The following report presents results of a study conducted by a contract laboratory for the National Toxicology Program (NTP). The report may not have been peer reviewed. The findings and conclusions for this study should not be construed to represent the view of NTP or the U.S. Government.



Androgen Receptor Binding (Rat Prostate Cytosol)

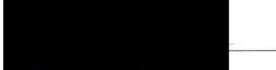
**Final Report** 

| DATA REQUIREMENT(S):   | OPPTS 890.1150 (2009)                                                                                               |
|------------------------|---------------------------------------------------------------------------------------------------------------------|
| AUTHOR(S):             |                                                                                                                     |
| STUDY COMPLETION DATE: | April 18, 2013                                                                                                      |
| TEST FACILITY:         | CeeTox, Inc.<br>4717 Campus Drive<br>Kalamazoo, MI 49008<br>USA                                                     |
| LABORATORY PROJECT ID: | Study Number: 9070-100794ARB<br>Human and Health Sciences No.<br>HHSN273200900005C<br>NIEHS Contract No. N01ES00005 |
| SPONSOR(S):            | National Institute of Environmental Health Sciences<br>P.O. Box 12233<br>Research Triangle Park, NC 27709 USA       |
| STUDY MONITOR:         |                                                                                                                     |

(ILS, Inc, Durham, NC)

# STATEMENT OF DATA CONFIDENTIALITY CLAIMS

This page is intentionally left blank.


#### GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

Study Number: 9070-100794ARB

Study Title: Androgen Receptor Binding (Rat Prostate Cytosol)

I, the undersigned, hereby declare that this study was performed in accordance with the Environmental Protection Agency (EPA) Good Laboratory Practice (GLP) regulations Title 40 Part 160 with the exception of section 160.113. Dose concentrations of test and control substances will not be verified using analytical methods.

The study was conducted according to the procedures herein described and this report represents a true and accurate record of the results obtained. There were no deviations that impacted the quality or integrity of the study data. Any deviations that occurred during the course of the study were noted in this report, with the full write-ups included in the study binder.



18 April 2013 Date

Study Director

Study Number: 9070-100794ARB

# FLAGGING STATEMENT

This page is intentionally left blank.

#### **QUALITY ASSURANCE STATEMENT**

Study Title: Androgen Receptor Binding (Rat Prostate Cytosol)

Study Number: 9070-100794ARB

In accordance with CeeTox, Inc.'s policies and Quality Assurance standard operating procedures for Good Laboratory Practice (GLP), the conduct of this study has been audited as follows:

| Date(s) of<br>Inspection/Audit                 |                       |         | Date(s) reported to Management |
|------------------------------------------------|-----------------------|---------|--------------------------------|
| 20Dec12                                        | Draft Protocol Review | 20Dec12 | 20Dec12                        |
| 11Feb13 Test Substance Prep and<br>Day 1 Assay |                       | 18Feb13 | 18Feb13                        |
| 15Feb13                                        | Day 2 Assay           | 18Feb13 | 18Feb13                        |
| 11Mar13                                        | Data Binder Review    | 11Mar13 | 11Mar13                        |
| 12Mar13                                        | Draft Report Review   | 12Mar13 | 12Marl3                        |

The signature below indicates the summary table is an accurate representation of Quality Assurance's involvement with this study.

/8Apr 2013 Date

Quality Assurance Auditor 4717 Campus Drive Kalamazoo, MI 49008

## **GENERAL INFORMATION**

#### Contributors

The following contributed to this report in the capacities indicated:

| Name | Title                          |
|------|--------------------------------|
|      | Director of Project Management |
|      | Senior Scientist               |
|      | Scientist                      |
|      | Laboratory Manager             |
|      | Study Director                 |

#### **Study Dates**

Study initiation date: January 16, 2013 Experimental start date: February 11, 2013 Experimental termination date: February 17, 2013 Study termination date: April 18, 2013

#### **Deviations from the Protocol**

See Appendix 3. There were three deviations however they did not impact the integrity of the data in this report.

#### Other

All original data [including the original signed study protocol and all amendments (if any), test substance information, observations, etc.] and the original final report will be transferred to the National Toxicology Program Archives following finalization of the study report to the address below:

NTP Archives

615 Davis Drive, Suite 300 Durham, NC 27713

# **TABLE OF CONTENTS**

| STATEM     | ENT OF DATA CONFIDENTIALITY CLAIMS                                            | 2  |
|------------|-------------------------------------------------------------------------------|----|
| GOOD LA    | ABORATORY PRACTICE COMPLIANCE STATEMENT                                       | 3  |
| FLAGGIN    | IG STATEMENT                                                                  | 4  |
| QUALITY    | ASSURANCE STATEMENT                                                           | 5  |
| GENERA     | L INFORMATION                                                                 | 6  |
| TABLE O    | <b>F CONTENTS</b>                                                             | 7  |
| 1.0        | EXECUTIVE SUMMARY                                                             | 9  |
| 1.1        | Study Design                                                                  | 9  |
| 1.1        | Results                                                                       |    |
| 1.2        | Conclusion                                                                    |    |
| 2.0        | INTRODUCTION                                                                  | 10 |
|            |                                                                               | -  |
| 2.1<br>2.2 | Purpose<br>Regulatory Citations                                               |    |
| 3.0        | MATERIALS AND METHODS                                                         | 11 |
|            |                                                                               |    |
| 3.1        | Test Substance                                                                |    |
| 3.1.1      | Test Substance Details                                                        |    |
| 3.1.2      | Vehicle Selection                                                             |    |
| 3.1.3      | Test Substance Preparation                                                    |    |
| 3.1.4      | Positive and Weak Positive Reference Control Preparation                      |    |
| 3.2        | Solubility/Precipitation Assay                                                | 16 |
| 3.3        | Rat Prostate Cytosol                                                          | 16 |
| 3.4        | Stock Solution Preparation                                                    | 16 |
| 3.5        | Assays                                                                        | 17 |
| 3.5.1      | Working Assay Buffer Preparation                                              | 17 |
| 3.5.2      | [ <sup>3</sup> H]-R1881 Preparation                                           | 17 |
| 3.5.3      | Assay Preparations                                                            |    |
| 3.5.4      | Individual Tubes                                                              |    |
| 3.5.5      | Separation of Bound [ <sup>3</sup> H]-R1881 From Free [ <sup>3</sup> H]-R1881 |    |
| 3.5.6      | Extraction and Quantification of [ <sup>3</sup> H]-R1881 Bound to AR          | 19 |
| 3.6        | Competitive Binding Data Analysis and Interpretation                          | 19 |
| 3.6.1      | Analysis and Considerations                                                   |    |
| 3.6.2      | Classification                                                                |    |
| 4.0        | <b>RESULTS AND DISCUSSION</b>                                                 | 21 |
| 4.1        | Concentration Range for the Test Substance                                    |    |

| 4.2         | Binding Assay Acceptance Criteria                                                                                                                           | .21  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.3         | Results                                                                                                                                                     | . 22 |
| 5.0         | CONCLUSIONS                                                                                                                                                 | 23   |
| 6.0         | REFERENCES                                                                                                                                                  | 23   |
| TABLES SEC  | TION                                                                                                                                                        | 24   |
| TABLE 1     | Results of 1 <sup>st</sup> Valid Binding Assay – Controls – February 11, 2013                                                                               | .25  |
| TABLE 2     | Results of 1 <sup>st</sup> Valid Binding Assay – Test Articles – February 11, 2013                                                                          | .26  |
| TABLE 3     | 1 <sup>st</sup> Valid Run - Upper and Lower Parameters in Competitive Assay<br>Binding Curves for the Standards – February 11, 2013                         | .27  |
| TABLE 4     | Results of 2 <sup>nd</sup> Valid Binding Assay – Controls – February 14, 2013                                                                               | . 28 |
| TABLE 5     | Results of 2 <sup>nd</sup> Valid Binding Assay – Test Articles – February 14, 2013                                                                          | . 29 |
| TABLE 6     | Results of 2 <sup>nd</sup> Valid Binding Assay - Upper and Lower Parameters in<br>Competitive Assay Binding Curves for the Standards – February 14,<br>2013 |      |
| TABLE 7     | Results of 3 <sup>rd</sup> Valid Binding Assay – Controls – February 16, 2013                                                                               | .31  |
| TABLE 8     | Results of 3 <sup>rd</sup> Valid Binding Assay – Test Articles – February 16, 2013                                                                          | . 32 |
| TABLE 9     | Results of 3 <sup>rd</sup> Valid Binding Assay - Upper and Lower Parameters in<br>Competitive Assay Binding Curves for the Standards – February 16,<br>2013 |      |
| FIGURES SEC | CTION                                                                                                                                                       | 34   |
| FIGURE 1    | 1 <sup>st</sup> Valid Run % Specific Binding for Test Substances and Controls – February 11, 2013                                                           |      |
| FIGURE 2    | 2 <sup>nd</sup> Valid Run % Specific Binding for Test Substances and Controls -<br>February 14, 2013                                                        |      |
| FIGURE 3    | 3 <sup>rd</sup> Valid Run % Specific Binding for Controls and Test Substances -<br>February 16, 2013                                                        |      |
| APPENDICES  | SECTION                                                                                                                                                     | 41   |
| APPENDIX 1  | Raw and Normalized Data                                                                                                                                     | .42  |
| APPENDIX 2  | Rat Prostate Cytosol Preparation and Information                                                                                                            | .48  |
| APPENDIX 3  | Deviation Forms                                                                                                                                             | . 68 |
| APPENDIX 4  | Certificates of Analysis                                                                                                                                    | .71  |
| APPENDIX 5  | Protocol and Protocol Amendment                                                                                                                             | 107  |

## **1.0 EXECUTIVE SUMMARY**

#### 1.1 Study Design

The objective of this study was to evaluate the ability of ensulizole, avobenzone, homosalate and padimate-O to interact with the androgen receptors (ARs) isolated from rat prostates.

Assessments of precipitation were conducted during each run in order to identify a suitable top concentration of ensulizole, avobenzone, homosalate and padimate-O for use in the binding assays. The concentrations assessed were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$ ,  $10^{-5}$ ,  $10^{-4}$  and  $10^{-3}$  M.

The final concentrations of ensulizole assessed in the binding assays were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$ ,  $10^{-5}$ ,  $10^{-4}$  and  $10^{-3}$  M for all three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013), while the final concentrations of avobenzone, homosalate and padimate-O assessed in the binding assays were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$  and  $10^{-5}$  because of precipitation of the test substances at  $10^{-4}$  and  $10^{-3}$  M.

Three independent runs of the AR binding assay were conducted. All concentrations were tested in replicates of 3. In addition, solvent control tubes (6 replicates) were prepared to assess total binding. These replicates included the radioligand, cytosol (containing the ARs) and solvent but without the competitor R1881. The total binding tubes allowed for the identification of maximal binding of [<sup>3</sup>H]-R1881. Non-specific binding (NSB) was also assessed in replicates of 6 by determining the [<sup>3</sup>H]-R1881 bound in the presence of 100-fold excess unlabeled R1881. NSB was subtracted from the data, normalized to total binding and presented as % specific binding. Finally, 30  $\mu$ L of [<sup>3</sup>H]-R1881 was added to scintillation vials (n=6) in order to determine both total radioligand added and to calculate the percentage of total radioligand added to the tube that is bound to ARs. The duration of incubation at approximately 4°C was 16-20 hours. A complete concentration response curve for the positive control R1881 and the weak positive control (wPC) dexamethasone was run each time the binding assay was performed.

## 1.2 Results

The suitable top concentration of ensulizole was  $10^{-3}$  M for use in all three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013) while the suitable top concentration of avobenzone, homosalate and padimate-O for use in all three valid independent runs was  $10^{-5}$  M as precipitation was seen at  $10^{-4}$  and  $10^{-3}$  M.

In the first valid independent run (11-February-2013), the mean specific binding was > 75% at every soluble concentration tested for ensulizole, avobenzone, homosalate and padimate-O resulting in a classification of "non-binder" for all four test substances. The mean specific binding for avobenzone, homosalate and padimate-O at 10<sup>-4</sup> M and 10<sup>-3</sup> M was not assessed because precipitation was observed at these concentrations. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.5 M while the LogIC<sub>50</sub> of R1881 was -9.9 M.

In the second valid independent run (14-February-2013), the mean specific binding was > 75% at every soluble concentration tested for avobenzone, ensulizole and homosalate resulting in a classification of "non-binder" for these three test substances. The mean specific binding for avobenzone, homosalate and padimate-O at 10<sup>-4</sup> M and 10<sup>-3</sup> M was not assessed because precipitation was observed at these concentrations. The mean specific binding for padimate-O was > 75% at every soluble concentration tested except for  $10^{-8}$  M (44.8%) and 10<sup>-6</sup> M (75.0%). A Dixon-Q outlier test can eliminate one of the three replicates in the 10<sup>-6</sup> M data set, resulting in a mean specific binding value of 102.4%. Additionally, the replicates at 10<sup>-8</sup> M are substantially varied, exhibiting specific binding of -0.3% (replicate 1), 54.6% (replicate 2) and 80.0% (replicate 3). Because all three replicates are so varied, the Dixon-Q outlier test will not allow removal of one or more of the replicates in the analysis. However, these inconsistencies between replicates suggest a loss of all or a part of the HAP pellet during the final extraction and washing steps. Since all soluble concentrations, both higher and lower than  $10^{-8}$  M, exhibit mean specific binding of > 75%, padimate-O is also classified as a "non-binder" for this run. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.5 M while the LogIC<sub>50</sub> of R1881 was -9.9 M.

Finally, in the third valid independent run (16-February-2013), the mean specific binding was > 75% at every soluble concentration tested for ensulizole, avobenzone, homosalate, and padimate-O, resulting in the classification as a "non-binder" for all four test substances. The mean specific binding for avobenzone, homosalate and padimate-O at 10<sup>-4</sup> M and 10<sup>-3</sup> M was not assessed because precipitation was observed at these concentrations. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.6 M while the LogIC<sub>50</sub> of R1881 was -10.0 M.

The mean relative binding affinity, or RBA (calculated by dividing the LogIC<sub>50</sub> of the control/test material by the LogIC<sub>50</sub> of the positive control R1881) was 0.5 for dexamethasone. As ensulizole, avobenzone, homosalate and padimate-O were not classified as an overall "binder" (mean specific binding  $\geq$  50%), the RBA could not be calculated.

## 1.3 Conclusion

All four test materials, ensulizole, avobenzone, homosalate and padimate-O are classified as "non-binders" of the AR in all three independent runs and thus have a final classification of "non-binder."

## 2.0 INTRODUCTION

#### 2.1 Purpose

The objective of this study was to evaluate the ability of ensulizole, avobenzone, homosalate and padimate-O to interact with the androgen receptors (ARs) isolated from rat prostates. The AR contains a highly specific hormone-binding domain (HBD) that is relatively well conserved across species. Upon binding endogenous androgens to the HBD, the AR enters the nucleus and binds to specific sites in the genome called androgen response elements (AREs). Once bound to the ARE, the AR forms a homodimer with another AR, thereby controlling gene expression.

This assay was used to provide information on the ability of a compound to interact with the androgen receptors (ARs) isolated from rat prostates. This assay is not intended to be used to show that the interaction is, specifically, one-site competitive binding, or to precisely characterize the strength of the binding interaction. It therefore may not be appropriate to use in quantitative structure-activity relationship (SAR) model development for androgen receptor binding without further refinement. This assay is intended to be used as one part of a screening program that includes other assays, to detect substances that can potentially interact with the androgen hormonal system.

The results of this study are intended to be used in conjunction with results from other Tier 1 screening studies (OPPTS 890 test guideline series) that constitute the full screening battery under the Endocrine Disruptor Screening Program (EDSP). Together, the results from the screening battery will be used by the US EPA to identify substances that have the potential to interact with the androgen, estrogen or thyroid system. Results of the Tier 1 screening battery, along with other scientifically relevant information, are to be used in a weight-of-evidence determination of a substance's potential to interact with these systems. The fact that a substance may interact with a hormone system does not mean that when the substance is used, it will cause adverse effects in humans or ecological systems. The Tier 1 battery is intended for screening purposes only and should not be used for endocrine classification or risk assessment.

## 2.2 Regulatory Citations

OPPTS 890.1150: Androgen Receptor Binding (Rat Prostate Cytosol). 2009 (now referred to as OCSPP though the guideline is still titled as OPPTS).

# 3.0 MATERIALS AND METHODS

All materials and methods described in this report are in reference to the three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013) only.

#### 3.1 Test Substance

#### 3.1.1 Test Substance Details

| Test Substance Name:     | 2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole) |
|--------------------------|----------------------------------------------------|
| Test Substance Supplier: | Aldrich                                            |
| CAS Number:              | 27503-81-7                                         |
| Description:             | White to off white powder                          |
| Solvent Used:            | Dimethyl sulfoxide                                 |
| Batch Number:            | 05117JE                                            |
| Expiry Date:             | Not provided                                       |
| Purity:                  | 99.6%                                              |
| Molecular Formula:       | $C_{13}H_{10}N_2O_3S$                              |
| Molecular Weight:        | 274.30 g/mol                                       |
| Storage Conditions:      | Room Temp. (eg. ambient)                           |

A certificate of analysis for the test substance is presented in Appendix 4.

| Test Substance Name:     | Butyl-methoxydibenzoylmethane (Avobenzone) |
|--------------------------|--------------------------------------------|
| Test Substance Supplier: | Universal-Preserv-A-Chem, Inc.             |
| CAS Number:              | 70356-09-1                                 |
| Description:             | Off white to yellowish crystalline powder  |
| Solvent Used:            | Dimethyl sulfoxide                         |
| Batch Number:            | L802809                                    |
| Expiry Date:             | Not provided                               |
| Purity:                  | 98.5%                                      |
| Molecular Formula:       | $C_{20}H_{22}O_3$                          |
| Molecular Weight:        | 310.39 g/mol                               |
| Storage Conditions:      | Room Temp. (eg. ambient)                   |

A certificate of analysis for the test substance is presented in Appendix 4.

| Test Substance Name:     | 3, 3, 5-Trimethlycyclohexyl Salicylate (Homosalate) |
|--------------------------|-----------------------------------------------------|
| Test Substance Supplier: | Spectrum                                            |
| CAS Number:              | 118-56-9                                            |
| Description:             | Colorless to light yellow liquid                    |
| Solvent Used:            | Dimethyl sulfoxide                                  |
| Batch Number:            | YT0976                                              |
| Expiry Date:             | Not provided                                        |
| Purity:                  | 99.3%                                               |
| Molecular Formula:       | 262.34 g/mol                                        |
| Molecular Weight:        | C <sub>16</sub> H <sub>22</sub> O <sub>3</sub>      |
| Storage Conditions:      | Room Temp. (eg. ambient)                            |

A certificate of analysis for the test substance is presented in Appendix 4.

| Test Substance Name:     | 2-Ethylhexyl-P-Dimethyl-Aminobenzoate |
|--------------------------|---------------------------------------|
|                          | (Padimate-O)                          |
| Test Substance Supplier: | Aldrich                               |
| CAS Number:              | 21245-02-3                            |
| Description:             | Yellowish liquid                      |
| Solvent Used:            | Dimethyl sulfoxide                    |
| Batch Number:            | MKBF0590V                             |
| Expiry Date:             | Not provided                          |
| Purity:                  | 98.1%                                 |
| Molecular Formula:       | 277.40 g/mol                          |
| Molecular Weight:        | $C_{17}H_{27}NO_2$                    |
| Storage Conditions:      | Room Temp. (eg. ambient)              |

A certificate of analysis for the test substance is presented in Appendix 4.

The reference compound R1881 (CAS# 965-93-5) was purchased from Sigma Aldrich (St. Louis, MO) and was 99% pure. The catalog number was R0908 and the lot number was 112M4617V.

The weak positive control dexamethasone (CAS# 50-02-2) was purchased from Sigma Aldrich (Buchs, Switzerland) and was 98.9% pure. The catalog number was D1756 and the lot numbers were 1419230.

The radioligand [<sup>3</sup>H]-R1881 was purchased from Perkin-Elmer (Boston, MA) and had a specific activity (SA) of 85.1 Ci/mmol on the certification date (10-October-2012). The catalog number was NET590 and the lot number was 1001606. The SA<sub>adjusted</sub> was 83.5 Ci/mol for the first two valid independent runs (11-February-2013 and 14-February-2013) and 83.4 Ci/mol for the third valid independent run (16-February-2013).

#### 3.1.2 Vehicle Selection

Dimethyl sulfoxide (DMSO) is one of the recommended solvents according to the EPA guideline (OPPTS 890.1150) and was selected as a suitable vehicle for ensulizole, avobenzone, homosalate and padimate-O. Ensulizole solutions with a concentration of up to  $10^{-3}$  M, and avobenzone, homosalate and padimate-O solutions with a concentration of up to  $10^{-5}$  M (the limit concentration for the assay) were prepared while limiting the final concentration of DMSO in the assay medium to ~3.2% (v/v). R1881 and dexamethasone were prepared on 11-February-2013, used for the first run, then frozen as aliquots and thawed on the day of the assay for use in the second and third valid independent runs. The test substances were prepared fresh on the day of the assay for all three valid independent run.

#### 3.1.3 Test Substance Preparation

Vehicle (DMSO) was kept at the same concentration for the controls and for the test substances. DMSO was tested as a vehicle control with the reference chemical and reference controls for the run as well. All concentrations of ensulizole, avobenzone, homosalate and padimate-O were kept at approximately 3.2% final DMSO concentration. The dose

concentrations of ensulizole, avobenzone, homosalate and padimate-O were not verified using analytical methods.

Serial dilutions of test chemicals were prepared in DMSO to yield the final concentrations indicated below:

| F      | te Dhation I roccuure                                  |                                |                                             | ·) · · · · · · · · · · · · · · · · ·      |                                                              |
|--------|--------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| Tube # | Volume of stock to add<br>for diluted<br>concentration | Volume of<br>solvent to<br>add | Total volume of<br>diluted test<br>chemical | Diluted test<br>chemical<br>concentration | *Final test<br>chemical<br>concentration in<br>AR assay tube |
| TC1    | Use 300 µl of stock test<br>chemical (100 mM)          | 700 µl                         | 1 ml                                        | 3 x 10 <sup>-2</sup> M                    | 1 x 10 <sup>-3</sup> M                                       |
| TC2    | Use 100 µl of dilution<br>TC1 (50 mM)                  | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-3</sup> M                    | 1 x 10 <sup>-4</sup> M                                       |
| TC3    | Use 100 µl of dilution<br>TC2 (5 mM)                   | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-4</sup> M                    | 1 x 10 <sup>-5</sup> M                                       |
| TC4    | Use 100 µl of dilution<br>TC3 (500 µM)                 | 900 µ1                         | 1 ml                                        | 3 x 10 <sup>-5</sup> M                    | 1 x 10 <sup>-6</sup> M                                       |
| TC5    | Use 100 µl of dilution<br>TC4 (50 µM)                  | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-6</sup> M                    | 1 x 10 <sup>-7</sup> M                                       |
| TC6    | Use 100 µl of dilution<br>TC5 (5 µM)                   | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-7</sup> M                    | 1 x 10 <sup>-8</sup> M                                       |
| TC7    | Use 100 µl of dilution<br>TC6 (500 nM)                 | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-8</sup> M                    | 1 x 10 <sup>-9</sup> M                                       |
| TC8    | Use 100 µl of dilution<br>TC7 (50 nM)                  | 900 µ1                         | 1 ml                                        | 3 x 10 <sup>-9</sup> M                    | 1 x 10 <sup>-10</sup> M                                      |

Example Dilution Procedure for ensulizole, avobenzone, homosalate and padimate-O.

\*Final concentration of ensulizole, avobenzone, homosalate and padimate-O in assay tube when 10  $\mu$ l of diluted concentration is used in a total volume of 300  $\mu$ l.

#### 3.1.4 Positive and Weak Positive Reference Control Preparation

The positive control, R1881, strongly binds ARs and was included to ensure that the run was properly performed and to allow an assessment of variability in the conduct of the assay across time. Final concentrations of unlabeled R1881 ranged from  $1 \times 10^{-6}$  to  $1 \times 10^{-11}$  M as described below. Fresh 10 mM R1881 stock was diluted 1:10 (1 mM R1881 solution) and then serial dilutions of the reference standard were performed in DMSO (final concentration of approximately 3.2%).

| Example Dilution 1 roccutre for K1001 |                                                        |                                |                          |                             |                                                   |
|---------------------------------------|--------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|---------------------------------------------------|
| Tube #                                | Volume of stock to<br>add for diluted<br>concentration | Volume of<br>solvent to<br>add | Total volume of<br>R1881 | Diluted R1881 concentration | *Final R1881<br>concentration in<br>AR assay tube |
| N/A                                   | Use 100 µl of stock<br>R1881 (10 mM)                   | 900 µl                         | 1 ml                     | 1 x 10 <sup>-3</sup> M      | N/A                                               |
| NSB1                                  | Use 30 µl of stock<br>R1881 (1 mM)                     | 970 µl                         | 1 ml                     | 3 x 10 <sup>-5</sup> M      | 1 x 10 <sup>-6</sup>                              |
| S2                                    | Use 100 µl of dilution<br>NSB1 (30 µM)                 | 900 µl                         | 1 ml                     | 3 x 10 <sup>-6</sup> M      | 1 x 10 <sup>-7</sup>                              |
| <b>S</b> 3                            | Use 100 µl of dilution<br>S2 (3 µM)                    | 900 µl                         | 1 ml                     | 3 x 10 <sup>-7</sup> M      | 1 x 10 <sup>-8</sup>                              |
| S4                                    | Use 100 µl of dilution<br>S3 (300 nM)                  | 900 µl                         | 1 ml                     | 3 x 10 <sup>-8</sup> M      | 1 x 10 <sup>-9</sup>                              |
| S5                                    | Use 100 µl of dilution<br>S4 (30 nM)                   | 900 µl                         | 1 ml                     | 3 x 10 <sup>-9</sup> M      | 1 x 10 <sup>-10</sup>                             |
| S6                                    | Use 100 µl of dilution<br>S5 (3 nM)                    | 900 µ1                         | 1 ml                     | 3 x 10 <sup>-10</sup> M     | 1 x 10 <sup>-11</sup>                             |

#### **Example Dilution Procedure for R1881**

\*Final concentration of control in assay tube when 10  $\mu$ l of diluted concentration is used in a total volume of 300  $\mu$ l.

The weak positive control was dexamethasone. A 30 mM stock was prepared in DMSO and serially diluted as described below. The concentration range tested for the weak positive control was from  $1 \times 10^{-3}$  to  $1 \times 10^{-10}$  M with DMSO kept at approximately 3.2%.

| Tube # | Volume of stock to           Tube #         add for diluted |                   | Total volume of             | Weak Positive Control Concentration |                            |
|--------|-------------------------------------------------------------|-------------------|-----------------------------|-------------------------------------|----------------------------|
| Tube # | concentration                                               | solvent to<br>add | diluted positive<br>control | Diluted                             | *Final in AR<br>assay tube |
| P1     | Use stock positive control (30 mM)                          | N/A               | 1 ml                        | 3 x 10 <sup>-2</sup> M              | 1 x 10 <sup>-3</sup> M     |
| P2     | Use 100 µl of stock<br>positive control (30<br>mM)          | 900 µl            | 1 ml                        | 3 x 10 <sup>-3</sup> M              | 1 x 10 <sup>-4</sup> M     |
| Р3     | Use 100 µl of P2<br>(3 mM)                                  | 900 µl            | 1 ml                        | 3 x 10 <sup>-4</sup> M              | 1 x 10 <sup>-5</sup> M     |
| P4     | Use 100 µl of P3<br>(300 µM)                                | 900 µl            | 1 ml                        | 3 x 10 <sup>-5</sup> M              | 1 x 10 <sup>-6</sup> M     |
| P5     | Use 100 μl of P4<br>(30 μM)                                 | 900 µl            | 1 ml                        | 3 x 10 <sup>-6</sup> M              | 1 x 10 <sup>-7</sup> M     |
| P6     | Use 100 µl of P5<br>(3 µM)                                  | 900 µl            | 1 ml                        | 3 x 10 <sup>-7</sup> M              | 1 x 10 <sup>-8</sup> M     |
| P7     | Use 100 µl of P6<br>(300 nM)                                | 900 µl            | 1 ml                        | 3 x 10 <sup>-8</sup> M              | 1 x 10 <sup>-9</sup> M     |
| P8     | Use 100 µl of P7<br>(30 nM)                                 | 900 µl            | 1 ml                        | 3 x 10 <sup>-9</sup> M              | 1 x 10 <sup>-10</sup> M    |

**Example Dilution Procedure for Dexamethasone** 

\*Final concentration of control in assay tube when 10  $\mu$ l of diluted concentration is used in a total volume of 300  $\mu$ l.

#### 3.2 Solubility/Precipitation Assay

The limit of test substance solubility was determined by laser based light scattering. The test substance was prepared in the TEDG buffer alone (no cytosol) at the final exposure concentrations and added to wells of a 96-well plate. The samples were assessed using a NEPHELOstar nephelometer (BMG LabTech, Ortenberg, Germany).

## 3.3 Rat Prostate Cytosol

102 prostate glands from 90-day old (< 1 day since castration) male Sprague-Dawley rats were purchased from Charles River Laboratories. Cytosol was prepared and verified at CeeTox per EPA guideline OPPTS 890.1150 and CeeTox SOP 2055 for use on this study. As the cytosol was prepared in large batches for use in multiple assays of different test substances, data related to preparation and saturation binding of the cytosol are maintained separate from this study; the pertinent information is available in Appendix 2.

#### **3.4** Stock Solution Preparation

A 200 mM EDTA stock solution was prepared and stored at approximately 4°C. A 1 M sodium molybdate solution was also prepared along with a 1 M Tris buffer (pH adjusted to

7.4). These solutions were then used to prepare Low-salt TEDG Buffer (10 mM Tris, 1 mM sodium molybdate, 1.5 mM EDTA, 10% glycerol and 1 mM DTT [added immediately before use], pH 7.4 [cooled to approximately 4°C before adjusting to pH 7.4 and stored at approximately 4°C up to 3 months]).

A 600  $\mu$ M stock solution of triamcinolone acetonide was prepared in 100% ethanol and diluted/aliquoted into 60  $\mu$ M solutions and stored at approximately -20°C.

