determined

Concentration of 4OH-ASDN (M)	Aromatas (% of	•	Individual Aromatase Activity (% of VC)			
4011-A5DN (MI)	Mean	SD	Value 1	Value 2	Value 3	
ТА	98.36	0.410	98.65	98.07	ND	
NSB	-0.03	0.000	-0.03	-0.03	ND	
10 ⁻⁵	0.70	0.032	0.73	0.68	ND	
10 ⁻⁶	5.65	0.113	5.73	5.57	ND	
10 ^{-6.5}	15.68	0.059	15.72	15.64	ND	
10 ⁻⁷	33.98	0.248	33.81	34.16	ND	
10 ^{-7.5}	62.65	0.401	62.37	62.94	ND	
10 ⁻⁸	81.49	0.316	81.71	81.27	ND	
10 ⁻⁹	95.50	1.159	96.32	94.68	ND	
10 ⁻¹⁰	97.88	3.467	95.43	100.33	ND	
		A / • •/	T 10 0 1		A / • •/	
Concentration of	Aromatas	•	Individua	al Aromatas	e Activity	
Octylsalicylate (M)	(% of	,		(% of VC) Value 1 Value 2 Value 3		
	Mean	SD	Value 1	Value 2	Value 3	
TA	101.64	1.853	100.33	102.95	ND	
NSB	0.03	0.000	0.03	0.03	ND	
10-3	84.47	0.734	83.90	85.30	84.21	
10^{-4}	91.94	3.781	95.81	88.26	91.73	
10 ⁻⁵	103.19	1.008	102.23	104.24	103.08	
10 ⁻⁶	101.40	2.500	98.56	102.37	103.26	
10-7	101.83	0.744	102.64	101.68	101.17	
10 ⁻⁸	97.79	3.405	94.09	100.79	98.49	
10 ⁻⁹	97.11	1.268	95.76	98.28	97.28	
10^{-10}	98.05	1.349	99.37	98.11	96.68	

TABLE 17:Results of Run 1 Aromatase Activity Assay:40H-ASDN and Octylsalicylate (28 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatas (% of	•	Individua	al Aromatase (% of VC)	e Activity
	Mean	SD	Value 1	Value 2	Value 3
ТА	100.54	4.405	97.43	103.65	ND
NSB	-0.02	0.036	0.01	-0.04	ND
10-5	0.64	0.062	0.60	0.68	ND
10-6	4.99	0.165	5.11	4.88	ND
10 ^{-6.5}	13.07	0.334	13.31	12.84	ND
10-7	29.83	0.211	29.68	29.98	ND
10 ^{-7.5}	55.01	3.132	57.23	52.80	ND
10 ⁻⁸	65.97	22.930	82.19	49.76	ND
10 ⁻⁹	97.30	0.476	97.64	96.96	ND
10 ⁻¹⁰	97.02	4.417	93.89	100.14	ND
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity
Octylsalicylate (M)	(% of	fVC)		(% of VC)	
	Mean	SD	Value 1	Value 2	Value 3
ТА	99.46	1.768	100.71	98.21	ND
NSB	0.02	0.010	0.03	0.01	ND
10-4	88.88	3.223	90.43	91.04	85.17
10 ^{-4.5}	96.86	6.812	93.39	104.71	92.49
10 ⁻⁵	103.35	2.927	100.43	106.28	103.34
10 ⁻⁶	104.14	1.942	106.07	102.19	104.15
10 ⁻⁷	93.47	12.918	95.33	105.36	79.72
10 ⁻⁸	102.50	1.308	103.78	102.54	101.17
10 ⁻⁹	93.49	12.921	100.64	101.26	78.58
10 ⁻¹⁰	98.83	3.494	94.80	100.96	100.73

TABLE 18:Results of Run 2 Aromatase Activity Assay:40H-ASDN and Octylsalicylate (29 June 2011)

VC = Vehicle Control TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation

ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatas (% of	•	Individua	al Aromatase (% of VC)	e Activity
	Mean	SD	Value 1	Value 2	Value 3
ТА	102.42	0.902	103.06	101.78	ND
NSB	-0.01	0.015	-0.03	0.00	ND
10-5	1.40	0.032	1.37	1.42	ND
10-6	5.77	0.096	5.71	5.84	ND
10-6.5	15.62	0.132	15.71	15.53	ND
10-7	34.34	0.746	34.87	33.82	ND
10 ^{-7.5}	63.65	0.164	63.53	63.76	ND
10 ⁻⁸	84.91	2.190	86.46	83.37	ND
10 ⁻⁹	99.38	1.350	100.33	98.42	ND
10 ⁻¹⁰	103.31	1.367	102.34	104.28	ND
	1		1		
Concentration of	Aromatas	•	Individua	al Aromatase	e Activity
Octylsalicylate (M)	(% of	· ·		(% of VC)	
	Mean	SD	Value 1	Value 2	Value 3
TA	97.58	0.642	97.12	98.03	ND
NSB	0.01	0.015	0.00	0.03	ND
10 ⁻⁴	88.3	0.564	88.45	88.77	87.67
10 ^{-4.5}	88.72	1.777	88.08	87.35	90.73
10 ⁻⁵	94.68	0.782	95.33	94.91	93.81
10 ⁻⁶	104.22	1.648	105.97	102.70	104.00
10-7	103.04	2.441	105.36	100.49	103.26
10 ⁻⁸	104.50	1.665	102.58	105.57	105.34
10 ⁻⁹	102.11	2.539	103.49	99.18	103.65
10^{-10}	103.26	1.853	101.45	103.17	105.15

TABLE 19:Results of Run 3 Aromatase Activity Assay:40H-ASDN and Octylsalicylate (27 July 2011)

VC = Vehicle Control TA = Full Activity Control NSB = Background Activity Control SD = Standard Deviation

ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatas (% of	•	Individu	al Aromatase (% of VC)	e Activity
	Mean	SD	Value 1	Value 2	Value 3
ТА	100.05	0.417	100.35	99.76	ND
NSB	0.01	0.000	0.01	0.01	ND
10 ⁻⁵	0.76	0.032	0.78	0.73	ND
10 ⁻⁶	5.78	0.115	5.86	5.70	ND
10 ^{-6.5}	15.98	0.060	16.03	15.94	ND
10 ⁻⁷	34.60	0.252	34.42	34.77	ND
10-7.5	63.75	0.408	63.46	64.04	ND
10 ⁻⁸	82.90	0.321	83.13	82.68	ND
10 ⁻⁹	97.15	1.178	97.98	96.32	ND
10 ⁻¹⁰	99.57	3.525	97.07	102.06	ND
	1				
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity
Oxybenzone (M)	(% of	,		(% of VC)	
	Mean	SD	Value 1	Value 2	Value 3
ТА	99.95	1.586	101.07	98.82	ND
NSB	-0.01	0.028	-0.03	0.01	ND
10-3	32.90	16.260	46.44	14.87	37.38
10-4	52.22	10.414	62.11	53.21	41.35
10 ⁻⁵	87.98	2.323	86.82	86.47	90.66
10 ⁻⁶	98.87	2.597	96.64	98.25	101.72
10-7	100.00	3.819	96.08	103.71	100.20
10 ⁻⁸	99.31	2.652	96.25	100.70	100.98
10 ⁻⁹	99.00	1.347	98.00	98.46	100.53
10 ⁻¹⁰	100.70	1.840	102.38	100.97	98.73

TABLE 20:Results of Run 1 Aromatase Activity Assay:40H-ASDN and Oxybenzone (28 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation ND = Not Determined

Concentration of 40H-ASDN (M)	Aromatas (% of	•	Individua	al Aromatase (% of VC)	e Activity	
40n-ASDN (M)	Mean	SD	Value 1	Value 2	Value 3	
ТА	99.88	4.376	96.78	102.97	ND	
NSB	-0.03	0.035	-0.01	-0.06	ND	
10-5	0.62	0.061	0.58	0.67	ND	
10-6	4.95	0.164	5.06	4.83	ND	
10 ^{-6.5}	12.97	0.331	13.21	12.74	ND	
10-7	29.63	0.209	29.48	29.77	ND	
10 ^{-7.5}	54.64	3.112	56.84	52.44	ND	
10 ⁻⁸	65.54	22.781	81.64	49.43	ND	
10 ⁻⁹	96.66	0.473	96.99	96.32	ND	
10 ⁻¹⁰	96.38	4.389	93.28	99.48	ND	
	1					
Concentration of	Aromatas	•	Individual Aromatase Activity			
Oxybenzone (M)	(% of	· · · · · · · · · · · · · · · · · · ·		(% of VC)		
	Mean	SD	Value 1	Value 2	Value 3	
ТА	100.12	3.465	97.67	102.57	ND	
NSB	0.03	0.058	-0.01	0.07	ND	
10 ⁻⁴	62.81	6.047	69.13	62.22	57.09	
10 ^{-4.5}	71.26	2.134	73.60	70.75	69.42	
10 ⁻⁵	87.23	0.615	87.59	86.52	87.57	
10 ⁻⁶	96.72	0.964	97.55	96.96	95.66	
10 ⁻⁷	99.79	1.892	101.72	99.72	97.94	
10 ⁻⁸	97.04	0.749	97.69	96.22	97.21	
10 ⁻⁹	102.46	5.827	99.88	98.36	109.13	
10 ⁻¹⁰	96.33	6.512	103.56	94.52	90.91	

TABLE 21:Results of Run 2 Aromatase Activity Assay:40H-ASDN and Oxybenzone (29 June 2011)

VC = Vehicle Control

TA = Full Activity Control

NSB = Background Activity Control

SD = Standard Deviation ND = Not Determined

Concentration of	Aromatas	•	Individua	al Aromatase	e Activity
40H-ASDN (M)	(% of Mean	SD	Value 1	(% of VC) Value 2	Value 3
ТА	100.01	0.881	100.64	99.39	ND
NSB	-0.01	0.015	-0.02	0.00	ND
10 ⁻⁵	1.37	0.031	1.35	1.39	ND
10 ⁻⁶	5.65	0.094	5.58	5.71	ND
10 ^{-6.5}	15.26	0.129	15.35	15.17	ND
10 ⁻⁷	33.54	0.728	34.06	33.03	ND
10 ^{-7.5}	62.15	0.160	62.04	62.27	ND
10 ⁻⁸	82.92	2.139	84.43	81.41	ND
10 ⁻⁹	97.04	1.319	97.97	96.11	ND
10 ⁻¹⁰	100.88	1.335	99.94	101.82	ND
Concentration of	Aromatas	e Activity	Individua	al Aromatase	e Activity
Oxybenzone (M)	(% 0	f VC)		(% of VC)	
	Mean	SD	Value 1	Value 2	Value 3
ТА	99.99	0.068	100.04	99.94	ND
NSB	0.01	0.007	0.00	0.01	ND
10 ⁻⁴	37.52	3.837	36.21	34.51	41.84
10 ^{-4.5}	63.88	1.061	63.19	65.10	63.36
10 ⁻⁵	92.29	0.691	92.51	91.52	92.84
10 ⁻⁶	99.83	4.835	102.07	94.29	103.14
10 ⁻⁷	100.81	1.773	101.23	98.87	102.34
10 ⁻⁸	88.73	20.804	98.86	102.53	64.80
10-9	101.72	0.683	102.23	100.95	101.98
10 ⁻¹⁰	100.61	1.696	98.67	101.82	101.34

TABLE 22:Results of Run 3 Aromatase Activity Assay:40H-ASDN and Oxybenzone (27 July 2011)

VC = Vehicle Control TA = Full Activity Control NSB = Background Activity Control SD = Standard Deviation

ND = Not Determined

TABLE 23:Hill Slope, LogIC50, Top of Curve (%), and Bottom ofCurve (%) Values for the Reference Chemical 4OH- ASDN

Name	Hill Slope			Log IC50		
INAME	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
40H-ASDN	-0.97	-0.75	-0.98	-7.26	-7.46	-7.30
40H-ASDN	-0.97	-0 .75	-0.98	-7.26	-7.46	-7.30
40H-ASDN	-0.97	-0.75	-0.98	-7.26	-7.46	-7.30
40H-ASDN	-0.97	-0.75	-0.98	-7.26	-7.46	-7.30

Name	Top of Curve (%)			Bottom of Curve (%)		
INAME	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
40H-ASDN	102.87	103.96	102.81	0.23	-1.85	0.78
40H-ASDN	101.54	97.51	102.22	0.23	-1.75	0.76
40H-ASDN	97.73	100.07	102.59	0.20	-1.79	0.77
40H-ASDN	99.42	99.41	100.18	0.24	-1.79	0.76

ACCEPTANCE CRITERIA

	Parameter	Lower	Upper
40H-ASDN	Slope	-1.2	-0.8
	Top (%)	90	110
	Bottom (%)	-5	6
	Log IC50	-7.3	-7.0

TABLE 24:Individual and Mean Full Activity Control and BackgroundActivity Control Values for the Assay Runs (Methoxycinnamate Runs)

Tube Position		Activity Co Full Activi		Background Activity Control (NSB; Non-Specific Binding; No Activity %)		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Beginning	103.83	101.22	103.27	-0.01	0.01	-0.02
	103.21	107.69	101.99	-0.01	-0.04	0.00
End	95.04	91.87	93.25	-0.03	0.03	0.01
	97.92	99.22	101.48	0.05	0.00	0.00
Means	100.0	100.0	100.0	0.0	0.0	0.0
% of Full Activity	NA	NA	NA	0.0	0.0	0.0

ACCEPTANCE CRITERIA

Full Activity Control (TA) Average = Range of 90 to 110% Background Activity Control (NSB) Average = Range of -5 to +6%

TABLE 25:Individual and Mean Full Activity Control and BackgroundActivity Control Values for the Assay Runs (Octocrylene Runs)

Tube Position		Activity Co Full Activi		Background Activity Control (NSB; Non-Specific Binding; No Activity %)		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Beginning	102.49	94.94	102.69	-0.01	0.00	-0.02
	101.89	101.01	101.42	-0.01	-0.05	0.00
End	98.73	93.11	102.49	0.01	0.02	-0.01
	96.89	110.95	93.40	0.01	0.03	0.04
Means	100.0	100.0	100.0	0.0	0.0	0.0
% of Full Activity	NA	NA	NA	0.0	0.0	0.0

ACCEPTANCE CRITERIA

Full Activity Control (TA) Average = Range of 90 to 110% Background Activity Control (NSB) Average = Range of -5 to +6%

TABLE 26:Individual and Mean Full Activity Control and BackgroundActivity Control Values for the Assay Runs (Octylsalicylate Runs)

Tube Position		Activity Co Full Activi		Background Activity Control (NSB; Non-Specific Binding; No Activity %)		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Beginning	98.65	97.43	103.06	-0.03	0.01	-0.03
	98.07	103.65	101.78	-0.03	-0.04	0.00
End	100.33	100.71	97.12	0.03	0.03	0.00
	102.95	98.21	98.03	0.03	0.01	0.03
Means	100.0	100.0	100.0	0.0	0.0	0.0
% of Full Activity	NA	NA	NA	0.0	0.0	0.0

ACCEPTANCE CRITERIA

Full Activity Control (TA) Average = Range of 90 to 110% Background Activity Control (NSB) Average = Range of -5 to +6%

TABLE 27:Individual and Mean Full Activity Control and BackgroundActivity Control Values for the Assay Runs (Oxybenzone Runs)

Tube Position		Activity Co Full Activi		Background Activity Control (NSB; Non-Specific Binding; No Activity %)		
	Run 1	Run 2	Run 3	Run 1	Run 2	Run 3
Beginning	100.35	96.78	100.64	0.01	-0.01	-0.02
	99.76	102.97	99.39	0.01	-0.06	0.00
End	101.07	97.67	100.04	-0.03	-0.01	0.00
	98.82	102.57	99.94	0.01	0.07	0.01
Means	100.0	100.0	100.0	0.0	0.0	0.0
% of Full Activity	NA	NA	NA	0.0	0.0	0.0

ACCEPTANCE CRITERIA

Full Activity Control (TA) Average = Range of 90 to 110% Background Activity Control (NSB) Average = Range of -5 to +6%

Test Substance	Рі	recipitatio Code	on	Comments
	Run 1	Run 2	Run 3	R x tubes 37° C after addition of Supersomes TM
Methoxycinnamate, 10 ⁻³ M	+++	ND	ND	Cloudy
Methoxycinnamate, 10 ⁻⁴ M	+	0	0	
Methoxycinnamate, 10 ^{-4.5} M	ND	0	0	
Methoxycinnamate, 10 ⁻⁵ M	0	0	0	
Octocrylene, 10 ⁻³ M	+++	ND	ND	Cloudy
Octocrylene, 10 ⁻⁴ M	+ ^(a)	0	+ ^(b)	^(a) Very slightly cloudy; ^(b) Cloudy
Octocrylene, 10 ^{-4.5} M	ND	0	0	
Octocrylene, 10 ⁻⁵ M	0	0	0	
Oxylsalicylate, 10 ⁻³ M	+++	ND	ND	Oily substance at top
Oxylsalicylate, 10 ⁻⁴ M	++	0	0	
Oxylsalicylate, 10 ^{-4.5} M	ND	0	0	
Oxylsalicylate, 10 ⁻⁵ M	0	0	0	
Oxybenzone, 10 ⁻³ M	++	ND	ND	Cloudy and precipitated
Oxybenzone, 10 ⁻⁴ M	0	+	0	
Oxybenzone, 10 ^{-4.5} M	ND	0	0	
Oxybenzone, 10 ⁻⁵ M	0	0	0	