The 60% hydroxyapatite (HAP) slurry was prepared one day before use. The HAP was gently mixed with 50 mM buffer in a graduated cylinder, and refrigerated for approximately 2 hours at approximately 4°C. The HAP was then washed three times as follows. The supernatant was removed and the HAP was resuspended again in 50 mM Tris buffer (approximately 4°C). The slurry was mixed gently and allowed to settle for approximately 2 hours at approximately 4°C. After the third wash, the HAP slurry settled overnight (at least 8 to 10 hours at approximately 4°C).

The next day (day of use), the volume of HAP on the graduated cylinder was noted. The supernatant was removed and the HAP was resuspended to a final volume of 60% HAP and 40% cold 50 mM Tris buffer. The HAP slurry was well-suspended and ice-cold when used in the separation procedure.

#### 3.5 Assays

#### 3.5.1 Working Assay Buffer Preparation

|                            |                             | Competitive Binding Assay Protocol       |  |  |
|----------------------------|-----------------------------|------------------------------------------|--|--|
| Source of receptor         |                             | Rat prostate cytosol                     |  |  |
| Concentration of radioliga | and                         | 1 nM                                     |  |  |
| Concentration of receptor  |                             | Sufficient to bind 10-15% of radioligand |  |  |
| Concentration of test subs | tance (as serial dilutions) | 100 pM to 1 mM                           |  |  |
| Temperature                |                             | ~4°C                                     |  |  |
| Incubation time            |                             | 16-20 hours                              |  |  |
| Composition of assay       | Tris                        | 10 mM (pH 7.4)                           |  |  |
| buffer                     | EDTA                        | 1.5 mM                                   |  |  |
|                            | Glycerol                    | 10% (v/v)                                |  |  |
| Protease Inhibitor         |                             | 0.5% (v/v)                               |  |  |
|                            | DTT                         | 1 mM                                     |  |  |
|                            | Sodium Molybdate            | 1 mM                                     |  |  |

Summary Table of Assay Conditions

On the day of assay, the Working Assay Buffer, or TEDG+PI buffer (10 mM Tris, 1 mM sodium molybdate, 1.5 mM EDTA, 10% glycerol and 1 mM DTT, 0.5% Protease Inhibitor (v/v), pH 7.4) was prepared using the TEDG buffer.

#### 3.5.2 [<sup>3</sup>H]-R1881 Preparation

[<sup>3</sup>H]-R1881 was prepared on the day of assay. The specific activity was adjusted for decay over time prior to performing dilutions. The specific activity was calculated on the day of the assay using the following equation:

 $SA_{adjusted} \text{ (Fraction Isotope Remaining)} = SA * e^{-Kdecay*Time}$ 

SA is the specific activity on the packaging date. Kdecay is the decay constant for tritium (equal to  $1.54 \times 10^{-4}$ /day). Time = days since the date on the stock bottle from the manufacturer.

The  $[^{3}H]$ -R1881 was diluted with TEDG + PI buffer so that each assay tube contained 1 nM final concentration of  $[^{3}H]$ -R1881 using the following procedure:

The specific activity was converted from Ci/mmole to nM. If SA = X Ci/mmole, and Y = concentration of radiolabel, then X Ci/mmole was converted to nM and the SA activity adjusted for decay over time by the following conversion:

(Y mCi/ml / X Ci/mmole) \* 1 Ci/1000 mCi \*  $10^6$  nmole/mmole \* 1000 ml/L = (Y/X) \*  $10^6$  nM

A 10 nM diluted stock of the  $[{}^{3}H]$ -R1881 was prepared so that 30 µl in a total volume of 300 µl per assay tube will give a final concentration of 1 nM. The 10 nM  $[{}^{3}H]$ -R1881 was kept on ice until standards, test chemicals, and assay tubes were prepared.

#### 3.5.3 Assay Preparations

Glass 12 x 75 mm tubes were used for the assay. 30  $\mu$ l of 10 nM [<sup>3</sup>H]-R1881 (1 x 10<sup>-8</sup> M) and 50  $\mu$ l triamcinolone acetonide (60  $\mu$ M working solution) were added to all tubes. For the 3 tubes at the beginning of assay and at the end of assay, 100X inert R1881 (30  $\mu$ l of 1  $\mu$ M) was also added. These were the nonspecific binding tubes. The tubes were placed in a speed-vac and dried. An aliquot of cytosol was thawed on ice and diluted to the predetermined optimal protein concentration.

#### **3.5.4 Individual Tubes**

For the assay tubes, 10  $\mu$ l of each concentration of test substance and control was added, followed by 300  $\mu$ l of the diluted cytosol. The temperature of the tubes and contents were kept at approximately 4°C prior to the addition of the cytosol. The assay tubes were vortexed after additions and incubated at approximately 4°C for 16 to 20 hours on a rotator.

## 3.5.5 Separation of Bound [<sup>3</sup>H]-R1881 From Free [<sup>3</sup>H]-R1881

The AR assay tubes were removed from the rotator and placed in an ice-water bath. A repeating pipette was used to add approximately 500  $\mu$ l of ice cold HAP slurry (60% in 50 mM Tris buffer) to fresh new 12 x 75 mm glass assay tubes. 100  $\mu$ l of each incubation tube was transferred to the appropriate labelled tubes containing the HAP. The tubes were vortexed for approximately 10 seconds at approximately 5 minute intervals for a total of approximately 20 minutes with tubes remaining in the ice-water bath between vortexing. Following the vortexing step, approximately 2 ml of the cold 50 mM Tris buffer was added, quickly vortexed, and centrifuged at approximately 4°C for approximately 3 minutes at 700 x g. After centrifugation, the supernatant containing the free [<sup>3</sup>H]-R1881 was

immediately decanted and discarded. The HAP pellet contained the androgen receptor bound  $[^{3}H]$ -R1881. Approximately 2 ml of ice-cold 50 mM Tris buffer was added to each tube and vortexed to resuspend the pellet. The tubes were centrifuged again at approximately 4°C for approximately 3 minutes at approximately 700 x g. The supernatant was quickly decanted and discarded. The wash and centrifugation steps were repeated three more times. After the final wash, the supernatant was decanted. The assay tubes were allowed to drain briefly for approximately 30 seconds.

# **3.5.6** Extraction and Quantification of [<sup>3</sup>H]-R1881 Bound to AR.

Approximately 2 ml of absolute ethanol was added to each assay tube. The tubes were allowed to sit at room temperature for approximately 15 to 20 minutes, vortexing for approximately 10 seconds at approximately 5-minute intervals. The assay tubes were centrifuged for approximately 10 minutes at approximately 700 x g. The supernatant was decanted into a 20 ml scintillation vial containing approximately 14 ml scintillation cocktail (Perkin Elmer Opti-Fluor, cat# 6013199, lot# 47-12261). The vial was capped and shaken. The vials were placed in a scintillation counter (Perkin Elmer Tri-Carb 2910TR Liquid Scintillation Analyzer Model B2910) and each vial was counted for at least one minute with quench correction for determination of DPMs per vial.

Standards (<sup>3</sup>H, <sup>14</sup>C and background) were used to verify accurate counting, and the liquid scintillation analyzer has an enhanced Instrument Performance Assessment (IPA) for monitoring efficiencies, backgrounds, E2/B and Chi-square values for <sup>3</sup>H and <sup>14</sup>C over the life of the instrument. The most recent IPA time and date stamped data are available on demand for reporting purposes. Each IPA printout includes instrument model, serial number, software version number and calibration standard information.

# **3.6 Competitive Binding Data Analysis and Interpretation**

## 3.6.1 Analysis and Considerations

For each of the three valid independent runs of the competitive binding assays, the DPM values were added to a locked data spreadsheet (Microsoft EXCEL 2010 Version 14.0.6123.5001; Redmond, WA). The following statistics were assessed; mean specific binding (%), standard deviation (SD), standard error of the mean (SEM), percent coefficient of variation (% CV), residuals, squared residuals, and the Loge(Syx) (ie. Loge(residual standard deviation)) using XLfit (Version 5.2.0.0; Guildford, Surrey, UK). XLfit was also used for graphing the results and determining the bottom, top, and hill slope and IC<sub>50</sub> (if applicable) for each curve generated.

The competitive binding assay was functioning correctly if all of the following criteria had been met, according to OPPTS 890.1150:

Increasing concentrations of unlabeled R1881 displaced [<sup>3</sup>H]-R1881 from the receptor in a manner consistent with one-site competitive binding. Specifically, the curve fitted to the radioinert R1881 data points using non-linear regression descended from 90% to 10% over approximately an 81-fold increase in the concentration of the test chemicals.

Ligand depletion was minimal. Specifically, the ratio of total binding in the absence of competitor to the total amount of  $[{}^{3}H]$ -R1881 added per assay tube was no greater than 15%.

The parameter values (top, bottom, and slope) for R1881 and the concurrent positive control (dexamethasone) were within the tolerance bounds outlined in the OPPTS guideline and are provided below.

The solvent control substance did not alter the sensitivity or reliability of the assay. Specifically, the acceptable limit of ethanol concentration in the assay tube was 3%; the acceptable limit of DMSO concentration was  $\leq 10\%$ . All tubes must have contained equal amounts of solvent.

The test chemical was tested over a concentration range that fully defined the top of the curve (i.e. a range that showed that a top plateau was achieved), and the top was within 25 percentage points of either the solvent control or the value for the lowest concentration of the R1881 standard for that run.

| Chemical                         | Parameter  | Lower Limit | Upper Limit |
|----------------------------------|------------|-------------|-------------|
| <b>D</b> 1001                    | Slope      | -1.2        | -0.8        |
| R1881<br>(Standard Curva)        | Top (%)    | 82          | 114         |
| (Standard Curve)                 | Bottom (%) | -2          | +2          |
| Demonsthesser                    | Slope      | -1.4        | -0.6        |
| Dexamethasone<br>(Weak Positive) | Top (%)    | 87          | 106         |
|                                  | Bottom (%) | -12         | +12         |

Upper and Lower Limits for Parameters in Competitive Binding Assay Curves for the Standards (Radioinert R1881 and dexamethasone)

#### 3.6.2 Classification

The classification of a chemical as a binder or non-binder was made on the basis of the average results of three non-concurrent runs, each of which meet the performance criteria and taken together, were consistent with each other, as per OPPTS guideline 890.1150. Each run was classified as "binder," "non-binder," or "equivocal."

A run was classified as "binder" with the ARs if the lowest point on the fitted response curve within the range of the data was less than 50%.

"Percent" refers to binding of the radiolabeled R1881. Thus, "less than 50%" means that less than 50% of the radiolabeled R1881 was bound, or equivalently, that more than 50% of the radiolabeled R1881 had been displaced from the receptor. In other words, a run was classified as "binder" if a  $Log(IC_{50})$  was obtained.

A run was classified as a "non-binder" if the lowest point on the fitted response curve within the range of the data was above 75%.

A run was classified as "equivocal" if the average lowest point on the fitted response curves within the range of the data was above 50% but below 75%.

After each run was classified, the chemical was classified by assigning the following values to each run and averaging across runs:

Binder: 2 Equivocal: 1

Non-binder: 0

For example, if a chemical was tested in three runs in one lab and is determined to be interactive in 2 runs and equivocal in 1 run, to classify this chemical one would average 2, 2, and  $1 = \sim 1.67$  and the chemical would be considered a "binder" because the average was greater than 1.5.

# 4.0 RESULTS AND DISCUSSION

### 4.1 Concentration Range for the Test Substance

In order to identify a suitable top concentration for use in the binding assays, preliminary assessments of precipitation were conducted as described in Sections 3.2. The final concentrations of ensulizole, avobenzone, homosalate and padimate-O to assess precipitation were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$ ,  $10^{-5}$ ,  $10^{-4}$  and  $10^{-3}$  M.

The suitable top concentration of ensulizole was  $10^{-3}$  M for use in all three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013) while the suitable top concentration of avobenzone, homosalate and padimate-O for use in all three valid independent runs was  $10^{-5}$  M as precipitation was seen at  $10^{-4}$  and  $10^{-3}$  M.

The final concentrations of ensulizole assessed in the binding assays were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$ ,  $10^{-5}$ ,  $10^{-4}$  and  $10^{-3}$  M for all three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013), while the final concentrations of avobenzone, homosalate and padimate-O assessed in the binding assays were:  $10^{-10}$ ,  $10^{-9}$ ,  $10^{-8}$ ,  $10^{-7}$ ,  $10^{-6}$  and  $10^{-5}$  because of precipitation of the test substances at  $10^{-4}$  and  $10^{-3}$  M.

## 4.2 Binding Assay Acceptance Criteria

In all three valid independent runs of the assay, increasing concentrations of unlabeled R1881 displaced [<sup>3</sup>H]-R1881 from the receptor in a manner consistent with one-site competitive binding, and the ligand depletion was held below 15%. Also, the solvent did not alter the assay sensitivity or reliability. Finally, the data were within the acceptable ranges specified in Section 3.6.1.

#### 4.3 Results

The suitable top concentration of ensulizole was  $10^{-3}$  M for use in all three valid independent runs (11-February-2013, 14-February-2013 and 16-February-2013) while the suitable top concentration of avobenzone, homosalate and padimate-O for use in all three valid independent runs was  $10^{-5}$  M as precipitation was seen at  $10^{-4}$  and  $10^{-3}$  M.

Three independent runs of the binding assay were conducted. In the first valid independent run (11-February-2013), the mean specific binding was > 75% at every soluble concentration tested for ensulizole, avobenzone, homosalate and padimate-O resulting in a classification of "non-binder" for all four test substances. The mean specific binding for avobenzone, homosalate and padimate-O at  $10^{-4}$  M and  $10^{-3}$  M was not assessed because precipitation was observed at these concentrations. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.5 M while the LogIC<sub>50</sub> of R1881 was -9.9 M.

In the second valid independent run (14-February-2013), the mean specific binding was >75% at every soluble concentration tested for avobenzone, ensulizole and homosalate resulting in a classification of "non-binder" for these three test substances. The mean specific binding for avobenzone, homosalate and padimate-O at 10<sup>-4</sup> M and 10<sup>-3</sup> M was not assessed because precipitation was observed at these concentrations. The mean specific binding for padimate-O was > 75% at every soluble concentration tested except for  $10^{-8}$  M (44.8%) and  $10^{-6}$  M (75.0%). A Dixon-Q outlier test can eliminate one of the three replicates in the  $10^{-6}$  M data set, resulting in a mean specific binding value of 102.4%. Additionally, the replicates at 10<sup>-8</sup> M are substantially varied, exhibiting specific binding of -0.3% (replicate 1), 54.6% (replicate 2) and 80.0% (replicate 3). Because all three replicates are so varied, the Dixon-Q outlier test will not allow removal of one or more of the replicates in the analysis. However, these inconsistencies between replicates suggest a loss of all or a part of the HAP pellet during the final extraction and washing steps. Since all soluble concentrations, both higher and lower than  $10^{-8}$  M, exhibit mean specific binding of > 75%, padimate-O is also classified as a "non-binder" for this run. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.5 M while the LogIC<sub>50</sub> of R1881 was -9.9 M. Finally, in the third valid independent run (16-February-2013), the mean specific binding was >75% at every soluble concentration tested for ensulizole, avobenzone, homosalate, and padimate-O, resulting in the classification as a "non-binder" for all four test substances. The mean specific binding for avobenzone, homosalate and padimate-O at 10<sup>-4</sup> M and 10<sup>-3</sup> M was not assessed because precipitation was observed at these concentrations. The weak positive control dexamethasone had a LogIC<sub>50</sub> of -4.6 M while the LogIC<sub>50</sub> of R1881 was -10.0 M.

The mean relative binding affinity, or RBA (calculated by dividing the LogIC<sub>50</sub> of the control/test material by the LogIC<sub>50</sub> of the positive control R1881) was 0.5 for dexamethasone. As ensulizole, avobenzone, homosalate and padimate-O were not classified as an overall "binder" (mean specific binding  $\geq$  50%), the RBA could not be calculated.

# 5.0 CONCLUSIONS

All four test materials, ensulizole, avobenzone, homosalate and padimate-O are classified as "non-binders" of the AR in all three independent runs and thus have a final classification of "non-binder."

## 6.0 **REFERENCES**

Endocrine Disruptor Screening Program Test Guidelines. *OPPTS 890.1150: Androgen Receptor Binding (Rat Prostate Cytosol).* EPA 640-C-09-003. October, 2009.

# **TABLES SECTION**

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | % Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|-------------------------------|
|               | -6                        | 0.0                     | 0.6                   | 0.3                          | 2.4E+17                       |
|               | -7                        | 0.2                     | 0.6                   | 0.4                          | 316.0                         |
| D1991 (NCD)   | -8                        | 1.4                     | 0.5                   | 0.3                          | 32.5                          |
| R1881 (NSB)   | -9                        | 10.7                    | 0.9                   | 0.5                          | 8.1                           |
|               | -10                       | 52.1                    | 4.7                   | 2.7                          | 8.9                           |
|               | -11                       | 87.8                    | 4.0                   | 2.3                          | 4.6                           |
|               | -3                        | 3.1                     | 1.5                   | 0.8                          | 46.7                          |
|               | -4                        | 18.8                    | 0.9                   | 0.5                          | 4.6                           |
|               | -5                        | 77.7                    | 9.4                   | 5.4                          | 12.1                          |
| Devemethesene | -6                        | 92.4                    | 2.9                   | 1.7                          | 3.2                           |
| Dexamethasone | -7                        | 95.8                    | 2.1                   | 1.2                          | 2.2                           |
|               | -8                        | 98.3                    | 2.3                   | 1.3                          | 2.3                           |
|               | -9                        | 96.7                    | 0.4                   | 0.2                          | 0.4                           |
|               | -10                       | 95.2                    | 2.6                   | 1.5                          | 2.7                           |

# TABLE 1Results of 1st Valid Binding Assay – Controls – February 11, 2013

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | %<br>Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|
|               | -3                        | 94.4                    | 0.9                   | 0.5                          | 0.9                              |
|               | -4                        | 97.1                    | 2.0                   | 1.2                          | 2.1                              |
|               | -5                        | 99.8                    | 0.6                   | 0.4                          | 0.6                              |
| Ensulizole    | -6                        | 97.6                    | 3.7                   | 2.2                          | 3.8                              |
| Elisuiizole   | -7                        | 97.6                    | 1.8                   | 1.1                          | 1.9                              |
|               | -8                        | 100.9                   | 0.5                   | 0.3                          | 0.5                              |
|               | -9                        | 99.3                    | 2.9                   | 1.7                          | 2.9                              |
|               | -10                       | 86.6                    | 20.2                  | 11.6                         | 23.3                             |
|               | -3                        | 101.3                   | 3.2                   | 1.9                          | 3.2                              |
|               | -4                        | 68.0                    | 48.8                  | 28.2                         | 71.8                             |
|               | -5                        | 87.8                    | 12.1                  | 7.0                          | 13.8                             |
| A 1           | -6                        | 97.5                    | 3.1                   | 1.8                          | 3.1                              |
| Avobenzone    | -7                        | 96.0                    | 0.8                   | 0.4                          | 0.8                              |
|               | -8                        | 96.5                    | 7.4                   | 4.3                          | 7.6                              |
|               | -9                        | 97.5                    | 2.3                   | 1.4                          | 2.4                              |
|               | -10                       | 96.3                    | 1.5                   | 0.9                          | 1.6                              |
|               | -3                        | 37.2                    | 1.5                   | 0.9                          | 4.0                              |
|               | -4                        | 51.9                    | 3.2                   | 1.8                          | 6.1                              |
|               | -5                        | 89.5                    | 1.2                   | 0.7                          | 1.3                              |
| Homosalate    | -6                        | 96.6                    | 3.0                   | 1.8                          | 3.2                              |
| Homosalate    | -7                        | 96.1                    | 2.8                   | 1.6                          | 3.0                              |
|               | -8                        | 98.5                    | 1.0                   | 0.6                          | 1.0                              |
|               | -9                        | 98.6                    | 2.6                   | 1.5                          | 2.7                              |
|               | -10                       | 99.5                    | 1.3                   | 0.8                          | 1.3                              |
|               | -3                        | 91.0                    | 2.4                   | 1.4                          | 2.6                              |
|               | -4                        | 91.4                    | 5.9                   | 3.4                          | 6.4                              |
|               | -5                        | 98.3                    | 1.6                   | 0.9                          | 1.6                              |
| Dedirecto     | -6                        | 96.9                    | 3.6                   | 2.1                          | 3.7                              |
| Padimate-O    | -7                        | 98.5                    | 1.2                   | 0.7                          | 1.2                              |
|               | -8                        | 98.4                    | 1.7                   | 1.0                          | 1.8                              |
|               | -9                        | 97.0                    | 2.0                   | 1.1                          | 2.1                              |
|               | -10                       | 99.8                    | 2.0                   | 1.2                          | 2.0                              |

TABLE 2Results of 1st Valid Binding Assay – Test Articles – February 11,2013

Red lettering indicates where significant precipitation of test material was observed.

TABLE 31st Valid Run - Upper and Lower Parameters in Competitive AssayBinding Curves for the Standards – February 11, 2013

| Parameter            | Unit               | R1881 | Dexamethasone |
|----------------------|--------------------|-------|---------------|
| Bottom Plateau Level | % binding          | 0     | 2             |
| Top Plateau Level    | % binding          | 95    | 96            |
| Hill Slope           | $Log_{10}(M)^{-1}$ | -1.0  | -1.3          |

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | %<br>Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|
|               | -6                        | 0.0                     | 0.6                   | 0.2                          | -1.3E+18                         |
|               | -7                        | 1.1                     | 0.4                   | 0.2                          | 38.9                             |
| D1991 (NCD)   | -8                        | 2.2                     | 0.7                   | 0.4                          | 30.6                             |
| R1881 (NSB)   | -9                        | 11.5                    | 0.5                   | 0.3                          | 4.1                              |
|               | -10                       | 54.4                    | 2.6                   | 1.5                          | 4.7                              |
|               | -11                       | 93.8                    | 3.6                   | 2.1                          | 3.8                              |
|               | -3                        | 2.1                     | 1.7                   | 1.0                          | 80.7                             |
|               | -4                        | 23.2                    | 0.3                   | 0.2                          | 1.1                              |
|               | -5                        | 75.0                    | 3.8                   | 2.2                          | 5.1                              |
| Devemethesene | -6                        | 92.4                    | 0.8                   | 0.6                          | 0.9                              |
| Dexamethasone | -7                        | 99.4                    | 2.5                   | 1.4                          | 2.5                              |
|               | -8                        | 99.6                    | 3.6                   | 2.1                          | 3.6                              |
|               | -9                        | 105.4                   | 1.5                   | 0.9                          | 1.4                              |
|               | -10                       | 101.1                   | 1.4                   | 0.8                          | 1.4                              |

# TABLE 4Results of 2nd Valid Binding Assay – Controls – February 14, 2013

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | %<br>Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|
|               | -3                        | 84.4                    | 2.1                   | 1.2                          | 2.5                              |
|               | -4                        | 98.4                    | 0.7                   | 0.4                          | 0.7                              |
|               | -5                        | 101.9                   | 1.5                   | 0.9                          | 1.5                              |
| Ensulizole    | -6                        | 103.3                   | 3.6                   | 2.1                          | 3.5                              |
| Ensunzoie     | -7                        | 100.4                   | 2.6                   | 1.5                          | 2.5                              |
|               | -8                        | 98.9                    | 0.8                   | 0.4                          | 0.8                              |
|               | -9                        | 98.0                    | 1.1                   | 0.6                          | 1.1                              |
|               | -10                       | 104.8                   | 1.0                   | 0.6                          | 1.0                              |
|               | -3                        | 98.0                    | 0.6                   | 0.3                          | 0.6                              |
|               | -4                        | 98.5                    | 0.6                   | 0.4                          | 0.6                              |
|               | -5                        | 93.9                    | 6.1                   | 3.5                          | 6.5                              |
|               | -6                        | 97.4                    | 1.5                   | 0.9                          | 1.6                              |
| Avobenzone    | -7                        | 99.8                    | 3.4                   | 2.0                          | 3.4                              |
|               | -8                        | 99.9                    | 1.2                   | 0.7                          | 1.2                              |
|               | -9                        | 99.1                    | 0.9                   | 0.5                          | 0.9                              |
|               | -10                       | 94.9                    | 1.6                   | 0.9                          | 1.7                              |
|               | -3                        | 35.2                    | 3.7                   | 2.1                          | 10.5                             |
|               | -4                        | 46.1                    | 3.5                   | 2.0                          | 7.6                              |
|               | -5                        | 86.2                    | 2.3                   | 1.3                          | 2.6                              |
| TT 1.         | -6                        | 77.0                    | 2.3                   | 1.3                          | 3.0                              |
| Homosalate    | -7                        | 103.3                   | 2.0                   | 1.2                          | 2.0                              |
|               | -8                        | 101.1                   | 1.5                   | 0.9                          | 1.5                              |
|               | -9                        | 100.9                   | 5.3                   | 3.0                          | 5.2                              |
|               | -10                       | 93.3                    | 5.6                   | 3.2                          | 6.0                              |
|               | -3                        | 72.6                    | 5.1                   | 3.0                          | 7.1                              |
|               | -4                        | 95.4                    | 3.2                   | 1.8                          | 3.3                              |
|               | -5                        | 103.4                   | 0.7                   | 0.4                          | 0.7                              |
|               | -6                        | 75.0                    | 47.5                  | 27.4                         | 63.4                             |
| Padimate-O    | -7                        | 90.0                    | 4.5                   | 2.6                          | 5.0                              |
|               | -8                        | 44.8                    | 41.0                  | 23.7                         | 91.6                             |
|               | -9                        | 102.1                   | 5.9                   | 3.4                          | 5.8                              |
|               | -10                       | 104.1                   | 1.0                   | 0.6                          | 1.0                              |

TABLE 5Results of 2nd Valid Binding Assay – Test Articles – February 14,2013

Red lettering indicates where significant precipitation of test material was observed.

TABLE 6Results of 2nd Valid Binding Assay - Upper and Lower Parametersin Competitive Assay Binding Curves for the Standards – February 14, 2013

| Parameter            | Unit               | R1881 | Dexamethasone |
|----------------------|--------------------|-------|---------------|
| Bottom Plateau Level | Level % binding 0  |       | -3            |
| Top Plateau Level    | % binding          | 103   | 101           |
| Hill Slope           | $Log_{10}(M)^{-1}$ | -1.0  | -0.9          |

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | %<br>Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|
|               | -6                        | 0.0                     | 1.3                   | 0.6                          | -1.8E+18                         |
|               | -7                        | 0.0                     | 0.2                   | 0.1                          | -526.8                           |
| D1991 (NCD)   | -8                        | 1.6                     | 0.7                   | 0.4                          | 46.0                             |
| R1881 (NSB)   | -9                        | 9.5                     | 0.4                   | 0.2                          | 4.3                              |
|               | -10                       | 52.4                    | 3.6                   | 2.1                          | 6.8                              |
|               | -11                       | 91.9                    | 1.7                   | 1.0                          | 1.8                              |
|               | -3                        | 4.4                     | 2.2                   | 1.3                          | 49.1                             |
|               | -4                        | 20.6                    | 3.0                   | 1.7                          | 14.4                             |
|               | -5                        | 73.4                    | 1.8                   | 1.0                          | 2.4                              |
| Devenethesee  | -6                        | 96.2                    | 1.5                   | 0.9                          | 1.6                              |
| Dexamethasone | -7                        | 100.6                   | 2.2                   | 1.3                          | 2.2                              |
|               | -8                        | 102.5                   | 1.8                   | 1.1                          | 1.8                              |
|               | -9                        | 101.7                   | 2.9                   | 1.7                          | 2.8                              |
|               | -10                       | 99.2                    | 2.5                   | 1.4                          | 2.5                              |

# TABLE 7Results of 3<sup>rd</sup> Valid Binding Assay – Controls – February 16, 2013

| Test Material | Concentration<br>(Log[M]) | Specific<br>Binding (%) | Standard<br>Deviation | Standard<br>Error of<br>Mean | %<br>Coefficient<br>of Variation |
|---------------|---------------------------|-------------------------|-----------------------|------------------------------|----------------------------------|
|               | -3                        | 93.6                    | 5.6                   | 3.2                          | 6.0                              |
|               | -4                        | 92.9                    | 6.3                   | 3.6                          | 6.7                              |
|               | -5                        | 102.6                   | 1.3                   | 0.7                          | 1.3                              |
| Ensulizole    | -6                        | 101.5                   | 1.5                   | 0.9                          | 1.5                              |
| Ensunzoie     | -7                        | 75.5                    | 43.7                  | 25.2                         | 57.9                             |
|               | -8                        | 95.3                    | 5.8                   | 3.4                          | 6.1                              |
|               | -9                        | 100.5                   | 0.6                   | 0.4                          | 0.6                              |
|               | -10                       | 96.9                    | 2.4                   | 1.4                          | 2.5                              |
|               | -3                        | 97.0                    | 2.8                   | 1.6                          | 2.9                              |
|               | -4                        | 94.9                    | 3.5                   | 2.0                          | 3.7                              |
|               | -5                        | 103.0                   | 3.1                   | 1.8                          | 3.0                              |
| Anghannana    | -6                        | 98.7                    | 1.9                   | 1.1                          | 1.9                              |
| Avobenzone    | -7                        | 95.8                    | 1.2                   | 0.7                          | 1.3                              |
|               | -8                        | 100.9                   | 0.8                   | 0.5                          | 0.8                              |
|               | -9                        | 104.1                   | 0.8                   | 0.5                          | 0.8                              |
|               | -10                       | 90.1                    | 10.2                  | 5.9                          | 11.4                             |
|               | -3                        | 28.2                    | 6.5                   | 3.8                          | 23.1                             |
|               | -4                        | 57.0                    | 9.1                   | 5.3                          | 16.0                             |
|               | -5                        | 92.9                    | 3.8                   | 2.2                          | 4.0                              |
| Homosalate    | -6                        | 83.6                    | 20.6                  | 11.9                         | 24.6                             |
| nomosaiate    | -7                        | 99.6                    | 3.4                   | 2.0                          | 3.4                              |
|               | -8                        | 99.4                    | 1.1                   | 0.6                          | 1.1                              |
|               | -9                        | 103.0                   | 2.1                   | 1.2                          | 2.0                              |
|               | -10                       | 99.7                    | 1.2                   | 0.7                          | 1.2                              |
|               | -3                        | 81.7                    | 10.9                  | 6.3                          | 13.3                             |
|               | -4                        | 92.7                    | 1.5                   | 0.9                          | 1.6                              |
|               | -5                        | 99.1                    | 3.2                   | 1.8                          | 3.2                              |
| Padimate-O    | -6                        | 103.4                   | 2.3                   | 1.3                          | 2.2                              |
| Paulmate-O    | -7                        | 100.0                   | 0.7                   | 0.4                          | 0.7                              |
|               | -8                        | 91.2                    | 11.5                  | 6.7                          | 12.6                             |
|               | -9                        | 97.0                    | 0.6                   | 0.4                          | 0.7                              |
|               | -10                       | 92.3                    | 9.2                   | 5.3                          | 9.9                              |

TABLE 8Results of 3<sup>rd</sup> Valid Binding Assay – Test Articles – February 16,2013

Red lettering indicates where significant precipitation of test material was observed.