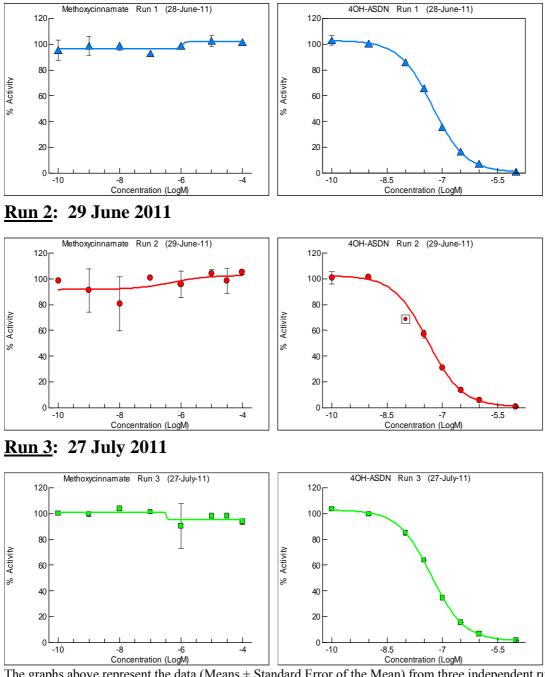
TABLE 28:Solubility Results

Precipitation Code (Visual):

0 = Negative

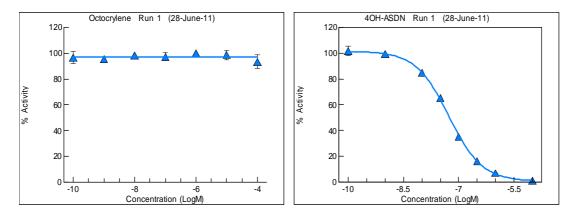
+ = Small Amount

++ = Moderate Amount

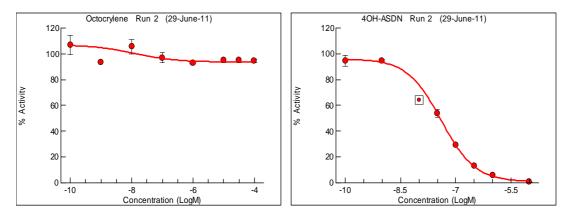

+++ = Substantial Amount

ND = Not determined

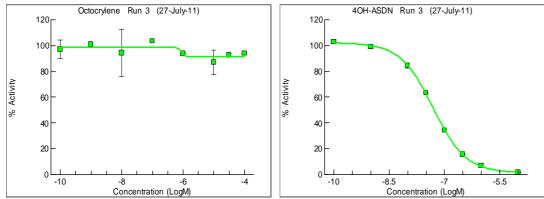
FIGURES SECTION


Report Number: 9070-100107AROM

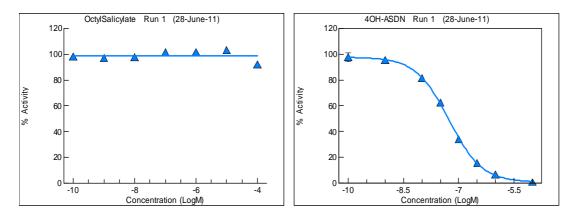
Page 48 of 150

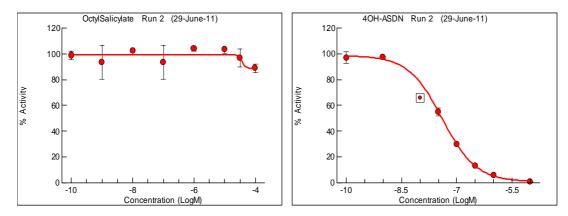


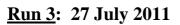
The graphs above represent the data (Means \pm Standard Error of the Mean) from three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

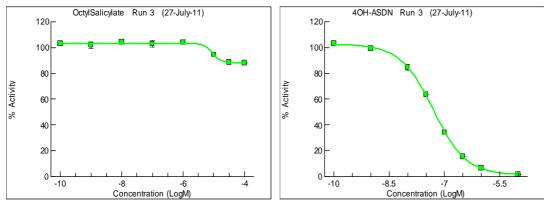

NOTE: Only soluble concentrations shown (e.g., excluding 10^{-3} M for test substance). Also, 4OH-ASDN value (10^{-8} M) enclosed in the symbol removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

<u>Run 2</u>: 29 June 2011

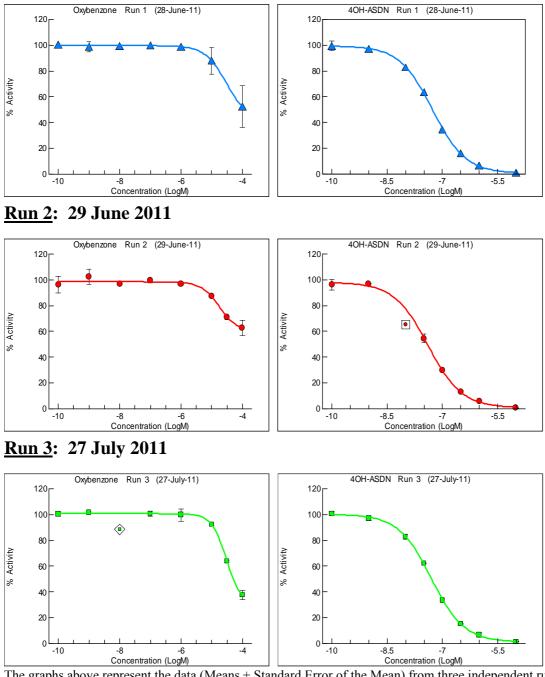





The graphs above represent the data (Means \pm Standard Error of the Mean) from three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).


NOTE: Only soluble concentrations shown (e.g., excluding 10^{-3} M for test substance). Also, 4OH-ASDN value (10^{-8} M) enclosed in the symbol removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

<u>Run 2</u>: 29 June 2011



The graphs above represent the data (Means \pm Standard Error of the Mean) from three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Only soluble concentrations shown (e.g., excluding 10^{-3} M for test substance). Also, 4OH-ASDN value (10^{-8} M) enclosed in the symbol removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

The graphs above represent the data (Means \pm Standard Error of the Mean) from three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Only soluble concentrations shown (e.g., excluding 10^{-3} M for test substance). Also, oxybenzone value enclosed in the symbol represents outlier removed during the regression analysis using Tukey's Bi-Weight statistical analysis. 4OH-ASDN value (10^{-8} M) enclosed in the symbol removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

FIGURE 5: Mean Response of Runs 1-3: Methoxycinnamate and 4OH-ASDN

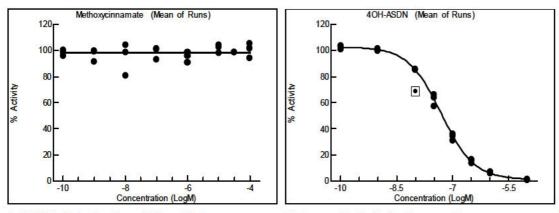


FIGURE 6: Combined Response of Runs 1-3: Methoxycinnamate and 4OH-ASDN

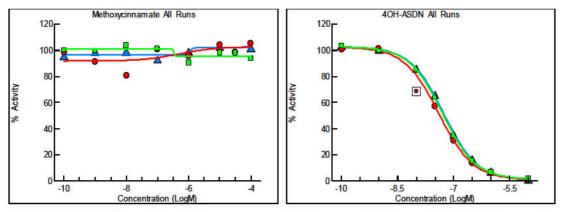
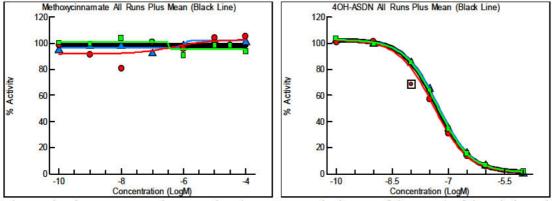



FIGURE 7: Combined Response of Mean and Runs 1-3: Methoxycinnamate and 4OH-ASDN

The graphs above represent the mean data (Means \pm Standard Error of the Mean) of three independent runs of the assay (n=3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Mean of three runs is the bold, black line. 4OH-ASDN value (10^{-8} M) enclosed in the symbol was removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

Report Number: 9070-100107AROM

Page 53 of 150

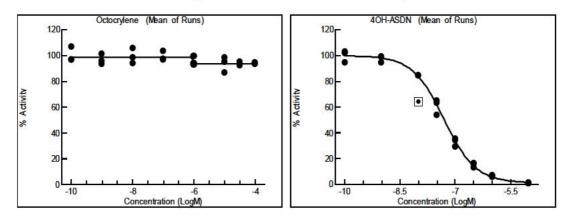


FIGURE 8: Mean Response of Runs 1-3: Octocrylene and 4OH-ASDN

FIGURE 9: Combined Response of Runs 1-3: Octocrylene and 4OH-ASDN

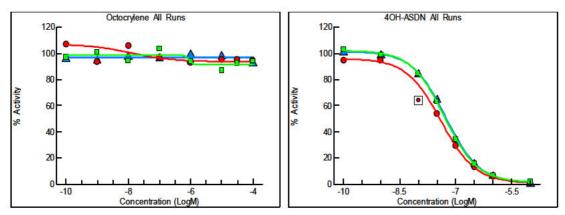
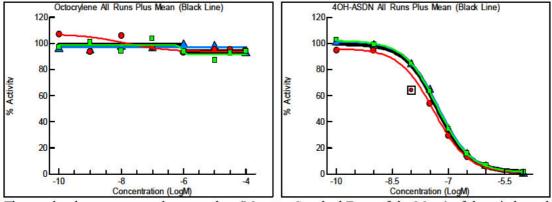



FIGURE 10: Combined Response of Mean and Runs 1-3: Octocrylene and 40H-ASDN

The graphs above represent the mean data (Means \pm Standard Error of the Mean) of three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Mean of three runs is the bold, black line. 4OH-ASDN value (10⁻⁸ M) enclosed in the symbol was removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

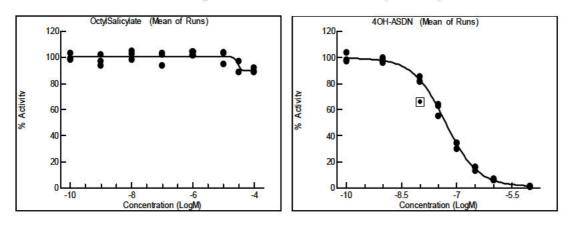


FIGURE 11: Mean Response of Runs 1-3: OctylSalicylate and 4OH-ASDN

FIGURE 12: Combined Response of Runs 1-3: OctylSalicylate and 4OH-ASDN

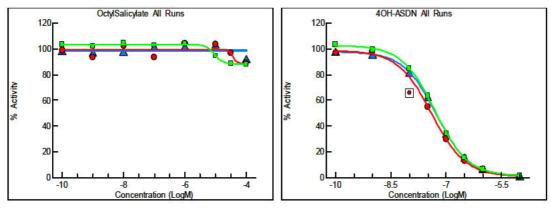
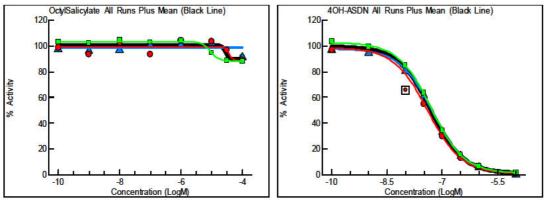



FIGURE 13: Combined Response of Mean and Runs 1-3: OctylSalicylate and 40H-ASDN

The graphs above represent the mean data (Means \pm Standard Error of the Mean) of three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Mean of three runs is the bold, black line. 4OH-ASDN value (10^8 M) enclosed in the symbol was removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

Report Number: 9070-100107AROM

Page 55 of 150

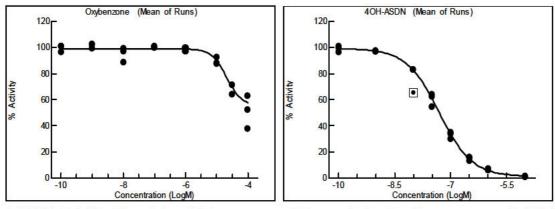


FIGURE 14: Mean Response of Runs 1-3: Oxybenzone and 4OH-ASDN

FIGURE 15: Combined Response of Runs 1-3: Oxybenzone and 4OH-ASDN

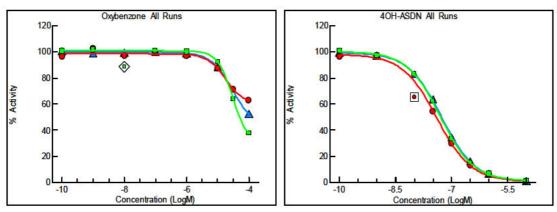
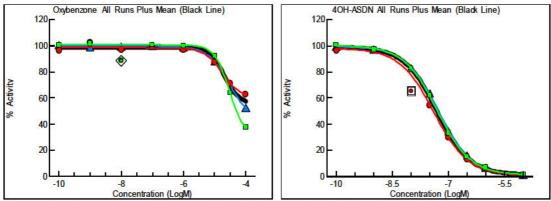



FIGURE 16: Combined Response of Mean and Runs 1-3: Oxybenzone and 40H-ASDN

The graphs above represent the mean data (Means \pm Standard Error of the Mean) of three independent runs of the assay (n =3/concentration for test substance; n=2/concentration for 4OH-ASDN).

NOTE: Mean of three runs is the bold, black line. Also, oxybenzone value enclosed in the symbol represents outlier removed during the regression analysis using Tukey's Bi-Weight statistical analysis. 4OH-ASDN value (10⁻⁸ M) enclosed in the symbol removed from run 2 because of high CV% (34.8%) and thus variability with other runs.

APPENDICES SECTION

APPENDIX 1: Run 1: Assay Information (Methoxycinnamate)

Experiment Date:	28-Jun-11	Study Number:	9070-1001077	AROM	
Test substance:	Methoxycinnamate				
2/3/2012 11:52					
	specific activity based on decay for	4/20/10	42240.0	DPM	
	20 uL count of 3H-ASDN (mean)		41270.7	DPM	
	0.5 mL count for total activity		7494.9	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
-	20 uL count of 3H-ASDN (DPM)		4215	7 40831	40824

Assays Conducted by:					Spreadsheet locke	3 on: 06/30/2011
					Green shaded area	s: unlocked cells for data entry
Each assay contained 100 uL 3H-ASDN	206353.3	DPM	0.200	(nmoles)		
Total product 3H-H20 per assay	29979.5	DPM	0.029	(nmoles)		
Percent conversion to product (3H-H2O) (percent)	14.5					
Rate of conversion to 3H-H2O in total activity assay	0.242	nmol/(mg prot	ein-min)			
Average activity of control Tubes	0.241	nmol/(mg prot	ein-min)			
Average full enzyme activity controls (percent +/-SD)	100.0	4.2				
Average background activity controls (percent +/- SD)	0.0	0.0				

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 1 of 4

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	D F (ali
TA		7816.0	7744.0	
TA		7763.0	7706.0	
NSB		42.0	40.0	
NSB		43.0	39.0	
40H-ASDN	-5	101.0	100.0	
40H-ASDN		99.0	95.0	
40H-ASDN	-6	479.0	506.0	
40H-ASDN		472.0	488.0	
40H-ASDN	-6.5	1274.0	1279.0	
40H-ASDN		1264.0	1276.0	
40H-ASDN	-7	2693.0	2697.0	
40H-ASDN		2754.0	2691.0	
40H-ASDN	-7.5	4942.0	4928.0	
40H-ASDN		5052.0	4907.0	
40H-ASDN	_8	6457.0	6447.0	
40H-ASDN		6558.0		
40H-ASDN	_9	7577.0	7618.0	
40H-ASDN		7579.0		
40H-ASDN	-10	7536.0		
40H-ASDN		7945.0		

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
103.83	103
103.21	
-0.01	-0
-0.01	
0.79	0.
0.74	
6.05	5.
5.88	
16.57	16
16.48	
35.60	35
35.97	
65.65	65
66.25	
\$6.01	\$5
\$5.54	
101.38	100
99.65	
100.44	103
105.60	

Sample Type	Concentration	DPM1/aliquot	DPM1/aliquot	[
		(aliquot 1)	(aliquot 2)	(ali
Methoxycinnamate		7226.0	7490.0	<u> </u>
Methoxycinnamate		7201.0	7305.0	
Methoxycinnamate	-3	7351.0	7359.0	
Methoxycinnamate	4	7627.0	7556.0	
Methoxycinnamate	4	7383.0	7251.0	
Methoxycinnamate	-4	\$079.0	7783.0	
Methoxycinnamate	-5	7677.0	7664.0	
Methoxycinnamate	-5	7771.0	7778.0	
Methoxycinnamate		7703.0	7564.0	
Methoxycinnamate		7499.0	7551.0	
Methoxycinnamate	-6	7517.0	7547.0	
Methoxycinnamate	-6	7225.0	7036.0	
Methoxycinnamate	-7	7052.0	7119.0	<u> </u>
Methoxycinnamate		7402.0	7520.0	
Methoxycinnamate		6347.0	6371.0	
Methoxycinnamate	-8	7075.0	7373.0	<u> </u>
Methoxycinnamate		6813.0	7031.0	<u> </u>
Methoxycinnamate		7937.0	\$131.0	<u> </u>
Methoxycinnamate	-9	7087.0	7248.0	
Methoxycinnamate	-9	7346.0	7240.0	
Methoxycinnamate		7346.0	7249.0 7756.0	
Methoxycinnamate		6841.0	6756.0	<u> </u>
Methoxycinnamate		7387.0	7321.0	<u> </u>
Methoxycinnamate	-10	7302.0	7358.0	
TA TA		7187.0 7367.0	7064.0 7312.0	
NSB		34.0	44.0	
NSB		48.0	42.0	

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 3 of 4

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
98.16	97
96.75	
98.12	
101.30	101
97.61	
105.85	
102.36	102
103.75	
101.86	
100.40	98
100.50	
95.11	
94.51	92
99.55	
84.76	
96.37	98
92.31	
107.23	
95.61	98
97.35	
103.58	
90.66	95
98.11	
97.79	
95.04	96
97.92	
-0.03	0.
0.05	

APPENDIX 1: Run 1: Assay Information (Octylcrylene)

Experiment Date:	28-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	Octocrylene				
2/3/2012 13:38					
	specific activity based on decay for	4/20/10	42240.0	DPM	
	20 uL count of 3H-ASDN (mean)		41270.7	DPM	
	0.5 mL count for total activity		7592.0	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
			4045	40001	40004
	20 uL count of 3H-ASDN (DPM)		42157	7 40831	40824