TABLE 9Results of 3<sup>rd</sup> Valid Binding Assay - Upper and Lower Parametersin Competitive Assay Binding Curves for the Standards – February 16, 2013

| Parameter            | Unit               | R1881 | Dexamethasone |
|----------------------|--------------------|-------|---------------|
| Bottom Plateau Level | % binding          | 0     | 2             |
| Top Plateau Level    | % binding          | 100   | 101           |
| Hill Slope           | $Log_{10}(M)^{-1}$ | -1.0  | -1.0          |

# **FIGURES SECTION**

Report Number: 9070-100794ARB

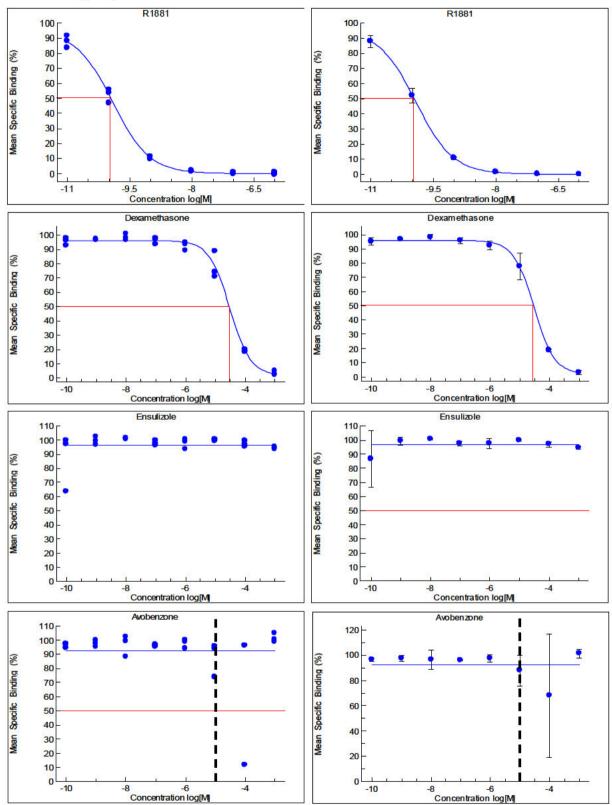
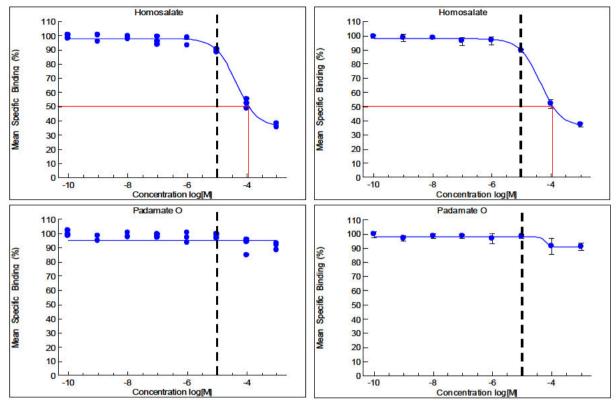
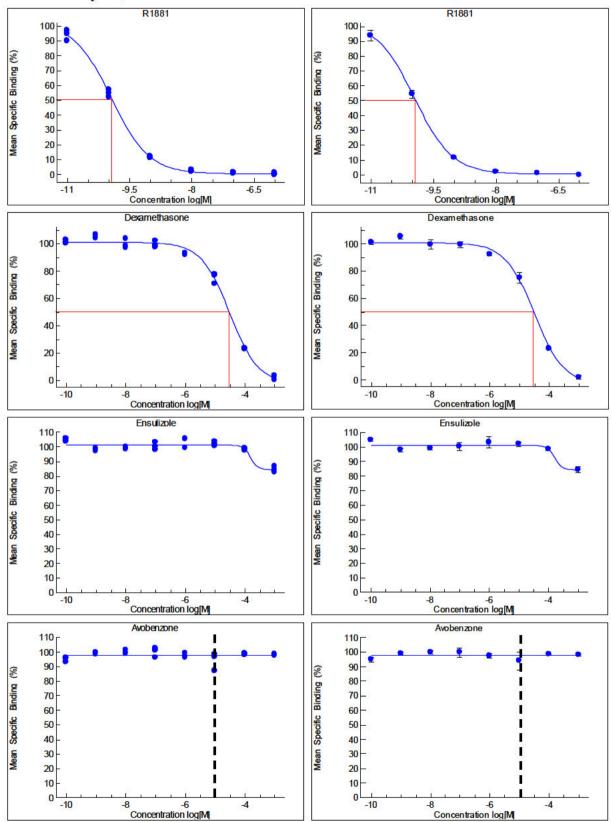
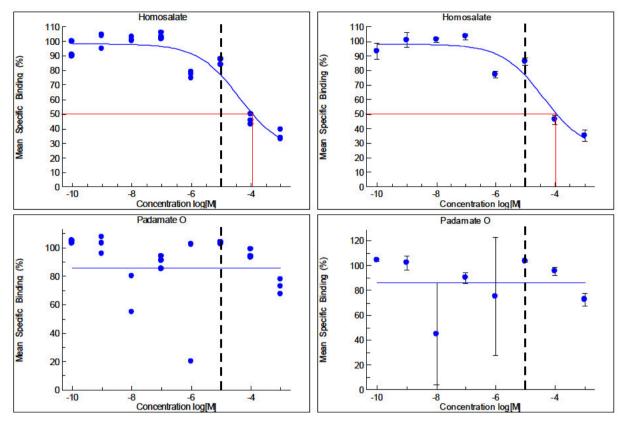




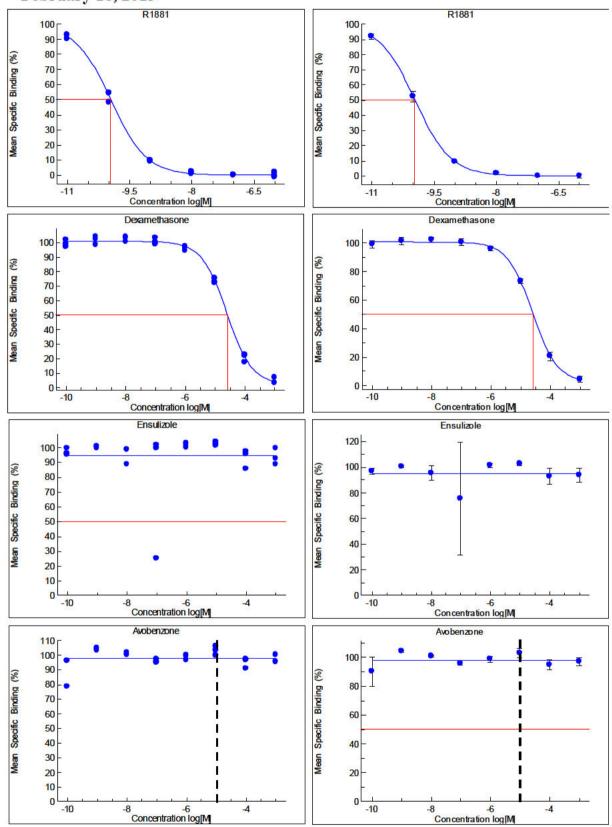

FIGURE 1 1<sup>st</sup> Valid Run % Specific Binding for Test Substances and Controls – February 11, 2013

Report Number: 9070-100794ARB



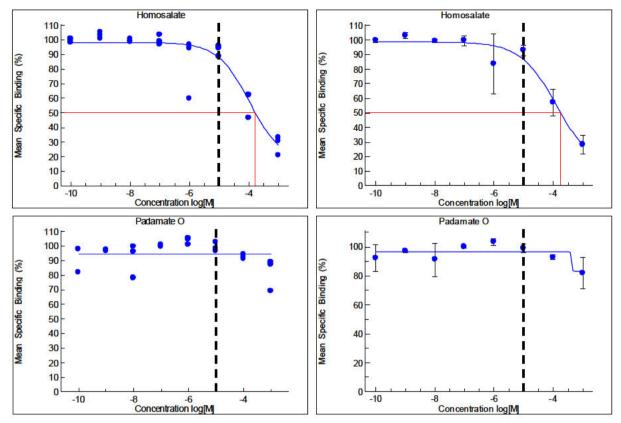

The graphs on the left show individual replicates while graphs on the right show mean data (Means±Standard Deviation) from the first independent run of the assay (n=3). The vertical black dotted lined represents the limit of solubility as tested in this system. Any concentration at or below this line was considered soluble.




**FIGURE 2** 2<sup>nd</sup> Valid Run % Specific Binding for Test Substances and Controls – February 14, 2013

Report Number: 9070-100794ARB

Page 37 of 128




The graphs on the left show individual replicates while graphs on the right show mean data (Means±Standard Deviation) from the second independent run of the assay (n=3). The vertical black dotted lined represents the limit of solubility as tested in this system. Any concentration at or below this line was considered soluble.



**FIGURE 3** 3<sup>rd</sup> Valid Run % Specific Binding for Controls and Test Substances – February 16, 2013

Report Number: 9070-100794ARB



The graphs on the left show individual replicates while graphs on the right show mean data (Means±Standard Deviation) from the third independent run of the assay (n=3). The vertical black dotted lined represents the limit of solubility as tested in this system. Any concentration at or below this line was considered soluble.

# **APPENDICES SECTION**

Report Number: 9070-100794ARB

Page 41 of 128

# APPENDIX 1 Raw and Normalized Data Valid Run 1 – February 11, 2013

| Experiment Date:                  |                         |                                 | Study Number                                 | 9070-100794                                    | IARB                                     |                     |              |               | Assays Con       | ducted by: |          |         |                       |
|-----------------------------------|-------------------------|---------------------------------|----------------------------------------------|------------------------------------------------|------------------------------------------|---------------------|--------------|---------------|------------------|------------|----------|---------|-----------------------|
| Test substance:<br>3/6/2013 15:22 | Ensulizate              |                                 |                                              |                                                |                                          |                     |              |               |                  |            |          |         |                       |
|                                   |                         | ug protein/assay tube =         | 270.0                                        |                                                |                                          |                     |              |               |                  |            |          |         |                       |
|                                   | Tube                    | Sample Type                     | DPM (1mL)                                    | Specific<br>Binding<br>DPM (100<br>uL) - NSB   | Total<br>Specific<br>Binding<br>(300 uL) | Mean                |              |               |                  |            |          |         |                       |
|                                   | 1<br>2<br>3<br>4        | Total Activity (Master Mix)     | 55960<br>55938<br>55142<br>55662             | (Z<br>(2                                       | 55960.0<br>55938.0<br>55142.0<br>66662.0 | 55652.7             |              |               |                  |            |          |         |                       |
|                                   | 5                       |                                 | 65995<br>65229                               | 2                                              | 55995.0<br>55229.0                       |                     |              |               |                  |            |          |         |                       |
|                                   | 7<br>8<br>9<br>10<br>11 | Total Binding (Solvent Control) | 1785<br>1885<br>1821<br>1811<br>1811<br>1871 | 1687.2<br>1787.2<br>1722.2<br>1712.2<br>1772.2 | 5062<br>5362<br>5167<br>5137<br>5317     | 6177.6              |              |               |                  |            |          |         |                       |
| DPM                               | 12<br>Tube              | Earnia Tura                     | 1773<br>Concentration                        | 1674.2<br>Specific<br>Binding                  | 5023<br>Total<br>Specific                | Specific<br>Binding | Residual     | Squared       | Mean<br>Specific | Standard   | SEM      | 34 CV   | % Ligand<br>Bound vs. |
| (1mL) from LSC                    | Sec.22                  | Sample Type                     | log[M]                                       | DPM (1mL)<br>NSB                               | Binding<br>(3mL)                         | (%)                 |              | Residual      | Binding (%)      | Deviation  |          |         | Total<br>Activity     |
| 95.0<br>89.0                      | 13                      | R1881 (NSB)                     | -5<br>-5                                     | -3.8<br>-9.8                                   | -11.5<br>-29.5                           | -0.2<br>-0.6        | -0.3<br>-0.6 | 0.1<br>0.4    | 0.0              | 0.6        | 0.3      | 2.4E+17 | 0.5                   |
| 98.0<br>112.0                     | 15<br>16                |                                 | -6<br>-6                                     | -0.6                                           | -2.5<br>39.5                             | 0.0                 | -0.1         | 0.0           |                  |            |          |         | 0.5                   |
| 112.0                             | 17                      |                                 | -6                                           | 13.2                                           | 39.5                                     | 0.8                 | 0.7          | 0.5           |                  |            |          |         | 0.6                   |
| 87.0<br>92.0                      | 18<br>19                | R1881                           | -6<br>-7                                     | -11.8                                          | -35.5                                    | -0.7                | -0.7         | 0.6           | 0.2              | 0.6        | 0.4      | 316.0   | 0.5                   |
| 114.0                             | 20                      | 1000000                         | -7                                           | 15.2                                           | 45.5                                     | 0.9                 | 0.7          | 0.5           | 100              | 1.000      |          |         | D.6                   |
| 101.0                             | 21<br>22                | R1881                           | -7<br>-8                                     | 2.2 34.2                                       | 6.5<br>102.5                             | 0.1                 | -0.1         | 0.0           | 1.4              | 0.5        | 0.3      | 32.5    | 0.5                   |
| 119.0                             | 23                      |                                 | -8                                           | 20.2                                           | 60.5                                     | 1.2                 | -0.1         | 0.0           |                  | -          |          |         | D.6                   |
| 119.0<br>285.0                    | 24                      | R1881                           | -B<br>-9                                     | 20.2                                           | 60.5<br>501.5                            | 1.2                 | -0.1         | 0.0           | 10.7             | 0.9        | 0.5      | 8.1     | 0.5                   |
| 292.0                             | 26                      | 30 or 1,07 a.                   | -9                                           | 193.2                                          | 579.5                                    | 11.2                | 0.5          | 0.2           |                  |            |          |         | 1.6                   |
| 292.0                             | 27<br>28                | R1881                           | -9<br>-10                                    | 193.2<br>962.2                                 | 579.5<br>2896.5                          | 11.2<br>55.8        | 0.5          | 0.2           | 52.1             | 4.7        | 2.7      | 8.9     | 1.6                   |
| 907.0                             | 29                      | 100000                          | -10                                          | 808.2                                          | 2424.5                                   | 46.8                | -6.2         | 27.3          | 100.000          | - 885      | 126      | 12.9    | 4.9                   |
| 1024.0                            | 30                      | R1881                           | -10<br>-11                                   | 925.2                                          | 2775.5<br>4588.5                         | 53.6<br>68.2        | 1.6          | 2.4           | 67.8             | 4.0        | 2.3      | 4.6     | 5.5                   |
| 1541.0                            | 32                      |                                 | -11                                          | - 442.2                                        | 4326.5                                   | 83.6                | -4.2         | 17.8          |                  |            |          |         | 8.3                   |
| 1679.0<br>144.0                   | 33<br>37                | Dexamethasone                   | -11<br>-3                                    | 1580.2                                         | 4740.5                                   | 91.6<br>2.6         | 3.8          | 14.3          | 3.1              | 1.5        | 0.8      | 46.7    | 9.1<br>D.8            |
| 133.0                             | 38                      | Dexamemasure                    | -3                                           | 34.2                                           | 102.5                                    | 2.0                 | -1.8         | 1.0           | 3.1              | 1.5        | 0.0      | 40.7    | 0.7                   |
| 181.0<br>419.0                    | 39<br>40                | Dexamethasone                   | -3<br>-4                                     | 82.2                                           | 246.5                                    | 4.8                 | 1.8          | 3.2<br>D.2    | 18.8             | 0.9        | 0.5      | 4.6     | 1.D<br>2.3            |
| 440.0                             | 41                      |                                 | -4                                           | 341.2                                          | 1023.5                                   | 19.8                | 0.7          | 0.5           | 10.0             | 0.5        | 0.0      | 4.0     | 2.4                   |
| 411.0<br>1375.0                   | 42<br>43                | Dexamethasone                   | -4<br>-5                                     | 312.2                                          | 936.5<br>3828.5                          | 16.1<br>73.9        | -0.9         | 0.9           | 77.7             | 9.4        | 5.4      | 12.1    | 2.2                   |
| 1320.0                            | 44                      | Dexamentasone                   | -5                                           | 1221.2                                         | 3663.5                                   | 70.8                | -6.5         | 42.8          |                  | 2.4        | 0.4      | 12.1    | 7.1                   |
| 1625.0<br>1635.0                  | 46<br>46                | Dexamethasone                   | -5<br>-6                                     | 1526.2<br>1537.2                               | 4578.5<br>4511.5                         | 88.4<br>89.1        | 11.1<br>-5.7 | 123.8<br>32.1 | 92.4             | 2.9        | 1.7      | 3.2     | 8.8<br>8.8            |
| 1732.0                            | 47                      | Denamentasane                   | -6                                           | -633.2                                         | 4899.5                                   | 94.6                | -0.1         | 0.0           | 22.4             | 2.0        |          |         | 9.3                   |
| 1711.0                            | 48<br>49                | Dexamethasone                   | -6<br>-7                                     | 1612.2<br>1612.2                               | 4836.5<br>4836.5                         | 93.4<br>93.4        | -1.3         | 1.7           | 95.8             | 2.1        | 1.2      | 2.2     | 9.2                   |
| 1781.0                            | 60                      | Dexamemasure                    | -7                                           | 1682.2                                         | 5045.5                                   | 97.6                | 1.5          | 2.3           | 00.0             | S. 4. 1    | 1.2      | 2.2     | 9.5                   |
| 1785.0<br>1784.0                  | 51<br>52                | Dexamethasone                   | -7<br>-B                                     | 1667.2                                         | 5001.5<br>5055.5                         | 96.6<br>97.6        | 0.7          | 0.4           | 98.3             | 2.3        | 1.3      | 2.3     | 9.5                   |
| 1762.0                            | 53                      |                                 | -8                                           | -663.2                                         | 4989.5                                   | 96.4                | 0.4          | 0.1           |                  |            |          |         | 9.5                   |
| 1839.0<br>1769.0                  | 54<br>66                | Dexamethacone                   | -8<br>-9                                     | 1740.2                                         | 5220.5<br>5010.5                         | 100.8               | 4.8          | 23.3<br>0.6   | 96.7             | 0.4        | 0.2      | 0.4     | 9.9                   |
| 1759.0                            | 56                      |                                 | -9                                           | 1660.2                                         | 4980.5                                   | 96.2                | 0.2          | 0.0           |                  |            |          |         | 9.5                   |
| 1773.0<br>1754.0                  | 67<br>58                | Dexamethasone                   | .9<br>-10                                    | 1674.2                                         | 5022.5<br>4965.5                         | 97.0<br>95.9        | -0.1         | 1.0           | 95.2             | 2.6        | 1.5      | 2.7     | 9.5                   |
| 1693.0                            | 59                      |                                 | -10                                          | 1594.2                                         | 4782.5                                   | 92.4                | -3.6         | 13.3          | 0.01.6           |            |          |         | 9.1                   |
| 1781.0                            | 60<br>61                | Ensulizole                      | -10<br>-3                                    | 1682.2                                         | 5046.5<br>4848.5                         | 97.5<br>93.6        | 1.5<br>-3.0  | 2.3<br>9.2    | 94.4             | 0.9        | 0.6      | 0.9     | 9.6                   |
| 1744.0                            | 62                      | and state of the                | -3                                           | 1645.2                                         | 4935.5                                   | 95.3                | -1.3         | 1.8           |                  |            |          |         | 9.4                   |
| 1724.0<br>1745.0                  | 63<br>64                | Ensulizale                      | -3<br>-4                                     | 1625.2<br>1646.2                               | 4875.5<br>4938.5                         | 94.2<br>95.4        | -2.5         | 6.3<br>1.7    | 97.1             | 2.0        | 1.2      | 2.1     | 9.3                   |
| 1767.0                            | 65                      | 0.00000000000                   | -4                                           | -668.2                                         | 5004.5                                   | 96.7                | 0.0          | 0.0           | NG KAN           |            |          | ~8A5    | 9.5                   |
| 1814.0<br>1826.0                  | 66<br>67                | Ensulizole                      | -4<br>-5                                     | *715.2<br>*727.2                               | 5145.5<br>5181.5                         | 99.4<br>100.1       | 2.7          | 7.3           | 99.8             | 0.6        | 0.4      | 0.6     | 9.8                   |
| 1810.0                            | 68                      |                                 | -5                                           | 7711.2                                         | 5133.5                                   | 99.2                | 2.5          | 6.1           |                  | _          |          |         | 9.B                   |
| 1830.0                            | 69<br>70                | Ensulizole                      | -5<br>-6                                     | 1731.2                                         | 5193.5<br>4833.5                         | 100.3<br>93.4       | 3.6          | 13.2          | 97.6             | 3.7        | 2.2      | 3.8     | 9.9                   |
| 1906.0                            | 71                      |                                 | -6                                           | *707.2                                         | 5121.5                                   | 98.9                | 2.2          | 5.0           |                  |            |          |         | 9.7                   |
| 1833.0<br>1758.0                  | 72                      | Ensulizole                      | -6<br>.7                                     | 1734.2                                         | 5202.5<br>4971.5                         | 100.5               | 3.8          | 14.5          | 97.6             | 1.8        | 1.1      | 1.9     | 9.9                   |
| 1777.0                            | 74                      |                                 | -7                                           | 1678.2                                         | 5034.5                                   | 97.2                | 0.6          | 0.3           | 1000             |            | Alerta - | 1925    | 9.5                   |
| 1818.0                            | 75                      | Ensulizale                      | 7<br>-B                                      | 7719.2                                         | 5157.5<br>5228.5                         | 99.6<br>100.9       | 2.9          | 8.6<br>18.3   | 100.9            | 0.5        | 0.3      | 0.5     | 9.B<br>9.9            |
| 1831.0                            | 77                      |                                 | -8                                           | -732.2                                         | 5196.5                                   | 100.4               | 3.7          | 13.6          |                  |            |          |         | 9.9                   |
| 1849.0                            | 78<br>79                | Ensulizole                      | -8<br>-9                                     | 1750.2                                         | 5250.5<br>5127.5                         | 101.4               | 4.7          | 22.4<br>5.6   | 99.3             | 2.9        | 1.7      | 2.9     | 10.0                  |
| 1864.0                            | 80                      |                                 | -9                                           | 1765.2                                         | 5295.5                                   | 102.3               | 5.6          | 31.4          |                  | 1.0.0      | 1000     |         | 10.0                  |
| 1764.0<br>1818.0                  | 61<br>82                | Ensulizole                      | -9<br>-10                                    | *665.2<br>*719.2                               | 4995.5<br>5157.5                         | 96.5<br>99.6        | -0.2         | 0.0           | 86.6             | 20.2       | 11.6     | 23.3    | 9.5                   |
| 1771.0                            | 83                      |                                 | -10                                          | 1672.2                                         | 5016.5                                   | 96.9                | 0.2          | 0.0           |                  |            |          |         | 9.5                   |
| 1193.0                            | 84                      |                                 | -10                                          | 1094.2                                         | 3282.5                                   | 63.4                | -33.3        | 1107.1        |                  |            |          |         | 5.4                   |