Assays Conducted by:					S	Spreadsheet locked	i on: 06/30/2011	
780					G	Freen shaded area	s: unlocked cell:	s for data entry
Each assay contained 100 uL 3H-ASDN	206353.3	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	30368.0	DPM	0.029	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	14.7							
Rate of conversion to 3H-H2O in total activity assay	0.245	nmol/(mg prot	tein-min)					
Average activity of control Tubes	0.244	nmol/(mg prot	tein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	2.6						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Octylcrylene): Part 1 of 4

Sample Type	Concentration	DPM1 <i>t</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	DF (ali
TA		7816.0	7744.0	
TA		7763.0	7706.0	
NSB		42.0	40.0	
NSB		43.0	39.0	
40H-ASDN	-5	101.0	100.0	
40H-ASDN		99.0	95.0	
40H-ASDN	-6	479.0	506.0	
40H-ASDN		472.0	488.0	
40H-ASDN	-6.5	1274.0	1279.0	
40H-ASDN		1264.0	1276.0	
40H-ASDN	-7	2693.0	2697.0	
40H-ASDN		2754.0	2691.0	
40H-ASDN	-7.5	4942.0	4928.0	
40H-ASDN		5052.0	4907.0	
40H-ASDN	-8	6457.0	6447.0	
40H-ASDN		6558.0	6276.0	
40H-ASDN	_9	7577.0	7618.0	
40H-ASDN		7579.0	7359.0	
40H-ASDN	-10	7536.0	7519.0	_
40H-ASDN		7945.0	7879.0	

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Octylcrylene): Part 2 of 4

Aromatase Activity	Me Arom
(%)	activi
102.49	102
101.89	
-0.01	-0
-0.01	
0.78	0.
0.73	
5.97	5.
5.80	
16.35	16
16.27	
35.14	35
35.50	
64.81	65
65.40	
\$4.90	\$4
\$4.44	
100.07	99
98.37	
99.15	101
104.24	

Sample Type	Concentration	DPM1 <i>t</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	(a
Octocrylene	-3	6759.0	6765.0	
Octocrylene	-3	5943.0	5988.0	<u> </u>
Octocrylene	-3	6416.0	6362.0	<u> </u>
Octocrylene	-4	7217.0	7229.0	
Octocrylene	-4	7350.0	6203.0	<u> </u>
Octocrylene	-4	7267.0	7291.0	-
Octocrylene	-5	7448.0	7527.0	
Octocrylene	-5	7318.0	7027.0	<u> </u>
Octocrylene	-5	7676.0	7225.0	<u> </u>
	-6	7568.0	7555.0	
Octocrylene	-6		7563.0	<u> </u>
Octocrylene	-6	7638.0		<u> </u>
Octocrylene		7599.0	7517.0	
Octocrylene	-7	7251.0	7362.0	
Octocrylene	-7	7506.0	7388.0	<u> </u>
Octocrylene	-7	7393.0	7402.0	
Octocrylene	-8	7271.0	7083.0	<u> </u>
Octocrylene	-8	7972.0	7807.0	<u> </u>
Octocrylene	-8	7413.0	7314.0	
Octocrylene	-9	7668.0	7588.0	
Octocrylene	-9	7405.0	7525.0	
Octocrylene	-9	6647.0	6685.0	
Octocrylene	-10	7117.0	7449.0	
Octocrylene	-10	7448.0	7411.0	
Octocrylene	-10	7127.0	7536.0	
TA		7552.0	7440.0	
TA		7252.0	7463.0	
NSB NSB		40.0 40.0	45.0 46.0	

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Octylcrylene): Part 3 of 4

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1:	Run 1: Raw and Normalized DPM Data (4OH-ASDN and Octylcrylene): Part 4 of 4
--------------------	---

Aromatase Activity (%)	Me Arom activi
89.01	\$3
78.46	
\$4.07	
95.11	93
\$9.20	
95.85	
98.62	98
95.74	
101.90	
99.60	99
100.11	
99.55	
96.22	97
98.08	
97.42	
94.50	98
103.94	
96.97	
100.48	95
98.32	
\$7.74	
95.91	96
97.85	
96.55	
98.73	97
96.89	
0.01	0.
0.01	1

APPENDIX 1: Run 1: Assay Information (Octylsalicylate)

Experiment Date:	28-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	OctylSalicylate				
2/3/2012 14:22					
	specific activity based on decay for	4/20/10	42240.0	DPM	
	20 uL count of 3H-ASDN (mean)		41270.7	DPM	i i
	0.5 mL count for total activity		7886.3	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
	20 uL count of 3H-ASDN (DPM)		42157	40831	40824

Assays Conducted by:					Spreadsh	neet locked on: O	6/30/2011	
					Green sh	aded areas: unic	ocked cells for d	ata entry
Each assay contained 100 uL 3H-ASDN	206353.3	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	31545.0	DPM	0.031	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	15.3							
Rate of conversion to 3H-H2O in total activity assay	0.255	nmol/(mg pro	tein-min)					
Average activity of control Tubes	0.253	nmol/(mg pro	tein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	2.2						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and (Octylsalicylate): Part 1 of 4

Sample Type	Concentration	DPM1/aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	D (al
TA		7816.0	7744.0	
TA		7763.0		<u> </u>
NSB		42.0	40.0	
NSB		43.0	39.0	
40H-ASDN	-5	101.0	100.0	
40H-ASDN		99.0	95.0	
40H-ASDN	-6	479.0	506.0	
40H-ASDN		472.0	488.0	
40H-ASDN	-6.5	1274.0	1279.0	
40H-ASDN		1264.0	1276.0	
40H-ASDN	-7	2693.0	2697.0	
40H-ASDN		2754.0	2691.0	
40H-ASDN	-7.5	4942.0	4928.0	
40H-ASDN		5052.0	4907.0	
40H-ASDN	-8	6457.0	6447.0	
40H-ASDN		6558.0	6276.0	
40H-ASDN	_9	7577.0	7618.0	
40H-ASDN		7579.0	7359.0	
40H-ASDN	-10	7536.0	7519.0	
40H-ASDN		7945.0	7879.0	

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and (Octylsalicylate): Part 1 of 4

Aromatase Activity (%)	Me Arom activi
98.65	98
98.07	
-0.03	-0
-0.03	
0.73	0.
0.68	
5.73	5.
5.57	
15.72	15
15.64	
33.81	33
34.16	
62.37	62
62.94	
\$1.71	\$1
\$1.27	
96.32	95
94.68	
95.43	97
100.33	

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	6
OctylSalicylate	-3	6604.0		
OctylSalicylate	-3	6716.0		<u> </u>
OctylSalicylate	-3	6574.0	6721.0	<u> </u>
OctylSalicylate	4	7786.0	7330.0	
OctylSalicylate	4	6945.0		<u> </u>
OctylSalicylate	4	7231.0	7245.0	<u> </u>
	-5			
OctylSalicylate	~ ~5	8140.0		<u> </u>
OctylSalicylate		\$166.0	\$272.0	<u> </u>
OctylSalicylate	-5	\$152.0		
OctylSalicylate	-6	7722.0		
OctylSalicylate	-6	7974.0		<u> </u>
OctylSalicylate	-6	\$116.0	\$168.0	<u> </u>
OctylSalicylate	-7	\$127.0	\$059.0	
OctylSalicylate	-7	\$062.0	7974.0	
OctylSalicylate	-7	7926.0	\$030.0	
OctylSalicylate	-8	7921.0	6924.0	
OctylSalicylate	-8	\$040.0	7856.0	
OctylSalicylate	-8	7626.0	7909.0	
OctylSalicylate	-9	7472.0	7636.0	
OctylSalicylate	-9	7769.0	7734.0	
OctylSalicylate	-9	7729.0	7617.0	
OctylSalicylate	-10	7796.0	7878.0	
OctylSalicylate	-10	7742.0		<u> </u>
OctylSalicylate	-10	7596.0	7655.0	<u> </u>
TA		7807.0	\$018.0	
TA		\$179.0	8057.0	
NSB		48.0		
NSB		50.0	42.0	

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and (Octylsalicylate): Part 3 of 4

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and (Octylsalicylate): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
\$3.90	\$4
\$5.30	
\$4.21	
95.81	91
\$\$.26	
91.73	
102.23	103
104.24	
103.08	
98.56	101
102.37	
103.26	
102.64	101
101.68	
101.17	
94.09	97
100.79	
98.49	
95.76	97
98.28	
97.28	
99.37	98
98.11	
96.68	
100.33	101
102.95	
0.03	0.
0.03	

APPENDIX 1: Run 1: Assay Information (Oxybenzone)

Experiment Date:	28-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	Oxybenzone				
2/3/2012 14:29					
	specific activity based on decay for	4/20/10	42240.0	DPM	
	20 uL count of 3H-ASDN (mean)		41270.7	DPM	
	0.5 mL count for total activity		7753.1	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
					10,000,000
	20 uL count of 3H-ASDN (DPM)		42157	7 40831	40824

Assays Conducted by:					Spread	Isheet locked or	n: 06/30/2011	
					Green	shaded areas: ι	Inlocked cells	s for data entry
Each assay contained 100 uL 3H-ASDN	206353.3	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	31012.5	DPM	0.030	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	15.0							
Rate of conversion to 3H-H2O in total activity assay	0.250	nmol/(mg pro	tein-min)					
Average activity of control Tubes	0.249	nmol/(mg pro	tein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	0.9						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 1 of 4

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	DP (alio
TA		7816.0		
TA		7763.0	7706.0	
NSB		42.0	40.0	<u> </u>
NSB		43.0	39.0	
40H-ASDN	-5	101.0	100.0	
40H-ASDN		99.0	95.0	
40H-ASDN	-6	479.0	506.0	
40H-ASDN		472.0	488.0	
40H-ASDN	-6.5	1274.0	1279.0	
40H-ASDN		1264.0	1276.0	
40H-ASDN	-7	2693.0	2697.0	
40H-ASDN		2754.0	2691.0	
40H-ASDN	-7.5	4942.0	4928.0	
40H-ASDN		5052.0	4907.0	
40H-ASDN	_8	6457.0	6447.0	
40H-ASDN		6558.0		
40H-ASDN	_9	7577.0		
40H-ASDN		7579.0		
40H-ASDN	-10	7536.0		_
40H-ASDN		7945.0		

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
100.35	100
99.76	
0.01	0.
0.01	
0.78	0.
0.73	
5.86	5.
5.70	
16.03	15
15.94	
34.42	34
34.77	
63.46	63
64.04	
\$3.13	\$2
\$2.68	
97.98	97
96.32	
97.07	99
102.06	

Sample Type	Concentration	DPM1/aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	D (a
Oxybenzone	-3	3657.0	3588.0	
Oxybenzone	-3	1193.0	11\$1.0	
Oxybenzone	-3	2901.0	2946.0	
Oxybenzone	-4	4834.0	4827.0	
Oxybenzone	-4	4148.0	4141.0	
Oxybenzone	-4	3241.0	3218.0	
Oxybenzone	-5	6633.0	6840.0	
Oxybenzone	-5	6826.0	6593.0	
Oxybenzone	-5	7062.0	7003.0	
Oxybenzone	-6	7581.0	7407.0	
Oxybenzone	-6	7508.0	7729.0	
Oxybenzone	-6	7843.0	7929.0	
Oxybenzone	-7	7459.0	7443.0	
Oxybenzone	-7	8051.0	8028.0	<u> </u>
Oxybenzone	-7	7912.0	7625.0	
Oxybenzone	-8	7453.0	7475.0	
Oxybenzone	-8	7400.0	7470.0	
Oxybenzone	-8	7792.0	7865.0	
Oxybenzone	-9	7617.0	7581.0	
Oxybenzone	-9	7728.0	7541.0	
Oxybenzone	-9	7813.0	7775.0	
Oxybenzone	-10	7813.0	8061.0	
Oxybenzone	-10	7618.0	8038.0	
Oxybenzone	-10	7493.0	7818.0	
TA	-10	7433.0 7821.0	7850.0	
TA		7609.0	7716.0	
NSB		38.0	39.0	
NSB		45.0	38.0	

APPENDIX 1: Run 1: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 3 of 4

APPENDIX 1: Run 1: Raw and Normalized DPM Data (40H-ASDN and Oxybenzone): Part 4 of 4

46.44	activi
40.44	32
14.87	
37.38	
62.11	52
53.21	
41.35	
86.82	87
86.47	
90.66	
96.64	98
98.25	
101.72	
96.08	100
103.71	
100.20	
96.25	99
100.70	
100.98	
98.00	99
98.46	
100.53	
102.38	100
100.97	
98.73	
101.07	99
98.82	
-0.03	-0

APPENDIX 1: Run 2: Assay Information (Methoxycinnamate)

Experiment Date:	29-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	Methoxycinnamate				
2/3/2012 14:41					
	specific activity based on decay for	4/20/10	42227.0	DPM	
	20 uL count of 3H-ASDN (mean)		40447.0	DPM	
	0.5 mL count for total activity		10548.6	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
	20 uL count of 3H-ASDN (DPM)		41993	39792	39556

Assays Conducted by:					Spreadsheet locked o	n: 06/30/2011
					Green shaded areas:	unlocked cells for data entry
Each assay contained 100 uL 3H-ASDN	202235.0	DPM	0.200	(nmoles)		
Total product 3H-H20 per assay	42194.5	DPM	0.042	(nmoles)		
Percent conversion to product (3H-H2O) (percent)	20.9					
Rate of conversion to 3H-H2O in total activity assay	0.348	nmol/(mg pro	itein-min)			
Average activity of control Tubes	0.346	nmol/(mg pro	itein-min)			
Average full enzyme activity controls (percent +/-SD)	100.0	6.5				
Average background activity controls (percent +/- SD)	0.0	0.0				

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 1 of 4

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	DP (alio
TA		10672.0	10681.0	
TA		11398.0	11315.0	
NSB		42.0	41.0	
NSB		38.0	34.0	
40H-ASDN	-5	108.0	104.0	
40H-ASDN		115.0	116.0	
40H-ASDN	-6	599.0	598.0	
40H-ASDN		563.0	583.0	
40H-ASDN	-6.5	1497.0	1490.0	
40H-ASDN		1420.0	1464.0	
40H-ASDN	-7	3298.0	3264.0	
40H-ASDN		3308.0		
40H-ASDN	-7.5	6390.0		
40H-ASDN		5849.0		
40H-ASDN	-8	9106.0		
40H-ASDN		5453.0		
40H-ASDN	_9	10687.0		_
40H-ASDN	-	10481.0		
40H-ASDN	-10	10116.0		
40H-ASDN	10	11053.0		

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
101.22	104
107.69	105
0.01	-0
-0.04	Ť
0.62	0.
0.71	
5.31	5.
5.07	
13.83	13
13.34	
30.84	30
31.15	
59.45	57
54.85	
\$5.39	68
51.70	
101.44	101
100.74	
97.55	100
104.04	

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	D (a
Methoxycinnamate	-4	11194.0		⊢
Methoxycinnamate	-4	11277.0	10950.0	⊢
Methoxycinnamate	-4	11016.0	10713.0	┝
Methoxycinnamate	-4.5	10938.0	10980.0	ļ
Methoxycinnamate	-4.5	11049.0	10923.0	ļ
Methoxycinnamate	-4.5	9094.0	9371.0	
Methoxycinnamate	-5	11251.0	10991.0	
Methoxycinnamate	-5	11212.0	11204.0	
Methoxycinnamate	-5	10662.0	10694.0	
Methoxycinnamate	-6	10326.0	10071.0	Γ
Methoxycinnamate	-6	10976.0	11246.0	Γ
Methoxycinnamate	-6	8982.0	8973.0	Γ
Methoxycinnamate	-7	10783.0	10665.0	
Methoxycinnamate	-7	10587.0	10831.0	
Methoxycinnamate	-7	10500.0	10541.0	F
Methoxycinnamate	-8	10627.0	10698.0	
Methoxycinnamate	-8	6220.0	6289.0	F
Methoxycinnamate	-8	\$583.0	\$571.0	⊢
Methoxycinnamate	-9	7697.0	7557.0	
Methoxycinnamate	-9	10338.0	10324.0	-
Methoxycinnamate	-9	10930.0	10924.0	-
Methoxycinnamate	-10	10225.0	10421.0	-
Methoxycinnamate	-10	10474.0	10613.0	-
Methoxycinnamate	-10	10474.0	10470.0	-
TA	-10	9610.0	9779.0	
TA		10374.0	10560.0	-
NSB		44.0	44.0	
NSB		38.0	42.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 3 of 4

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
106.70	105
105.38	
103.01	
103.91	98
104.16	
87.48	
105.45	104
106.27	
101.23	
96.67	95
105.35	
\$5.05	
101.67	100
101.53	
99.73	
101.08	\$0
59.14	
81.24	
72.20	91
97.93	
103.60	
97.85	98
99.95	
98.32	
91.87	95
99.22	
0.03	0.
0.00	

APPENDIX 1: Run 2: Assay Information (Octocrylene)

Experiment Date:	29-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	Octocrylene				
2/3/2012 14:53					
	specific activity based on decay for	4/20/10	42227.0	DPM	
	20 uL count of 3H-ASDN (mean)		40447.0	DPM	
	0.5 mL count for total activity		11243.9	DPM	1
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
					00000
	20 uL count of 3H-ASDN (DPM)		41993	39792	39556

Assays Conducted by:					Spreads	heet locked on:	06/30/2011	
					Green st	naded areas: ur	locked cells	for data entry
Each assay contained 100 uL 3H-ASDN	202235.0	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	44975.5	DPM	0.044	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	22.2							
Rate of conversion to 3H-H2O in total activity assay	0.371	nmol/(mg pro	itein-min)					
Average activity of control Tubes	0.369	nmol/(mg pro	itein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	\$.0						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 1 of 4

Sample Type	Concentration	DPM1 <i>ł</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	D (al
TA		10672.0	10681.0	ļļ
TA		11398.0		<u> </u>
NSB		42.0	41.0	
NSB		38.0	34.0	<u> </u>
40H-ASDN	-5	108.0		
40H-ASDN		115.0	116.0	
40H-ASDN	-6	599.0		
40H-ASDN	_	563.0		
40H-ASDN	-6.5	1497.0		
40H-ASDN		1420.0		
40H-ASDN	-7	3298.0		
40H-ASDN		3308.0		
40H-ASDN	-7.5	6390.0	6186.0	
40H-ASDN		5849.0		
40H-ASDN	-8	9106.0		
40H-ASDN	Ū.	5453.0		
40H-ASDN	_9	10687.0		
40H-ASDN	~	10481.0		
40H-ASDN	-10	10116.0		
40H-ASDN		11053.0		