## APPENDIX 1 (continued)

# Raw and Normalized Data Valid Run 1 – February 11, 2013

| 1918.00         6.20         1.21         3.30         17.52         6.26.56         10.16         7.8         6.29         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21         1.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |               |     |        |        |       |       | _      |       |      |      |      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---------------|-----|--------|--------|-------|-------|--------|-------|------|------|------|------|
| 1900         63         10712         9103         96.5         64         55.6         7.4         60.0         40.0         20         71.6         5           1909         6.6         -         -         4         1902         480.5         66.2         3.6         133         6.0         40.0         20         71.6         6           1909         6.6         -         1002         480.5         66.2         3.6         13         5.6         71.6         10.2         71.6         3.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6         71.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1909.0 | 61 | Avobenzone    |     | 1810.2 | 5430.5 |       | 12.3  | 150.8  | 101.3 | 3.2  | 1.9  | 3.2  | 10.3 |
| IPPS0         64         Assessme         4         1802         6805         962         38         129         880         480         262         71         8         61           2790         65         -4         2002         2005         118         413         6802         72         121         70         138         51           17918         69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1834.0 | 62 |               |     | 1735.2 | 5205.5 | 100.5 | 7.9   | 62.9   |       |      |      |      | 9.9  |
| 19700         65 <td>1800.0</td> <td>63</td> <td></td> <td>-3</td> <td>1701.2</td> <td>5103.5</td> <td>98.6</td> <td>6.0</td> <td>35.6</td> <td></td> <td></td> <td></td> <td></td> <td>9.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1800.0 | 63 |               | -3  | 1701.2 | 5103.5 | 98.6  | 6.0   | 35.6   |       |      |      |      | 9.7  |
| 9200         68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1759.0 | 64 | Avobenzone    | -4  | 1660.2 | 4980.5 | 96.2  | 3.6   | 12.9   | 68.0  | 48.8 | 28.2 | 71.8 | 9.5  |
| 19730         67         Awderstore         6         10242         322.5         733         -16.8         872.6         873.6         111         730         118.5         2           171910         61         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1759.0 | 65 |               | -4  | 1660.2 | 4980.5 | 96.2  | 3.6   | 12.9   |       |      |      |      | 9.5  |
| 1780         09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 299.0  | 66 |               | -4  | 200.2  | 600.5  | 11.6  | -81.0 | 6562.5 |       |      |      |      | 1.6  |
| 1780         09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 67 | Avobenzone    | -5  | 1274.2 | 3822.5 | 73.8  | -18.8 | 352.6  | 87.8  | 12.1 | 7.0  | 13.8 | 7.4  |
| 1780         09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.3  |
| HS20         70         Andeescore         6         1722         671         16.2         27         31         18         31         0           1800         72         Accentrome         7         1600         72         400         60.2         50.0         50.0         0.0         0.4         0.0         6           1700         71         Accentrome         7         1602.2         2005.0         66.2         1.0         6         0.0         0.4         0.0         0.0         0.4         0.0         0.0         0.0         0.4         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.4  |
| PT20         71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    | Avohenzone    |     |        |        |       |       |        | 97.5  | 31   | 18   | 31   | 9.8  |
| 1900         72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |    | ANODEIIZOIIE  |     |        |        |       |       |        | 07.0  | 0.1  | 1.0  | 0.1  | 9.3  |
| 1780         73         Avelanzova         7         1682         36         123         36         124         80         0.8         0.4         0.8         0.4         0.8         0.4         0.8         0.4         0.8         0.4         0.8         0.4         0.8         0.4         0.8         0.8         0.4         0.8         0.8         0.4         0.8         0.8         0.4         0.8         0.4         0.8         0.8         0.4         0.8         0.8         0.3         0.9         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8         0.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.7  |
| 1770         74         74         1662         9004         892         44         16.4         6.5         7         1662         9004         892         44         16.5         7         43         76         8           18640         76         Anteincone         48         1762         2565         1023         97         935         585         7.4         43         7.6         16           18700         77         1662         24856         582         46         46         6         -         -         6         6         6         7.6         7.6         16         6         6         6         6         6         6         6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.6         7.7         16.7         17.0         1.6         7.7         16.0         7.7         16.7         7.7         16.7         17.0         7.7 <t< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>00.0</td><td></td><td>0.4</td><td>0.0</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    | 0             |     |        |        |       |       |        | 00.0  |      | 0.4  | 0.0  |      |
| 174.0         75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    | Avobenzone    |     |        |        |       |       |        | 96.0  | 0.8  | U.4  | 0.8  | 9.5  |
| 198.0         76         Anglerizon         -0         1752         2556         1023         97         995         985         7.4         4.3         7.6         0           197.0         70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.5  |
| IBCD         77         Res         8         1522         4465         892         64         406         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         L         P         P         P         L         P         L         P         L         P         L         P         L         P         L         P         L         L         P         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.4  |
| 1870.0         79         Amberance         9         1782.0         6:4         0.0         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r <td></td> <td></td> <td>Avobenzone</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>96.5</td> <td>7.4</td> <td>4.3</td> <td>7.6</td> <td>10.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |    | Avobenzone    |     |        |        |       |       |        | 96.5  | 7.4  | 4.3  | 7.6  | 10.0 |
| 1780.0         79         Acobarczee         9         1641.2         4233.6         97.6         2.5         6.2         97.6         2.3         1.4         2.4         9.5           1780.0         80         94         1922.2         5166.6         97.6         6.0         24.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |               |     |        |        |       |       |        |       |      |      |      | 8.7  |
| 1780.0         80         984.2         992.2         976.6         998         7.2         516.6         998         7.2         516.6         998         7.2         516.6         998         7.2         516.6         998         7.2         516.6         998         7.2         516.6         998         7.2         516.6         993         1.5         0.9         1.6         5           1773.0         63         -10         1512         4803.6         846         1.9         3.6         2.2         3.6         871         4.5         1.99         4.0         4.0         5           750.0         6.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>1807.0</td><td></td><td></td><td></td><td>1708.2</td><td>5124.5</td><td>99.0</td><td>6.4</td><td>40.6</td><td></td><td></td><td></td><td></td><td>9.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1807.0 |    |               |     | 1708.2 | 5124.5 | 99.0  | 6.4   | 40.6   |       |      |      |      | 9.7  |
| 1910         01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1740.0 | 79 | Avobenzone    | -9  | 1641.2 | 4923.5 | 95.1  | 2.5   | 6.2    | 97.5  | 2.3  | 1.4  | 2.4  | 9.4  |
| 1778.0         82         Awstenzore         10         1572         2007         67.3         17.2         0.93         15         0.9         18.         9           1778.0         83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1783.0 | 80 |               | -9  | 1684.2 | 5052.5 | 97.6  | 5.0   | 24.8   |       |      |      |      | 9.6  |
| 177300         69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1821.0 | 81 |               | -9  | 1722.2 | 5166.5 | 99.8  | 7.2   | 51.6   |       |      |      |      | 9.8  |
| 1774.0         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1778.0 | 82 | Avobenzone    | -10 | 1679.2 | 5037.5 | 97.3  | 4.7   | 22.0   | 96.3  | 1.5  | 0.9  | 1.6  | 9.6  |
| 1774.0         84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1730.0 | 83 |               | -10 | 1631.2 | 4893.5 | 94.5  | 1.9   | 3.6    |       |      |      |      | 9.3  |
| P10         61         Hemosalate         3         612         1936         5 35.         1.7         2.8         37.2         1.5         0.9         4.0         5           784.0         63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1774.0 | 84 |               | -10 | 1675.2 |        | 97.1  | 4.5   | 19.9   |       |      |      |      | 9.6  |
| P84.0         63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    | Homosalate    |     |        |        |       |       |        | 37.2  | 1.5  | 0.9  | 4.0  | 3.8  |
| 786.0         63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |    |               |     |        |        |       |       |        |       |      | 5.4  |      | 4.1  |
| 996.0         64         Homosalate         -4         897.2         2291.5         52.0         0.00         51.9         3.2         1.8         6.1         6           1930.0         66         -4         990.2         280.5         56.1         3.1         9.6         -         -         -         5           1950.0         67         Homosalate         -6         1561.2         463.6         689.2         -11.1         1.1         -         -         -         5           1950.0         70         Homesalate         -6         1692.2         4686.5         88.2         -11.1         1.1         -         -         -         5           1980.0         70         Homesalate         -6         1692.2         905.5         80.5         1.0         1.0         96.6         3.0         1.8         3.2         -         -         -         -         -         5         1.0         0.6         -         -         -         -         -         -         -         1.1         1.1         1.1         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.1</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |               |     |        |        |       |       |        |       |      |      |      | 4.1  |
| 99.0         66         -4         80.2         220.6         68.1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         -1         13         96         -1         -1         13         06         -1         -1         13         06         -1         -1         13         06         -1         -1         13         07         13         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    | Homocolata    |     |        |        |       |       |        | 51.9  | 3.7  | 1.9  | 6.1  | 5.4  |
| 1069.0         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | Tiomosalate   |     |        |        |       |       |        | 51.5  | 3.2  | 1.0  | 0.1  | 5.1  |
| IBS00         67         Hamosalate         -5         15512         4653         89.9         0.3         89.5         1.2         0.7         1.3         8           18210         68         -5         15522         4686         68         -11         1.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |    |               |     |        |        |       |       |        |       |      |      |      |      |
| 16210         68         -5         15222         4566         682         -1.1         1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |               |     |        |        |       |       |        | 00.5  | 4.2  | 0.7  | 4.2  | 5.7  |
| Image: 1990         69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    | Homosalate    |     |        |        |       |       |        | 89.5  | 1.2  | 0.7  | 1.3  | 8.9  |
| 1798.0         70         Hemesalate         6         1899.2         597.6         98.6         10         10         10         99.6         30         18         3.2         9           1798.0         72         -6         1895.2         4818.6         982.         0.8         0.6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>8.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |               |     |        |        |       |       |        |       |      |      |      | 8.7  |
| 1706.0         71         66         1806.2         4418.6         93.1         4.4         192         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td></td> <td>8.9</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    |               |     |        |        |       |       |        |       |      |      |      | 8.9  |
| 17940         72         Homosalate         7         1612         496.2         598.5         698.2         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |    | Homosalate    |     |        |        |       |       |        | 96.6  | 3.0  | 1.8  | 3.2  | 9.7  |
| 17130         73         Homosalate         7         16142         4942.5         93.6         14.6         19.8         96.1         2.8         1.6         3.0         9.5           117500         75         7         17112         5133.5         99.2         1.2         1.4            5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.6         1.0         0.6         1.0         5.3         5.3         5.6         1.5         2.7         5.3         5.3         5.3         5.6         1.5         2.7         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         5.3         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1705.0 | 71 |               | -6  | 1606.2 | 4818.5 | 93.1  | -4.4  | 19.2   |       |      |      |      | 9.2  |
| 17200         74         74         74         75         77         1712         6132         992         1.2         1.4         76         76         76           1816.0         76         Homosalate         -8         177.2         5151.5         99.5         1.5         2.2         98.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         0.1         0.0         1.0         0.6         1.0         0.6         0.4         0.0         0.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0 <t< td=""><td>1794.0</td><td>72</td><td></td><td>-6</td><td></td><td>5085.5</td><td>98.2</td><td>0.8</td><td>0.6</td><td></td><td></td><td></td><td></td><td>9.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1794.0 | 72 |               | -6  |        | 5085.5 | 98.2  | 0.8   | 0.6    |       |      |      |      | 9.7  |
| 18100         75          17112         61335         992         12         1.4          9           18160         76         Homesalate         -8         1772         5151.5         995         1.5         2.2         98.5         1.0         0.6         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         1.0         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.0         0.0         0.5         0.5         0.5         0.0         0.0         0.0         0.5         0.5         0.5         0.0         0.0         0.0         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1713.0 | 73 | Homosalate    | -7  | 1614.2 | 4842.5 | 93.5  | -4.5  | 19.8   | 96.1  | 2.8  | 1.6  | 3.0  | 9.2  |
| 1860         76         Homosalate         8         177.2         6161.5         99.6         1.0         0.6         1.0         9           17810         77         8         1682.2         6046.6         97.6         0.3         0.4         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         0.6         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1750.0 | 74 |               | -7  | 1651.2 | 4953.5 | 95.7  | -2.3  | 5.3    |       |      |      |      | 9.4  |
| 1781.0         77         78         88         1882.2         504.6.5         97.6         0.3         0.1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1810.0 | 75 |               | -7  | 1711.2 | 5133.5 | 99.2  | 1.2   | 1.4    |       |      |      |      | 9.8  |
| 1781.0         77         78         88         1882.2         504.6.5         97.6         0.3         0.1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    | Homosalate    | -8  |        |        | 99.5  |       |        | 98.5  | 1.0  | 0.6  | 1.0  | 9.8  |
| 1801.0         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.6  |
| 18300         79         Homosalate         9         17312         61325         1003         2.3         5.3         98.6         2.6         1.5         2.7         9           18230         80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.7  |
| 18230         80         9         1724.2         6172.6         99.9         1.9         3.6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | Homosalate    |     |        |        |       |       |        | 98.6  | 26   | 15   | 27   | 9.9  |
| 1748.0         81         -9         1649.2         4947.5         95.6         -2.5         6.0         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r </td <td></td> <td></td> <td>Homoodato</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00.0</td> <td>2.0</td> <td>1.0</td> <td>2.1</td> <td>9.8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | Homoodato     |     |        |        |       |       |        | 00.0  | 2.0  | 1.0  | 2.1  | 9.8  |
| 1823.0         82         Homosalate         -10         1724.2         6172.5         99.9         1.9         3.6         99.5         1.3         0.8         1.3         0.8           1791.0         83         -10         1682.2         6076.5         98.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.4  |
| 17910         83         -10         16822         5076.5         98.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |    | Homosolata    |     |        |        |       |       |        | 00.5  | 1.2  | 0.0  | 1.2  | 9.8  |
| 1895.0         84         -10         1736.2         5208.5         100.6         2.6         6.7         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r         r<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    | Tiomosalate   |     |        |        |       |       |        | 35.0  | 1.5  | 0.0  | 1.5  |      |
| 16230         61         Padamate O         -3         1524.2         457.5         98.3         -7.0         48.4         91.0         2.4         1.4         2.6         62           1680.0         62         -3         1601.2         4743.5         91.6         -3.7         13.4         -         -         63           1704.0         63         -3         1605.2         4815.5         93.0         -1.4         1.9         91.4         5.9         3.4         6.4         93.6           1719.0         64         Padamate O         -4         1622.2         4866.5         93.9         -1.4         1.9         91.4         5.9         3.4         6.4         93.6           1761.0         66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.7  |
| 1680.0         62         -3         1581.2         4743.5         91.6         -3.7         13.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         13.6         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>01.0</td><td>-</td><td></td><td></td><td>9.9</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    |               |     |        |        |       |       |        | 01.0  | -    |      |      | 9.9  |
| 1704.0         63         -3         1605.2         4815.5         93.0         -2.3         5.1         ////         ///         ///         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //         //           10000         67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    | Padamate O    |     |        |        |       |       |        | 91.0  | 2.4  | 1.4  | 2.6  | 8.7  |
| 1719.0         64         Padamate O         -4         1620.2         480.5         93.9         -1.4         1.9         91.4         5.9         3.4         6.4         93.9           1661.0         65        4         1462.2         4366.5         94.7         -10.6         111.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    |               |     |        |        |       |       |        |       |      | -    | -    | 9.1  |
| 1561.0         65         -4         1462.2         4386.5         94.7         -10.6         111.3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |               |     |        |        |       |       |        | L     |      | L    | L    | 9.2  |
| 1751.0         66         -4         1652.2         4966.5         95.7         0.5         0.2         Image: Constraint of the state of the st |        |    | Padamate O    |     |        |        |       |       |        | 91.4  | 5.9  | 3.4  | 6.4  | 9.3  |
| 18050         67         Padamate O         -5         1706.2         5118.5         98.9         3.6         12.9         98.3         1.6         0.9         1.6         9.9           1816.0         68         -5         1717.2         5151.5         99.5         4.2         17.8         -         -         66         -         69         -         -         666.2         4998.5         96.5         1.3         1.6         -         -         -         69           1709.0         70         Padamate O         -6         1610.2         4830.5         93.3         -2.0         3.9         96.9         3.6         2.1         3.7         9           1832.0         72         -6         1671.2         5013.5         96.8         1.6         2.4         -         -         6         9         3.6         13.3         96.5         1.2         0.7         1.2         9         3.6         13.3         96.5         1.2         0.7         1.2         9         3.6         13.3         96.5         1.2         0.7         1.2         9         3.6         13.3         96.5         1.2         0.7         1.2         9         3.7 <td></td> <td>-</td> <td>8.4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |    |               |     |        |        |       |       |        |       |      |      | -    | 8.4  |
| 1816.0         68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1751.0 | 66 |               |     | 1652.2 | 4956.5 | 95.7  | 0.5   | 0.2    |       |      |      |      | 9.4  |
| 17650         69          1666.2         4986.5         96.5         1.3         1.6           96.9         3.6         2.1         3.7         97.9           1709.0         70         Padamate O         -6         1610.2         430.5         93.3         -2.0         3.9         96.9         3.6         2.1         3.7         97.9           1832.0         72         -6         173.2         519.95         100.4         5.2         26.5         -         -         -         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9         3.6 </td <td>1805.0</td> <td>67</td> <td>Padamate O</td> <td>-5</td> <td>1706.2</td> <td>5118.5</td> <td>98.9</td> <td>3.6</td> <td>12.9</td> <td>98.3</td> <td>1.6</td> <td>0.9</td> <td>1.6</td> <td>9.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1805.0 | 67 | Padamate O    | -5  | 1706.2 | 5118.5 | 98.9  | 3.6   | 12.9   | 98.3  | 1.6  | 0.9  | 1.6  | 9.7  |
| 1709.0         70         Padamate O         -6         1610.2         4830.5         93.3         -2.0         3.9         96.9         3.6         2.1         3.7         9           1770.0         71         -6         1671.2         5013.5         96.8         1.6         2.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td>1816.0</td><td>68</td><td></td><td>-5</td><td>1717.2</td><td>5151.5</td><td>99.5</td><td>4.2</td><td>17.8</td><td></td><td></td><td></td><td></td><td>9.8</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1816.0 | 68 |               | -5  | 1717.2 | 5151.5 | 99.5  | 4.2   | 17.8   |       |      |      |      | 9.8  |
| 1709.0         70         Padamate O         -6         1610.2         4830.5         93.3         -2.0         3.9         96.9         3.6         2.1         3.7         9           1770.0         71         -6         1671.2         603.5         96.8         1.6         2.4         -6         1671.2         603.5         96.8         1.6         2.4         -6         9         9         3.6         2.1         3.7         9           1832.0         72         -6         1732.2         519.5         100.4         5.2         26.5         -6         -6         9           1806.0         7.3         Padamate O         -7         170.2         5121.5         98.9         3.6         13.3         98.5         1.2         0.7         1.2         9           1814.0         74         -7         176.2         502.5         97.1         1.8         3.4         -         -6         167.2         502.5         97.1         1.8         3.4         -         -6         167.2         503.5         96.4         1.7         1.0         1.8         9         177         1.7         1.6         2.4         502.5         97.2         2.0 <td>1765.0</td> <td>69</td> <td></td> <td>-5</td> <td>1666.2</td> <td>4998.5</td> <td>96.5</td> <td>1.3</td> <td>1.6</td> <td></td> <td></td> <td></td> <td></td> <td>9.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1765.0 | 69 |               | -5  | 1666.2 | 4998.5 | 96.5  | 1.3   | 1.6    |       |      |      |      | 9.5  |
| 1770.0         71         -6         1671.2         5013.5         96.8         1.6         2.4         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td></td> <td>70</td> <td>Padamate O</td> <td>-6</td> <td>1610.2</td> <td>4830.5</td> <td>93.3</td> <td>-2.0</td> <td>3.9</td> <td>96.9</td> <td>3.6</td> <td>2.1</td> <td>3.7</td> <td>9.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 70 | Padamate O    | -6  | 1610.2 | 4830.5 | 93.3  | -2.0  | 3.9    | 96.9  | 3.6  | 2.1  | 3.7  | 9.2  |
| 1832.0         72         -6         1733.2         5199.5         100.4         5.2         26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.5  |
| 1806.0         73         Padamate O         -7         1707.2         5121.5         98.9         3.6         13.3         98.5         1.2         0.7         1.2         98.9           1814.0         74         -7         1715.2         5145.5         99.4         4.1         16.9         -         -         17.9         5145.5         99.4         4.1         16.9         -         -         17.8         5145.5         99.4         4.1         16.9         -         -         1.2         9.7         1.2         9.8         1.2         0.7         1.2         9.8         1.7         1.0         1.8         3.4         -         -         -         9.8         1.7         1.0         1.8         3.4         -         -         -         9.8         1.7         1.0         1.8         3.4         -         -         -         9.8         1.7         1.0         1.8         3.4         -         -         -         9.8         1.7         1.0         1.8         3.4         -         -         -         9.8         1.7         1.0         1.8         3.4         -         -         -         1.8         3.4         - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>9.9</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    |               |     |        |        |       |       |        |       | 1    |      |      | 9.9  |
| 1814.0         74         74         74         77         1715.2         5145.5         99.4         4.1         16.9         75         76         76         77         1676.2         5028.5         97.1         1.8         3.4         76         76         76         77         1676.2         5028.5         97.1         1.8         3.4         76         76         78         78         78         100.4         52.2         26.5         98.4         1.7         1.0         1.8         99.4           1783.0         77         76         Padamate O         -8         1684.2         5052.5         97.6         2.3         5.3         76         76         76         76         78         78         78         78         84         97.0         2.0         3.9         77         99.3         99.4         4.41         16.9         97.2         2.0         3.9         77         99.3         99.3         1.8         97.0         2.0         1.1         2.1         99.3           1777.0         78         99         Padamate O         -9         1693.2         5079.5         98.1         2.8         8.0         1.1         2.1         99.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | Padamate O    |     |        |        |       |       |        | 98.5  | 12   | 07   | 12   | 9.7  |
| 1775.0         75         -7         1676.2         5028.5         97.1         1.8         3.4 <th< td=""><td></td><td></td><td>r advantate O</td><td></td><td></td><td></td><td></td><td></td><td></td><td>55.5</td><td>1.4</td><td>0.7</td><td>1.4</td><td>9.8</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |    | r advantate O |     |        |        |       |       |        | 55.5  | 1.4  | 0.7  | 1.4  | 9.8  |
| 1832.0         76         Padamate O         -8         1733.2         6199.5         100.4         5.2         26.5         98.4         1.7         1.0         1.8         99.5           1783.0         77         -8         1684.2         5052.5         97.6         2.3         5.3         -         -         1.8         99.5           1777.0         78         -8         1678.2         5034.5         97.2         2.0         3.9         -         -         69         99.4         1.17         1.0         1.8         99.5           1793.0         79         Padamate O         -9         1694.2         5082.5         98.2         2.9         8.4         97.0         2.0         1.1         2.1         99.5           1793.0         80         -9         1693.2         5079.5         98.1         2.8         8.0         -         -         99.5         99.5         99.6         2.0         1.1         2.1         99.5           1733.0         81         -9         1633.2         5079.5         98.1         2.8         8.0         -         -         99.6         2.0         1.1         2.1         99.5         99.5         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |    |               |     |        |        |       |       |        | 1     |      | 1    | -    | 9.6  |
| 1783.0         77         -8         1684.2         5052.5         97.6         2.3         5.3         -         -         -         5           1777.0         78         -8         1678.2         5034.5         97.2         2.0         3.9         -         -         6         9           1793.0         79         Padamate O         -9         1694.2         5082.5         98.2         2.9         8.4         97.0         2.0         1.1         2.1         9           1792.0         80         -9         1693.2         5079.5         98.1         2.8         8.0         -         -         9         9           1733.0         81         -9         1634.2         4902.5         94.7         -0.6         0.3         -         -         -         9           1859.0         82         Padamate O         -10         1760.2         5280.5         102.0         6.7         451         99.8         2.0         1.2         2.0         14           1811.0         83         -10         1712.2         5136.5         192.0         3.9         15.5         -         -         59         19         15         - <td></td> <td></td> <td>Dadamata O</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Q0 4</td> <td>17</td> <td>1.0</td> <td>10</td> <td>9.8</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | Dadamata O    |     |        |        |       |       |        | Q0 4  | 17   | 1.0  | 10   | 9.8  |
| 1777.0         78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |    | magamate O    |     |        |        |       |       |        | 30.4  | 1.7  | 1.0  | 1.0  |      |
| 1793.0         79         Padamate O         -9         1694.2         5082.5         98.2         2.9         8.4         97.0         2.0         1.1         2.1         9           1792.0         80         -9         1693.2         5079.5         98.1         2.8         8.0         -         -         69         9           1733.0         81         -9         1634.2         4902.5         98.1         2.8         8.0         -         -         69         9           1850         82         Padamate O         -9         1634.2         4902.5         94.7         -0.6         0.3         -         -         -         9         169         9         169         9         10         170         10         170         10         170         10         170         5         102.0         6.7         45.1         99.8         2.0         1.2         10         19           1811.0         83         -10         170.2         5136.5         99.2         3.9         15.5         -         -         -         10         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |    |               |     |        |        |       |       |        | -     |      | -    | -    | 9.6  |
| 1792.0         80         -9         1693.2         5079.5         98.1         2.8         8.0            59           1733.0         81         -9         1634.2         4902.5         94.7         -0.6         0.3         -         -         -         9         1634.2         4902.5         94.7         -0.6         0.3         -         -         -         -         9         1635.0         102.0         1.0         1.0         170.2         5280.5         102.0         6.7         45.1         99.8         2.0         1.2         2.0         11           1811.0         83         -10         1712.2         5136.5         99.2         3.9         15.5         -         -         -         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |    |               |     |        |        |       |       |        | 07.0  |      |      |      | 9.6  |
| 1733.0         81        9         1634.2         4902.5         94.7         -0.6         0.3            99           1859.0         82         Padamate O         -10         1760.2         5280.5         102.0         6.7         45.1         99.8         2.0         1.2         2.0         11           1811.0         83         -10         1712.2         5136.5         99.2         3.9         15.5            59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |    | Padamate O    |     |        |        |       |       |        | 97.0  | 2.0  | 1.1  | 2.1  | 9.7  |
| 1859.0         82         Padamate O         -10         1760.2         5280.5         102.0         6.7         45.1         99.8         2.0         1.2         2.0         11           1811.0         83         -10         1712.2         5136.5         99.2         3.9         15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |    |               |     |        |        |       |       |        |       |      |      |      | 9.7  |
| 1811.0         83         -10         1712.2         5136.5         99.2         3.9         15.5         9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |    |               |     |        |        |       |       |        |       | L    | L    | L    | 9.3  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1859.0 | 82 | Padamate O    | -10 | 1760.2 | 5280.5 | 102.0 | 6.7   | 45.1   | 99.8  | 2.0  | 1.2  | 2.0  | 10.0 |
| 1792.0 84 -10 1693.2 5079.5 98.1 2.8 8.0 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1811.0 | 83 |               | -10 | 1712.2 | 5136.5 | 99.2  | 3.9   | 15.5   |       |      |      |      | 9.8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1792.0 | 84 |               | -10 | 1693.2 | 5079.5 | 98.1  | 2.8   | 8.0    |       |      |      |      | 9.7  |

# APPENDIX 1 Raw and Normalized Data Valid Run 2 – February 14, 2013

| Experiment Date:<br>Test substance: | 14-Feb-13<br>Ensulizate |                                                                                                                                                                                                                          | Study Number            | 9070-100794                                  | ARB                                      |                            |              |                     | Assays Con                      | ducted by:            |                                                                                                                 |          |                               |
|-------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------------|------------------------------------------|----------------------------|--------------|---------------------|---------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| 3/6/2013 15:22                      |                         |                                                                                                                                                                                                                          |                         |                                              |                                          |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     |                         | ug protein/assay tube =                                                                                                                                                                                                  | 284.2                   |                                              |                                          |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | Tube                    | Sample Type                                                                                                                                                                                                              | DPM (1mL)               | Specific<br>Binding<br>DPM (100<br>aL) - NSB | Total<br>Specific<br>Binding<br>(300 uL) | Mean                       |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 1                       | -                                                                                                                                                                                                                        | 56285                   | -                                            | 56285.0<br>46096.0                       |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 2                       | Total Activity (Master Mix)                                                                                                                                                                                              | 46096<br>55216          |                                              | 55216.0                                  | 53642.0                    |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 4                       |                                                                                                                                                                                                                          | 66893<br>66238          |                                              | 66893.0<br>55238.0                       |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 6                       |                                                                                                                                                                                                                          | 51121                   |                                              | 51121.0                                  |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 7                       |                                                                                                                                                                                                                          | 1603<br>1667            | - 495.0<br>- 559.0                           | 4485<br>4677                             |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 9                       | Total Binding (Solvent Control)                                                                                                                                                                                          | 1678<br>1579            | 1670.0<br>1471.0                             | 4710<br>4413                             | 4616.5                     |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     | 11 12                   |                                                                                                                                                                                                                          | 1694                    | 586.0                                        | 4758                                     |                            |              |                     |                                 |                       |                                                                                                                 |          |                               |
|                                     |                         |                                                                                                                                                                                                                          |                         | Specific                                     | Total                                    |                            |              | 1 mg = 1,           |                                 |                       |                                                                                                                 |          | % Ligand                      |
| DPM<br>(ImL) from LSC               | Tube                    | Sample Type                                                                                                                                                                                                              | Concentration<br>log[M] | Binding<br>DPM (1mL)<br>NSB                  | Specific<br>Binding<br>(3mL)             | Specific<br>Binding<br>(%) | Residual     | Squared<br>Residual | Mean<br>Specific<br>Binding (%) | Standard<br>Deviation | SEM                                                                                                             | % CV     | Bound vs<br>Total<br>Activity |
| 108.0<br>105.0                      | 15                      | R1681 (NSB)                                                                                                                                                                                                              | -6<br>-6                | -20                                          | -6.D<br>-9.0                             | -0.1                       | -0.5<br>-0.6 | 0.3                 | 0.0                             | 0.6                   | 0.2                                                                                                             | -1.3E+18 | 0.6                           |
| 99.0                                | 16                      |                                                                                                                                                                                                                          | -6                      | -9.0                                         | -27.0                                    | -0.6                       | -1.0         | 1.0                 |                                 |                       |                                                                                                                 |          | D.6                           |
| 103.0<br>125.0                      | 16                      |                                                                                                                                                                                                                          | -6<br>-6                | -5.0<br>17.0                                 | -15.0<br>51.0                            | -0.3                       | -0.7         | 0.5                 |                                 |                       |                                                                                                                 |          | 0.5                           |
| 110.0                               | 18                      | R1881                                                                                                                                                                                                                    | -6<br>-7                | 2.0                                          | 6.0<br>27.0                              | 0.1                        | -0.3<br>0.0  | 0.1                 | 1.1                             | 0.4                   | 0.2                                                                                                             | 38.9     | 0.6<br>0.7                    |
| 128.0                               | 20                      | N1001                                                                                                                                                                                                                    | -7                      | 20.0                                         | 60.0                                     | 1.3                        | 0.8          | 0.6                 |                                 | 0.4                   | 0.2                                                                                                             | 30.9     | 0.7                           |
| 129.0                               | 21                      | R1881                                                                                                                                                                                                                    | -7<br>-8                | 20.0<br>29.0                                 | 60.0<br>87.0                             | 1.3                        | 0.8          | 0.6                 | 2.2                             | 0.7                   | 0.4                                                                                                             | 30.6     | 0.7                           |
| 134.0                               | 23                      | Rigol                                                                                                                                                                                                                    | -В                      | 26.0                                         | 78.0                                     | 1.7                        | -0.1         | 0.0                 | 2.2                             | 0.7                   | 0.4                                                                                                             | 30.6     | 0.7                           |
| 153.0<br>293.0                      | 24                      | R1981                                                                                                                                                                                                                    | -8<br>-9                | 45.0<br>185.0                                | 135.0                                    | 2.9                        | 1.2          | 1.3<br>0.2          | 11.5                            | 0.5                   | 0.3                                                                                                             | 4.1      | 1.6                           |
| 281.0                               | 26                      |                                                                                                                                                                                                                          | -9                      | 173.0                                        | 519.0                                    | 11.2                       | -0.4         | 0.1                 |                                 | .0.0                  | 0.0                                                                                                             |          | 1.6                           |
| 280.0<br>906.0                      | 27                      | R1881                                                                                                                                                                                                                    | -9<br>-10               | 172.0                                        | 516.0<br>2394.0                          | 11.2<br>51.8               | -0.4         | 0.2<br>6.4          | 54.4                            | 2.6                   | 1.5                                                                                                             | 4.7      | 1.5                           |
| 985.0                               | 29                      | 141777                                                                                                                                                                                                                   | -10                     | 877.0                                        | 2631.0                                   | 57.0                       | 2.6          | 6.8                 | 0.5313                          |                       |                                                                                                                 |          | 5.5                           |
| 945.0<br>1493.0                     | 30                      | R1881                                                                                                                                                                                                                    | -10<br>-11              | 837.0<br>1385.0                              | 2511.0<br>4155.0                         | 64.4<br>90.0               | 0.0<br>-3.8  | 0.0                 | 93.8                            | 3.6                   | 2.1                                                                                                             | 3.8      | 5.3<br>B.3                    |
| 1601.0                              | 32                      | 126720                                                                                                                                                                                                                   | -11                     | 1493.0                                       | 4479.0                                   | 97.0                       | 3.2          | 10.1                | 10.800                          | 1.5772                | 1236                                                                                                            | 429.0    | 9.D                           |
| 1562.0<br>148.0                     | 33                      | Dexemethasone                                                                                                                                                                                                            | -11                     | - 454.0<br>40.0                              | 4362.0<br>120.0                          | 94.4<br>2.6                | 0.6          | 0.4                 | 2,1                             | 1.7                   | 1.0                                                                                                             | 80.7     | 8.7<br>0.8                    |
| 160.0                               | 38                      |                                                                                                                                                                                                                          | -3                      | 52.0                                         | 156.0                                    | 3.4                        | 1.7          | 3.0                 |                                 |                       |                                                                                                                 |          | 0.9                           |
| 111.0<br>484.0                      | 40                      | Dexamethasone                                                                                                                                                                                                            | -3<br>-4                | 3.0                                          | 9.0<br>1068.0                            | 0.2                        | -1.5         | 2.1                 | 23.2                            | 0.3                   | 0.2                                                                                                             | 1.1      | 0.5                           |
| 461.0<br>469.0                      | 41 42                   |                                                                                                                                                                                                                          | -4<br>-4                | 353.0<br>361.0                               | 1059.0<br>1083.0                         | 22.9<br>23.4               | -1.1<br>-0.6 | 1.2                 | 1.4.1.5.4.4                     |                       |                                                                                                                 | 0.020    | 2.6                           |
| 1194.0                              | 43                      | Dexamethasone                                                                                                                                                                                                            | -5                      | 1086.0                                       | 3258.0                                   | 70.5                       | -3 D         | 9.3                 | 75.0                            | 3.8                   | 2.2                                                                                                             | 5.1      | Б.7                           |
| 1302.0<br>1290.0                    | 44                      |                                                                                                                                                                                                                          | -5<br>-5                | 194.0                                        | 3582.0<br>3546.0                         | 77.6<br>76.8               | 4.0          | 15.8<br>10.2        |                                 |                       |                                                                                                                 |          | 7.3                           |
| 1522.0                              | 46                      | Dexamethasone                                                                                                                                                                                                            | -6                      | 414.0                                        | 4242.0                                   | 91.8                       | -4.8         | 22.8                | 92.4                            | 0.8                   | 0.6                                                                                                             | 0.9      | 8.5                           |
| 1540.0                              | 47                      |                                                                                                                                                                                                                          | -6<br>-6                | 1432.0                                       | 4295.0                                   | 93.0                       | -3.6         | 13.0                |                                 |                       |                                                                                                                 |          | B.5                           |
| 1607.0                              | 49                      | Dexamethasone                                                                                                                                                                                                            | -7                      | 499.0                                        | 4497.0                                   | 97.4                       | -3.1         | 9.9                 | 99.4                            | 2.5                   | 1.4                                                                                                             | 2.5      | 9.0                           |
| 1627.0<br>1680.0                    | 60<br>51                |                                                                                                                                                                                                                          | -7<br>-7                | 1519.0<br>1572.0                             | 4557.0<br>4716.0                         | 98.7<br>102.1              | -1.8<br>1.6  | 3.4<br>2.6          |                                 |                       |                                                                                                                 |          | 9.1<br>9.4                    |
| 1703.0<br>1598.0                    | 52<br>53                | Dexemethasone                                                                                                                                                                                                            | -8<br>-8                | - 595.0<br>- 490.0                           | 4795.0<br>4470.0                         | 103.6<br>96.8              | 2.6          | 6.7<br>17.9         | 99.6                            | 3.6                   | 2.1                                                                                                             | 3.6      | 9.5<br>8.9                    |
| 1624.0                              | 54                      |                                                                                                                                                                                                                          | -В                      | 1516.0                                       | 4548.0                                   | 98.6                       | -2.5         | 6.5                 |                                 | -                     |                                                                                                                 |          | 9.1                           |
| 1707.0<br>1733.0                    | 55<br>56                | Dexamethasone                                                                                                                                                                                                            | -9<br>-9                | - 599. D<br>- 625. 0                         | 4797.0<br>4875.0                         | 103.9                      | 2.8<br>4.5   | 7.8                 | 105.4                           | 1.5                   | 0.9                                                                                                             | 1.4      | 9.5<br>9.7                    |
| 1753.0                              | 57                      |                                                                                                                                                                                                                          | -9                      | 1645.0                                       | 4935.0                                   | 106.9                      | 5.8          | 33.3                |                                 |                       |                                                                                                                 |          | 9.B                           |
| 1689.0<br>1651.0                    | 5B<br>59                | Dexamethasone                                                                                                                                                                                                            | -10<br>-10              | 1581.0                                       | 4743.0<br>4629.0                         | 102.7                      | 1.5<br>-0.9  | 2.6                 | 101.1                           | 1.4                   | 0.8                                                                                                             | 1.4      | 9.4<br>9.2                    |
| 1654.0                              | 60                      |                                                                                                                                                                                                                          | -10                     | -546.0                                       | 4638.0                                   | 100.4                      | -0.7         | 0.4                 |                                 |                       | 1.5                                                                                                             |          | 9.3                           |
| 1375.0<br>1405.0                    | 61                      | Ensulizole                                                                                                                                                                                                               | -3<br>-3                | 1267.0<br>1297.0                             | 3901.0<br>3991.0                         | 82.3<br>84.2               | -2.1<br>-0.1 | 4.3<br>0.0          | 84.4                            | 2.1                   | 1.2                                                                                                             | 2.5      | 7.7                           |
| 1441.0<br>1631.0                    | 63<br>64                | Ensulizola                                                                                                                                                                                                               | -3<br>-4                | 1333.0                                       | 3999.0<br>4589.0                         | 86.6<br>96.9               | 2.2<br>0.5   | 4.9<br>0.2          | 98.4                            | 0.7                   | 0.4                                                                                                             | 0.7      | B.1<br>9.1                    |
| 1611.0                              | 65                      | Same GRADINA                                                                                                                                                                                                             | -4                      | -503.0                                       | 4509.0                                   | 97.6                       | -0.8         | 0.6                 | 0.000.04                        |                       | 0.4                                                                                                             |          | 9.0                           |
| 1628.0<br>1703.0                    | 66                      | Ensulizole                                                                                                                                                                                                               | -4<br>-5                | 1520.0<br>1595.0                             | 4560.0<br>4785.0                         | 98.7<br>103.6              | 0.3          | 0.1                 | 101.9                           | 1.5                   | 0.9                                                                                                             | 1.5      | 9.1<br>9.5                    |
| 1655.0                              | 68                      | Le ristanzi di E                                                                                                                                                                                                         | -5                      | °548.0                                       | 4644.0                                   | 100.6                      | -0.7         | 0.4                 | 101.0                           |                       | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |          | 9.3                           |
| 1673.0<br>1633.0                    | 69<br>70                | Ensulizole                                                                                                                                                                                                               | -5<br>-6                | *565.0<br>*525.0                             | 4695.0<br>4575.0                         | 101.7                      | 0.4          | 0.2                 | 103.3                           | 3.6                   | 2.1                                                                                                             | 3.5      | 9.4                           |
| 1728.0                              | 71                      |                                                                                                                                                                                                                          | -Б                      | 1620.0                                       | 4850.0                                   | 105.2                      | 4.0          | 16.2                | 1.111.1750                      | 2000                  |                                                                                                                 | 100      | 9.7                           |
| 1732.0<br>1617.0                    | 72                      | Ensulizole                                                                                                                                                                                                               | -6<br>-7                | -624.0<br>1509.0                             | 4872.0<br>4527.0                         | 105.5<br>98.0              | 4.3          | 18.3                | 100.4                           | 2.6                   | 1.5                                                                                                             | 2.5      | 9.7<br>9.0                    |
| 1648.0<br>1695.0                    | 74                      |                                                                                                                                                                                                                          | -7<br>.7                | 1540.0<br>1587.0                             | 4520.0<br>4751.0                         | 100.0                      | -1.2<br>1.9  | 1.4<br>3.5          |                                 | -                     |                                                                                                                 |          | 9.2<br>9.5                    |
| 1621.0                              | 76                      | Ensulizole                                                                                                                                                                                                               | -8                      | -513.0                                       | 4539.0                                   | 96.3                       | -2.9         | 6.6                 | 96.9                            | 0.8                   | 0.4                                                                                                             | 0.8      | 9.1                           |
| 1628.0<br>1644.0                    | 77                      | 21-22-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-07-02-02-02-02-02-02-02-02-02-02-02-02-02- | -8<br>-8                | 1520.0<br>1636.0                             | 4560.0<br>4608.0                         | 98.7<br>99.8               | 0.3          | 0.1                 |                                 |                       |                                                                                                                 |          | 9.1<br>9.2                    |
| 1631.0                              | 79                      | Ensulizole                                                                                                                                                                                                               | -9                      | 1523.0                                       | 4559.0                                   | 98.9                       | 0.5          | 0.2                 | 98.0                            | 1.1                   | 0.6                                                                                                             | 1.1      | 9.1                           |
| 1621.0<br>1598.0                    | 80                      |                                                                                                                                                                                                                          | .9<br>.9                | 1513.0<br>1490.0                             | 4539.0<br>4470.0                         | 96.3<br>96.8               | -2.9         | 8.6<br>19.6         |                                 |                       |                                                                                                                 |          | 9.1<br>8.9                    |
| 1734.0                              | 82                      | Ensulizole                                                                                                                                                                                                               | -10                     | 1626.0                                       | 4878.0                                   | 105.6                      | 4.4          | 19.4                | 104.8                           | 1.0                   | 0.6                                                                                                             | 1.0      | 9.7                           |
| 1703.0                              | 83                      |                                                                                                                                                                                                                          | -10                     | 1595.0                                       | 4785.0                                   | 103.6                      | 2.4          | 6.7                 |                                 |                       |                                                                                                                 |          | 9.5                           |

## APPENDIX 1 (continued)

# Raw and Normalized Data Valid Run 2 – February 14, 2013

| 1624.0           | 61 | Avobenzone     | -3  | 1516.0 | 4548.0 | 98.5         | 0.8   | 0.6    | 98.0  | 0.6        | 0.3   | 0.6      | 9.1 |
|------------------|----|----------------|-----|--------|--------|--------------|-------|--------|-------|------------|-------|----------|-----|
| 1607.0           | 62 |                | -3  | 1499.0 | 4497.0 | 97.4         | -0.3  | 0.1    |       |            |       |          | 9.0 |
| 1617.0           | 63 |                | -3  | 1509.0 | 4527.0 | 98.0         | 0.3   | 0.1    |       |            |       |          | 9.0 |
| 1614.0           | 64 | Avobenzone     | -4  | 1506.0 | 4518.0 | 97.8         | 0.0   | 0.0    | 98.5  | 0.6        | 0.4   | 0.6      | 9.0 |
| 1630.0           | 65 | AVODEIIZOIIE   | -4  | 1522.0 | 4566.0 | 98.9         | 1.2   |        | 50.5  | 0.0        | 0.4   | 0.0      | 9.1 |
|                  |    |                |     |        |        |              |       | 1.4    |       |            |       |          |     |
| 1631.0           | 66 |                | -4  | 1523.0 | 4569.0 | 98.9         | 1.2   | 1.5    |       |            |       |          | 9.1 |
| 1594.0           | 67 | Avobenzone     | -5  | 1486.0 | 4458.0 | 96.5         | -1.2  | 1.4    | 93.9  | 6.1        | 3.5   | 6.5      | 8.9 |
| 1621.0           | 68 |                | -5  | 1513.0 | 4539.0 | 98.3         | 0.6   | 0.3    |       |            |       |          | 9.1 |
| 1447.0           | 69 |                | -5  | 1339.0 | 4017.0 | 87.0         | -10.7 | 114.9  |       |            |       |          | 8.1 |
| 1603.0           | 70 | Avobenzone     | -6  | 1495.0 | 4485.0 | 97.1         | -0.6  | 0.3    | 97.4  | 1.5        | 0.9   | 1.6      | 9.0 |
| 1633.0           | 71 |                | -6  | 1525.0 | 4575.0 | 99.1         | 1.4   | 1.9    |       |            |       |          | 9.1 |
| 1587.0           | 72 |                | -6  | 1479.0 | 4437.0 | 96.1         | -1.6  | 2.6    |       |            |       |          | 8.9 |
| 1586.0           | 73 | Avobenzone     | -7  | 1478.0 | 4434.0 | 96.0         | -1.7  | 2.9    | 99.8  | 3.4        | 2.0   | 3.4      | 8.9 |
|                  |    | Avobenzone     |     |        |        |              |       |        | 99.0  | 3.4        | 2.0   | 3.4      |     |
| 1685.0           | 74 |                | -7  | 1577.0 | 4731.0 | 102.4        | 4.7   | 22.5   |       |            |       |          | 9.4 |
| 1664.0           | 75 |                | -7  | 1556.0 | 4668.0 | 101.1        | 3.4   | 11.4   |       |            |       |          | 9.3 |
| 1643.0           | 76 | Avobenzone     | -8  | 1535.0 | 4605.0 | 99.7         | 2.0   | 4.0    | 99.9  | 1.2        | 0.7   | 1.2      | 9.2 |
| 1629.0           | 77 |                | -8  | 1521.0 | 4563.0 | 98.8         | 1.1   | 1.2    |       |            |       |          | 9.1 |
| 1667.0           | 78 |                | -8  | 1559.0 | 4677.0 | 101.3        | 3.6   | 12.7   |       |            |       |          | 9.3 |
| 1639.0           | 79 | Avobenzone     | -9  | 1531.0 | 4593.0 | 99.4         | 1.8   | 3.1    | 99.1  | 0.9        | 0.5   | 0.9      | 9.2 |
| 1618.0           | 80 |                | -9  | 1510.0 | 4530.0 | 98.1         | 0.4   | 0.1    |       |            |       |          | 9.0 |
| 1643.0           | 81 |                | -9  | 1535.0 | 4605.0 | 99.7         | 2.0   | 4.0    |       |            |       |          | 9.2 |
| 1541.0           | 82 | Avobenzone     | -10 | 1433.0 | 4299.0 | 93.1         | -4.6  | 21.3   | 94.9  | 1.6        | 0.9   | 1.7      | 8.6 |
| 1583.0           | 83 | 1.0001120110   | -10 | 1435.0 | 4200.0 | 95.8         | -4.0  | 3.6    | 01.0  |            | 5.5   | 1.1      | 8.9 |
|                  |    |                |     |        |        |              |       |        |       | -          |       |          |     |
| 1583.0           | 84 |                | -10 | 1475.0 | 4425.0 | 95.8         | -1.9  | 3.6    | 05.5  |            | - ·   | 45.5     | 8.9 |
| 611.0            | 61 | Homosalate     | -3  | 503.0  | 1509.0 | 32.7         | -0.7  | 0.6    | 35.2  | 3.7        | 2.1   | 10.5     | 3.4 |
| 623.0            | 62 |                | -3  | 515.0  | 1545.0 | 33.5         | 0.0   | 0.0    |       |            | L     |          | 3.5 |
| 715.0            | 63 |                | -3  | 607.0  | 1821.0 | 39.4         | 6.0   | 36.1   |       | L          | L     |          | 4.0 |
| 769.0            | 64 | Homosalate     | -4  | 661.0  | 1983.0 | 42.9         | -8.3  | 69.1   | 46.1  | 3.5        | 2.0   | 7.6      | 4.3 |
| 875.0            | 65 |                | -4  | 767.0  | 2301.0 | 49.8         | -1.4  | 2.0    |       |            |       |          | 4.9 |
| 807.0            | 66 |                | -4  | 699.0  | 2097.0 | 45.4         | -5.8  | 34.2   |       |            |       |          | 4.5 |
| 1452.0           | 67 | Homosalate     | -5  | 1344.0 | 4032.0 | 87.3         | 10.9  | 118.7  | 86.2  | 2.3        | 1.3   | 2.6      | 8.1 |
| 1459.0           | 68 |                | -5  | 1351.0 | 4053.0 | 87.8         | 11.3  | 128.8  |       |            |       |          | 8.2 |
| 1395.0           | 69 |                | -5  | 1287.0 | 3861.0 | 83.6         | 7.2   | 51.7   |       |            |       |          | 7.8 |
|                  |    | lless en elete |     |        |        |              |       |        | 77.0  | 2.2        | 4.2   | 2.0      |     |
| 1254.0           | 70 | Homosalate     | -6  | 1146.0 | 3438.0 | 74.4         | -17.0 | 290.4  | 77.0  | 2.3        | 1.3   | 3.0      | 7.0 |
| 1325.0           | 71 |                | -6  | 1217.0 | 3651.0 | 79.1         | -12.4 | 154.5  |       |            |       |          | 7.4 |
| 1299.0           | 72 |                | -6  | 1191.0 | 3573.0 | 77.4         | -14.1 | 199.3  |       |            |       |          | 7.3 |
| 1671.0           | 73 | Homosalate     | -7  | 1563.0 | 4689.0 | 101.5        | 5.1   | 25.6   | 103.3 | 2.0        | 1.2   | 2.0      | 9.3 |
| 1692.0           | 74 |                | -7  | 1584.0 | 4752.0 | 102.9        | 6.4   | 41.2   |       |            |       |          | 9.5 |
| 1733.0           | 75 |                | -7  | 1625.0 | 4875.0 | 105.6        | 9.1   | 82.5   |       |            |       |          | 9.7 |
| 1691.0           | 76 | Homosalate     | -8  | 1583.0 | 4749.0 | 102.8        | 5.1   | 25.6   | 101.1 | 1.5        | 0.9   | 1.5      | 9.5 |
| 1658.0           | 77 |                | -8  | 1550.0 | 4650.0 | 100.7        | 2.9   | 8.5    |       |            |       |          | 9.3 |
| 1645.0           | 78 |                | -8  | 1537.0 | 4611.0 | 99.8         | 2.1   | 4.3    |       |            |       |          | 9.2 |
| 1702.0           | 79 | Homosalate     | -9  | 1594.0 | 4782.0 | 103.5        | 5.5   | 29.7   | 100.9 | 5.3        | 3.0   | 5.2      | 9.5 |
| 1714.0           | 80 | Tiomosalate    | -9  | 1606.0 | 4818.0 | 103.3        | 6.2   | 38.9   | 100.5 | 5.5        | 3.0   | 3.2      | 9.6 |
|                  |    |                |     |        |        |              |       |        |       |            |       |          |     |
| 1568.0           | 81 |                | -9  | 1460.0 | 4380.0 | 94.8         | -3.2  | 10.6   |       |            |       |          | 8.8 |
| 1487.0           | 82 | Homosalate     | -10 | 1379.0 | 4137.0 | 89.6         | -8.6  | 73.7   | 93.3  | 5.6        | 3.2   | 6.0      | 8.3 |
| 1644.0           | 83 |                | -10 | 1536.0 | 4608.0 | 99.8         | 1.6   | 2.6    |       |            |       | 1        | 9.2 |
| 1502.0           | 84 |                | -10 | 1394.0 | 4182.0 | 90.5         | -7.6  | 58.0   |       |            |       | <u> </u> | 8.4 |
| 1145.0           | 61 | Padamate O     | -3  | 1037.0 | 3111.0 | 67.4         | -18.6 | 344.9  | 72.6  | 5.1        | 3.0   | 7.1      | 6.4 |
| 1230.0           | 62 |                | -3  | 1122.0 | 3366.0 | 72.9         | -13.1 | 170.3  |       |            |       |          | 6.9 |
| 1303.0           | 63 |                | -3  | 1195.0 | 3585.0 | 77.6         | -8.3  | 69.0   |       |            |       |          | 7.3 |
| 1543.0           | 64 | Padamate O     | -4  | 1435.0 | 4305.0 | 93.2         | 7.3   | 53.0   | 95.4  | 3.2        | 1.8   | 3.3      | 8.6 |
| 1556.0           | 65 |                | -4  | 1448.0 | 4344.0 | 94.1         | 8.1   | 66.0   |       |            |       | 1        | 8.7 |
| 1633.0           | 66 |                | -4  | 1525.0 | 4575.0 | 99.1         | 13.1  | 172.3  |       |            |       | 1        | 9.1 |
| 1708.0           | 67 | Padamate O     | -4  | 1600.0 | 4800.0 | 103.9        | 18.0  | 323.9  | 103.4 | 0.7        | 0.4   | 0.7      | 9.6 |
|                  |    | Fauarhate O    |     |        |        |              |       |        | 103.4 | 0.7        | 0.4   | 0.7      |     |
| 1688.0           | 68 |                | -5  | 1580.0 | 4740.0 | 102.6        | 16.7  | 278.9  |       | -          | -     | 1        | 9.4 |
| 1705.0           | 69 |                | -5  | 1597.0 | 4791.0 | 103.7        | 17.8  | 317.0  |       | 4          | 07.1  |          | 9.5 |
| 1683.0           | 70 | Padamate O     | -6  | 1575.0 | 4725.0 | 102.3        | 16.4  | 268.1  | 75.0  | 47.5       | 27.4  | 63.4     | 9.4 |
| 1686.0           | 71 |                | -6  | 1578.0 | 4734.0 | 102.5        | 16.6  | 274.5  |       |            |       |          | 9.4 |
| 417.0            | 72 |                | -6  | 309.0  | 927.0  | 20.1         | -65.9 | 4337.6 |       |            |       |          | 2.3 |
| 1418.0           | 73 | Padamate O     | -7  | 1310.0 | 3930.0 | 85.1         | -0.8  | 0.7    | 90.0  | 4.5        | 2.6   | 5.0      | 7.9 |
| 1509.0           | 74 |                | -7  | 1401.0 | 4203.0 | 91.0         | 5.1   | 25.7   |       |            |       |          | 8.4 |
| 1554.0           | 75 |                | -7  | 1446.0 | 4338.0 | 93.9         | 8.0   | 63.9   |       |            |       |          | 8.7 |
| 104.0            | 76 | Padamate O     | -8  | -4.0   | -12.0  | -0.3         | -86.2 | 7429.0 | 44.8  | 41.0       | 23.7  | 91.6     | 0.6 |
| 949.0            | 70 | i againate O   | -8  | 841.0  | 2523.0 | 54.6         | -31.3 | 979.9  |       | 41.0       | 20.1  | 01.0     | 5.3 |
| 1339.0           | 78 |                | -8  | 1231.0 |        | 54.6<br>80.0 |       |        |       | 1          |       | 1        |     |
|                  |    | Darlas 1 O     |     |        | 3693.0 |              | -6.0  | 35.6   | 402.4 | <i>L</i> 0 | - · · |          | 7.5 |
| 1582.0           | 79 | Padamate O     | -9  | 1474.0 | 4422.0 | 95.7         | 9.8   | 96.3   | 102.1 | 5.9        | 3.4   | 5.8      | 8.8 |
| 1696.0           | 80 |                | -9  | 1588.0 | 4764.0 | 103.2        | 17.2  | 296.5  |       | -          | -     | 1        | 9.5 |
| 1761.0           | 81 |                | -9  | 1653.0 | 4959.0 | 107.4        | 21.4  | 459.7  |       |            |       |          | 9.8 |
| 1693.0           | 82 | Padamate O     | -10 | 1585.0 | 4755.0 | 103.0        | 17.0  | 289.8  | 104.1 | 1.0        | 0.6   | 1.0      | 9.5 |
|                  |    |                | 10  | 1608.0 | 4824.0 | 104.4        | 18.5  | 342.9  |       |            |       | 1        | 9.6 |
| 1716.0<br>1724.0 | 83 |                | -10 | 1000.0 | 4024.0 |              |       |        |       |            |       |          | 5.0 |

# APPENDIX 1 Raw and Normalized Data Valid Run 3 – February 16, 2013

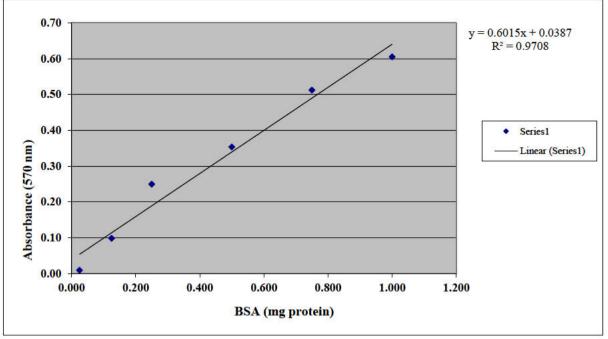
| Experiment Date:<br>Test substance: | 16-Feb-13<br>Ensulizole |                                | Study Number            | 9070-100794                                  | ARB                                      |                            |                    |                     | Assays Con                      | ducted by:            |      |          |                                           |
|-------------------------------------|-------------------------|--------------------------------|-------------------------|----------------------------------------------|------------------------------------------|----------------------------|--------------------|---------------------|---------------------------------|-----------------------|------|----------|-------------------------------------------|
| 9/6/2013 15:22                      |                         | uç protein/assay tube =        | 660 D                   |                                              |                                          |                            |                    |                     |                                 |                       |      |          |                                           |
|                                     | Tube                    | Sample Type                    | DPM (1mL)               | Specific<br>Binding<br>DPM (100<br>uL) - NSB | Total<br>Specific<br>Binding<br>(300 uL) | Mean                       |                    |                     |                                 |                       |      |          |                                           |
|                                     | 1                       |                                | 57685                   | 240                                          | 57685.0                                  |                            |                    |                     |                                 |                       |      |          |                                           |
|                                     | 2                       | Total Collins and an Inc.      | 56376<br>56098          |                                              | 56378.0<br>56098.0                       | 55998.0                    |                    |                     |                                 |                       |      |          |                                           |
|                                     | 4                       | Total Activity (Master Mix)    | 57264                   | 2                                            | 57264.0                                  | 0.06990.0                  |                    |                     |                                 |                       |      |          |                                           |
|                                     | 5                       |                                | 56124<br>58439          | -                                            | 56124.0<br>58439.0                       |                            |                    |                     |                                 |                       |      |          |                                           |
|                                     | 7                       |                                | 1990<br>1973            | 1871.0<br>1854.0                             | 5613<br>5552                             |                            |                    |                     |                                 |                       |      |          |                                           |
|                                     | 8                       | Total Birding (SaNent Control) | 1975                    | 1853.0                                       | 6569                                     | 5510.5                     |                    |                     |                                 |                       |      |          |                                           |
|                                     | 10                      | Total Birding (autent control) | 2016<br>1839            | 1897.0<br>1720.0                             | 5691<br>5160                             | 5510.5                     |                    |                     |                                 |                       |      |          |                                           |
|                                     | 12                      |                                | 1945                    | 1626.0                                       | 5478                                     |                            | -                  |                     |                                 |                       |      |          |                                           |
| DPM<br>(1mL) from LSC               | Tube                    | Sample Type                    | Concentration<br>log[M] | Specific<br>Binding<br>DPM (1mL)<br>NSB      | Total<br>Specific<br>Binding<br>(3mL)    | Specific<br>Binding<br>(%) | Residual           | Squared<br>Residual | Mean<br>Specific<br>Binding (%) | Standard<br>Deviation | SEM  | % CV     | % Ligand<br>Bound vs<br>Total<br>Activity |
| 99.0                                | 13                      | R1981 (NSB)                    | -6                      | -20.0                                        | -60.0                                    | -1.1                       | -1.2               | 1.4                 | 0.0                             | 1.3                   | 0.6  | -1.8E+18 | 0.5                                       |
| 103.0<br>96.0                       | 14                      | 815 - 45955                    | -6<br>-8                | -16.0                                        | -48.0<br>-69.0                           | -0.9                       | -1.0               | 0.9<br>1.6          |                                 |                       |      |          | 0.5<br>0.5                                |
| 138.0                               | 16                      |                                | -6                      | 19.0                                         | 57.0                                     | 1.0                        | 0.9                | 0.9                 |                                 |                       |      |          | 0.7                                       |
| 120.0<br>158.0                      | 17                      |                                | -6<br>-8                | 1.0<br>39.0                                  | 3.0<br>117.0                             | 0.1                        | 2.0                | 4.1                 |                                 |                       |      |          | 0.6<br>0.8                                |
| 122.0                               | 19                      | R1981                          | -7                      | 3.0                                          | 9.0                                      | 0.2                        | 0.0                | 0.0                 | 0.0                             | 0.2                   | 0.1  | -526.8   | 0.6                                       |
| 118.0<br>115.0                      | 20                      |                                | -7<br>-7                | -1.0                                         | -3.0                                     | -0.1                       | -0.2               | 0.1                 |                                 |                       |      |          | 0.6                                       |
| 151.0                               | 22                      | R1881                          | -8                      | 32.0                                         | 96.0                                     | 1.7                        | 0.7                | 0.4                 | 1.6                             | 0.7                   | 0.4  | 46.0     | 0.8                                       |
| 161.0<br>134.0                      | 23                      |                                | -8<br>-8                | 42.0                                         | 125.0<br>45.0                            | 2.3                        | -0.3               | 1.4                 |                                 |                       |      |          | 0.8                                       |
| 286.0                               | 25                      | R1991                          | -9                      | 167.0                                        | 501.0                                    | 9.1                        | -0.5               | 0.2                 | 9.5                             | 0.4                   | 0.2  | 4.3      | 1.5                                       |
| 301.0<br>292.0                      | 25                      |                                | -9<br>-9                | 182.0<br>173.0                               | 546.0<br>519.0                           | 9.9<br>9.4                 | -0.3               | 0.1                 |                                 |                       |      |          | 1.5                                       |
| 1117.0                              | 28                      | R1881                          | -10                     | 998.0                                        | 2994.0                                   | 54.3                       | 2.0                | 3.9                 | 52.4                            | 3.6                   | 2.1  | 6.8      | 5.9                                       |
| 1005.0<br>1121.0                    | 29<br>30                |                                | -10<br>-10              | BB6.D                                        | 2658.0<br>3006.0                         | 48.2<br>54.6               | -4.1               | 16.9<br>4.8         |                                 |                       |      |          | 5.3                                       |
| 1772.0                              | 31                      | R1881                          | -11                     | 1653.0                                       | 4959.0                                   | 90.0                       | -1.9               | 3.7                 | 91.9                            | 1.7                   | 1.0  | 1.8      | 9.3                                       |
| 1822.0<br>1827.0                    | 32                      |                                | -11<br>-11              | 703.0                                        | 5109.0<br>5124.0                         | 92.7<br>93.0               | 0.8                | 0.7                 |                                 |                       |      |          | 9.6<br>9.6                                |
| 177.0<br>178.0                      | 37<br>38                | Dexamethasone                  | -3<br>-3                | 58.0<br>59.0                                 | 174.0<br>177.0                           | 3.2<br>3.2                 | -1.1               | 1.2                 | 4.4                             | 2.2                   | 1.3  | 49.1     | 0.9                                       |
| 247.0                               | 39                      |                                | с<br>                   | 128.0                                        | 384.0                                    | 7.0                        | 2.7                | 7.3                 |                                 |                       |      | 2 3      | 1.3                                       |
| 436.0<br>539.0                      | 40                      | Dexamethasone                  | -4<br>-4                | 317.0<br>420.0                               | 951.0<br>1260.0                          | 17.3<br>22.9               | -3.7<br>2.0        | 13.4<br>3.8         | 20.6                            | 3.0                   | 1.7  | 14.4     | 2.3<br>2.8                                |
| 518.0                               | 41                      |                                | -4<br>-4                | 399.0                                        | 1197.0                                   | 22.9                       | 0.8                | 0.7                 |                                 |                       |      |          | 2.8                                       |
| 1441.0<br>1503.0                    | 43                      | Dexamethasone                  | -5<br>-5                | 1322.0<br>1384.0                             | 3966.0<br>4162.0                         | 72.0<br>75.3               | -1.0               | 0.9<br>5.8          | 73.4                            | 1.8                   | 1.0  | 2.4      | 7.6<br>7.9                                |
| 1455.0                              | 45                      |                                | -5                      | ° 336.0                                      | 4008.0                                   | 72.7                       | -0.2               | 0.0                 |                                 | -                     |      | 8 /      | 7.7                                       |
| 1896.0<br>1854.0                    | 46                      | Dexamethasone                  | -6<br>-5                | 1777.0<br>1736.0                             | 5331.0<br>5205.0                         | 96.7<br>94.5               | -0.6               | 0.4                 | 96.2                            | 1.5                   | 0.9  | 1.6      | 10.0<br>9.8                               |
| 1907.0                              | 48                      |                                | -8                      | 788.0                                        | 5364.0                                   | 97.3                       | 0.0                | 0.0                 |                                 |                       |      |          | 10.0                                      |
| 1960.0<br>2011.0                    | 49                      | Dexamethasone                  | -7<br>-7                | 1841.0                                       | 5523.0<br>5676.0                         | 100.2                      | -0.3<br>2.5        | 0.1                 | 100.6                           | 2.2                   | 1.3  | 2.2      | 10.3                                      |
| 1932.0                              | 51                      |                                | -7                      | -813.0                                       | 5439.0                                   | 98.7                       | -1.8               | 3.3                 |                                 |                       |      |          | 10.2                                      |
| 2025.0<br>2018.0                    | 52<br>53                | Dexamethasone                  | -8<br>-8                | 1906.0                                       | 5718.0<br>5697.0                         | 103.8                      | 2.9                | 8.6<br>6.5          | 102.5                           | 1.8                   | 1.1  | 1.8      | 10.7                                      |
| 1963.0                              | 54                      | a second and the second second | -8                      | 1844.0                                       | 5532.0                                   | 100.4                      | -0.4               | 0.2                 | 1000.00                         |                       |      |          | 10.3                                      |
| 1929.0<br>1997.0                    | 55<br>56                | Dexamethasone                  | -9<br>-9                | 1810.0                                       | 5430.0<br>5634.0                         | 98.5<br>102.2              | -2.3               | 5.4<br>1.9          | 101.7                           | 2.9                   | 1.7  | 2.8      | 10.2                                      |
| 2033.0                              | 57                      | Davamethacono                  | -9                      | 1914.0<br>1779.0                             | 5742.0                                   | 104.2                      | 3.3                | 11.2                | 99.2                            | 25                    | 14   | 2.5      | 10.7                                      |
| 1898.0<br>1969.0                    | 58<br>59                | Dexamethasone                  | -10<br>-10              | 1779.0                                       | 5337.0<br>5610.0                         | 96.9<br>101.8              | -4.0<br>0.9        | 16.1<br>0.9         | 99.2                            | 2.5                   | 1.4  | 2.5      | 10.0<br>10.5                              |
| 1936.0<br>1819.0                    | 60<br>61                | Ensulizate                     | -10                     | 1817.0<br>1700.0                             | 5451.0<br>5100.0                         | 98.9<br>92.6               | -1.9               | 3.8<br>5.3          | 93.6                            | 5.6                   | 3.2  | 6.0      | 10.2                                      |
| 17 <b>4</b> 7 N                     | 62                      | Cheditzore                     | -3                      | 1628.0                                       | 4884 N                                   | 88.6                       | -R 2               | 38.7                | 30.0                            | 5.0                   | 5.2  | 0.0      | 9.2                                       |
| 1950.0<br>1905.0                    | 63<br>64                | Ensulizate                     | -3<br>-4                | 1831.0                                       | 5493.0<br>5358.0                         | 99.7<br>97.2               | 4.8                | 23.3<br>5.7         | 92.9                            | 6.3                   | 3.6  | 6.7      | 10.3                                      |
| 1879.0                              | 65                      | and the states of M            | -4                      | 1760.0                                       | 5280.0                                   | 95.8                       | 1.0                | 0.9                 |                                 |                       |      |          | 9.9                                       |
| 1694.0<br>2026.0                    | 65<br>67                | Ensulizale                     | -4<br>-5                | 1575.0                                       | 4725.0<br>5721.0                         | 85.7<br>103.8              | -9.1<br>9.0        | 82.9<br>80.4        | 102.6                           | 1.3                   | 0.7  | 1.3      | 8.9<br>10.7                               |
| 2008.0                              | 68                      |                                | -5                      | 1889.0                                       | 5667.0                                   | 102.8                      | 8.0                | 63.8                |                                 |                       |      |          | 10.6                                      |
| 1979.0<br>1985.0                    | 69<br>70                | Ensulizale                     | -5<br>-6                | 1860.0                                       | 5580.0<br>5598.0                         | 101.3                      | 6. <b>4</b><br>6.7 | 41.1<br>45.4        | 101.5                           | 1.5                   | 0.9  | 1.5      | 10.4                                      |
| 2010.0<br>1954.0                    | 71                      |                                | -6<br>-6                | 1891.0<br>1835.0                             | 5673.0<br>5505.0                         | 102.9<br>99.9              | 8.1<br>5.0         | 65.5                | 1.520038                        |                       |      |          | 10.6<br>10.3                              |
| 1987.0                              | 72                      | Ensulizate                     | -7                      | °868.0                                       | 5604.0                                   | 101.7                      | 6.8                | 25.5<br>46.8        | 75.5                            | 43.7                  | 25.2 | 57.9     | 10.5                                      |
| 1951.0<br>579.0                     | 74                      |                                | -7<br>-7                | 1832.0<br>460.0                              | 5496.0<br>1380.0                         | 99.7<br>25.0               | 4.9<br>-69.8       | 23.9<br>4873.4      |                                 |                       |      |          | 10.3<br>3.0                               |
| 1930.0                              | 76                      | Ensulizole                     | -8                      | 1811.0                                       | 5433.0                                   | 98.6                       | 3.7                | 14.0                | 95.3                            | 6.8                   | 3.4  | 6.1      | 10.2                                      |
| 1934.0<br>1746.0                    | 77<br>78                | 20330271A*52                   | -8<br>-8                | 1816.0<br>1627.0                             | 5445.0<br>4881.0                         | 98.8<br>88.5               | 4.0<br>-5.3        | 15.7<br>39.4        |                                 |                       |      |          | 10.2<br>9.2                               |
| 1972.0                              | 79                      | Ensulizate                     | -9                      | 1853.0                                       | 5559.0                                   | 100.9                      | 6.0                | 36.3                | 100.5                           | 0.6                   | 0.4  | 0.6      | 10.4                                      |
| 1971.0<br>1951.0                    | 80<br>81                |                                | -9<br>-9                | 1852.0                                       | 5556.0<br>5496.0                         | 100.8                      | 6.0<br>4.9         | 35.7<br>23.9        |                                 |                       |      |          | 10.4<br>10.3                              |
| 1881.0                              | 82                      | Ensulizale                     | -10                     | 762.0                                        | 5286.0                                   | 95.9                       | 1.1                | 1.2                 | 96.9                            | 2.4                   | 1.4  | 2.5      | 9.9                                       |
| 1948.0                              | 83                      |                                | -10                     | 1829.0                                       | 5487.0                                   | 99.6<br>95.1               | 4.7<br>0.2         | 22.3                |                                 |                       |      |          | 10.3                                      |