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
94.94	97
101.01	
0.00	-0
-0.05	
0.58	0.
0.66	
4.97	4.
4.74	
12.96	12
12.50	
28.92	29
29.21	
55.76	53
51.44	
\$0.09	64
48.49	
95.14	94
94.48	
91.49	94
97.58	

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	(4
Oatsandans	4			
Octocrylene Octocrylene	-4	10475.0 10613.0	10564.0	
	-4			<u> </u>
Octocrylene		10571.0	11080.0	
Octocrylene	-4.5	10885.0	10887.0	
Octocrylene	-4.5	10446.0	10595.0	
Octocrylene	-4.5	10661.0	10722.0	
Octocrylene	-5	10684.0	10715.0	
Octocrylene	-5	10455.0	10465.0	
Octocrylene	-5	10832.0	10893.0	<u> </u>
Octocrylene	-6	10383.0	10156.0	
Octocrylene	-6	10545.0	10824.0	
Octocrylene	-6	10502.0	10472.0	
Octocrylene	-7	11174.0	10948.0	
Octocrylene	-7	11033.0	11480.0	
Octocrylene	-7	10431.0	10426.0	
Octocrylene	-8	12268.0	11966.0	
Octocrylene	-8	11268.0	11062.0	
Octocrylene	-8	12358.0	12360.0	
Octocrylene	-9	10563.0	10522.0	
Octocrylene	-9	10351.0	10687.0	
Octocrylene	-9	10553.0	10565.0	
Octocrylene	-10	10905.0	11208.0	
Octocrylene	-10	12723.0	12620.0	
Octocrylene	-10	12235.0	12314.0	
TA		10502.0	10443.0	<u> </u>
TA		12516.0	12424.0	
NSB		44.0	43.0	
NSB		45.0	45.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 3 of 4

APPENDIX 1:	Run 2: Raw and Normalized DPM Data (40H-ASDN and Octocrylene): Part 4 of 4
--------------------	--

Aromatase Activity	M Aron
(%)	activi
93.53	94
93.86	
96.27	
96.81	95
93.54	
95.07	
95.14	94
93.00	
96.60	
91.30	93
95.01	
93.24	
98.37	97
100.11	
92.72	
107.79	108
99.30	
109.95	
93.74	93
93.53	
93.89	
98.33	106
112.74	
109.20	
93.11	102
110.95	
0.02	0.
0.03	

APPENDIX 1: Run 2: Assay Information (Octylsalicylate)

Experiment Date:	29-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	OctylSalicylate				
2/3/2012 14:58					
	specific activity based on decay for	4/20/10	42227.0	DPM	
	20 uL count of 3H-ASDN (mean)		40447.0	DPM	
	0.5 mL count for total activity		10957.5	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	-
	20 uL count of 3H-ASDN (DPM)		41993	39792	39556

Assays Conducted by:					Spreadshe	et locked on: 06/3	0/2011	
					Green sha	ded areas: unlock	ed cells for data er	ntry
Each assay contained 100 uL 3H-ASDN	202235.0	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	43830.0	DPM	0.043	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	21.7							
Rate of conversion to 3H-H2O in total activity assay	0.361	nmol/(mg prot	ein-min)					
Average activity of control Tubes	0.360	nmol/(mg prot	ein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	2.8						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 1 of 4

Sample Type	Concentration	DPM1 <i>ł</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	Di (al
TA		10672.0	10681.0	
TA		11398.0		
NSB		42.0	41.0	
NSB		38.0	34.0	
40H-ASDN	-5	108.0	104.0	
40H-ASDN		115.0	116.0	
40H-ASDN	-6	599.0	598.0	
40H-ASDN		563.0	583.0	
40H-ASDN	-6.5	1497.0	1490.0	
40H-ASDN		1420.0	1464.0	
40H-ASDN	-7	3298.0	3264.0	
40H-ASDN		3308.0	3319.0	
40H-ASDN	-7.5	6390.0	6186.0	
40H-ASDN		5849.0	5760.0	
40H-ASDN	-8	9106.0	\$920.0	
40H-ASDN		5453.0	5493.0	
40H-ASDN	_9	10687.0	10712.0	
40H-ASDN		10481.0		
40H-ASDN	-10	10116.0		
40H-ASDN		11053.0	10893.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
97.43	100
103.65	
0.01	-0
-0.04	
0.60	0.
0.68	
5.11	4.
4.88	
13.31	13
12.84	
29.68	29
29.98	
57.23	55
52.80	
\$2.19	65
49.76	
97.64	97
96.96	
93.89	97
100.14	

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	(a
OctylSalicylate	-4	9914.0		
Octy/Salicylate Octy/Salicylate	-4	9914.0		<u> </u>
OctylSalicylate	4	9829.0		<u> </u>
OctylSalicylate	-4.5	9443.0		
	-4.5			
OctylSalicylate		11362.0		-
OctylSalicylate	-4.5	10335.0		
OctylSalicylate	-5	11097.0		
OctylSalicylate	-5	11693.0		
OctylSalicylate	-5	11327.0		
OctylSalicylate	-6	11697.0		-
OctylSalicylate	-6	11320.0	11073.0	
OctylSalicylate	-6	11561.0	11261.0	
OctylSalicylate	-7	10409.0	10487.0	
OctylSalicylate	-7	11448.0	11637.0	4
OctylSalicylate	-7	8742.0	8746.0	
OctylSalicylate	-8	11308.0	11433.0	:
OctylSalicylate	-8	11130.0	11339.0	
OctylSalicylate	-8	11020.0	11150.0	
OctylSalicylate	-9	10963.0	11092.0	
OctylSalicylate	-9	11083.0		
OctylSalicylate	-9	8636.0		
OctylSalicylate	-10	10493.0		
OctylSalicylate	-10	11203.0		<u> </u>
OctylSalicylate	-10	11200.0		<u> </u>
TA		11122.0		
TA		10725.0		
NSB		41.0		
NSB		42.0	42.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 3 of 4

APPENDIX 1:	Run 2: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 4 of 4
--------------------	--

Aromatase	M
Activity	Arom
(%)	-
90.43	88
91.04	
\$5.17	
93.39	96
104.71	
92.49	
100.43	103
106.28	
103.34	
106.07	104
102.19	
104.15	
95.33	93
105.36	
79.72	
103.78	102
102.54	
101.17	
100.64	93
101.26	
78.58	
94.80	98
100.96	
100.30	
100.73	99
98.21	
0.03	0.
0.01	

APPENDIX 1: Run 2: Assay Information (Oxybenzone)

Experiment Date:	29-Jun-11	Study Number:	9070-100107A	ROM	
Test substance:	Oxybenzone				
2/3/2012 15:05					
	specific activity based on decay for	4/20/10	42227.0	DPM	
	20 uL count of 3H-ASDN (mean)		40447.0	DPM	
	0.5 mL count for total activity		11029.9	DPM	1
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
					00000
	20 uL count of 3H-ASDN (DPM)		41993	39792	39556

Assays Conducted by:					Spreadsheet lock	(ed on: 06/30/2011
					Green shaded are	eas: unlocked cells for data entry
Each assay contained 100 uL 3H-ASDN	202235.0	DPM	0.200	(nmoles)		
Total product 3H-H20 per assay	44119.5	DPM	0.044	(nmoles)		
Percent conversion to product (3H-H2O) (percent)	21.8					
Rate of conversion to 3H-H2O in total activity assay	0.364	nmol/(mg pro	otein-min)			
Average activity of control Tubes	0.362	nmol/(mg pro	otein-min)			
Average full enzyme activity controls (percent +/-SD)	100.0	3.2				
Average background activity controls (percent +/- SD)	0.0	0.1				

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 1 of 4

Sample Type	Concentration	DPM1/aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	D I (ali
TA		10672.0	10681.0	
TA		11398.0	11315.0	
NSB		42.0	41.0	
NSB		38.0	34.0	
40H-ASDN	-5	108.0	104.0	
40H-ASDN		115.0	116.0	
40H-ASDN	-6	599.0	598.0	
40H-ASDN		563.0	583.0	
40H-ASDN	-6.5	1497.0	1490.0	
40H-ASDN		1420.0	1464.0	
40H-ASDN	-7	3298.0	3264.0	
40H-ASDN		3308.0	3319.0	
40H-ASDN	-7.5	6390.0	6186.0	
40H-ASDN		5849.0	5760.0	
40H-ASDN	_8	9106.0	\$920.0	
40H-ASDN		5453.0	5493.0	
40H-ASDN	_9	10687.0	10712.0	
40H-ASDN		10481.0	10771.0	
40H-ASDN	-10	10116.0	10466.0	
40H-ASDN		11053.0	10893.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 2 of 4

Aromatase Activity	Me Arom activi
(%) 96.78	99
102.97	33
-0.01	-0
-0.06	
0.58	0.
0.67	
5.06	4.
4.83	
13.21	12
12.74	
29.48	29
29.77	
56.84	54
52.44	
\$1.64	65
49.43	
96.99	96
96.32	
93.28	96
99.48	

Sample Type	Concentration	DPM1 <i>t</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	[(a
				(ai
Oxybenzone	-4	7755.0	7522.0	<u> </u>
Oxybenzone	-4	6836.0	6922.0	<u> </u>
Oxybenzone	-4	6288.0	6341.0	
Oxybenzone	-4.5	\$111.0	\$147.0	
Oxybenzone	-4.5	7802.0	7830.0	
Oxybenzone	-4.5	7591.0	7749.0	
Oxybenzone	-5	9687.0	9646.0	
Oxybenzone	-5	9307.0	9790.0	
Oxybenzone	-5	9783.0	9546.0	
Oxybenzone	-6	10750.0	10771.0	
Oxybenzone	-6	10489.0	10903.0	
Oxybenzone	-6	10592.0	10515.0	
Oxybenzone	-7	11194.0	11243.0	
Oxybenzone	-7	10899.0	11240.0	
Oxybenzone	-7	10833.0	10868.0	
Oxybenzone	-1 -8	10738.0	10664.0	
	-0 -8			<u> </u>
Oxybenzone	-8	10414.0	10816.0	
Oxybenzone	-	10913.0	10533.0	
Oxybenzone	-9	11029.0	11005.0	
Oxybenzone	-9	10790.0	10910.0	
Oxybenzone	-9	12062.0	12004.0	
Oxybenzone	-10	11457.0	11384.0	
Oxybenzone	-10	10500.0	10355.0	
Oxybenzone	-10	10608.0	9455.0	
TA		10995.0	10553.0	
TA		11319.0	11306.0	
NSB		40.0	42.0	
NSB		50.0	50.0	

APPENDIX 1: Run 2: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 3 of 4

APPENDIX 1:	Run 2: Raw and Normalized DPM Data (40H-ASDN and Oxybenzone): Part 4 of 4
--------------------	---

Aromatase Activity	M Aron activ
(%)	
69.13	62
62.22	
57.09	
73.60	71
70.75	
69.42	
\$7.59	\$7
\$6.52	
\$7.57	
97.55	96
96.96	
95.66	
101.72	99
99.72	
97.94	
97.69	97
96.22	
97.21	
99.88	102
98.36	
109.13	
103.56	96
94.52	
90.91	
97.67	100
102.57	
-0.01	0.
0.07	

APPENDIX 1: Run 3: Assay Information (Methoxycinnamate)

Experiment Date:	27-Jul-11	Study Number:	9070-100107A	ROM	
Test substance:	Methoxycinnamate				
2/3/2012 15:10					
	specific activity based on decay for	4/20/10	42026.0	DPM	
	20 uL count of 3H-ASDN (mean)		41068.7	DPM	1
	0.5 mL count for total activity		18781.1	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
	20 uL count of 3H-ASDN (DPM)		41269	40762	41175

Assays Conducted by:					Spreadsheet locked o	n: 06/30/2011
					Green shaded areas:	unlocked cells for data entry
Each assay contained 100 uL 3H-ASDN	205343.3	DPM	0.200	(nmoles)		
Total product 3H-H20 per assay	75124.5	DPM	0.073	(nmoles)		
Percent conversion to product (3H-H2O) (percent)	36.6					
Rate of conversion to 3H-H2O in total activity assay	0.610	nmol/(mg pro	itein-min)			
Average activity of control Tubes	0.608	nmol/(mg pro	itein-min)			
Average full enzyme activity controls (percent +/-SD)	100.0	4.6				
Average background activity controls (percent +/- SD)	0.0	0.0				

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 1 of 4

Sample Type	Concentration	DPM1/aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	DP (alio
TA		19548.0	19240.0	
TA		19191.0	19118.0	
NSB		43.0	42.0	
NSB		46.0	47.0	
40H-ASDN	-5	308.0	302.0	
40H-ASDN		322.0	305.0	
40H-ASDN	-6	1125.0	1112.0	
40H-ASDN		1152.0	1136.0	
40H-ASDN	-6.5	3011.0	2983.0	
40H-ASDN		2956.0	2968.0	
40H-ASDN	-7	6562.0	6625.0	
40H-ASDN		6383.0		
40H-ASDN	-7.5	11969.0	11978.0	
40H-ASDN		12108.0		
40H-ASDN	-8	16277.0	16280.0	
40H-ASDN		15752.0		
40H-ASDN	_9	19037.0	18727.0	
40H-ASDN	_	18408.0		
40H-ASDN	-10	19320.0	19199.0	
40H-ASDN		19312.0		

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 2 of 4

Aromatase Activity	Me Arom
(%)	activi
103.27	102
101.99	
-0.02	-0
0.00	
1.38	1.
1.43	
5.73	5.
5.86	
15.75	15
15.57	
34.95	34
33.89	
63.66	63
63.90	
86.64	\$5
\$3.54	
100.54	99
98.62	
102.55	103
104.49	

Sample Type	Concentration	DPM1/aliquot	DPM1/aliquot	
		(aliquot 1)	(aliquot 2)	(al
Methoxycinnamate	-4	17609.0		<u> </u>
Methoxycinnamate	-4	17787.0	17934.0	
Methoxycinnamate	-4	18098.0	17700.0	
Methoxycinnamate	-4.5	18626.0	18716.0	
Methoxycinnamate	-4.5	18554.0	18308.0	
Methoxycinnamate	-4.5	18257.0	18414.0	
Methoxycinnamate	-5	18670.0	18767.0	
Methoxycinnamate	-5	18351.0	18203.0	
Methoxycinnamate	-5	18382.0	18222.0	
Methoxycinnamate	-6	18450.0	18618.0	
Methoxycinnamate	-6	19283.0	19094.0	
Methoxycinnamate	-6	13418.0	13107.0	
Methoxycinnamate	-7	19056.0	18532.0	
Methoxycinnamate	-7	19211.0	19300.0	<u> </u>
Methoxycinnamate	-7	18919.0	19157.0	
Methoxycinnamate	-8	19280.0	19537.0	<u> </u>
Methoxycinnamate		19268.0	20193.0	<u> </u>
Methoxycinnamate	-8	19326.0	19431.0	<u> </u>
Methoxycinnamate	-9	18471.0	18376.0	
Methoxycinnamate	-9	18690.0	18514.0	
Methoxycinnamate	-9	19223.0	18931.0	
Methoxycinnamate	-10	18741.0	19138.0	
Methoxycinnamate	-10		19138.0	<u> </u>
	-10 -10	18328.0		<u> </u>
Methoxycinnamate TA	-10	18853.0 17643.0	19062.0 17391.0	
TA		17643.0 18852.0	17391.0 19266.0	
NSB		44.0	50.0	
NSB		41.0	52.0	

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 3 of 4

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Methoxycinnamate): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
91.46	93
95.09	
95.29	
99.41	98
98.13	
97.62	
99.67	98
97.31	
97.44	
98.68	90
102.17	
70.54	
100.07	101
102.53	
101.37	
103.35	103
105.07	
103.19	
98.09	99
99.04	
101.58	
100.85	100
98.70	
100.94	
93.25	97
101.48	
0.01	0.
0.00	

APPENDIX 1: Run 3: Assay Information (Octocrylene)

27-Jul-11	Study Number:	9070-100107A	ROM	
Octocrylene				
specific activity based on decay for	4/20/10	42026.0	DPM	
20 uL count of 3H-ASDN (mean)		41068.7	DPM	1
0.5 mL count for total activity		18887.3	DPM	
microsomal protein/assay		0.008	mg	
Reaction time		15	min	
Coul and doll 4000 (DDM		41200	10700	41175
	Octocrylene specific activity based on decay for 20 uL count of 3H-ASDN (mean) 0.5 mL count for total activity microsomal protein/assay	Octocrylene specific activity based on decay for 4/20/10 20 uL count of 3H-ASDN (mean) 0.5 mL count for total activity microsomal protein/assay Reaction time	Octocrylene specific activity based on decay for 4/20/10 42026.0 20 uL count of 3H-ASDN (mean) 41068.7 0.5 mL count for total activity 18887.3 microsomal protein/assay 0.008 Reaction time 15	Octocrylene 42026.0 DPM specific activity based on decay for 4/20/10 42026.0 DPM 20 uL count of 3H-ASDN (mean) 41068.7 DPM 0.5 mL count for total activity 18887.3 DPM microsomal protein/assay 0.008 mg Reaction time 15 min

Assays Conducted by:					Spreadsheet l	ocked on: 06/30/2011	
10					Green shaded	areas: unlocked cells for da	ta entry
Each assay contained 100 uL 3H-ASDN	205343.3	DPM	0.200	(nmoles)			
Total product 3H-H20 per assay	75549.0	DPM	0.074	(nmoles)			
Percent conversion to product (3H-H2O) (percent)	36.8						
Rate of conversion to 3H-H2O in total activity assay	0.613	nmol/(mg prot	tein-min)				
Average activity of control Tubes	0.612	nmol/(mg prot	tein-min)				
Average full enzyme activity controls (percent +/-SD)	100.0	4.4					
Average background activity controls (percent +/- SD)	0.0	0.0					