## APPENDIX 1 (continued)

# Raw and Normalized Data Valid Run 3 – February 16, 2013

| 1960.0           | 61 | Avobenzone    | -3        | 1841.0 | 5523.0 | 100.2        | 2.2   | 4.8    | 97.0  | 2.8  | 1.6  | 2.9  | 10.3 |
|------------------|----|---------------|-----------|--------|--------|--------------|-------|--------|-------|------|------|------|------|
| 1867.0           | 62 |               | -3        | 1748.0 | 5244.0 | 95.2         | -2.9  | 8.3    |       |      |      |      | 9.8  |
| 1874.0           | 63 |               | -3        | 1755.0 | 5265.0 | 95.5         | -2.5  | 6.2    |       |      |      |      | 9.9  |
| 1788.0           | 64 | Avobenzone    | -4        | 1669.0 | 5007.0 | 90.9         | -7.2  | 51.5   | 94.9  | 3.5  | 2.0  | 3.7  | 9.4  |
| 1904.0           | 65 |               | -4        | 1785.0 | 5355.0 | 97.2         | -0.9  | 0.7    |       |      |      |      | 10.0 |
| 1892.0           | 66 |               | -4        | 1773.0 | 5319.0 | 96.5         | -1.5  | 2.3    |       |      |      |      | 10.0 |
| 2015.0           | 67 | Avobenzone    | -5        | 1896.0 | 5688.0 | 103.2        | 5.2   | 26.8   | 103.0 | 3.1  | 1.8  | 3.0  | 10.6 |
| 1952.0           | 68 |               | -5        | 1833.0 | 5499.0 | 99.8         | 1.8   | 3.1    |       |      |      |      | 10.3 |
| 2064.0           | 69 |               | -5        | 1945.0 | 5835.0 | 105.9        | 7.8   | 61.6   |       |      |      |      | 10.9 |
| 1892.0           | 70 | Avobenzone    | -6        | 1773.0 | 5319.0 | 96.5         | -1.5  | 2.3    | 98.7  | 1.9  | 1.1  | 1.9  | 10.0 |
| 1959.0           | 70 | Ailobelizolle | -6        | 1840.0 | 5520.0 | 100.2        | 2.1   | 4.5    | 50.7  | 1.5  | 1.1  | 1.5  | 10.3 |
|                  |    |               |           |        |        |              |       |        |       |      |      |      |      |
| 1944.0           | 72 | <u> </u>      | -6        | 1825.0 | 5475.0 | 99.4         | 1.3   | 1.7    | 05.0  | 10   | 0.7  | 1.0  | 10.2 |
| 1904.0           | 73 | Avobenzone    | -7        | 1785.0 | 5355.0 | 97.2         | -0.9  | 0.7    | 95.8  | 1.2  | 0.7  | 1.3  | 10.0 |
| 1870.0           | 74 |               | -7        | 1751.0 | 5253.0 | 95.3         | -2.7  | 7.4    |       |      |      |      | 9.8  |
| 1861.0           | 75 |               | -7        | 1742.0 | 5226.0 | 94.8         | -3.2  | 10.3   |       |      |      |      | 9.8  |
| 1966.0           | 76 | Avobenzone    | -8        | 1847.0 | 5541.0 | 100.6        | 2.5   | 6.3    | 100.9 | 0.8  | 0.5  | 0.8  | 10.3 |
| 1961.0           | 77 |               | -8        | 1842.0 | 5526.0 | 100.3        | 2.2   | 5.0    |       |      |      |      | 10.3 |
| 1988.0           | 78 |               | -8        | 1869.0 | 5607.0 | 101.8        | 3.7   | 13.8   |       |      |      |      | 10.5 |
| 2029.0           | 79 | Avobenzone    | -9        | 1910.0 | 5730.0 | 104.0        | 5.9   | 35.3   | 104.1 | 0.8  | 0.5  | 0.8  | 10.7 |
| 2047.0           | 80 |               | -9        | 1928.0 | 5784.0 | 105.0        | 6.9   | 47.9   |       |      |      |      | 10.8 |
| 2016.0           | 81 |               | -9        | 1897.0 | 5691.0 | 103.3        | 5.2   | 27.4   |       |      |      |      | 10.6 |
| 1883.0           | 82 | Avobenzone    | -10       | 1764.0 | 5292.0 | 96.0         | -2.0  | 4.0    | 90.1  | 10.2 | 5.9  | 11.4 | 9.9  |
| 1883.0           | 83 |               | -10       | 1764.0 | 5292.0 | 96.0         | -2.0  | 4.0    |       |      |      |      | 9.9  |
| 1557.0           | 84 |               | -10       | 1438.0 | 4314.0 | 78.3         | -19.8 | 390.2  |       |      |      |      | 8.2  |
| 726.0            | 61 | Homosalate    | -10       | 607.0  | 1821.0 | 33.0         | 5.2   | 27.2   | 28.2  | 6.5  | 3.8  | 23.1 | 3.8  |
|                  |    | numusalate    |           |        |        |              |       |        | 20.2  | 0.5  | 3.8  | 23.1 |      |
| 501.0            | 62 |               | -3        | 382.0  | 1146.0 | 20.8         | -7.0  | 49.5   |       | -    |      |      | 2.6  |
| 683.0            | 63 |               | -3        | 564.0  | 1692.0 | 30.7         | 2.9   | 8.3    |       | 0.1  | F -  | 40.0 | 3.6  |
| 972.0            | 64 | Homosalate    | -4        | 853.0  | 2559.0 | 46.4         | -12.0 | 143.2  | 57.0  | 9.1  | 5.3  | 16.0 | 5.1  |
| 1264.0           | 65 |               | -4        | 1145.0 | 3435.0 | 62.3         | 3.9   | 15.5   |       |      |      |      | 6.7  |
| 1260.0           | 66 |               | -4        | 1141.0 | 3423.0 | 62.1         | 3.7   | 13.8   |       |      |      |      | 6.6  |
| 1878.0           | 67 | Homosalate    | -5        | 1759.0 | 5277.0 | 95.8         | 8.1   | 65.9   | 92.9  | 3.8  | 2.2  | 4.0  | 9.9  |
| 1853.0           | 68 |               | -5        | 1734.0 | 5202.0 | 94.4         | 6.8   | 45.7   |       |      |      |      | 9.8  |
| 1748.0           | 69 |               | -5        | 1629.0 | 4887.0 | 88.7         | 1.0   | 1.1    |       |      |      |      | 9.2  |
| 1218.0           | 70 | Homosalate    | -6        | 1099.0 | 3297.0 | 59.8         | -36.6 | 1341.6 | 83.6  | 20.6 | 11.9 | 24.6 | 6.4  |
| 1893.0           | 71 |               | -6        | 1774.0 | 5322.0 | 96.6         | 0.1   | 0.0    |       |      |      |      | 10.0 |
| 1852.0           | 72 |               | -6        | 1733.0 | 5199.0 | 94.3         | -2.1  | 4.5    |       |      |      |      | 9.7  |
| 1896.0           | 73 | Homosalate    | -7        | 1777.0 | 5331.0 | 96.7         | -1.3  | 1.8    | 99.6  | 3.4  | 2.0  | 3.4  | 10.0 |
| 1933.0           | 74 | Homoodate     | -7        | 1814.0 | 5442.0 | 98.8         | 0.7   | 0.5    | 00.0  | 0.4  | 2.0  | 0.4  | 10.2 |
| 2019.0           | 74 |               | -7        | 1900.0 | 5700.0 | 103.4        | 5.4   | 28.9   |       |      |      |      | 10.2 |
| 1942.0           | 75 | Hamaaalata    | -7<br>-8  | 1823.0 | 5469.0 | 99.2         | 0.9   | 0.8    | 99.4  | 1.1  | 0.6  | 1.1  | 10.8 |
|                  |    | Homosalate    |           |        |        |              |       |        | 99.4  | 1.1  | 0.0  | 1.1  |      |
| 1966.0           | 77 |               | -8        | 1847.0 | 5541.0 | 100.6        | 2.2   | 5.0    |       |      |      |      | 10.3 |
| 1927.0           | 78 |               | -8        | 1808.0 | 5424.0 | 98.4         | 0.1   | 0.0    |       |      |      |      | 10.1 |
| 2050.0           | 79 | Homosalate    | -9        | 1931.0 | 5793.0 | 105.1        | 6.8   | 45.7   | 103.0 | 2.1  | 1.2  | 2.0  | 10.8 |
| 1974.0           | 80 |               | -9        | 1855.0 | 5565.0 | 101.0        | 2.6   | 6.9    |       |      |      |      | 10.4 |
| 2010.0           | 81 |               | -9        | 1891.0 | 5673.0 | 102.9        | 4.6   | 21.0   |       |      |      |      | 10.6 |
| 1971.0           | 82 | Homosalate    | -10       | 1852.0 | 5556.0 | 100.8        | 2.4   | 6.0    | 99.7  | 1.2  | 0.7  | 1.2  | 10.4 |
| 1955.0           | 83 |               | -10       | 1836.0 | 5508.0 | 100.0        | 1.6   | 2.5    |       |      |      |      | 10.3 |
| 1926.0           | 84 |               | -10       | 1807.0 | 5421.0 | 98.4         | 0.0   | 0.0    |       |      |      |      | 10.1 |
| 1390.0           | 61 | Padamate O    | -3        | 1271.0 | 3813.0 | 69.2         | -25.5 | 649.2  | 81.7  | 10.9 | 6.3  | 13.3 | 7.3  |
| 1720.0           | 62 |               | -3        | 1601.0 | 4803.0 | 87.2         | -7.5  | 56.4   |       |      |      |      | 9.1  |
| 1750.0           | 63 |               | -3        | 1631.0 | 4893.0 | 88.8         | -5.9  | 34.6   |       |      |      |      | 9.2  |
| 1795.0           | 64 | Padamate O    | -4        | 1676.0 | 5028.0 | 91.2         | -3.4  | 11.8   | 92.7  | 1.5  | 0.9  | 1.6  | 9.4  |
| 1821.0           | 65 | i againate O  | -4        | 1702.0 | 5106.0 | 92.7         | -3.4  | 4.1    | 02.7  |      | 0.0  |      | 9.6  |
| 1850.0           | 66 |               | -4<br>-4  | 1702.0 | 5108.0 | 94.2         | -2.0  | 0.2    |       |      |      |      | 9.6  |
| 1889.0           | 67 | Padamate O    | -4<br>-5  | 1731.0 | 5310.0 | 94.2<br>96.4 | -0.4  | 2.8    | 99.1  | 3.2  | 1.8  | 3.2  | 9.7  |
|                  |    | Fauamate U    |           |        |        |              |       |        | 53.1  | 3.2  | 1.0  | J.Z  |      |
| 2003.0           | 68 |               | -5        | 1884.0 | 5652.0 | 102.6        | 7.9   | 62.3   |       | -    |      |      | 10.5 |
| 1924.0           | 69 |               | -5        | 1805.0 | 5415.0 | 98.3         | 3.6   | 12.9   | 107.1 |      |      |      | 10.1 |
| 1971.0           | 70 | Padamate O    | -6        | 1852.0 | 5556.0 | 100.8        | 6.2   | 37.8   | 103.4 | 2.3  | 1.3  | 2.2  | 10.4 |
| 2034.0           | 71 |               | -6        | 1915.0 | 5745.0 | 104.3        | 9.6   | 91.8   |       | l    |      | ļ    | 10.7 |
| 2050.0           | 72 |               | -6        | 1931.0 | 5793.0 | 105.1        | 10.5  | 109.3  |       |      |      |      | 10.8 |
| 1950.0           | 73 | Padamate O    | -7        | 1831.0 | 5493.0 | 99.7         | 5.0   | 25.1   | 100.0 | 0.7  | 0.4  | 0.7  | 10.3 |
| 1946.0           | 74 |               | -7        | 1827.0 | 5481.0 | 99.5         | 4.8   | 23.0   |       |      |      |      | 10.2 |
| 1971.0           | 75 |               | -7        | 1852.0 | 5556.0 | 100.8        | 6.2   | 37.8   |       |      |      |      | 10.4 |
| 1552.0           | 76 | Padamate O    | -8        | 1433.0 | 4299.0 | 78.0         | -16.7 | 277.5  | 91.2  | 11.5 | 6.7  | 12.6 | 8.2  |
| 1946.0           | 77 |               | -8        | 1827.0 | 5481.0 | 99.5         | 4.8   | 23.0   |       |      |      |      | 10.2 |
| 1884.0           | 78 |               | -8        | 1765.0 | 5295.0 | 96.1         | 1.4   | 2.0    |       |      |      |      | 9.9  |
| 1907.0           | 79 | Padamate O    | -9        | 1788.0 | 5364.0 | 97.3         | 2.7   | 7.1    | 97.0  | 0.6  | 0.4  | 0.7  | 10.0 |
| 1887.0           | 80 | i againato O  | -9        | 1768.0 | 5304.0 | 96.3         | 1.6   | 2.5    | 01.0  | 0.0  | 0.7  | 0.1  | 9.9  |
| 1908.0           | 81 |               | -9        | 1789.0 | 5367.0 | 97.4         | 2.7   | 7.4    |       | 1    |      | 1    | 10.0 |
| 1908.0           | 82 | Padamate O    | -9<br>-10 | 1789.0 |        | 97.4<br>97.6 | 2.7   |        | 92.3  | 9.2  | 5 7  | 9.9  |      |
|                  |    | Fauarriate O  |           |        | 5379.0 |              |       | 8.6    | 92.3  | 5.2  | 5.3  | 3.9  | 10.1 |
| 1620.0<br>1912.0 | 83 |               | -10       | 1501.0 | 4503.0 | 81.7         | -13.0 | 167.9  |       | -    |      |      | 8.5  |
|                  | 84 | 1             | -10       | 1793.0 | 5379.0 | 97.6         | 2.9   | 8.6    |       | 1    | 1    | 1    | 10.1 |

### APPENDIX 2 Rat Prostate Cytosol Preparation and Information


Runs 1 and 2 used cytosol isolated on February 01, 2013 and qualified on February 2-5, 2013. Run 3 used cytosol isolated on April 26, 2012 and qualified February 6-8, 2013.

| Supplier                | Charles River Laboratories           |
|-------------------------|--------------------------------------|
| Strain                  | Sprague-Dawley                       |
| Age                     | 80-90 days                           |
| Days after castration   | 1 (24 hours)                         |
|                         |                                      |
| Protein Concentration   | 1.5 mg/mL                            |
| Method of Determination | Bradford Method                      |
| Supplier and Product    | Thermo Scientific Coomassie Bradford |
|                         | Protein Kit                          |
| Catalog Number          | 23200                                |
|                         |                                      |
| Batch/Lot Number        | NK175919                             |
|                         |                                      |
| Method of Transport     | FedEx – priority overnight           |
| Conditions of Transport | Dry Ice                              |

February 01, 2013 cytosol preparation.

Rat prostate glands were purchased from Charles River Laboratories. Collection of rat prostrates was not performed according to GLP, though a QA inspection was performed on 01Feb13 and reported to management on 08Feb13. The cytosol preparation was performed on February 01, 2013. The homogenizer probe was pre-chilled by placing it in an ice cold beaker of low-salt TEDG buffer on ice. The prostate tissue was checked for healthy appearance (no fibrous, inflamed, edematous or infected appearance) and any tissues that appeared compromised were discarded and excess fascia was trimmed, if necessary. The prostate tissues were added to a beaker of low-salt TEDG buffer in ice bath, at 10 ml of buffer/g tissue. Prostates were minced with fine scissors until all pieces were small 1-2 mm cubes. Then the minced tissue was homogenized at ~4°C using a pre-chilled Polytron homogenizer. For the Polytron PT 10-35GT, setting 3, with 3 short 4 sec bursts of power spaced at 20 sec intervals was used. The homogenates were transferred to pre-cooled centrifuge tubes, balanced, and centrifuged at 30,000 x g for 30 minutes in a centrifuge cooled to ~4°C. The resulting supernatant contained the low-salt cytosolic receptors. The supernatant from all samples was pooled, gently mixed and aliquoted into labeled tubes and stored at approximately -80°C. The cytosol preparations used in this study were thawed immediately prior to use in the assay and any leftover cytosol was discarded. The protein content for each batch of cytosol was determined using the Bradford method.





| eport     | Raw Da | ata Plate Maj | р |   |   |   |                             |                             |                             |   |                    |                    |                    |
|-----------|--------|---------------|---|---|---|---|-----------------------------|-----------------------------|-----------------------------|---|--------------------|--------------------|--------------------|
|           |        | 1             | 2 | 3 | 4 | 5 | 6                           | 7                           | 8                           | 9 | 10                 | 11                 | 12                 |
| Zu        | А      |               |   |   |   |   | 2                           | 2                           | 2                           |   | Neat cyto          | Neat cyto          | Neat cyto          |
| <u>m</u>  | В      |               |   |   |   |   | 1.5                         | 1.5                         | 1.5                         |   | 2x cyto            | 2x cyto            | 2x cyto            |
| Number:   | С      |               |   |   |   |   | 1                           | 1                           | 1                           |   | 3x cyto            | 3x cyto            | 3x cyto            |
|           | D      |               |   |   |   |   | 0.75                        | 0.75                        | 0.75                        |   | 5x cyto            | 5x cyto            | 5x cyto            |
| 9070-     | E      |               |   |   |   |   | 0.5                         | 0.5                         | 0.5                         |   | 10x cyto           | 10x cyto           | 10x cyto           |
|           | F      |               |   |   |   |   | 0.25                        | 0.25                        | 0.25                        |   | water blank        | water blank        | water blank        |
| 8         | G      |               |   |   |   |   | 0.125                       | 0.125                       | 0.125                       |   | water blank        | water blank        | water blank        |
| 79        | Н      |               |   |   |   |   | 0.025                       | 0.025                       | 0.025                       |   | water blank        | water blank        | water blank        |
| 100794ARB |        |               |   |   |   |   | BSA<br>standards<br>(mg/mL) | BSA<br>standards<br>(mg/mL) | BSA<br>standards<br>(mg/mL) |   | cytosol<br>samples | cytosol<br>samples | cytosol<br>samples |

# Raw Data

| Plate Seq#: 9783<br>Comment: | A     | Acquired: Frid | ay, February  | 01, 2013 3:13 | 3 PM Temper   | rature Min/Ma | ax: 0.0/0.0-C |       |       |       |       |       |
|------------------------------|-------|----------------|---------------|---------------|---------------|---------------|---------------|-------|-------|-------|-------|-------|
| Absorbance-A                 | I     | File Report: C | :\Fusion data | files\MTT_(1  | null)_02-01-1 | 3_2030.TXT    |               |       |       |       |       |       |
|                              | 1     | 2              | 3             | 4             | 5             | 6             | 7             | 8     | 9     | 10    | 11    | 12    |
| А                            | 0.068 | 0.087          | 0.041         | 0.041         | 0.042         | 1.214         | 1.227         | 1.243 | 0.042 | 1.366 | 1.375 | 1.378 |
| В                            | 0.077 | 0.041          | 0.041         | 0.041         | 0.041         | 1.117         | 1.128         | 1.145 | 0.041 | 1.214 | 1.222 | 1.222 |
| С                            | 0.355 | 0.041          | 0.041         | 0.042         | 0.041         | 0.998         | 1.023         | 1.025 | 0.043 | 1.09  | 1.281 | 1.084 |
| D                            | 0.061 | 0.042          | 0.041         | 0.043         | 0.043         | 0.918         | 0.926         | 0.924 | 0.045 | 0.889 | 0.895 | 0.914 |
| E                            | 0.065 | 0.042          | 0.044         | 0.043         | 0.042         | 0.753         | 0.773         | 0.766 | 0.04  | 0.683 | 0.689 | 0.655 |
| F                            | 0.277 | 0.041          | 0.042         | 0.042         | 0.043         | 0.583         | 0.719         | 0.601 | 0.04  | 0.407 | 0.407 | 0.406 |
| G                            | 0.062 | 0.042          | 0.041         | 0.041         | 0.042         | 0.500         | 0.511         | 0.506 | 0.04  | 0.406 | 0.408 | 0.412 |
| Н                            | 0.062 | 0.065          | 0.042         | 0.041         | 0.042         | 0.418         | 0.416         | 0.425 | 0.04  | 0.411 | 0.407 | 0.414 |

### **Protein Optimization**

The optimal protein concentration for use in the assays was determined by incubating increasing concentrations of cytosol with 0.25 nM [ $^{3}$ H]-R1881. This allowed for the determination of the protein concentration that binds no more than 25-35% of the total radiolabel added.

| Code (N=3 of | Receptor  | Receptor      | Inert R1881    | <sup>3</sup> H-R1881 | Cytosol |
|--------------|-----------|---------------|----------------|----------------------|---------|
| each)        | Dilution  | concentration |                |                      |         |
| TB 0.25nM    | undiluted | Conc 1        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:1.25    | Conc 2        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:1.5     | Conc 3        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:2       | Conc 4        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:3       | Conc 5        | none           | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | undiluted | Conc 1        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:1.25    | Conc 2        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:1.5     | Conc 3        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:2       | Conc 4        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:3       | Conc 5        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| TB 1.0 nM    | undiluted | Conc 1        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:1.25    | Conc 2        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:1.5     | Conc 3        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:2       | Conc 4        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:3       | Conc 5        | none           | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | undiluted | Conc 1        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:1.25    | Conc 2        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:1.5     | Conc 3        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:2       | Conc 4        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:3       | Conc 5        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |

#### **Saturation Binding Methods**

Once the proper protein concentration was determined, a saturation binding experiment measuring total and non-specific binding of  $[^{3}H]$ -R1881 was performed to demonstrate that the androgen receptor (AR) was present in reasonable concentrations and had the appropriate affinity for the native ligand. The conditions for the saturation binding experiment are summarized in Table 1.

| TABLE A1. Summary of        | Conditions for Saturation Bindi | ng Experiment                                        |
|-----------------------------|---------------------------------|------------------------------------------------------|
| Source of receptor          |                                 | Rat prostate cytosol                                 |
| Concentration of radioligan | d (as serial dilutions)         | 0.25-10 nM                                           |
| Concentration of non-labele | d ligand (100X [radioligand])   | 25-1000 nM                                           |
| Concentration of receptor   |                                 | Sufficient to bind ~25-35% of radioligand at 0.25 nM |
| Temperature                 |                                 | ~4°C                                                 |
| Incubation time             |                                 | 16-20 hours                                          |
| Composition of assay        | Tris                            | 10 mM (pH 7.4)                                       |
| buffer                      | EDTA                            | 1.5 mM                                               |
|                             | Glycerol                        | 10%                                                  |
|                             | Phenylmethylsulfonyl fluoride   | 1 mM                                                 |
|                             | DTT                             | 1 mM                                                 |
|                             | Sodium Molybdate                | 1mM                                                  |

The [<sup>3</sup>H]-R1881 was manufactured on October 10, 2012 and the specific activity was 85.1 Ci/mmol. On the day of the assay the specific activity of the stock solution [<sup>3</sup>H]-R1881 was adjusted for decay over time, and serial dilutions in low-salt TEDG + PMSF buffer were prepared to achieve the final concentrations of 0.25, 0.50, 0.70, 1.0, 1.5, 2.5, 5.0, and 10.0 Solutions of non-labeled R1881 were prepared in a similar manner to achieve nM. concentrations that were 100-fold greater than each respective radiolabeled concentration to result in final concentrations of 25, 50, 70, 100, 150, 250, 500 and 1000 nM. For each batch of cytosol, the optimal protein concentration was determined by calculating specific binding to differing amounts of protein per tube, using 0.25 nM radiolabeled R1881, until a concentration was reached that bound ~25-35% of the total radioactivity added. The protein concentration was 0.45 mg per assay tube for the three saturation binding experiments. Each assay consisted of three non-concurrent binding assay runs (February 02, 2013, February 04, 2013 and February 05, 2013), and each run contained three concurrent replicates at each concentration, resulting in the 72 sample tubes depicted in Table 2. QA inspection of Run 1 (Day 2) and Run 2 (Day 1) was performed on 04Feb13 and reported to management on 08Feb13.

| Table A2. Saturation Binding Experiment Set-up Per Run |                  |                                 |                               |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
|--------------------------------------------------------|------------------|---------------------------------|-------------------------------|--------------------------------------------|---------------------------------|-----------------------|--------------------------------|-----------------------------|-----------------|--|--|--|--|
| N=                                                     | Tube<br>Type     | Hot<br>Initial<br>Conc.<br>(nM) | Hot<br>R1881<br>Added<br>(µL) | Hot<br>Final<br>Conc.<br>(nM) <sup>d</sup> | Cold<br>Initial<br>Conc<br>(µM) | Cold<br>Added<br>(µL) | Cold<br>Final<br>Conc.<br>(nM) | Triamcinolone<br>Added (µL) | Cytosol<br>(µL) |  |  |  |  |
| 3                                                      | TB <sup>a</sup>  | 10                              | 7.5                           | 0.25                                       |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 10                              | 15                            | 0.5                                        |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 10                              | 21                            | 0.7                                        |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 10                              | 30                            | 1                                          |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 10                              | 45                            | 1.5                                        |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 100                             | 7.5                           | 2.5                                        |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 100                             | 15                            | 5                                          |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | TB               | 100                             | 30                            | 10                                         |                                 |                       |                                | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB <sup>b</sup> | 10                              | 7.5                           | 0.25                                       | 1                               | 7.5                   | 25                             | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 10                              | 15                            | 0.5                                        | 1                               | 15                    | 50                             | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 10                              | 21                            | 0.7                                        | 1                               | 21                    | 70                             | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 10                              | 30                            | 1                                          | 1                               | 30                    | 100                            | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 10                              | 45                            | 1.5                                        | 1                               | 45                    | 150                            | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 100                             | 7.5                           | 2.5                                        | 10                              | 7.5                   | 250                            | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 100                             | 15                            | 5                                          | 10                              | 15                    | 500                            | 50                          | 300             |  |  |  |  |
| 3                                                      | NSB              | 100                             | 30                            | 10                                         | 10                              | 30                    | 1000                           | 50                          | 300             |  |  |  |  |
| 3                                                      | TA <sup>c</sup>  | 10                              | 7.5                           |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 10                              | 15                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 10                              | 21                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 10                              | 30                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 10                              | 45                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 100                             | 7.5                           |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA               | 100                             | 15                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |
| 3                                                      | TA<br>Tatal h    | 100                             | 30                            |                                            |                                 |                       |                                |                             |                 |  |  |  |  |

a Total binding =  $[{}^{3}H]$ -R1881 bound to AR

b Non-specific binding =  $[{}^{3}H]$ -R1881 and 100-fold greater non-labeled bound to AR

c Total [<sup>3</sup>H]-R1881 alone for dpm determination at each concentration

First, the necessary volumes of [<sup>3</sup>H]-R1881, cold R1881 and 60 µM triamcinolone were added to every total binding tube and non-specific binding tube. These tubes were placed in While the tubes were drying, aliquots of each concentration of a speed-vac to dry. <sup>3</sup>H]-R1881 were added, in triplicate, to 14 mL scintillation cocktail in a 20 mL scintillation vial to determine total radioligand added. Once cytosol was added, the tubes were incubated at approximately 4°C, with gentle vortexing, for 20 hr 35 min, 19 hr 35 min and 19 hr 40 min for the first, second and third saturation binding experiments, respectively. To separate bound from free R1881, 500 µL of hydroxyapatite (HAP) slurry was added to fresh tubes. A 100 µL aliquot of each total binding and non-specific binding tube was added to the HAP tubes and they were vortexed (5 times with 4-minute intervals). Subsequently, the contents of each tube were washed three times as follows: 2 mL of ice cold TEDG +PMSF buffer was added, vortexed and centrifuged for 3 min at 700 x g. The supernatant decanted and discarded. The HAP pellet remaining in each tube was resuspended in 2 mL absolute ethanol to extract the  $[{}^{3}H]$ -R1881, followed by vortexing, and centrifugation for 10 min at 700 x g. 20 mL scintillation vials were filled with 14 mL scintillation cocktail and the entire supernatant was assessed by scintillation counting. The temperature was maintained at

Report Number: 9070-100794ARB

approximately 4°C throughout the assay prior to extraction with ethanol. This was repeated two more times for a total of three saturation binding runs.