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 1 of 4

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	D (a
TA				· ·
TA		19548.0		<u> </u>
TA		19191.0		
NSB		43.0	42.0	<u> </u>
NSB		46.0	47.0	_
40H-ASDN	-5	308.0	302.0	
40H-ASDN		322.0	305.0	
40H-ASDN	-6	1125.0	1112.0	
40H-ASDN		1152.0	1136.0	
40H-ASDN	-6.5	3011.0	2983.0	
40H-ASDN		2956.0	2968.0	
40H-ASDN	-7	6562.0		
40H-ASDN	-1	6383.0		
	77			
40H-ASDN	-7.5	11969.0		<u> </u>
40H-ASDN		12108.0		
40H-ASDN	-8	16277.0		
40H-ASDN		15752.0	15642.0	
40H-ASDN	_9	19037.0	18727.0	
40H-ASDN		18408.0	18639.0	
40H-ASDN	-10	19320.0	19199.0	
40H-ASDN		19312.0		

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 2 of 4

Aromatase Activity	Me Arom
(%)	activi
102.69	102
101.42	
-0.02	-0
0.00	
1.37	1.
1.41	
5.69	5.
5.82	
15.66	15
15.47	
34.75	34
33.70	
63.30	63
63.53	
\$6.15	\$4
\$3.07	
99.97	99
98.07	
101.98	102
103.90	

Sample Type	Concentration	DPM1/aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	D (a
Octocrylene	-4	17678.0	17756.0	
Octocrylene	-4	17732.0	18068.0	-
Octocrylene	-4	17761.0	17632.0	<u> </u>
Octocrylene	-4.5	17621.0	17418.0	-
Octocrylene	-4.5	17717.0	17607.0	-
Octocrylene	-4.5	17393.0	17281.0	-
Octocrylene	-5	17332.0	17384.0	-
Octocrylene	-5	17417.0	17857.0	<u> </u>
Octocrylene	-5	14369.0	14331.0	-
Octocrylene	-6	17693.0	17663.0	
Octocrylene	-6	17826.0	17633.0	-
Octocrylene	-6	17792.0	17817.0	-
Octocrylene	-7	19473.0	19774.0	-
Octocrylene	-7	19755.0	19774.0	<u> </u>
Octocrylene	-7	19323.0	19372.0	-
Octocrylene	-8	19788.0	19388.0	-
Octocrylene	-8	19914.0	20116.0	<u> </u>
Octocrylene	-8	13761.0	13965.0	<u> </u>
Octocrylene	-9	19115.0	18927.0	-
Octocrylene	-9	19137.0	19313.0	<u> </u>
Octocrylene	-9	19182.0	18977.0	<u> </u>
Octocrylene	-10	19435.0	18977.0	
Octocrylene	-10	19435.0	13966.0	<u> </u>
Octocrylene	-10	19563.0	13966.0	<u> </u>
TA	-10	19537.0	19173.0	
TA		18857.0	16432.0	<u> </u>
NSB		42.0	47.0	
NSB		59.0	51.0	

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 3 of 4

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octocrylene): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
93.79	94
94.76	
93.68	
92.74	92
93.50	
91.77	
91.88	\$7
93.36	
75.92	
93.58	93
93.85	
94.25	
103.91	103
104.48	
102.44	
103.72	94
105.99	
73.33	
100.71	101
101.79	
101.02	
101.69	97
\$8.73	
100.89	
102.49	97
93.40	
-0.01 0.04	0.

APPENDIX 1: Run 3: Assay Information (Octylsalicylate)

Experiment Date:	27-Jul-11	Study Number:	9070-100107A	ROM	
Test substance:	OctylSalicylate				
2/3/2012 15:21					
	specific activity based on decay for	4/20/10	42026.0	DPM	
	20 uL count of 3H-ASDN (mean)		41068.7	DPM	1
	0.5 mL count for total activity		18819.8	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
	20 uL count of 3H-ASDN (DPM)		41269	40762	41175

Assays Conducted by:					Spreadsheet	locked on: 06/30/2	011	
					Green shaded areas: unlocked cells for data entry			
Each assay contained 100 uL 3H-ASDN	205343.3	DPM	0.200	(nmoles)				
Total product 3H-H20 per assay	75279.0	DPM	0.073	(nmoles)				
Percent conversion to product (3H-H2O) (percent)	36.7							
Rate of conversion to 3H-H2O in total activity assay	0.611	nmol/(mg prot	ein-min)					
Average activity of control Tubes	0.609	nmol/(mg prot	ein-min)					
Average full enzyme activity controls (percent +/-SD)	100.0	2.9						
Average background activity controls (percent +/- SD)	0.0	0.0						

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 1 of 4

Sample Type	Concentration	DPM1 <i>ł</i> aliquot (aliquot 1)	DPM1 <i>l</i> aliquot (aliquot 2)	D (a
TA		19548.0	19240.0	┞──┦
TA		19191.0	19240.0	
NSB		43.0	42.0	
NSB		46.0	47.0	<u> </u>
40H-ASDN	-5	308.0	302.0	
40H-ASDN		322.0	305.0	<u> </u>
40H-ASDN	-6	1125.0		
40H-ASDN	-	1152.0	1136.0	<u> </u>
40H-ASDN	-6.5	3011.0	2983.0	_
40H-ASDN	-0.5	2956.0	2968.0	
40H-ASDN	-7	6562.0	6625.0	_
40H-ASDN	-1	6383.0	6408.0	<u> </u>
	-7.5			_
40H-ASDN	-7.0	11969.0	11978.0	
40H-ASDN		12108.0	11926.0	
40H-ASDN	_8	16277.0	16280.0	
40H-ASDN		15752.0	15642.0	_
40H-ASDN	_9	19037.0	18727.0	
40H-ASDN		18408.0		_
40H-ASDN	-10	19320.0	19199.0	
40H-ASDN		19312.0	19933.0	

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 2 of 4

Aromatase Activity	Me Arom
(%)	activi
103.06	102
101.78	
-0.03	-0
0.00	
1.37	1.
1.42	
5.71	5.
5.84	
15.71	15
15.53	
34.87	34
33.82	
63.53	63
63.76	
86.46	\$4
\$3.37	
100.33	99
98.42	
102.34	103
104.28	

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	(a
OctylSalicylate	-4	17010.0		
OctylSalicylate	4	17010.0		<u> </u>
OctylSalicylate	4	16373.0		<u> </u>
OctylSalicylate	-4.5	16373.0		
OctylSalicylate	-4.5			<u> </u>
	-4.5	16326.0		<u> </u>
OctylSalicylate		17165.0		
OctylSalicylate	-5	18030.0		<u> </u>
OctylSalicylate	-5	18146.0		<u> </u>
OctylSalicylate	-5	17589.0		
OctylSalicylate	-6	19930.0	19952.0	
OctylSalicylate	-6	19416.0	19237.0	
OctylSalicylate	-6	19529.0	19611.0	
OctylSalicylate	-7	19763.0	19888.0	
OctylSalicylate	-7	18926.0	18898.0	
OctylSalicylate	-7	19527.0	19336.0	
OctylSalicylate	-8	19268.0	19341.0	
OctylSalicylate	-8	19931.0	19801.0	
OctylSalicylate	-8	20024.0	19622.0	
OctylSalicylate	-9	19563.0		
OctylSalicylate	-9	19165.0		-
OctylSalicylate	-9	19728.0		
OctylSalicylate	-10	19242.0		
OctylSalicylate	-10	19242.0		<u> </u>
OctylSalicylate	-10	19413.0		<u> </u>
TA	-10	19639.0		
TA		18548.0	18353.0	<u> </u>
NSB		46.0	50.0	
NSB		48.0	56.0	

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 3 of 4

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Octylsalicylate): Part 4 of 4

Activity (%)	Me Arom activi
88.45	88
\$\$.77	
\$7.67	
88.08	88
\$7.35	
90.73	
95.33	94
94.91	
93.81	
105.97	104
102.70	
104.00	
105.36	103
100.49	
103.26	
102.58	104
105.57	
105.34	
103.49	102
99.18	
103.65	
101.45	103
103.17	
105.15	
97.12	97
98.03	
0.00	0.

APPENDIX 1: Run 3: Assay Information (Oxybenzone)

Experiment Date:	27-Jul-11	Study Number:	9070-100107A	ROM	
Test substance:	Oxybenzone				
2/3/2012 15:25					
	specific activity based on decay for	4/20/10	42026.0	DPM	
	20 uL count of 3H-ASDN (mean)		41068.7	DPM	1
	0.5 mL count for total activity		19271.8	DPM	
	microsomal protein/assay		0.008	mg	
	Reaction time		15	min	
				10700	
	20 uL count of 3H-ASDN (DPM)		41269	40762	41175

Assays Conducted by:					Spreadsh	eet locked on: 06/	30/2011
					Green sh	aded areas: unlocl	ked cells for data entry
Each assay contained 100 uL 3H-ASDN	205343.3	DPM	0.200	(nmoles)			
Total product 3H-H20 per assay	77087.0	DPM	0.075	(nmoles)			
Percent conversion to product (3H-H2O) (percent)	37.5						
Rate of conversion to 3H-H2O in total activity assay	0.626	nmol/(mg pro	otein-min)				
Average activity of control Tubes	0.624	nmol/(mg pro	otein-min)				
Average full enzyme activity controls (percent +/-SD)	100.0	0.5					
Average background activity controls (percent +/- SD)	0.0	0.0					

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 1 of 4

Sample Type	Concentration	DPM1 <i>l</i> aliquot (aliquot 1)	DPM1/aliquot (aliquot 2)	DF (ali
TA		19548.0	19240.0	
TA		19191.0	19118.0	
NSB		43.0	42.0	
NSB		46.0	47.0	
40H-ASDN	-5	308.0	302.0	
40H-ASDN		322.0	305.0	
40H-ASDN	-6	1125.0	1112.0	
40H-ASDN		1152.0	1136.0	
40H-ASDN	-6.5	3011.0	2983.0	
40H-ASDN		2956.0	2968.0	
40H-ASDN	-7	6562.0	6625.0	
40H-ASDN		6383.0		<u> </u>
40H-ASDN	-7.5	11969.0		
40H-ASDN		12108.0		<u> </u>
40H-ASDN	-8	16277.0		
40H-ASDN		15752.0		
40H-ASDN	_9	19037.0	18727.0	
40H-ASDN	-	18408.0		
40H-ASDN	-10	19320.0		
40H-ASDN		19312.0		

TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 2 of 4

Aromatase Activity (%)	Me Arom activi
100.64	100
99.39	
-0.02	-0
0.00	
1.35	1.
1.39	
5.58	5.
5.71	
15.35	15
15.17	
34.06	33
33.03	
62.04	62
62.27	
84.43	\$2
\$1.41	
97.97	97
96.11	
99.94	100
101.82	

Sample Type	Concentration	DPM1 <i>l</i> aliquot	DPM1 <i>l</i> aliquot	
compie type	Series and the series of the s	(aliquot 1)	(aliquot 2)	(ali
Oxybenzone	-4	6900.0	7114.0	
Oxybenzone	-4	6701.0	6662.0	
Oxybenzone	-4	\$188.0	7993.0	
Oxybenzone	-4.5	12242.0	12146.0	
Oxybenzone	-4.5	12730.0	12395.0	
Oxybenzone	-4.5	12111.0	12343.0	
Oxybenzone	-5	17971.0	17691.0	
Oxybenzone	-5	17723.0	17558.0	
Oxybenzone	-5	17910.0	17882.0	
Oxybenzone	-6	19603.0	19737.0	
Oxybenzone	-6	18114.0	18232.0	-
Oxybenzone	-6	19984.0	19768.0	
Oxybenzone	-7	19511.0	19504.0	
Oxybenzone	-7	18910.0	19198.0	
Oxybenzone	-7	19618.0	19825.0	
Oxybenzone	-8	19095.0	19010.0	
Oxybenzone	-8	20052.0	19466.0	
Oxybenzone	-8	12571.0	12439.0	
Oxybenzone	-9	19702.0	19700.0	
Oxybenzone	-9	19416.0	19491.0	
Oxybenzone	-9	19627.0	19679.0	
Oxybenzone	-10	18887.0	19146.0	
Oxybenzone	-10	19537.0	19706.0	
Oxybenzone	-10	19640.0	19419.0	
TA		19288.0	19269.0	
TA		19276.0	19244.0	
NSB		46.0	46.0	
NSB		46.0	50.0	1

APPENDIX 1: Run 3: Raw and Normalized DPM Data (4OH-ASDN and Oxybenzone): Part 3 of 4

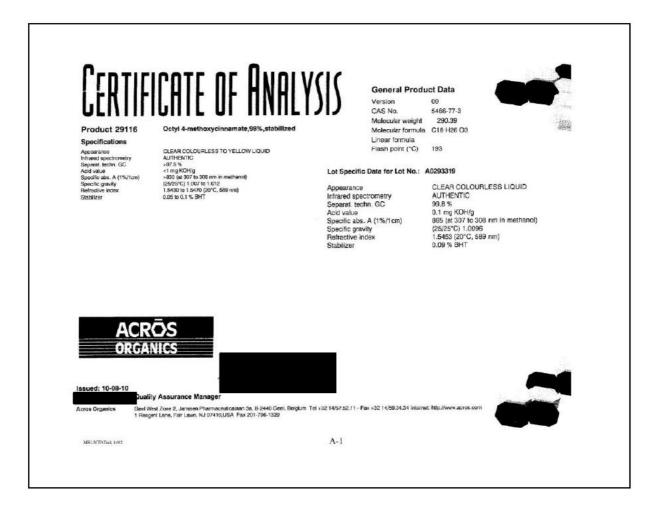
TA = Full Activity Control (Total Activity); NSB = Background Activity Control (Non-Specific Binding)

APPENDIX 1: Run 3: Raw and Normalized DPM Data (40H-ASDN and Oxybenzone): Part 4 of 4

Aromatase Activity (%)	Me Arom activi
36.21	37
34.51	
41.84	
63.19	63
65.10	
63.36	
92.51	92
91.52	
92.84	
102.07	99
94.29	
103.14	
101.23	100
98.87	
102.34	
98.86	88
102.53	
64.80	
102.23	101
100.95	
101.98	
98.67	100
101.82	
101.34	
100.04	99
99.94	
0.00	0.
0.01	

APPENDIX 2: Deviation Forms

Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study.	Le vitro models to predict toxin	Deviation &	Investigation	Form #:	SOP-1003
Date of Occurrence: 28 Jun 2011, 29 Jun 2011, and 27 Jul 2011 Associate Involved: Description of Deviation:	Study Number (if app	licable): 9070-1	00107AROM		
Date of Occurrence: 2011, and 27 Jul 2011 Associate Involved: Description of Deviation: The batch number listed in the study protocol for test substance 2-hydroxy-4-methoxybenzophenone (Referred to as Oxybenzone) was listed as 20080801. This batch was not utilized in this study. The batch number of the test substance used in this study was the current batch, 20100801. Signature Date: 0.3 FEBRUARY 200 (Reporting Associate) Date: 0.3 FEBRUARY 200 Type of Deviation (Reporting Associate) Date: 0.3 FEBRUARY 200 SUPP of Deviation X Protocol Deviation GLP Deviation INo Deviation Summary of Deviation X Protocol Deviation GLP Deviation INo Deviation Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Date: O.3 FEBRUARY 22 Signature:	Date of Reporting:	03 February 2012	Reporting Associa	te:	
The batch number listed in the study protocol for test substance 2-hydroxy-4-methoxybenzophenone (Referred to as Oxybenzone) was listed as 20080801. This batch was not utilized in this study. The batch number of the test substance used in this study was the current batch, 20100801. Signature Date: 0.3 FEBRUAPY 200 (Reporting Associate) Date: 0.3 FEBRUAPY 200 Type of Deviation (determined by Study Director/Principal Investigator): No Deviation No Deviation SOP Deviation X) X Protocol Deviation GLP Deviation No Deviation Summary of Deviation X) X Protocol Deviation GLP Deviation No Deviation Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Date: D3 FEBRUAPY 20 Signature: SD/PI/Test Facility Management Date: D3 FEBRUAPY 22	Date of Occurrence:	28 Jun 2011, 29 Jun 2011, and 27 Jul 20	11 Associate Involved	ł: _	
(Referred to as Oxybenzone) was listed as 20080801. This batch was not utilized in this study. The batch number of the test substance used in this study was the current batch, 20100801. Signature Date: 0.3 FEBRUARY 200 (Reporting Associate) Type of Deviation (determined by Study Director/Principal Investigator): Date: 0.3 FEBRUARY 200 (No Deviation X) (Protocol Deviation GLP Deviation (Deviation Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Signature: Date: 0.3 FEBRUARY 200 (Date: 0	Description of Deviation	on:		.C.	
batch number of the test substance used in this study was the current batch, 20100801. Signature Date: 0.3 FEBRUARS 200 (Reporting Associate) Date: 0.3 FEBRUARS 200 Type of Deviation (determined by Study Director/Principal Investigator): Date: 0.3 FEBRUARS 200 SOP Deviation (determined by Study Director/Principal Investigator): No Deviation No Deviation SOP Deviation X Protocol Deviation GLP Deviation No Deviation Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. None. No impact on study. Date: O3 FEBRUARY 200 Signature:	The batch number liste	ed in the study protocol fo	r test substance 2-hyd	roxy-4-methoxybenz	zophenone
Signature Date: <u>0.3 FEBRUAR44220</u> (Reporting Associate) Type of Deviation (determined by Study Director/Principal Investigator): SOP Deviation X X Protocol Deviation GLP Deviation Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Signature: Date: <u>0.3 FEBRUARY 2</u> SD/PI/Test Facility Management	(Referred to as Oxybe	nzone) was listed as 200	80801. This batch w	as not utilized in th	is study. The a
(Reporting Associate) Type of Deviation (determined by Study Director/Principal Investigator): SOP Deviation No Deviation SOP Deviation X Protocol Deviation Summary of Deviation Investigation by SD/PI/Test Facility Management/Designee: Current bath of Oxybenzone (20100801) used instead of previous batch (20080801). Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Date: O3 FEBRUARY 22 Signature: Date: SD/PI/Test Facility Management	batch number of the te	est substance used in this :	study was the current	batch, 20100801.	
Action Taken and Determination of Impact on Study Data and/or Facility Compliance: None. No impact on study. Signature:	Type of Deviation (det		r/Principal Investigate		<i>um - 1</i> 01.
None. No impact on study. Signature: Date: <u>03 FEBRUARY 2</u>				-900-000 anti-000 - 10 2]No Deviation
SD/PI/Test Facility Management	Summary of Deviation	Investigation by SD/PI/1	est Facility Managem	ent/Designee:]No Deviation
Standard Operating Procedure Pag	Summary of Deviation Current bath of Oxybe Action Taken and Det	enzone (20100801) used	est Facility Managem	ent/Designee: vatch (20080801).]No Deviation
	Summary of Deviation Current bath of Oxybe Action Taken and Det None. No impact on Signature:	Investigation by SD/PI/T enzone (20100801) used ermination of Impact on S study.	est Facility Managem instead of previous b itudy Data and/or Fac	ent/Designee: aatch (20080801).	