#### Data Analysis

For the Saturation Binding Experiment, total binding and non-specific binding data were modeled via non-linear regression using Graph Pad Prism v. 5 (GraphPad Software, Inc., La Jolla, CA), incorporating automatic outlier elimination according to the method of Motulsky and Brown (2006) implemented by using the ROUT procedure in Prism v. 5 with a Q value of 1.0. Scatchard plots were also generated using Graph Pad Prism v. 5. Receptor binding data plots were corrected for ligand depletion using the method of Swillens (1995). Parameters reported from the Saturation Binding Experiment (K<sub>d</sub> and B<sub>max</sub>), means and standard deviations, were calculated for each run and the means and standard errors were calculated for the composite three runs using Microsoft Excel 2010 (Redmond, WA; version 14.0.6123.5001).

#### Saturation Binding Results

Non-specific binding was only 10.0% of total binding (mean value for all three saturation binding runs). This is within the suggested range of 8.1% - 10.0% and is within historical CeeTox values. The mean dissociation constant (K<sub>d</sub>) for [<sup>3</sup>H]-R1881 was  $0.536 \pm 0.038$  nM. The mean estimated B<sub>max</sub> was  $0.012 \pm 0.0002$  nM ( $4.657 \pm 0.071$  fmol/100µg) for the single batch of prostate cytosol that was prepared. Though both these values are slightly lower than the suggested values in the guideline, they are comparable to CeeTox historical data. Confidence in these numbers is high according to the goodness of fit ( $r^2 = 0.947 - 0.992$ ) and the small variation among runs.

| TABLE A3. Saturation Binding Experiment of R1881 with Androgen Receptor from Rat Prostate |       |       |       |                       |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------|-------|-------|-----------------------|--|--|--|--|
| Cytosol                                                                                   |       |       |       |                       |  |  |  |  |
| Parameter                                                                                 | Run 1 | Run 2 | Run 3 | Runs 1-3 <sup>a</sup> |  |  |  |  |
| $R^2$ (unweighted)                                                                        | 0.992 | 0.947 | 0.969 | 0.947 - 0.992         |  |  |  |  |
| B <sub>max</sub> (nM)                                                                     | 0.011 | 0.012 | 0.013 | $0.012 \pm 0.0002$    |  |  |  |  |
| B <sub>max</sub> (fmol/100 μg protein)                                                    | 4.526 | 4.679 | 4.768 | $4.657 \pm 0.071$     |  |  |  |  |
| $K_{d}(nM)$                                                                               | 0.474 | 0.530 | 0.606 | $0.536\pm0.038$       |  |  |  |  |

a The range of  $\mathbb{R}^2$  is reported and the mean  $\pm$  SEM is reported for the other parameters.  $\mathbb{R}^2 = \text{Goodness of fit for curve calculated for specific binding}$ 

Figure A1. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 1 (02-February-2013).

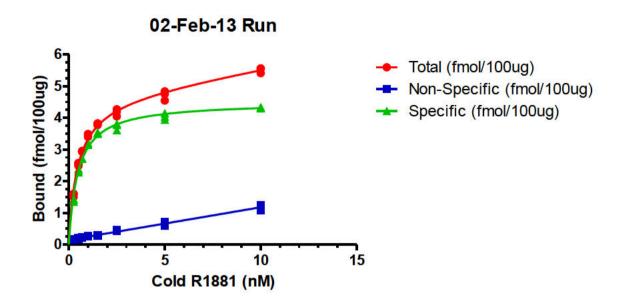



Figure A2. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 1 (02-February-2013).

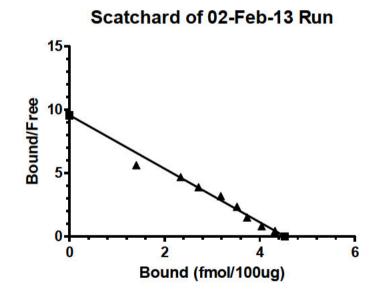



Figure A3. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 2 (04-February-2013).

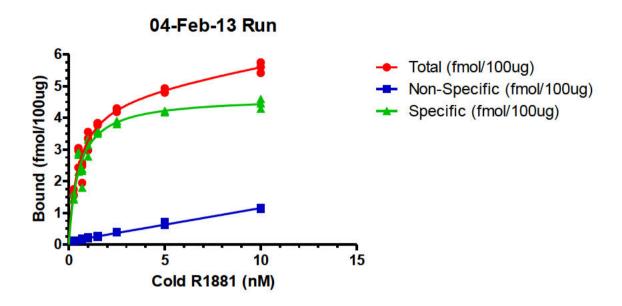



Figure A4. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 2 (04-February-2013).

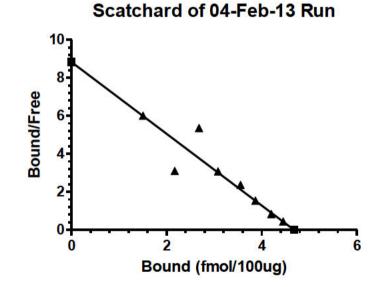
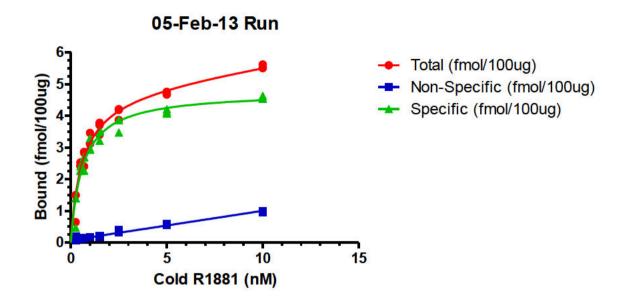
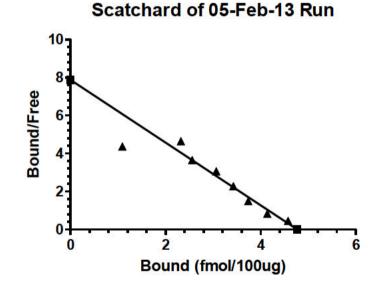
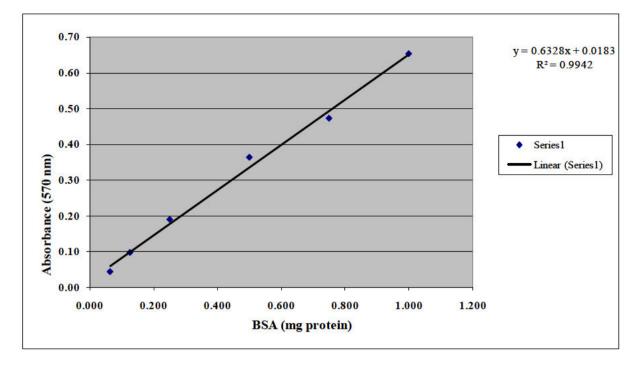



Figure A5. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 3 (05-February-2013).



Figure A6. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 3 (05-February-2013).



| Supplier                | Charles River Laboratories |
|-------------------------|----------------------------|
| Strain                  | Sprague-Dawley             |
| Age                     | 80-90 days                 |
| Days after castration   | 1 (24 hours)               |
|                         |                            |
| Protein Concentration   | 2.2 mg/mL                  |
| Method of Determination | Bradford Method            |
| Supplier and Product    | Bio-Rad Dye Reagent        |
| Catalog Number          | 500-0205                   |
|                         |                            |
| Batch/Lot Number        | 200005735                  |
|                         |                            |
| Method of Transport     | FedEx – priority overnight |
| Conditions of Transport | Dry Ice                    |

Rat prostate glands were purchased from Charles River Laboratories. Collection of rat prostrates was not performed according to GLP. The cytosol preparation was performed on April 26, 2012. The homogenizer probe was pre-chilled by placing it in an ice cold beaker of low-salt TEDG buffer on ice. The prostate tissue was checked for healthy appearance (no fibrous, inflamed, edematous or infected appearance) and any tissues that appeared compromised were discarded and excess fascia was trimmed, if necessary. The prostate tissues were added to a beaker of low-salt TEDG buffer in ice bath, at 10 ml of buffer/g tissue. Prostates were minced with fine scissors until all pieces were small 1-2 mm cubes. Then the minced tissue was homogenized at ~4°C using a pre-chilled Polytron homogenizer. For the Polytron PT 10-35GT, setting 3, with 3 short 4 sec bursts of power spaced at 20 sec intervals was used. The homogenates were transferred to pre-cooled centrifuge tubes, balanced, and centrifuged at 30,000 x g for 30 minutes in a centrifuge cooled to ~4°C. The resulting supernatant contained the low-salt cytosolic receptors. The supernatant from all samples was pooled, gently mixed and aliquoted into labeled tubes and stored at approximately -80°C. The cytosol preparations used in this study were thawed immediately prior to use in the assay and any leftover cytosol was discarded. The protein content for each batch of cytosol was determined using the Bradford method.

#### **Calibration Curve**



### Raw Data Plate Map

The green color refers to the protein optimization and the blue color is the bovine serum albumin (BSA) standard curve used to determine protein concentration of the isolated prostate cytosol.

|   | 1         |           |           | 1     |       | •     |       |       |       |       |       |       |
|---|-----------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | 1         | 2         | 3         | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| А | neat cyto | neat cyto | neat cyto | water | empty | empty | empty | empty | empty | 2     | 2     | 2     |
| В | 2X cyto   | 2X cyto   | 2X cyto   | water | empty | empty | empty | empty | empty | 1     | 1     | 1     |
| С | 3X cyto   | 3X cyto   | 3X cyto   | water | empty | empty | empty | empty | empty | 0.5   | 0.5   | 0.5   |
| D | 10X cyto  | 10X cyto  | 10X cyto  | water | empty | empty | empty | empty | empty | 0.25  | 0.25  | 0.25  |
| E | 20X cyto  | 20X cyto  | 20X cyto  | water | empty | empty | empty | empty | empty | 0.1   | 0.1   | 0.1   |
| F | 40X cyto  | 40X cyto  | 40X cyto  | water | empty | empty | empty | empty | empty | 0.05  | 0.05  | 0.05  |
| G | buffer    | buffer    | buffer    | water | empty | empty | empty | empty | empty | 0.025 | 0.025 | 0.025 |
| Н | water     | water     | water     | water | empty | empty | empty | empty | empty | 0.01  | 0.01  | 0.01  |
|   |           |           |           |       |       |       |       |       |       |       |       |       |

#### Raw Data

Absorbance values at a wavelength of 570 nm.

| 0100000000 |       |       | 010101 |       |       |       |       |       |       |       |       |       |
|------------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|            | 1     | 2     | 3      | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
| А          | 3.310 | 3.310 | 3.310  | 0.140 | 0.044 | 0.041 | 0.040 | 0.041 | 0.042 | 2.065 | 2.125 | 2.071 |
| В          | 2.708 | 2.611 | 2.590  | 0.142 | 0.041 | 0.041 | 0.042 | 0.049 | 0.043 | 1.300 | 1.177 | 1.230 |
| С          | 2.344 | 2.348 | 2.336  | 0.141 | 0.042 | 0.041 | 0.041 | 0.041 | 0.041 | 0.658 | 0.724 | 0.794 |
| D          | 0.848 | 0.969 | 0.847  | 0.315 | 0.042 | 0.042 | 0.042 | 0.039 | 0.042 | 0.455 | 0.457 | 0.457 |
| Е          | 0.526 | 0.512 | 0.514  | 0.139 | 0.050 | 0.044 | 0.038 | 0.040 | 0.038 | 0.253 | 0.279 | 0.280 |
| F          | 0.354 | 0.342 | 0.356  | 0.143 | 0.043 | 0.041 | 0.039 | 0.040 | 0.040 | 0.200 | 0.203 | 0.209 |
| G          | 0.138 | 0.145 | 0.139  | 0.142 | 0.043 | 0.040 | 0.037 | 0.040 | 0.038 | 0.176 | 0.181 | 0.196 |
| Н          | 0.144 | 0.144 | 0.144  | 0.143 | 0.042 | 0.042 | 0.041 | 0.039 | 0.039 | 0.159 | 0.158 | 0.156 |
|            |       |       |        |       |       |       |       |       |       |       |       |       |

### **Protein Optimization**

The optimal protein concentration for use in the assays was determined by incubating increasing concentrations of cytosol with 0.25 nM [ $^{3}$ H]-R1881. This allowed for the determination of the protein concentration that binds no more than 25-35% of the total radiolabel added.

| Code (N=3 of | Receptor  | Receptor      | Inert R1881    | <sup>3</sup> H-R1881 | Cytosol |
|--------------|-----------|---------------|----------------|----------------------|---------|
| each)        | Dilution  | concentration |                |                      |         |
| TB 0.25nM    | undiluted | Conc 1        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:1.25    | Conc 2        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:1.5     | Conc 3        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:2       | Conc 4        | none           | 7.5 µL of 10 nM      | 300 µL  |
| TB 0.25nM    | 1:3       | Conc 5        | none           | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | undiluted | Conc 1        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:1.25    | Conc 2        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:1.5     | Conc 3        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:2       | Conc 4        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| NSB 0.25nM   | 1:3       | Conc 5        | 7.5 μL of 1 μM | 7.5 µL of 10 nM      | 300 µL  |
| TB 1.0 nM    | undiluted | Conc 1        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:1.25    | Conc 2        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:1.5     | Conc 3        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:2       | Conc 4        | none           | 30 µL of 10 nM       | 300 µL  |
| TB 1.0 nM    | 1:3       | Conc 5        | none           | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | undiluted | Conc 1        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:1.25    | Conc 2        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:1.5     | Conc 3        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:2       | Conc 4        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |
| NSB 1.0 nM   | 1:3       | Conc 5        | 30 µL of 1 µM  | 30 µL of 10 nM       | 300 µL  |

#### **Saturation Binding Methods**

Once the proper protein concentration was determined, a saturation binding experiment measuring total and non-specific binding of  $[^{3}H]$ -R1881 was performed to demonstrate that the androgen receptor (AR) was present in reasonable concentrations and had the appropriate affinity for the native ligand. The conditions for the saturation binding experiment are summarized in Table 1.

| TABLE A4. Summary of                                     | Conditions for Saturation Bindi | ng Experiment                                        |
|----------------------------------------------------------|---------------------------------|------------------------------------------------------|
| Source of receptor                                       |                                 | Rat prostate cytosol                                 |
| Concentration of radioligan                              | d (as serial dilutions)         | 0.25-10 nM                                           |
| Concentration of non-labeled ligand (100X [radioligand]) |                                 | 25-1000 nM                                           |
| Concentration of receptor                                |                                 | Sufficient to bind ~25-35% of radioligand at 0.25 nM |
| Temperature                                              |                                 | ~4°C                                                 |
| Incubation time                                          |                                 | 16-20 hours                                          |
| Composition of assay                                     | Tris                            | 10 mM (pH 7.4)                                       |
| buffer                                                   | EDTA                            | 1.5 mM                                               |
|                                                          | Glycerol                        | 10%                                                  |
|                                                          | Phenylmethylsulfonyl fluoride   | 1 mM                                                 |
|                                                          | DTT                             | 1 mM                                                 |
|                                                          | Sodium Molybdate                | 1mM                                                  |

The  $[{}^{3}\text{H}]$ -R1881 was manufactured on October 10, 2012 and the specific activity was 85.1 Ci/mmol. On the day of the assay the specific activity of the stock solution  $[{}^{3}\text{H}]$ -R1881 was adjusted for decay over time, and serial dilutions in low-salt TEDG + PMSF buffer were prepared to achieve the final concentrations of 0.25, 0.50, 0.70, 1.0, 1.5, 2.5, 5.0, and 10.0 nM. Solutions of non-labeled R1881 were prepared in a similar manner to achieve concentrations that were 100-fold greater than each respective radiolabeled concentration to result in final concentrations of 25, 50, 70, 100, 150, 250, 500 and 1000 nM. For each batch of cytosol, the optimal protein concentration was determined by calculating specific binding to differing amounts of protein per tube, using 0.25 nM radiolabeled R1881, until a concentration was 0.660 mg per assay tube for the three saturation binding experiments. Each assay consisted of three non-concurrent binding assay runs (February 02, 2013, February 04, 2013 and February 05, 2013), and each run contained three concurrent replicates at each concentration, resulting in the 72 sample tubes depicted in Table 2.

| Tab | le A5. S         | aturation 1                     | Binding E                     | xperiment                                  | Set-up Pe                       | r Run                 |                                |                             |                 |
|-----|------------------|---------------------------------|-------------------------------|--------------------------------------------|---------------------------------|-----------------------|--------------------------------|-----------------------------|-----------------|
| N=  | Tube<br>Type     | Hot<br>Initial<br>Conc.<br>(nM) | Hot<br>R1881<br>Added<br>(µL) | Hot<br>Final<br>Conc.<br>(nM) <sup>d</sup> | Cold<br>Initial<br>Conc<br>(µM) | Cold<br>Added<br>(µL) | Cold<br>Final<br>Conc.<br>(nM) | Triamcinolone<br>Added (µL) | Cytosol<br>(µL) |
| 3   | TB <sup>a</sup>  | 10                              | 7.5                           | 0.25                                       |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 10                              | 15                            | 0.5                                        |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 10                              | 21                            | 0.7                                        |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 10                              | 30                            | 1                                          |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 10                              | 45                            | 1.5                                        |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 100                             | 7.5                           | 2.5                                        |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 100                             | 15                            | 5                                          |                                 |                       |                                | 50                          | 300             |
| 3   | TB               | 100                             | 30                            | 10                                         |                                 |                       |                                | 50                          | 300             |
| 3   | NSB <sup>b</sup> | 10                              | 7.5                           | 0.25                                       | 1                               | 7.5                   | 25                             | 50                          | 300             |
| 3   | NSB              | 10                              | 15                            | 0.5                                        | 1                               | 15                    | 50                             | 50                          | 300             |
| 3   | NSB              | 10                              | 21                            | 0.7                                        | 1                               | 21                    | 70                             | 50                          | 300             |
| 3   | NSB              | 10                              | 30                            | 1                                          | 1                               | 30                    | 100                            | 50                          | 300             |
| 3   | NSB              | 10                              | 45                            | 1.5                                        | 1                               | 45                    | 150                            | 50                          | 300             |
| 3   | NSB              | 100                             | 7.5                           | 2.5                                        | 10                              | 7.5                   | 250                            | 50                          | 300             |
| 3   | NSB              | 100                             | 15                            | 5                                          | 10                              | 15                    | 500                            | 50                          | 300             |
| 3   | NSB              | 100                             | 30                            | 10                                         | 10                              | 30                    | 1000                           | 50                          | 300             |
| 3   | TA <sup>c</sup>  | 10                              | 7.5                           |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 10                              | 15                            |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 10                              | 21                            |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 10                              | 30                            |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 10                              | 45                            |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 100                             | 7.5                           |                                            |                                 |                       |                                |                             |                 |
| 3   | TA               | 100                             | 15                            |                                            |                                 |                       |                                |                             |                 |
| 3   | TA<br>Tatal h    | 100                             | 30                            |                                            |                                 |                       |                                |                             |                 |

a Total binding =  $[^{3}H]$ -R1881 bound to AR

b Non-specific binding =  $[{}^{3}H]$ -R1881 and 100-fold greater non-labeled bound to AR

c Total [<sup>3</sup>H]-R1881 alone for dpm determination at each concentration

First, the necessary volumes of [<sup>3</sup>H]-R1881, cold R1881 and 60 µM triamcinolone were added to every total binding tube and non-specific binding tube. These tubes were placed in While the tubes were drying, aliquots of each concentration of a speed-vac to dry. <sup>3</sup>H]-R1881 were added, in triplicate, to 14 mL scintillation cocktail in a 20 mL scintillation vial to determine total radioligand added. Once cytosol was added, the tubes were incubated at approximately 4°C, with gentle vortexing, for 20 hr 0 min, 20 hr 30 min and 19 hr 30 min for the first, second and third saturation binding experiments, respectively. To separate bound from free R1881, 500 µL of hydroxyapatite (HAP) slurry was added to fresh tubes. A 100 µL aliquot of each total binding and non-specific binding tube was added to the HAP tubes and they were vortexed (5 times with 4-minute intervals). Subsequently, the contents of each tube were washed three times as follows: 2 mL of ice cold TEDG +PMSF buffer was added, vortexed and centrifuged for 3 min at 700 x g. The supernatant decanted and discarded. The HAP pellet remaining in each tube was resuspended in 2 mL absolute ethanol to extract the  $[{}^{3}H]$ -R1881, followed by vortexing, and centrifugation for 10 min at 700 x g. 20 mL scintillation vials were filled with 14 mL scintillation cocktail and the entire supernatant was assessed by scintillation counting. The temperature was maintained at

approximately 4°C throughout the assay prior to extraction with ethanol. This was repeated two more times for a total of three saturation binding runs.

#### Data Analysis

For the Saturation Binding Experiment, total binding and non-specific binding data were modeled via non-linear regression using Graph Pad Prism v. 5 (GraphPad Software, Inc., La Jolla, CA), incorporating automatic outlier elimination according to the method of Motulsky and Brown (2006) implemented by using the ROUT procedure in Prism v. 5 with a Q value of 1.0. Scatchard plots were also generated using Graph Pad Prism v. 5. Receptor binding data plots were corrected for ligand depletion using the method of Swillens (1995). Parameters reported from the Saturation Binding Experiment (K<sub>d</sub> and B<sub>max</sub>), means and standard deviations, were calculated for each run and the means and standard errors were calculated for the composite three runs using Microsoft Excel 2010 (Redmond, WA; version 14.0.6123.5001).

#### Saturation Binding Results

Non-specific binding was only 10.0% of total binding (mean value for all three saturation binding runs). This is within the suggested range of 8.1% - 10.0% and is within historical CeeTox values. The mean dissociation constant (K<sub>d</sub>) for [<sup>3</sup>H]-R1881 was  $0.432 \pm 0.017$  nM. The mean estimated B<sub>max</sub> was  $0.008 \pm 0.0001$  nM ( $2.583 \pm 0.036$  fmol/100µg) for the single batch of prostate cytosol that was prepared. Though the K<sub>d</sub> values are slightly lower than the suggested values in the guideline, they are comparable to CeeTox historical data. Confidence in these numbers is high according to the goodness of fit ( $r^2 = 0.974 - 0.995$ ) and the small variation among runs.

| TABLE A6.Saturation BindiCytosol | ng Experiment o | f R1881 with An | drogen Receptor | r from Rat Prostate   |
|----------------------------------|-----------------|-----------------|-----------------|-----------------------|
| Parameter                        | Run 1           | Run 2           | Run 3           | Runs 1-3 <sup>a</sup> |
| $R^2$ (unweighted)               | 0.992           | 0.947           | 0.969           | 0.947 - 0.992         |
| $B_{max}$ (nM)                   | 0.011           | 0.012           | 0.013           | $0.012 \pm 0.0002$    |
| $B_{max}$ (fmol/100 µg protein)  | 4.526           | 4.679           | 4.768           | $4.657 \pm 0.071$     |
| $K_{d}(nM)$                      | 0.474           | 0.530           | 0.606           | $0.536 \pm 0.038$     |

a The range of  $\mathbb{R}^2$  is reported and the mean  $\pm$  SEM is reported for the other parameters.  $\mathbb{P}^2 = C_{0,0} d_{0,0} d_{0,0} d_{0,0}$ 

 $R^2$  = Goodness of fit for curve calculated for specific binding

Figure A7. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 1 (06-Feb-13).

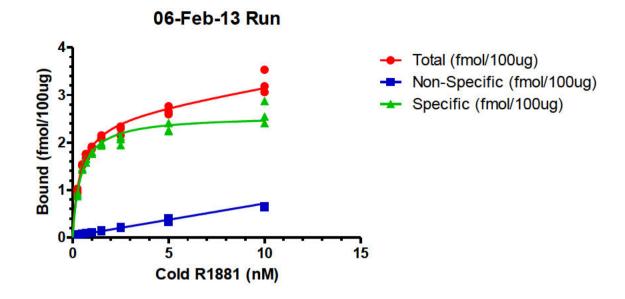
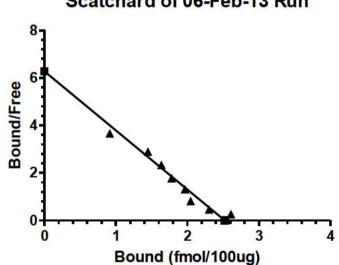




Figure A8. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 1 (06-Feb-13).



Scatchard of 06-Feb-13 Run

Figure A9. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 2 (07-Feb-13).

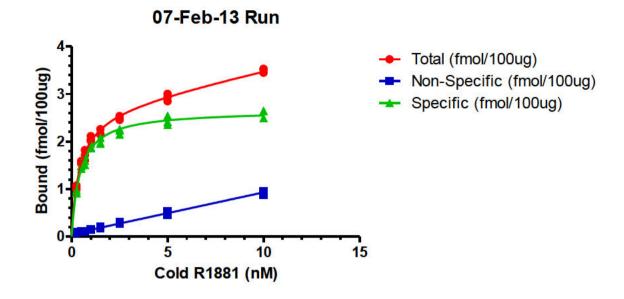



Figure A10. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 2 (07-Feb-13).

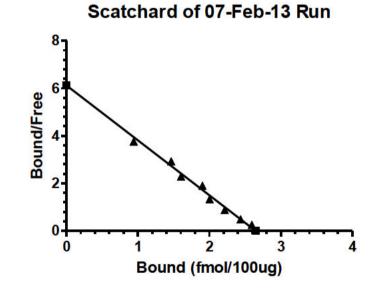



Figure A11. Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor during the Saturation Binding Experiment, Run 3 (08-Feb-13).

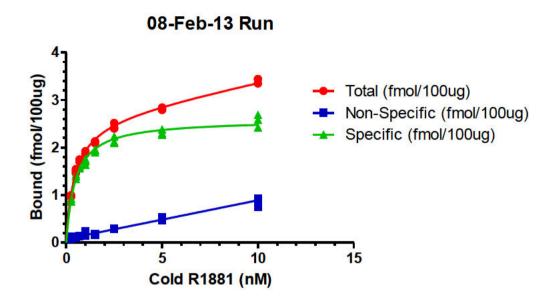
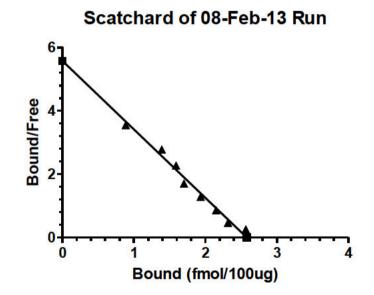




Figure A12. Scatchard Plot of the Binding of [<sup>3</sup>H]-R1881 to the Androgen Receptor, Run 3 (08-Feb-13).