APPENDIX 2: Deviation Forms

Contain				Form	#:	SOP-10
In vitro models to predict to	xicity D	eviation & Inv	vestigation			
Study Number (if ap	plicable):	9070-100	107AROM			
Date of Reporting:	_03 January 2	012	Reporting Asso	ociate:		
Date of Occurrence	27 July 20	11	Associate Invo	lved:		
Description of Devic	tion:					
Purity used for prep	aring Octylmetho	xycinnamate	stocks was 98%	but actual was g	9.8%	
according to C of A						
Signature				Date: 0.31	ERE	upy z
	(Reporting	Associate			-910	
Type of Deviation (c	etermined by Stu		Principal Investi	gator):		
Type of Deviation (c				gator): ? Deviation	1	No Deviati
		ndy Director/F Potocol Deviation	on 🔤 GLI	Deviation	_	No Deviati
SOP Deviati	on X Pro	ndy Director/F Nocol Deviation Dy SD/PI/Test	on 🔤 GLI	Deviation	_	No Deviat
SOP Deviati	on X Pro	ndy Director/F Nocol Deviation Dy SD/PI/Test	on 🔤 GLI	Deviation	_	No Deviati
SOP Deviati Summary of Deviati Used the incorrect p	on X Pro	udy Director/F otocol Deviatio by SD/PI/Test 6)	on 🔲 GLI	^o Deviation gement/Designee		No Deviati
SOP Deviati	on X Pro	udy Director/F otocol Deviatio by SD/PI/Test 6)	on 🔲 GLI	^o Deviation gement/Designee		No Deviati
SOP Deviati Summary of Deviati Used the incorrect p	on X Pro on Investigation b urity (off by 1.89 etermination of In	ndy Director/F Notocol Deviation SD/PI/Test 6) mpact on Stud	on □GU t Facility Manag dy Data and/or	^o Deviation gement/Designee Facility Complia		No Deviati
SOP Deviati Summary of Deviati Used the incorrect p Action Taken and D	on X Pro on Investigation b urity (off by 1.89 etermination of In	ndy Director/F Notocol Deviation SD/PI/Test 6) mpact on Stud	on □GU t Facility Manag dy Data and/or	^o Deviation gement/Designee Facility Complia		No Deviati
SOP Deviati Summary of Deviati Used the incorrect p Action Taken and D	on X Pro on Investigation b urity (off by 1.89 etermination of In	ndy Director/F Notocol Deviation SD/PI/Test 6) mpact on Stud	on □GU t Facility Manag dy Data and/or	^o Deviation gement/Designee Facility Complia		No Deviati
SOP Deviati Summary of Deviati Used the incorrect p Action Taken and D None. Only off by	on X Pro on Investigation b urity (off by 1.89 etermination of In	ndy Director/F Notocol Deviation SD/PI/Test 6) mpact on Stud	on □GU t Facility Manag dy Data and/or	P Deviation gement/Designee Facility Complia is minute.	nce:	
SOP Deviati Summary of Deviati Used the incorrect p Action Taken and D	on X Pro on Investigation b urity (off by 1.89 etermination of I 1.8% and after s	ndy Director/F otocol Deviation by SD/PI/Test 6) mpact on Studential merial dilutions	on GLI t Facility Manag dy Data and/or s, the difference	P Deviation gement/Designee Facility Complia is minute.	nce:	No Deviati
SOP Deviati	on X Pro on Investigation b urity (off by 1.89 etermination of In	ndy Director/F otocol Deviation by SD/PI/Test 6) mpact on Studential merial dilutions	on GLI t Facility Manag dy Data and/or s, the difference	P Deviation gement/Designee Facility Complia is minute.	nce:	

APPENDIX 2: Deviation Forms

Form #: SOP-1003-F
Study Number (if applicable):9070-100107AROM
Date of Reporting: 02 February 2012 Reporting Associate:
Date of Occurrence: _26 September 2011Associate Involved:
Description of Deviation: Section 15 of study protocol indicates that sponsor will sign all protocol amendments. The protocol
amendment on 26 September 2011 was not signed by the sponsor.
Signature Date: <u>O3 FEBRUARY 2012</u> (Reporting Associate)
Type of Deviation (determined by Study Director/Principal Investigator):
SOP Deviation X Protocol Deviation GLP Deviation No Deviation
Protocol deviation. Section 15 of study protocol specifies that sponsor will sign all amendments.
Action Taken and Determination of Impact on Study Data and/or Facility Compliance:
The deviation has no impact on the study data. The sponsor was informed of protocol changes and
received a copy of the amendment.
Signature: Date: <u>03 FEBRUARY 2d2</u>
Standard Operating Procedure Page 1 o

APPENDIX 3: Certificate of Analyses (Methoxycinnamate)

APPENDIX 3: Certificate of Analysis (Octocrylene)

APPENDIX 3: Certificate of Analysis (Octylsalicylate)

APPENDIX 3: Certificate of Analyses (Oxybenzone)

0	IVY FINE CHEMICALS http://www.ivychem.com CERTICATE OF ANALYSIS					
	Product Name	2-HYDROX	(ү-4-метноху	BEN	ZOPHENONE	
	Synonym	Oxybenzone	ne naven neen sonn op seisten van de seisten op seisten op seisten op seisten op seisten op seisten op seisten		- Preserve - Anthony Microsoft - Line Control point from the Participation of the Particip	
	Catalog Number	HH13-026				
	CAS Number	131-57-7				
	Batch Number	20100801	Quantity		200 KG	
	Manu. Date	August 2, 2010	Expiry Date		August 1, 2012	
	Date of Report	August 2, 2010	Package			
	Quality Specifications		Specifications (In	n hous	e)	
	Test	Standa	rd		Results	
	Appearance	Light yellow to gre		L	ight yellow crystalline powder	
	Assay (HPLC)	98% m		99.92%		
	Melting Point	62 °C to 65 °C			63.8 °C to 64.8 °C	
	Loss on Drying	0.5% max		0.07%		
	Heavy Metals	<= 5 pp	m		2.9 ppm	
	Conclusion: Conform					
ð	· · · · · · · · · · · · · · · · · · ·					

APPENDIX 3: Certificate of Analysis (Aromatase Microsomes)

BD Biosciences – Discovery Labware BD Gentest[™] Products and Services 6 Henshaw Street Woburn, MA 01801 Tel: 781.935.5115 Fax: 781.938.8644 bdbiosciences.com

Info_gentest@bd.com

Human CYP19 + P450 Reductase SUPERSOMES™

Catalog Number456260 Lot Number03897	Storage ConditionsSTORE AT -80°C Date Released2011 March Expiration Date2014 February
Package Contents	0.5 nmole cytochrome P450 in 0.5 mL
	7.4 mg/mL in 100 mM potassium phosphate (pH 7.4)
Cytochrome c Reductase Activity	
Cytochrome P450 Content	1000 pmole per mL

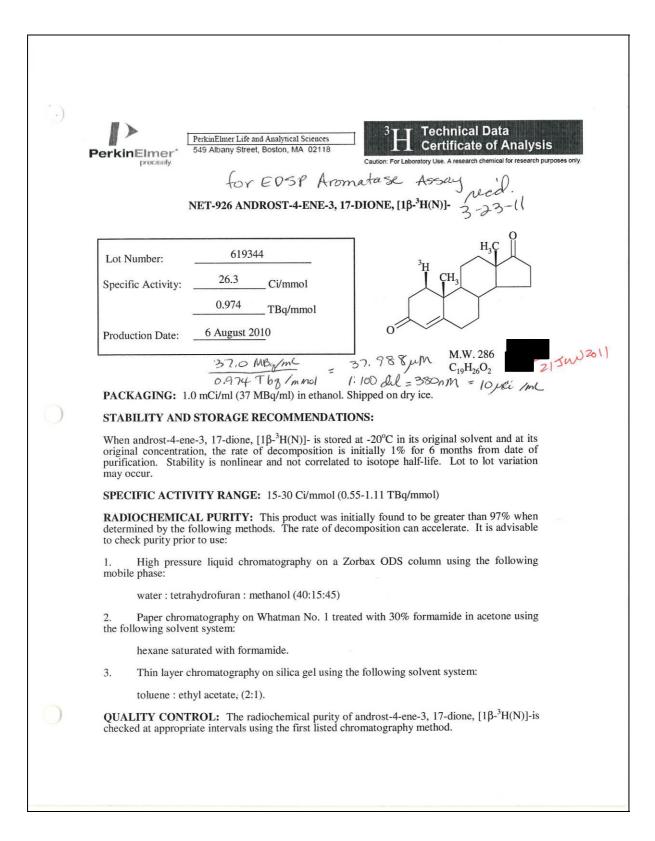
This activity is catalyzed by human CYP19 which is expressed from human CYP19 cDNA using a baculovirus expression system. Baculovirus infected insect cells (BTI-TN-5B1-4) were used to prepare these microsomes. These microsomes also contain cDNA-expressed human P450 reductase. A microsome preparation using wild type virus (GENTEST Catalog No. 456200 or 456201) should be used as a control for native activities.

METHOD: A 0.25 mL reaction mixture containing 25 pmole P450, 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 U/mL glucose-6-phosphate dehydrogenase, 3.3 mM magnesium chloride and 0.05 mM testosterone in 100 mM potassium phosphate (pH 7.4) was incubated at 37°C for 20 min. After incubation, the reaction was stopped by the addition of 125 uL acetonitrile and centrifuged (10,000 x g) for 3 minutes. 50 uL of the supernatant was injected into a 4.6 x 250 mm 5 µm C18 HPLC column and eluted isocratically at 45°C with a mobile phase of 60% water and 40% acetonitrile and at a flow rate of 1.5 mL per min. The product was detected by its absorbance at 200 nm and quantitated by comparing the absorbance to a standard curve of (beta)-estradiol.

Time Course of Product Formation

ADVICE

- Thaw rapidly in a 37°C water bath. Keep on ice until use
- Aliquot to minimize freeze-thawing cycles. Less than 20% of the catalytic activity is lost after 6 freeze thaw cycles.
- Metabolite production is linear with respect to enzyme concentration up to at least 50 pmole P450 per mL.
- Metabolite production with testosterone is approximately linear for 40 minutes (see graph above).

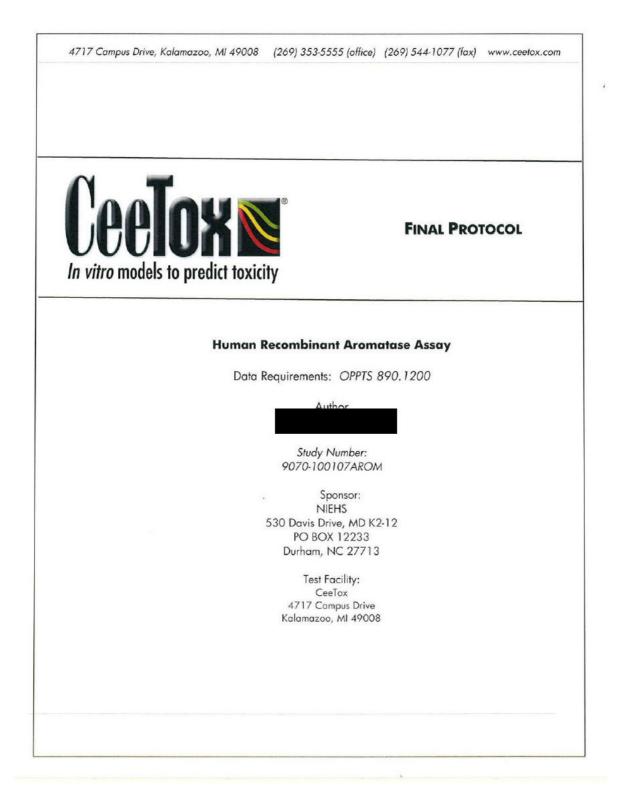

THIS PRODUCT IS SUPPLIED FOR LABORATORY RESEARCH USE ONLY.

Licensed for Research Purposes Only. Commercial use requires license from Boyce Thompson Institute for Plant Research US Pat. No. 5,300,435

APPENDIX 3: Certificate of Analysis (Aromatase Microsomes)

BD (6 He Wob Tel: Fax: bdbi Info_	Biosciences - Discovery Labware Gentest™ Products and Services anshaw Street ourn, MA 01801 781.935.5115 781.938.8644 iosciences.com _gentest@bd.com uman CYP19 + P450 Red talog Number456260	ConditionsSTORE AT -80°C
Loi	t Number19701	Date Released
Pro Cyt Cyt	ckage Contents	ng/mL in 100 mM potassium phosphate (pH 7.4) nmole/(min x mg protein) pmole per mL
infec	ted insect cells (BTI-TN-5B1-4) were used to prepare these micro ctase. A microsome preparation using wild type virus (GENTES	uman CYP19 cDNA using a baculovirus expression system. Baculovirus osomes. These microsomes also contain cDNA-expressed human P450 T Catalog No. 456200 or 456201) should be used as a control for native
U/mL chlori phosj incub aceto the si colum 60% min. quan	METHOD: A 0.25 mL reaction mixture containing 25 ie P450, 1.3 mM NADP+, 3.3 mM glucose-6-phosphate, 0.4 - glucose-6-phosphate dehydrogenase, 3.3 mM magnesium ide and 0.05 mM testosterone in 100 mM potassium phate (pH 7.4) was incubated at 37°C for 20 min. After pation, the reaction was stopped by the addition of 125 uL onitrile and centrifuged (10,000 x g) for 3 minutes. 50 uL of upernatant was injected into a 4.6 x 250 mm 5 µm C18 HPLC mn and eluted isocratically at 45°C with a mobile phase of water and 40% acetonitrile and at a flow rate of 1.5 mL per The product was detected by its absorbance at 200 nm and titated by comparing the absorbance to a standard curve of)-estradiol.	Time Course of Product Formation
•	cycles.	an 20% of the catalytic activity is lost after 6 freeze thaw e concentration up to at least 50 pmole P450 per mL.
тні	Licensed for Research Purposes Only. Commercial use re	LABORATORY RESEARCH USE ONLY. equires license from Boyce Thompson Institute for Plant Research No. 5,300,435

APPENDIX 3: Certificate of Analysis (³H-Androstenedione, ³H-ASDN)



APPENDIX 3: Certificate of Analysis (Androstenedione, ASDN)

Batch	Analysis	Provided by :	Steraloids, Inc. P.O. Box 689 Newport, RI 02840
j.			401-848-5422 E-Mail: sales@steraloids.com
Formula:	Immes: ANDROSTENEDIÓNE (I D: A6030-100 s, inc.Batch: L1712 C19H3xO2 C19H3xO2 r Weight: 286.41 roint: 175-176°C +179°(chf) LC: LC: 1 HPLC: 99.8% UV/pTSA,12	DIONE PURIFIED)	
	ids are for experimental and laboratory use only fics given are actual and will be for the particula		in humans or animals.
Prepared for Sterałoids "TLC •" re		2 6 2011 ³ by thin layer chromatography.	
)			
	The placing of a purchase order by the Buyer Including the acceptance that the goods as endered b	with the Sofler is acceptance in full of the terms a y the Buyle are manulaclused entirely to the Buyl	id conditions of the Seller 's specifications as set out above.

APPENDIX 3: Certificate of Analysis (4OH-ASDN, Formestane)

	Certificate Of Analys	is	Page 1 of 1
	Certifica Product Name Product Namber Product Brand CAS Number	te of Analysis Formestane, solid P2552 SIGMA 566-46-3	
	Noiccular Formula Noiccular Weight TEST APPEARANCE SOLUBILITY SPECIFIC ROTATION UV-VIS SPECITUM PURITY BY HPLC QC RELEASE DATE	C _{III} H ₂₀ O ₃ 302 A1 WHITE POWDER CLEAR COLORLESS SOLUTION IN CHLOROFORM AT 80 MG/ML +174.3 DEG (G - 17. IN CHLOROFORM AT 20 DEG CELSIUS) EMM = 12.6 AT LAMBDA MAX 277 NM IN ETHANOL 99.6% JANLARY 2002	
	Quality Control Quality Control St. Louie: Missouri USA		
).			
- main	http://www.sigmaaldri	ch.com/catalog/CertOfAnalysisPage.do?symbol=F2552&LotNo=08	6/27/2011

		TEST PROT	FOCOL		
TO BE COMPLETE	D BY THE STU	IDY SPONSOR:			
Study Sponsor:	N	EHS/NTP	Chief Toxi	cology Branch)	
Address:	P.O. Box 1	2233			
	Research T	riangle Park, NC		Phone:	
Study Monitor:		nangio ran, rie	l		
	(D) N		E-mail:		
Sponsor Protocol Test Substance	Name(s): O	octyl Salicylate,			
Ethylhexyl 2-cya	no-3,3-aiphe	nylacrylate, 2-Hy	aroxy-4-meth	oxysenzopnenc	ne.
Telephone No.: Facsimile No.: E-mail:		1 Representati	VA		
Facsimile No.: E-mail: Contract Offic	ce Technico	al Representati 900005C; NIEHS (01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F	ce Technico			01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito	ce Technica IHSN2732009 Pr		Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.: Facsimile No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.: Facsimile No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.: Facsimile No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.: Facsimile No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	
Facsimile No.: E-mail: Contract Offic (Contract No. F Study Monito Telephone No.: Facsimile No.:	ce Technica IHSN2732009 Pr	900005C; NIEHS (Control No. N	01-ES-00005)	

CeeToxaa PROTOCOL – AROMATASE (HUMAN RECOMBINANT)	Study #: 9070.100107ARC
Table of Contents	
Signatures	3
1. Title of Study	
,	
2. Purpose of Study	
3. Compliance Statement	
4. Quality Assurance	
5. Regulatory Citations	
6. Test Facility	
7. Test & Control Substances	
Test Substance(s)	
7.1 Test Substance: 2-Hydroxy-4-Methoxybenzophenone (Oxybenzone)	
7.2 Test Substance: 2-Ethylhexyl p-methoxycinnamate (Octylmethoxycinna	mate)
7.3 Test Substance: Octyl Salicylate (Octylsalate)	
7.4 Test Substance: 2-Ethylhexyl 2-Cyano-3,3-Diphenylacrylate (Octocryle	
Positive Substance	
Substrate	
Substrate Name/Supplier	
Radiochemical Purity	
Microsomes	,
Other Assay Components	
3. Test System	
2. Aromatase Assay Method	
0. Positive Control Assay	
1. Determination of the Response of Aromatase Activity to Test Substa	ance(s)
2. Data Analysis	
Aromatase Activity and Percent of Control Calculations	

00101	RESERVICE - AROMATASE (HUMAN RECOMBINANT)	Study #: 9070-100107ARC
13.	Model Fitting	
Gr	aphical and Analysis of Variance Comparisons Among Concentration Respons	se Curve Fits
	a Interpretation	
Sta	tistical Software and Analysis	
14.	Study Reports	
15.	Alterations of the Study Design	
16.	Data Retention and Archiving	

CeeTox SE PROTOCOL - AROMATASE (HUMAN RECOMBINANT)	Study #: 9070-100107ARON
Signatures	
Sfuldy Sponsor Date	24/4 Y/11
Study Director	<u>y/n</u>
agire sets as	

CeeTonia PROTOCOL – AROMATASE (HUMAN RECOMBINANT) Study #: 9070-100107ARON					
1.	Title of Study				
	Human Recombinant Aromatas	e Assay			
2.	Purpose of Study				
	as a Tier 1 screening assay ir	to describe procedures for cor tended to identify substances the by inhibiting catalytic activity of androgens to estrogens.	nat may affect the endocrine		
3.	Compliance Statement				
		n compliance with EPA GLP re 60.113. Dose concentrations o tical methods.			
4.	Quality Assurance				
		periodic inspections and the dro unce Unit of CeeTox in accorda			
5.	Regulatory Citations				
	Endocrine Disruptor Screening Guideline OPPTS 890.1200.	Program, <i>in vitro</i> Aromatase (H	uman Recombinant) EPA Tes		
6.	Test Facility				
	CeeTox, Inc. 4717 Campus Drive Kalamazoo, MI 49008				
7.	Test & Control Substances				
Test S	ubstance(s)				
ap be da	ote: A certificate of analysis will be pended to the study report. Confirmati verified by the sponsor. CeeTox will ta and append to the study report, alc stroyed following finalization of the stu	on of the identity of the test substance obtain certificates of analysis for [³ H ng with ASDN. Test substance will b	, characterization and stability w IJASDN and will store in the stud		
7.1	Test Substance: 2-Hydroxy-4-Meth	oxybenzophenone (Oxybenzone)			
	CAS No. 13	1-57-7			

APPENDIX 4:	Protocol and Protocol Amendments
--------------------	----------------------------------

lee To r	ROTOCOL - AROMATA	se (Human Recombinant)	Study #: 9070-100107AROM
	Source:	lvy Fine Chemicals Corporation	
	Lot/Batch No.:	20080801	
	ILS Repository No.:	11-29	
	Formula:	C ₁₄ H ₁₂ O ₃	
	Description:	Light yellow powder	
	Storage	Room Temperature	
7.2	Test Substance: 2-Ethylhe	xyl p-methoxycinnamate (Octylmethoxycinnamate)	
	CAS No.	5466-77-3	
	Source:	Acros Organics	
	Lot/Batch No.:	A0293319	
	ILS Repository No.:	11-32	
	Formula:	C ₁₈ H ₂₆ O ₃	
	Description:	Clear colorless liquid	
	Storage	Room Temperature	
7.3	Test Substance: Octyl Sal	icylate (Octylsalate)	
	CAS No.	118-60-5	
	Source:	Sigma-Aldrich	
	Lot/Batch No.:	44698PJ	
	ILS Repository No.:	11-30	
	Formula:	C ₁₅ H ₂₂ O ₃	
	Description:	Colorless liquid	

	OMATASE (HUMA	N RECOMBINANT)	Study #: 9070-100107ARO
orage	Roon	n Temperature	
st Substance: 2-	Ethylhexyl 2-Cyar	no-3,3-Diphenylacrylate	(Octocrylene)
CAS No.		7-30-4	
ource:	Sigm	a-Aldrich	
t/Batch No.:	0169	97MJ	
Repository N	o.: 11-3	1	
rmula:	C ₂₄ H	27NO2	
escription:	Yello	w viscous liquid	
orage	Room	n Temperature	
ration of Test Su	bstance		
MSO). The to lvent is DMSO e solvent to inh e day of use su dition of 20 μ d control subst ubstance e known arom	tal volume of sc or ethanol) of t ibit the enzyme uch that the targ L of the dilution ances will not b matase inhibitor,	olvent used in each as he total assay volume . Fresh dilutions of the ret concentration of tes to a 2 mL total assay e verified using analyt 4-hydroxyandrostend	solute ethanol or dimethylsulfoxide say will be no more than 1% (if the in order to minimize the potential of e stock solution will be prepared or st substance can be achieved by the volume. Dose concentrations of test ical methods. ione (4-OH ASDN), is used as the r information for 4-OH ASDN.
est Substance	CAS Number	Molecular Formula	Molecular Weight (g/mol)
4-OH ASDN	566-48-3	C ₁₉ H ₂₆ O ₃	302.4
ck solution wil	l be prepared o	n the day of use. Dilu	utions will be prepared such that the
e 4-Oł ck soli	H ASDN ution wil	H ASDN will be formula ution will be prepared o	ASDN 566-48-3 C ₁₉ H ₂₆ O ₃ H ASDN will be formulated in absolute ethan ution will be prepared on the day of use. Dila ncentrations of control substance (Table 4) can

Ceeton and Protocol – Al	ROMATASE (HUMAN RECOMBINANT)	Study #: 9070-100107ARO/
	ion to a 2 mL total assay volume with storage conditions for the control substance st	
Substrate		
Substrate Name/Supp	lier	
ASDN). Radioi will be used. T ≥ 95% radioc Ci/mmol. The addition of buff of 2 μM ASD information reg	or the aromatase assay is androstenedione nert and [³ H]ASDN androstenedione ([1β- ³ H] he radioinert ASDN will be ≥ 98% pure. T hemically pure and is usually supplied at 1 mCi/ml [³ H]ASDN stock will be diluted t er and radioinert ASDN. This substrate solu N and a radiochemical content of abou garding supplier, lot numbers and repor e included in study reports.]-androstenedione, [³ H] ASDN) the radiolabeled ASDN will be a specific activity of 20-30 to 0.3 to 0.5 Ci/mmol by the ution will have a concentration t 1 μ Ci/ml. All applicable
Radiochemical Purity		
	cal purity of the [³ H]ASDN shall be greater t al purity is less than 95 percent, then a new	
Preparation of S	ubstrate Solution for use in Aromatase Assay	/
a solution conto be prepared su- amount of tritiu	vity of the stock, [³ H]ASDN, is too high for o ining a mixture of the nonradiolabeled and ch that the final concentration of the ASDN i m added to each incubation is approxime e a concentration of 2 µM with radiochemic	radiolabeled , [³ H]ASDN will in the assay is 100nM and the ately 0.1 μCi. This substrate
	xample illustrates the preparation of a subs a specific activity of 25.3 Ci/mmol and a co	
Prepare buffer	a 1:100 dilution of radiolabeled stock in 0.	1 M Sodium Phosphate Assay
Prepare a 1 mg final concentrati	/mL solution of ASDN in ethanol and then μ on of 1 μg/mL.	prepare dilutions in buffer to a
	L of the 1 µg/mL solution of ASDN, 800 µl 3 mL of substrate solution (enough for 80 tube	

Record the weight and/or volumes of each component added to the substrate solutio After mixing well, combine 20 µL aliquots with scintillation cocktail for radiochemic content analysis. Adjust the isotope level if not within 10% of the nominal activity and te again to verify accuracy. Add 100 µL of the substrate solution to each 2 mL assay volume to yield a final [³ H] ASD concentration of 100 nM with 0.1 µCi/tube. <i>Microsomes</i> Human Recombinant Microsomes are purchased from Gentest [™] (Woburn, M. www.gentest.com). The product name is Human CYP19 (Aromatase) and P450 reducta Supersomes [™] and the catalog number is 456260 (or equivalent microsomes). Th package insert (batch data sheet) provides values for protein concentration, cytochrome reductase activity, and aromatase activity and will be included in the report. Informatic regarding the stability to freeze thaw cycles is also provided on the batch data sheet. Th microsomes will be stored at approximately -80°C. Human Recombinant Microsome Preparation Preparation of the human recombinant microsomes will involve thawing the microsom rapidly in a approximately 37°C water bath and placing them in an ice bath an aliquoting them into individual vials based upon the protein content of the batch. Th minimizes freezethaw cycles. The assay uses approximately 0.004 mg/mL (fin concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will followed and is provided on the batch data sheet). All applicable information regardi supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the micro	Cee To x	PROTOCOL – AROMATASE (HUMAN RECOMBINANT)	Study #: 9070-100107AR
concentration of 100 nM with 0.1 µCi/tube. Microsomes Human Recombinant Microsomes Human Recombinant Microsomes are purchased from Gentest [™] (Woburn, M. <u>www.gentest.com</u>). The product name is Human CYP19 (Aromatase) and P450 reducta Supersomes [™] and the catalog number is 456260 (or equivalent microsomes). Th package insert (batch data sheet) provides values for protein concentration, cytochrome reductase activity, and aromatase activity and will be included in the report. Informatin regarding the stability to freeze thaw cycles is also provided on the batch data sheet. Th microsomes will be stored at approximately -80°C. Human Recombinant Microsome Preparation Preparation of the human recombinant microsomes will involve thawing the microsome rapidly in a approximately 37°C water bath and placing them in an ice bath and aliquoting them into individual vials based upon the protein content of the batch. Th minimizes freezethaw cycles. The assay uses approximately 0.004 mg/mL (fin concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will followed and is provided on the batch data sheet). All applicable information regardis supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein Assay Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentest		After mixing well, combine 20 μ L aliquots with scintillation c content analysis. Adjust the isotope level if not within 10% of the	ocktail for radiochemic
Human Recombinant Microsomes Human Recombinant Microsomes are purchased from Gentest [™] (Woburn, M. www.gentest.com). The product name is Human CYP19 (Aromatase) and P450 reducta Supersomes [™] and the catalog number is 456260 (or equivalent microsomes). The package insert (batch data sheet) provides values for protein concentration, cytochrome reductase activity, and aromatase activity and will be included in the report. Informative regarding the stability to freeze thaw cycles is also provided on the batch data sheet. The microsomes will be stored at approximately -80°C. Human Recombinant Microsome Preparation Preparation of the human recombinant microsomes will involve thawing the microsome rapidly in a approximately 37°C water bath and placing them in an ice bath and aliquoting them into individual vials based upon the protein content of the batch. The minimizes freeze-thaw cycles. The assay uses approximately 0.004 mg/mL (find concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will followed and is provided on the batch data sheet). All applicable information regarding supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M. www.gentest.com) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentest			to yield a final [³H] ASD
Human Recombinant Microsomes are purchased from Gentest [™] (Woburn, M. <u>www.gentest.com</u>). The product name is Human CYP19 (Aromatase) and P450 reducta Supersomes [™] and the catalog number is 456260 (or equivalent microsomes). Th package insert (batch data sheet) provides values for protein concentration, cytochrome reductase activity, and aromatase activity and will be included in the report. Informatik regarding the stability to freeze thaw cycles is also provided on the batch data sheet. Th microsomes will be stored at approximately -80°C. Human Recombinant Microsome Preparation Preparation of the human recombinant microsomes will involve thawing the microsome rapidly in a approximately 37°C water bath and placing them in an ice bath an aliquoting them into individual vials based upon the protein content of the batch. Th minimizes freeze-thaw cycles. The assay uses approximately 0.004 mg/mL (fin concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will followed and is provided on the batch data sheet). All applicable information regarding supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentest	Micro	somes	
 www.gentest.com). The product name is Human CYP19 (Aromatase) and P450 reducta Supersomes ™ and the catalog number is 456260 (or equivalent microsomes). The package insert (batch data sheet) provides values for protein concentration, cytochrome reductase activity, and aromatase activity and will be included in the report. Informative regarding the stability to freeze thaw cycles is also provided on the batch data sheet. The microsomes will be stored at approximately -80°C. Human Recombinant Microsome Preparation Preparation of the human recombinant microsomes will involve thawing the microsome rapidly in a approximately 37°C water bath and placing them in an ice bath an aliquoting them into individual vials based upon the protein content of the batch. The minimizes freeze-thaw cycles. The assay uses approximately 0.004 mg/ml (fir concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will be included in the study report. Protein content of the microsomes will be supplied by the vendor (Gentest™ (Woburn, M www.gentest.com) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity 		Human Recombinant Microsomes	
Preparation of the human recombinant microsomes will involve thawing the microsom rapidly in a approximately 37°C water bath and placing them in an ice bath and aliquoting them into individual vials based upon the protein content of the batch. The minimizes freeze-thaw cycles. The assay uses approximately 0.004 mg/mL (fin concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will followed and is provided on the batch data sheet). All applicable information regarding supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein Assay Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentest		<u>www.gentest.com</u>). The product name is Human CYP19 (Aroma Supersomes [™] and the catalog number is 456260 (or equiv package insert (batch data sheet) provides values for protein co reductase activity, and aromatase activity and will be included regarding the stability to freeze thaw cycles is also provided on t	tase) and P450 reducta: valent microsomes). Th ncentration, cytochrome in the report. Informatic
rapidly in a approximately 37°C water bath and placing them in an ice bath and aliquoting them into individual vials based upon the protein content of the batch. The minimizes freeze-thaw cycles. The assay uses approximately 0.004 mg/mL (fin concentration) of microsomal protein. After aliquoting the microsomes into individual via the vials that are not planned for immediate use will be returned to the approximately 80°C freezer for storage (Information regarding stability to freeze thaw cycles will f followed and is provided on the batch data sheet). All applicable information regarding supplier, lot numbers and reported/measured purity for the microsomes will be included the study report. Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentest		Human Recombinant Microsome Preparation	
Protein content of the microsomes will be supplied by the vendor (Gentest [™] (Woburn, M <u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentes		rapidly in a approximately 37°C water bath and placing the aliquoting them into individual vials based upon the protein co- minimizes freeze-thaw cycles. The assay uses approximate concentration) of microsomal protein. After aliquoting the microso the vials that are not planned for immediate use will be return 80°C freezer for storage (Information regarding stability to free followed and is provided on the batch data sheet). All applicate supplier, lot numbers and reported/measured purity for the microson	nem in an ice bath au ontent of the batch. Th ely 0.004 mg/mL (fin omes into individual via ed to the approximately eeze thaw cycles will I ble information regardin
<u>www.gentest.com</u>) or vendor of equivalent microsomes) and information retained CeeTox. Cytochrome P450 (CYP19) Aromatase Activity Aromatase activity of the microsome preparation will be provided by the vendor (Gentes		Protein Assay	
Aromatase activity of the microsome preparation will be provided by the vendor (Gentes		www.gentest.com) or vendor of equivalent microsomes) and	
		Cytochrome P450 (CYP19) Aromatase Activity	

CeeTox PROTOCOL - AROMATASE (HUMAN RECOMBINANT) Study #: 9070-100107AROM CeeTox that they have sufficient activity. Sufficient activity will be visible in the controls used in the aromatase assay when the assay is run. Other Assay Components Buffer The assay buffer is 0.1M sodium phosphate buffer, pH ~7.4. Sodium phosphate monobasic and sodium phosphate dibasic will be used to prepare the buffer. Solutions of each reagent at 0.1M will be prepared in purified water and then the solutions will be combined to a final pH of ~7.4. Propylene Glycol Propylene glycol will be added to the assay directly as described below. NADPH NADPH (β-nicotinamide adenine dinucleotide phosphate, reduced form, tetrasodium salt) is the required co-factor for CYP19. The final concentration in the assay will be 0.3 mM. Typically a 6 mM stock solution will be prepared in assay buffer and then 100 μ L of the stock will be added to the 2 mL total assay volume. NADPH will be prepared fresh each day and will be kept on ice prior to use in the assay. 8. **Test System** As per the guideline (OPPTS 890.1200) recombinant microsomes (Human CYP19 + P450 Reductase SUPERSOMES[™]) will be used as the test system for this study. 9. **Aromatase Assay Method** The reactions will be performed in 13 X 100 mm test tubes. Each reaction tube will be labeled by applying label or writing directly on the tube. Buffer volume will be adjusted so the total incubation volume will be 2 mL. Propylene glycol, [³H]ASDN, NADPH, and buffer (0.1 M sodium phosphate buffer, pH ~7.4) will be combined in the reaction tubes to a total volume of 980 μ L. Substance solution, positive control (or vehicle control) will be added to the mixture of propylene glycol, substrate, NADPH and buffer in a 20 µL volume prior to preincubation of that mixture. The final concentrations for the assay components are presented in Table 2.

	COL – AROMATASE (HUMAN RECOM	BINANT)	Study #: 9070-100107ARO
37°C in	ction tubes and the microsomal s the water bath for at least five of 1 mL of the diluted microsome	e minutes prior to initiatio	
	I assay volume will be 2 mL, a r ∼15 min.	nd the tubes will be incub	pated at approximately
The rea	ction will be terminated by the ad	dition of 2 mL ice-cold Met	nylene Chloride.
The tube	es will be mixed for ca. 5s and pla	ace on ice for~ 5 minutes.	
The tube	es will be mixed for an additional	20-25s.	
The tube	es will be centrifuged for ~10 min	utes at 200 x g rfc (4°C±2	°C).
The Me	hylene Chlorine (bottom layer) wi	ll be removed and discard	ed.
	eous layers will be extracted aga ne Chloride (bottom layer) discard		
The extr	action will be repeated as describ	bed for a third time.	
	dred microliter aliquots of the a intillation counting vials as duplic		
to mix	uid scintillation cocktail (Opti-Fluc he solution. The radiochemical d below:		
Table 2.	Optimized Aromatase Assay Co	nditions	
	Assay Factor (units)	Human Recombinar	nt
	Microsomal Protein (mg/mL)	0.004	
	Microsomal Protein (mg/mL) NADPH (mM) [³ H]ASDN (nM) Propylene glycol Incubation Time (min)	0.004 0.3 100 5% 15	
	of the samples will be perform pel found in the aqueous fractions		on spectrometry (LS
Radiolal			

		DMATASE (HUN	IAN RECOME	INANT)	Study #: 9070-100107A
	will be calculate	ed by dividin	g the amo		n mol/mg-protein/min a ed by the product of r 15 minutes.
).	Positive Contro	ol Assay			
				nt experiment. Each r l and positive control	un will contain tubes for t
	The minimum lev 0.100 nmol/mg-j		omatase ad	ctivity in the full activ	ity control samples shall
8	The mean backgr	ound control	activity shal	be $\leq 15\%$ of the ful	activity control.
c	The concentratic conditions listed i Table 3		curve gene	rated for the 4-OH	I ASDN should meet I
		Parameter		Lower Limit	Upper Limit
Posi	tive Control	Slope		-1.2	-0.8
		Top (%)		2000	
	initia di seconda di se	manana la construcción de la constru		90	110
	Data available and c	Bottom (%) Log IC ₅₀	an appendix	-5 -7.3	+6 -7.0
1	Data available and c Fable 4 Positive C mple Type	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition		-5 -7,3 to the report upon reques	+6 -7.0
1 Sar	Table 4 Positive C nple Type	Bottom (%) Log IC ₅₀ can be added as Control Study	Design Descriptio	-5 -7.3 to the report upon reques	+6 -7.0 t 4-OH ASDN Conc. (M)
1 Sar Full	Cable 4 Positive C mple Type Activity Control kground Activity	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4	Design Descriptic	-5 -7,3 to the report upon reques	+6 -7.0 t
Sar Full Bac Con	Cable 4 Positive C mple Type Activity Control kground Activity	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4	Design Description All test com Same as fu NADPH Complete of	-5 -7.3 to the report upon reques n ponents. No inhibitor	+6 -7.0 f 4-OH ASDN Conc. (M) N/A
Sar Full Bac Con 4-O	Table 4 Positive C mple Type Activity Control kground Activity atrol	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4	Design Description All test com Same as fu NADPH Complete of	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 t 4-OH ASDN Conc. (M) N/A N/A
Full Bac Con 4-0	Cable 4 Positive C mple Type Activity Control kground Activity throl H ASDN Conc. 1	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4 3	Design Description All test com Same as fu NADPH Complete of (positive co	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 t 4-OH ASDN Conc. (M) N/A N/A 1X10 ⁵
Sar Full Bac Con 4-0 4-0 4-0	Fable 4 Positive C mple Type Activity Control kground Activity https://docs.com/comment/activity H ASDN Conc. 1 H ASDN Conc. 2	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4 3 3	Design Description All test com Same as fu NADPH Complete of (positive co same	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 t 4-OH ASDN Conc. (M) N/A N/A 1X10 ⁵ 1X10 ⁶
1 Sar Full Bac Con 4.0 4.0 4.0	Table 4 Positive C mple Type Activity Control kground Activity throl H ASDN Conc. 1 H ASDN Conc. 2 H ASDN Conc. 3	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4 3 3 3 3	Design Description All test com Same as fu NADPH Complete of (positive co same same	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 f 4-OH ASDN Conc. (M) N/A N/A 1X10 ⁵ 1X10 ⁶ 1X10 ^{6.5}
1 Sar Full Bac Con 4.0 4.0 4.0 4.0	Cable 4 Positive C mple Type Activity Control kground Activity throl H ASDN Conc. 1 H ASDN Conc. 2 H ASDN Conc. 3 H ASDN Conc. 4	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4 3 3 3 3 3 3	Design Description All test com Same as fu NADPH Complete of (positive co same same same	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 t 4-OH ASDN Conc. (M) N/A N/A 1X10 ⁵ 1X10 ⁶ 1X10 ^{6.5} 1X10 ⁷
Sar Full Bac Con 4.0 4.0 4.0 4.0 4.0 4.0	Fable 4 Positive C mple Type Activity Control kground Activity trol H ASDN Conc. 1 H ASDN Conc. 2 H ASDN Conc. 3 H ASDN Conc. 4 H ASDN Conc. 5	Bottom (%) Log IC ₅₀ can be added as Control Study Repetition (tubes) 4 4 3 3 3 3 3 3 3	Design Description All test com Same as fu NADPH Complete of (positive co same same same same	-5 -7.3 to the report upon reques m ponents. No inhibitor Il activity control, but no ussay with 4-OH ASDN	+6 -7.0 t 4-OH ASDN Conc. (M) N/A N/A 1X10 ⁵ 1X10 ⁶ 1X10 ^{4.5} 1X10 ⁷ 1X10 ^{7.5}

Cec to n	📾 PROTOCOL – AROMATASE (HUMAN RECOMBINANT)	Study #: 9070-100107ARON
11.	Determination of the Response of Aromatase Activity to	o Test Substance(s)
	A run is an independent experiment. [Each run will cont background activity control, positive control, and test substances of	
	Each run will test the response of aromatase activity in the present of a test substance run in triplicate (i.e., there are three tubes concentration per run of the assay). A test substance shall be test runs. Each run for a given test substance will be conducted enti- other runs for that test substance. There will be three (triplic concentration of a test substance. A single run of a given test s Table 5.	s of each test substance sted in three independent irely independently of the ate) repetitions for each
	Three types of control samples will be included for each run. Thes	e include:
•	Full enzyme (aromatase) activity controls (substrate, NADPH, propylene glycol, preparation of test substance solutions) and microsomes). Background activity controls (all components that are in the full aromatase activ Positive controls (4-OH ASDN run at eight concentrations in the same manner of	ity controls except NADPH).
	Four test tubes of the full enzyme activity control and background included with each run. The full enzyme and background activity so that two tubes (of each control type) are run at the beginnin each run. The positive control will be tested at eight concer indicated in Table 5. All controls are treated the same as the other	y controls sets will be split g and two at the end of ntrations in each run as
	The aromatase assay will be conducted as described in this protoc	col.
	After completion of the first run, the data will be reviewed concentration of the test substance used in the second and third ru decision will be based upon the results of the first run with the follow	uns can be adjusted. The
•	If insolubility (cloudiness or a precipitate) is observed at the highest then the highest concentration will be set for the second and third concentration that appeared soluble using mid-log concentrations; substance is insoluble at 10 ³ M as it is important to define the low Concentrations lower than 10 ⁵ M for the highest concentration will	runs at the highest i.e., try 10 ^{3.5} M if the test er portion of the curve.
•	If the highest concentration to be tested is lowered to 10^4 or 10^5 l concentration(s) will be added near the lower end of the curve (hig around the estimated IC50 based on the results of the first run in concentrations in the test set.	gher concentrations) and

она Protocol – Arom	Study #: 9070-100107ARC		
required to obtain th	ne "top of the cu ations of the test nse curve.	d will be 10 ⁻¹⁰ M, but lower conc irve". That is, obtain the full enzy t substance in order to define the	ymatic activity at the
Sample Type	Repetition	Description	Reference or Substance Conc. (M)
Full Activity Control	4	All test components plus solvent vehicle*	N/A
Background Activity Control	4	Same as full activity control, but no NADPH	N/A
Positive Control Conc1	2	Complete assay with 4-OH ASDN added	1X10 ⁵
Positive Control Conc2	2	same	1X10 ⁻⁶
Positive Control Conc3	2	same	1X10 ^{-6.5}
Positive Control Conc4	2	same	1X10 ⁻⁷
Positive Control Conc5	2	same	1X10 ^{-7.5}
Positive Control Concó	2	same	1X10 ⁻⁸
Positive Control Conc7	2	same	1X10 ⁹
Positive Control Conc8	2	same	1X10 ⁻¹⁰
Test substance Conc1	3	Compete assay with test substance added	1X10 ⁻³
Test substance Conc2	3	same	1X10 ⁴
Test substance Conc3	3	same	1X10 ⁵
Test substance Conc4	3	same	1X10 ⁶
Test substance Conc5	3	same	1X10 ⁷
Test substance Conc6	3	same	1X10 ⁸
Test substance Conc7	3	same	1X10 ⁹
Test substance Conc8	3	Carana and C	1X10 ⁻¹⁰

N/A = not applicable

*The complete assay ("all test components") contains buffer, propylene glycol, microsomal protein, $[^{3}H]ASDN$ and NADPH.

See Table 7 page 13 of Test Guideline

12. Data Analysis

Aromatase Activity and Percent of Control Calculations

Relevant data will be entered into the assay spreadsheet for calculations of aromatase activity and percent control. A spreadsheet will calculate the DPM/mL for each aliquot of

CeeTon PROTOCOL - AROMATASE (HUMAN RECOMBINANT)

Study #: 9070-100107AROM

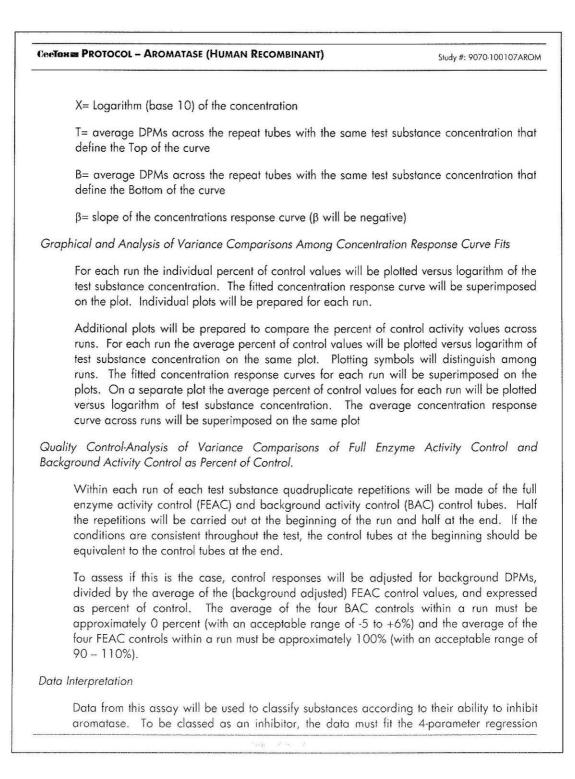
the extracted aqueous incubation mixture and average DPM/mL and total DPM for each aqueous portion (after extraction). The volume (mL) of substrate solution added to the incubation multiplied by the substrates specific activity (DPM/mL) yields the total DPM present in the assay tube at initiation. The total DPM remaining in the aqueous portion after extraction divided by the total DPM present in the assay tube at initiation times 100 yields the percent of the substrate that was converted to product. The total DPM remaining in the aqueous portion after extraction will be corrected for background by subtracting the average DPM present in the aqueous portion of the background activity control tubes (Table 5). This corrected DPM is then converted to nmol product formed by dividing by the substrate specific activity (DPM/nmol). The activity of the enzyme reaction will be expressed in nmol (mg product)¹min⁻¹ and will be calculated by dividing the amount of ³H₂O formed (nmol) by the product of mg microsome protein used times the incubation time (15 minutes). Average activity in the full activity control samples will be calculated. Percent of control activity remaining in the presence of the various inhibitor concentrations, including the positive control, will be calculated by dividing the aromatase activity at a given concentration by the average full activity control and multiplying by 100.

Nominally one might expect the percent of control activity values for an inhibitor to vary between approximately 0 percent near the high inhibition concentrations and approximately 100 percent near the low inhibition concentrations. However due to experimental variation, individual observed percent of control values will sometimes extend below 0 percent or above 100 percent.

13. Model Fitting

The response curve will be fitted by weighted least squares nonlinear regression analysis with weights equal to 1/Y. Model fits will be carried out using a non-linear regression program such as Prism software (version 5.1) or xlfit (IDBS).

Concentration response trend curves will be fitted to the percent of control activity values within each of the repeat tubes at each test substance concentration. Concentration will be expressed on the log or half-log scale.


The following concentration response curve will be fitted to relate percent of control activity to logarithm of concentration within each run:

$$\begin{array}{c} Y = B + (T-B) \\ 1 + 10 & (\log (C_{50} x) \beta + \log[(T-B/50-B) - 1]) \end{array}$$

Concentration response models will be fitted for each test run for each test substance and control(s).

Y= percent of control activity in the inhibitor tube

aper la co

CeeToxia PROTOCOL - AROMATASE (HUMAN RECOMBINANT)

Study #: 9070-100107AROM

model to yield an inhibition curve and result in greater than 50% inhibition at the highest concentration. The value of the inhibition curve at each of three runs at the highest concentration should be averaged and compared with the following criteria. If the data do not fit the model the average activity of the data points at the highest concentration shall be used.

Table 6

	Classification		
Data fit 4-parameter	Curve crosses 50%	Inhibitor	
nonlinear regression model	Average lowest portion of curves across runs is between 50% and 75% Activity	Equivocal	
	Average lowest portion of curves across runs is greater than 75%	Non-inhibitor	
Data do not fit the model		a no conserve l'articlitic d'a-o.	

Statistical Software and Analysis

Concentration curves will be fitted to the data using non-linear regression analysis features in a commercial software package such as prism or xlfit. For data generated at Ceetox, basic statistical analysis will be performed on the data, which will include means of replicates, standard error of the mean, and coefficient of variation.

14. Study Reports

The data to be reported in the interim data summary and final report will include (but will not be limited to) the following information: assay date and run number, laboratory personnel involved in the study, chemical/test substance information (including but not limited to chemical name, code, molecular weight, concentrations tested, notes regarding solubility), background corrected aromatase activity (for each control and test substance repetition, percent of control activity, IC50, slope and graphs of activity versus log substance concentration.

15. Alterations of the Study Design

Alterations of this protocol may be made as the study progresses. No changes in the protocol will be made without the specific written request or consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, CeeTox will honor such a change. However, written authorization will be obtained thereafter. All protocol amendments and justifications will be documented, signed and dated by the Study

lee To x	Real PROTOCOL - AROMATASE (HUMAN RECOMBINANT) Study #: 9070-100107ARO
	Director, Study Monitor and Sponsor and added to the report. A copy of the protocol and all amendments will be issued to the Sponsor as well as CeeTox and placed into the study binder.
16.	Data Retention and Archiving
	All raw data, documentation, records, protocol, and the final report generated as a resul of this study will be retained at CeeTox for 15 years. Retention of the materials after the time 15 years will be subjected to a future contractual agreement between the Sponsor and CeeTox.
	Study Records to be maintained:
• • •	All records that document the conduct of the laboratory experiments and results obtained, as well as the equipment and chemicals used. Protocol and protocol Amendments List of any Protocol Deviations Final Report

Ce	ee Tox 	
Prot	ocol Amendment	
<u>Stuc</u>	dy Number: 9070-100107AROM	
<u>Title</u>	of Study to be Amended: Human Recombinant A	romatase Assay
Rea erro	son for Amendment to Protocol: The Table of Conteres.	ents had typographical
Cha	nge:	
	Table of Contents will now read:	
Signa 1.	Title of Study	5
2.	Purpose of Study	6
3.	Compliance Statement	6
4. 5.	Quality Assurance Regulatory Citations	6
6.	Test Facility	6
7.	Test & Control Substances	6
	ubstance(s)	6
7.1	Test Substance: 2-Hydroxy-4-Methoxybenzophenone (Oxybenzon	
7.2 7.3	Test Substance: 2-Ethylhexyl p-methoxycinnamate (Octylmethoxy Test Substance: Octyl Salicylate (Octylsalate)	/cinnamate)7 7
7.4	Test Substance: 2-Ethylhexyl 2-Cyano-3,3-Diphenylacrylate (Octo	
	ve Substance	8
Subst		9
	rate Name/Supplier	9
	pchemical Purity	9
	isomes r Assay Components	10 11
8.	Test System	11
9.	Aromatase Assay Method	11
10.	Positive Control Assay	13
11.	Determination of the Response of Aromatase Activity to Test Subs	tance(s) 14 15
	Data Analysis atase Activity and Percent of Control Calculations	15
13.	Model Fitting	16
	hical and Analysis of Variance Comparisons Among Concentration Re	
	Interpretation	18
14.	tical Software and Analysis Study Reports	18 18
15.	Alterations of the Study Design	18
16.	Data Retention and Archiving	19
Sign	ature	
-	-	
Cee	Tox, Inc.	
8		
		71-
		26 SEPTEMBER 20
		Date 20
Stud	ly Director (Project Manager)	
	Tox Study # 9070-100107AROM	26-Sep-11

	Study Number: 9070-100107AROM		
	Title of Study to be Amended: Human Recombinant Aroma	itase Assay	
	Reason for Amendment to Prolocol: Client requested amen		
	Change: Section Data Retention and Archiving will now state:		
	At the study closure, all study records including all original re final report, will be shipped to the sponsor at the following o	aw data and original address:	
	NTP Archives 615 Davis Drive, Suite 300 Durham, NC 27713		
	Change I and		
	<u>Signature</u>		
2	CeeTox, Inc.	<u>12-6-11</u> Date	
	Study Director (Project Manager)	<u>6 December</u> 2011 Date	
	CeeTox Study # 9070-100107AROM	6-Dec-11	