Study Number: 9070-100794ARB

### APPENDIX 3 Deviation Forms

| CeeTox                                                                                                                                                           |                                                                                                                                                                          | on and Investigation                                                                                              | Form #:                                                                                                         | SOP-1003-F-1.2             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
| In vitro models to predict toxi                                                                                                                                  |                                                                                                                                                                          | 9070-100794ARB                                                                                                    |                                                                                                                 |                            |
| SOP Number (if appli                                                                                                                                             |                                                                                                                                                                          | N/A                                                                                                               |                                                                                                                 |                            |
| Equipment Serial Nur<br>(if applicable):                                                                                                                         |                                                                                                                                                                          | N/A                                                                                                               |                                                                                                                 |                            |
| Date of Reporting:                                                                                                                                               | 18-Feb-13                                                                                                                                                                | Reporting Assoc                                                                                                   | iate:                                                                                                           |                            |
| Date of Occurrence:                                                                                                                                              | 11-Feb-13, 14-Feb<br>and 16-Feb-13                                                                                                                                       | -13<br>Associate Involv                                                                                           | ed:                                                                                                             |                            |
| Description of Deviation                                                                                                                                         | on:                                                                                                                                                                      |                                                                                                                   |                                                                                                                 |                            |
| Test materials diluted                                                                                                                                           | in 96-well plate inst                                                                                                                                                    | ead of tubes. Smaller vo                                                                                          | lumes prepared th                                                                                               | nan protocol states.       |
| Signature                                                                                                                                                        | Reporting Assoc                                                                                                                                                          |                                                                                                                   | ate: 1                                                                                                          | 8-Feb-13                   |
|                                                                                                                                                                  | Reporting Assoc                                                                                                                                                          | late                                                                                                              |                                                                                                                 |                            |
| Type of Deviation (de                                                                                                                                            | termined by Study D                                                                                                                                                      | irector/Principal Investig                                                                                        | ator/Managemen                                                                                                  | t):                        |
| SOP Deviation                                                                                                                                                    | Protocol Deviation                                                                                                                                                       |                                                                                                                   | Facility Deviation                                                                                              | on 🗌 No Deviation          |
| SOP Deviation<br>Summary of Deviation<br>Diluted test materials<br>Action Taken and Dete                                                                         | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in                                                                                                      | n GLP Deviation                                                                                                   | Facility Deviation<br>Facility Deviation<br>Facility Deviation<br>Facility Deviation                            | n No Deviation             |
| SOP Deviation<br>Summary of Deviation<br>Diluted test materials<br>Action Taken and Dete<br>None.                                                                | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact                                                                              | n GLP Deviation /PI/Test Facility Managerr stead of tubes because lo                                              | Facility Deviation<br>Facility Deviation<br>Facility Deviation<br>Facility Deviation                            | n No Deviation             |
| SOP Deviation<br>Summary of Deviation<br>Diluted test materials<br>Action Taken and Dete                                                                         | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact                                                                              | n GLP Deviation /PI/Test Facility Managerr stead of tubes because lo                                              | Facility Deviation<br>Facility Deviation<br>Facility Deviation<br>Facility Deviation                            | n No Deviation             |
| SOP Deviation<br>Summary of Deviation<br>Diluted test materials<br>Action Taken and Dete<br>None.                                                                | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact                                                                              | n GLP Deviation /PI/Test Facility Managerr stead of tubes because lo                                              | Facility Deviation<br>Facility Deviation<br>Facility Deviation<br>Facility Deviation                            | n No Deviation             |
| SOP Deviation Summary of Deviation Diluted test materials Action Taken and Dete None. Risk Associated with de None. Signature                                    | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact                                                                              | n GLP Deviation<br>/PI/Test Facility Managerr<br>stead of tubes because lo<br>on Study Data and/or Fa             | Facility Deviation<br>nent/Designee:<br>pwer volumes wer<br>cility Compliance:                                  | n No Deviation             |
| SOP Deviation Summary of Deviation Diluted test materials Action Taken and Dete None. Risk Associated with de None. Signature                                    | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact                                                                              | n GLP Deviation /PI/Test Facility Managem stead of tubes because k on Study Data and/or Fa                        | Facility Deviation<br>nent/Designee:<br>pwer volumes wer<br>cility Compliance:                                  | n No Deviation             |
| SOP Deviation Summary of Deviation Diluted test materials Action Taken and Dete None. Risk Associated with de None. Signature Sp/PL                              | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact<br>eviation:<br>/Management Áckno<br>Quality Assurance f                     | n GLP Deviation /PI/Test Facility Managem stead of tubes because lo on Study Data and/or Fa owledgement Da Review | Facility Deviation nent/Designee: ower volumes wer cility Compliance: nte: 18 Feb nte: 18 Feb nte: 18 Feb       | n No Deviation             |
| SOP Deviation Summary of Deviation Diluted test materials Action Taken and Dete None. Risk Associated with de None. Signature Signature If study specific, spons | Protocol Deviation<br>Investigation by SD,<br>into 96-well plate in<br>ermination of Impact<br>eviation:<br>/Management Áckno<br>Quality Assurance F<br>sor notified on: | n GLP Deviation /PI/Test Facility Managem stead of tubes because lo on Study Data and/or Fa owledgement Da Review | Facility Deviation nent/Designee:  Dower volumes wer  cility Compliance:  nte: 18 Feb  nte: 18 Feb  sty: 18 Feb | n No Deviation e prepared. |

| 1 'AAIAU 🔊                                                                                                                                                       | <b>*</b>                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>.</i> 30                                             | P-1003-  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------|
| In vitro models to predict toxi                                                                                                                                  |                                                                                                                        | nd Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| Study Number (if app                                                                                                                                             | licable):                                                                                                              | 9070-100794ARB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| SOP Number (if appli                                                                                                                                             | cable):                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| Equipment Serial Nur<br>(if applicable):                                                                                                                         | nber                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| Date of Reporting:                                                                                                                                               | 18-Feb-13                                                                                                              | Reporting Assoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |          |
| Date of Occurrence:                                                                                                                                              | 11-Feb-13, 14-Feb-13<br>and 16-Feb-13                                                                                  | Associate Involve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                         |          |
| Description of Deviation                                                                                                                                         | on:                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| Centrifuged tubes for                                                                                                                                            | ~3 min instead of ~10 n                                                                                                | nin, except for the las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t centrifugatior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n (after Ethano                                         | ol adde  |
| Signature                                                                                                                                                        |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ite:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18-Feb-13                                               |          |
|                                                                                                                                                                  | Reporting Associate                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
|                                                                                                                                                                  | Reporting Associate                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |          |
| /                                                                                                                                                                |                                                                                                                        | ne (Drie sie state stie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                       |          |
|                                                                                                                                                                  | termined by Study Direct                                                                                               | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1916<br>                                              |          |
| /<br>Type of Deviation (dev<br>SOP Deviation                                                                                                                     |                                                                                                                        | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 | ator/Manageme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1916<br>                                              | Deviati  |
| SOP Deviation                                                                                                                                                    | termined by Study Direct                                                                                               | GLP Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1916<br>                                              | Deviati  |
| SOP Deviation                                                                                                                                                    | termined by Study Direct                                                                                               | GLP Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviati  |
| SOP Deviation<br>Summary of Deviation<br>10 minutes too long, I                                                                                                  | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed/                           | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviati  |
| SOP Deviation<br>Summary of Deviation<br>10 minutes too long, I<br>Action Taken and Dete                                                                         | termined by Study Direct                                                                                               | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviatio |
| SOP Deviation<br>Summary of Deviation<br>10 minutes too long, I                                                                                                  | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed/                           | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviati  |
| SOP Deviation<br>Summary of Deviation<br>10 minutes too long, I<br>Action Taken and Dete                                                                         | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed, ermination of Impact on S | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviatio |
| SOP Deviation<br>Summary of Deviation<br>10 minutes too long, I<br>Action Taken and Dete<br>None.                                                                | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed, ermination of Impact on S | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviati  |
| SOP Deviation Summary of Deviation 10 minutes too long, I Action Taken and Dete None. Risk Associated with de                                                    | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed, ermination of Impact on S | GLP Deviation<br>iest Facility Managem<br>/resuspended after 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Facility Deviat Pent/Designee: min centrifugat cility Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion 🗌 No                                               | Deviatio |
| SOP Deviation Summary of Deviation 10 minutes too long, I Action Taken and Dete None. Risk Associated with de None. Signature                                    | termined by Study Direct Protocol Deviation Investigation by SD/PI/T HAP more easily washed, ermination of Impact on S | GLP Deviation<br>fest Facility Managem<br>(resuspended after 3<br>Study Data and/or Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Facility Deviat Pent/Designee: min centrifugat cility Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion 🗌 No                                               | Deviati  |
| SOP Deviation Summary of Deviation 10 minutes too long, I Action Taken and Dete None. Risk Associated with de None. Signature                                    | termined by Study Direct                                                                                               | GLP Deviation<br>fest Facility Managem<br>(resuspended after 3<br>Study Data and/or Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | □ Facility Deviat<br>nent/Designee:<br>min centrifugat<br>cility Complianc<br>te: <u>18 Fel</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion 🗌 No                                               | Deviati  |
| SOP Deviation Summary of Deviation 10 minutes too long, 1 Action Taken and Dete None. Risk Associated with de None. Signature                                    | termined by Study Direct                                                                                               | GLP Deviation Set Facility Managem (resuspended after 3 Study Data and/or Fac Da dgement Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Facility Deviat  Facility Deviat  min centrifugat  cility Complianc  te: 18 Fel  te: 18Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion No<br>tion<br>tion<br>tion<br>tion<br>tion<br>tion | Deviati  |
| SOP Deviation Summary of Deviation 10 minutes too long, 1 Action Taken and Dete None. Risk Associated with de None. Signature                                    | termined by Study Direct                                                                                               | GLP Deviation     Gest Facility Managem     resuspended after 3     Gitudy Data and/or Fac     Da     dgement     Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Facility Deviat  Facility Deviat  min centrifugat  cility Complianc  te: 18 Fel  te: 18Fel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tion No                                                 | Deviati  |
| SOP Deviation Summary of Deviation 10 minutes too long, I Action Taken and Dete None. Risk Associated with de None. Signature Signature If study specific, spons | termined by Study Direct                                                                                               | C GLP Deviation Gest Facility Managem resuspended after 3 itudy Data and/or Fac tudy Data and/or Fac Da dgement Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Facility Deviation Facility Deviation Facility Compliance te: 18 Fel te: 18 | tion No<br>tion<br>tion<br>tion<br>tion<br>tion<br>tion | Deviati  |

| In vitro models to predict to               |                                       | d Investigation                                             |           |                  |
|---------------------------------------------|---------------------------------------|-------------------------------------------------------------|-----------|------------------|
| Study Number (if ap                         | plicable):                            | 9070-100794ARB                                              |           |                  |
| SOP Number (if app                          | licable):                             | N/A                                                         |           |                  |
| Equipment Serial Nu<br>(if applicable):     | umber                                 | N/A                                                         |           |                  |
| Date of Reporting:                          | 14-Mar-13                             | Reporting Associate:                                        |           |                  |
| Date of Occurrence:                         | 11-Feb-13, 14-Feb-13<br>and 16-Feb-13 | Associate Involved:                                         |           |                  |
| Description of Devia<br>Triamcinolone aceto |                                       | % ethanol per CeeTox SOP a                                  | and OPPTS | guideline (prote |
| states DMSO)<br>Signature                   |                                       | Date:                                                       | 14-N      | Mar-13           |
| states DMSO)                                |                                       | % ethanol per CeeTox SOP a<br>Study Data and/or Facility Co |           | guideline (proto |
| None.                                       |                                       |                                                             |           |                  |
| Risk Associated with                        | deviation:                            |                                                             |           |                  |
| None.                                       |                                       |                                                             |           |                  |
|                                             |                                       |                                                             |           |                  |
| Signature                                   |                                       | Date:                                                       | 14-1      | Mar-13           |
| -                                           | Pl/Managemént Acknowle                |                                                             |           | Mar-13<br>Mar-13 |
| Signature                                   | Quality Assurance Revie               | dgement Date:                                               |           |                  |
| Signature                                   |                                       | dgement<br>Date:<br>ew<br>March 2013 By:                    |           |                  |

SIGMA-ALDRICH

1070-100 794 ARB

igma-aldrich.com

3050 Spruce Street, Saint Louis, MO 63103, USA Website: www.sigmaaldrich.com Email USA: techsev@sial.com Outside USA: eurtechsev@sial.com

#### Product Name: R1881 - ≥98% (HPLC)

Product Number: Batch Number: Brand: CAS Number: Formula: Formula: Storage Temperature: Quality Release Date: R0908 112M4617V SIGMA 965-93-5 C19H24O2 284.39 g/mol Store at 2 - 8 °C 20 NOV 2012

| Test                                  | Specification          | Result       |  |
|---------------------------------------|------------------------|--------------|--|
| Appearance (Color)                    | Light Yellow to Yellow | faint yellow |  |
| Appearance (Form)                     | Powder                 | Powder       |  |
| Demental Composition<br>C19H24O2      | Pass                   | Pass         |  |
| Purity (HPLC)                         | <u>&gt;</u> 98 %       | 99 %         |  |
| Specific Rotation<br>(C= 0.5,Ethanol) | -62.042.0 °            | -52.9 °      |  |
| Identity                              | Confirmed              | Conforms     |  |

**Certificate of Analysis** 

QC Team Leader Quality Control Natick, Massachusetts US

S. Aldrich warrants, that at the time of the quality release or subsequent retest date this product conformed to the information contained in this publication. The current Specification sheet may be available at Sigma-Aldrich.com. For further inquiries, please contact Technical Service. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoke or packing slip for additional terms and conditions of sale.

Version Number: 1

Page 1 of 1

#### Study Number: 9070-100794ARB

#### SIGMA-ALDRICH

9070-100794ARB

SIGMA

Industriestrasse 25, CH-9471 Buchs (SG), Switzerland Tel: +41 81 755 2511 Fax: +41 81 756 5449

#### **Certificate of Analysis**

Product Name:

TEST

)

Product Number: Product Brand: Molecular Formula: Molecular Mass: CAS Number:

DEXAMETHASONE >= 98 % HPLC, powder D1756 Sigma C22H29FO5 392.46 50-02-2

#### SPECIFICATION

APPEARANCE (COLOR) APPEARANCE (FORM) PURITY (HPLC AREA %) SOLUBILITY (COLOR) SOLUBILITY (TURBIDITY) SOLUBILITY (METHOD) WAVELENGHT (1) (UV) MOLAR ABSORBANCY INDEX (1) EMM = 15.0 TO 15.5 SOLVENT (UV)

WHITE TO OFF-WHITE POWDER ≥98 % COLORLESS CLEAR 25MG/ML OF METHANOL LAMBDA MAX 239 TO 241 NM METHANOL

12/DEC/08

#### LOT 1419230 RESULTS

WHITE POWDER 98.9 % COLORLESS CLEAR (<3.5 NTU) 25MG/ML OF METHANOL LAMBDA MAX 239.2 NM EMM = 15.3 METHANOL

Manager Quality Control

**RECOMMENDED RETEST DATE NOV/13** 

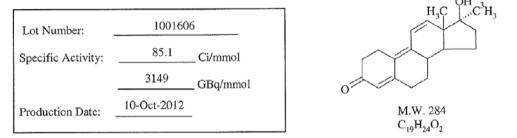
Buchs, Switzerland

QC RELEASE DATE

Sigma-Aldrich warrants, that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for its particular use. See reverse side of invoice for additional terms and conditions of sale. The values given on the 'Certificate of Analysis' are the results determined at the time of analysis.

Sigma-Aldrich

Certificate of Analysis - Product D1756 Lot 1419230


Page 1 of 1



# METHYLTRIENOLONE, [17α-METHYL-<sup>3</sup>H]-(METRIBOLONE, R1881\*)

#### Product Number: NET590

#### LOT SPECIFIC INFORMATION



PACKAGING: 1.0 mCi/ml (37 MBq/ml) in ethanol, under argon, in a vial which protects the contents from UV light. Shipped on dry ice.

**STABILITY AND STORAGE RECOMMENDATIONS:** When methyltrienolone,  $[17\alpha$ -methyl-<sup>3</sup>H]- is stored at -20°C in its original solvent and at its original concentration, the rate of decomposition is initially 2-3% over the first three months from date of purification. Stability is nonlinear and not correlated to isotope half-life. Lot to lot variation may occur.

This product is very light-sensitive. Care should be taken to minimize its exposure to light.

SPECIFIC ACTIVITY RANGE: 70-87 Ci/mmol (2590-3219 GBq/mmol)

**RADIOCHEMICAL PURITY:** This product was initially found to be greater than 97% when determined by the following methods. The rate of decomposition can accelerate. It is advisable to check purity prior to use:

High pressure liquid chromatography on a Zorbax ODS column using the following mobile phase: acetonitrile : water, (4:6)

Thin layer chromatography on silica gel using the following solvent system: toluene : ethyl acetate, (4:1).

**QUALITY CONTROL:** The radiochemical purity of methyltrienolone,  $[17\alpha$ -methyl-<sup>3</sup>H]- is checked at appropriate intervals using the first listed chromatography method. \*Manufactured by PerkinElmer<sup>TM</sup> Life and Analytical Sciences under licensed agreement of Roussel UCLAF.

Manuactured by Ferkinganier – Ene and Anarytean Secretes and a neurosci agreement of reasons of 2211.

HAZARD INFORMATION: WARNING: This product contains a chemical known to the state of California to cause cancer.







NTP Analytical Chemistry Services

3040 Comwallis Road + PC Box 12194 + Research Triangle Park, NC 27709-3194 + USA Telephone 919:541.6730 or 919:541.5975 + Fax 919:485-2650 + www.rtLorg

Analytical Chemistry Services for the NTP NIH Contract No. HHSN273201100003C RTI Project 0212839.200.003.080 ChemTask No. CHEM11786 CAS No. 27503-81-7 This pdf is an exact duplicate of the original approved report.

Program Information Coordinator

# ENSULIZOLE

### CHEMICAL REANALYSIS

September 5, 2012

Prenared by:

69.05-12

VTask Leader

Date

Reshan Fernando, Ph.D. Principal Investigator

Approved by:



Submitted to:

National Institute of Environmental Health Sciences P.O. Box 12233 111 T. W. Alexander Drive Research Triangle Park, NC 27709-2233

Study Number: 9070-100794ARB

Page 74 of 128

## ENSULIZOLE

| CAS No.: 27503-81-7                                                                               | Study Lab: (Investigator): ILS (                                               |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| RTI Chemical ID Code: N60                                                                         | Lot No. (Vendor): 05117JE(Aldrich)                                             |  |
| ChemTask No.: CHEM11786                                                                           | Vendor Purity: 99.9% (by HPLC, Aldrich<br>COA)                                 |  |
| RTI Log Nos. (Amt. Received):<br>Analytical: 082010-C-15 (~50 g)<br>Reference: 082010-C-05 (~5 g) | Receipt Date: Aug 20, 2010 (Bulk receipt and reference)                        |  |
| Program Supported: TOX                                                                            | Receipt Condition: No damage noted                                             |  |
| Analysis Dates: May 11, 15 and 24, 2012                                                           | Submitter: (RTI)                                                               |  |
| Interim Results Date: May 29, 2012                                                                | Shipping Container: NA (in-house transfer)                                     |  |
|                                                                                                   | Storage Conditions:<br>Bulk: Room temperature<br>Reference: Freezer (~ -20 °C) |  |
| STRUCTURE                                                                                         | MOL. WT. MOL. FORMULA                                                          |  |
|                                                                                                   | 274.30 C <sub>13</sub> H <sub>10</sub> N <sub>2</sub> O <sub>3</sub> S         |  |

#### EXECUTIVE SUMMARY

olis

OH

In support of the Toxicity Testing Program, an aliquot of ensulizole was submitted for bulk chemical reanalysis. Chemical purity of the bulk sample was determined relative to a reference standard of the same lot/batch number which had been stored at RTI under freezer conditions. Analytical results obtained by LC chromatographic method indicated that the sample had a percent relative purity of 99.6% when compared to the frozen reference standard. The FTIR spectrum of the bulk sample matched the spectrum of the frozen reference and was consistent with the structure for ensulizole.



**Quality Assurance Statement** 

| <b>Chemical Name:</b> | Ensulizole          |
|-----------------------|---------------------|
| Task Type:            | Chemical Reanalysis |
| Chem Task Number:     | CHEM11786           |

This study/task was audited by the Regulatory and Quality Assurance (RQA) – Quality Assurance Unit and the results of the inspections and audits were reported to the task leader/study director and management as identified below. To the best of our knowledge, the reported results accurately describe the study methods and procedures used, and the reported results accurately reflect the raw data.

| Inspections and Audits                             | Inspection and Audit Date(s) | Date Inspection/Audit Report<br>Sent to Task Leader/<br>Management |
|----------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| Sample Preparation Inspection for<br>HPLC Analysis | 05/15/12                     | 05/22/12                                                           |
| Data & Report Audit                                | 08/24/12 & 08/26/12          | OE/28/12                                                           |

Prepared by:



9-5-12 Date

Reviewed by:

| uslibi |  | 6 |  | - 12 - T |
|--------|--|---|--|----------|

9/5/12 Date

turning knowledge into practice

# TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                                   |
|-----|----------------------------------------------------------------|
| 2.0 | CHEMICAL ANALYSIS                                              |
| 3.0 | CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)          |
| 3.1 | IR Parameters                                                  |
| 3.2 | Results1                                                       |
| 4.0 | DETERMINATION OF PURITY - LIQUID CHROMATOGRAPHY                |
| 4.1 | Preparation of Internal Standard (IS) Solution                 |
| 4.2 | Bulk Sample and Frozen Reference Standard Solution Preparation |
| 4.3 | Analysis                                                       |
| 4.4 | Results                                                        |
| 5.0 | REFERENCE                                                      |
| 6.0 | ACKNOWLEDGMENTS                                                |

# Figures

| Figure 1. | Infrared Spectrum of Ensulizole Frozen Reference (top spectrum) and Bulk Sample<br>(bottom spectrum) |
|-----------|------------------------------------------------------------------------------------------------------|
| Figure 2. | Example Liquid Chromatograms of Ensulizole Reference and Bulk Sample, and a<br>Blank                 |

## ENSULIZOLE

#### 1.0 INTRODUCTION

The objective of this work was to determine the purity and verify the identity of ensulizole to the current studies being conducted at RTI International. To accomplish this objective, a bulk chemical reanalysis was performed. The identity of the chemical was confirmed by FTIR and its purity assessed by LC.

#### 2.0 CHEMICAL ANALYSIS

An aliquot of the bulk sample of ensulizole was received at the analytical laboratory on March 27, 2012 for chemical reanalysis (RTI log 082010-C-15). The aliquot was stored at room temperature. A frozen reference (RTI log 082010-C-05) sample was received at the analytical laboratory on May 10, 2012 and was stored at freezer temperature.

#### 3.0 CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)

#### 3.1 IR Parameters

| System Thermo Nicolet 6700 FTIR |                                              |
|---------------------------------|----------------------------------------------|
| Software                        | Omnic, Ver. 7.3                              |
| Method                          | KBr pellet, scan 4000 - 400 cm <sup>-1</sup> |

#### 3.2 Results

| Fulk Sample<br>Frequency (1/cm) | Frozen Reference Sample<br>Frequency (1/cm) | Assignment                   |
|---------------------------------|---------------------------------------------|------------------------------|
| 3367                            | 3372                                        | N-H stretch                  |
| 3059-2725                       | 3059-2725                                   | O-H, N-H, C-H stretch        |
| 1.583, 1568                     | 1630, 1567                                  | C=C, C=N stretch             |
| 1368                            | 1368                                        | C-N stretch                  |
| 1176                            | 1176                                        | C-C, SO <sub>2</sub> stretch |
| 1026                            | 1028                                        | N-H bend                     |
| 780                             | 777                                         | C-H, N-H bend                |
| 631                             | 630                                         | S-O stretch                  |

-The observed spectrum for the bulk sample matched the spectrum of the frozen reference sample, and is consistent with the structure of ensulizole (as reported in the characterization protocols development task CHEM11291). Figure 1 shows the IR spectra for the bulk and frozen samples.

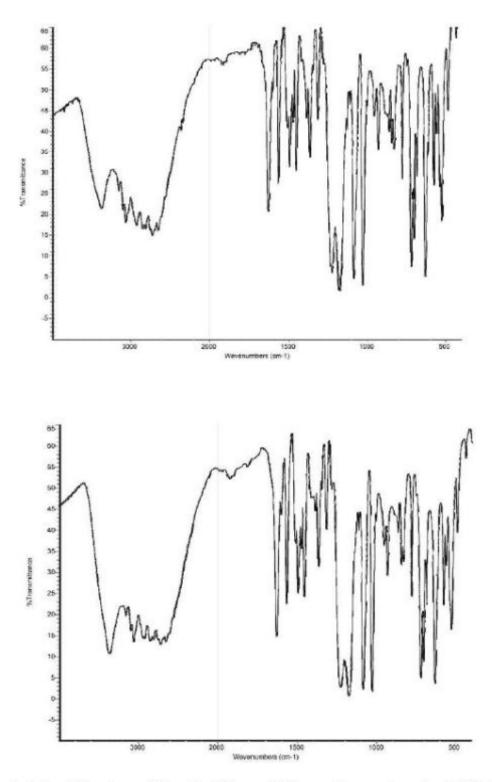



Figure 1: Infrared Spectrum of Ensulizole Frozen Reference (top spectrum) and Bulk Sample (bottom spectrum) 2

#### 4.0 DETERMINATION OF PURITY - LIQUID CHROMATOGRAPHY

This section describes the liquid chromatographic method used to estimate sample purity.

#### 4.1 Preparation of Internal Standard (IS) Solution

A stock solution of IS was prepared by weighing 500 mg of padimate O and transferring it into a 10-mL volumetric flask. The IS was diluted to volume with mobile phase B (methanol with 0.1% formic acid). The flask was mixed by inversion. A working IS solution (WIS) was prepared as a 1 mL to 1 L dilution with mobile phase B and mixing by inversion, yielding 0.050 mg/mL working IS.

#### 4.2 Bulk Sample and Frozen Reference Standard Solution Preparation

Triplicate solutions of the reference standard and bulk samples were prepared by transferring approximately 25 mg of compound to individual 100-mL volumetric flasks and diluting to volume with WIS and mixing by inversion. All samples were transferred to autosampler vials and analyzed by liquid chromatography.

#### 4.3 Analysis

#### LC Parameters

| System                        | Waters Alliance 2695                                                                                                             |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Software                      | Empower 2; Build 2154                                                                                                            |
| Column                        | Waters XBridge C18 3.5 μm, 100 x 2.1 mm, guard column, 5 μm<br>2.1 x 10 mm                                                       |
| Column Temp                   | 40 °C                                                                                                                            |
| Mobile Phases                 | A: 0.1% formic acid in water<br>B: 0.1% formic acid in methanol                                                                  |
| Flow Rate                     | 0.25 mL/min                                                                                                                      |
| Gradient                      | Hold 90 % A for 0.67 min., 90% A to 90% B in 10 min., hold 90%<br>B for 10 min., 90% B to 90% A in 5 min., hold 90% A for 5 min. |
| - Injection Volume<br>Solvent | 2 µL – Mobile Phase B                                                                                                            |
| Retention Time (min)          | Ensulizole – 5.73 min<br>Padimate O (IS) – 16.59 min                                                                             |
| Detector                      | Waters 2996 PDA, 312 nm                                                                                                          |

| Parameter            | Result | Criteria                     | Pass/Fail |
|----------------------|--------|------------------------------|-----------|
| Capacity Factor, k   | 2.8    | $2 \ge k \le 12$             | Pass      |
| Tailing Factor, T    | 1.2    | $0.5 \ge T \le 2.0$          | Pass      |
| Column Efficiency, N | 29,000 | $N \ge 6,000 \text{ plates}$ | Pass      |

The suitability of the system was evaluated, and the results are shown below.

#### 4.4 Results

Calculations based on a major peak comparison technique gave the results shown in the following table.

| RTI Log No. | Chemical                                                                      | RRF*                    | Mean RRF (%RSD) | Percent<br>Relative<br>Purity⁵ |
|-------------|-------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------------|
| 082010-C-15 | Analytical Replicate #1<br>Analytical Replicate #2<br>Analytical Replicate #3 | 3.072<br>3.022<br>3.045 | 3.046 (0.82)    | 99.6                           |
| 082010-C-05 | Reference Replicate #1<br>Reference Replicate #2<br>Reference Replicate #3    | 3.034<br>3.083<br>3.054 | 3.057 (0.81)    |                                |

"RRF = Relative Response Factor; normalized to sample concentration.

<sup>b</sup>Relative Purity = (Mean RRF, bulk/Mean RRF, ref.) × 100.

Based on the chromatographic results, the bulk sample had not significantly changed as compared to the frozen reference, and no significant impurities were observed. Typical chromatograms are shown in Figure 2.

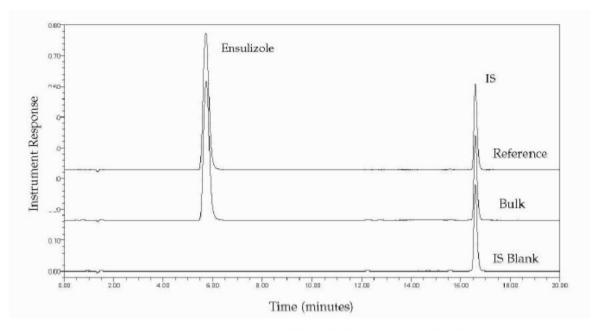



Figure 2: Example Liquid Chromatograms of Ensulizole Reference and Bulk Sample, and a Blank

### 5.0 REFERENCE

RTI International report "Ensulizole, Characterization Protocols Development, (CHEM11291), January 9, 2012.

#### 6.0 ACKNOWLEDGMENTS

Personnel contributing to this task:

5



This PDF File is an Exact Copy of the Report Signature:\_\_\_\_\_\_ Date:\_\_\_2 - 16 - 12

Analytical Chemistry Services for the NTP NIEHS Contract No. HHSN273201100001C MRI Project No.: 110730 NTP ChemTask No.: CHEM10985

# **Chemical Comprehensive Analysis Final Report**

# Avobenzone

**Chemical Comprehensive Analysis of Avobenzone** 

MRI Assignment No.: 2003

February 16, 2012

Prepared by:

Study Director

Reviewed by:

Group Leader

Approved by:

Joseph W. Algaier, Ph.D. Principal Investigator

Submitted to:

National Institute of Environmental Health Sciences 111 T. W. Alexander Drive, MD K2-07 P.O. Box 12233 Research Triangle Park, NC 27709-2233

# **Chemical Comprehensive Analysis of Avobenzone**

# **Chemical Information**

| CAS No.: 70356-09-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lot No.: L802809                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| MRI Assignment No.: 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MRI Assigned Batch No.: 01                                               |
| ChemTask No. CHEM10985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Amount Received: 20 Kg                                                   |
| Program Supported: TOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Receipt Date: 1/5/11                                              |
| Analysis Dates: 2/11/11 to 12/14/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Appearance: Off white to yellowish crystalline                           |
| Interim Result Date(s): 2/25/11, 4/7/11, 5/17/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | powder per CoA; confirmed by visual<br>observation                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supplier: Universal Preserv-A-Chem Inc.                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Supplier Purity: 98.30% per CoA                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Storage conditions (at Analytical Lab):<br>Ambient, protected from light |
| م أ أ م                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mol. Wt. Mol. Formula                                                    |
| H <sub>3</sub> C <sub>0</sub><br>Keto Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |
| $H_3C_0$ $H_3C_0$ $H_3C_0$ $H_3C_0$ $H_3C_0$ $H_3C_0$ $H_3C_0$ $H_3$ $H_3C_0$ $H_3$ $H_3$ $H_3C_0$ $H_3$ $H$ | 310.39 C <sub>20</sub> H <sub>22</sub> O <sub>3</sub>                    |
| м 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |

i

MRIGlobal-NTP Assignment\_2003 doc

# Executive Summary

The purpose of this assignment was to perform a chemical comprehensive analysis for avobenzone, Lot No. L802809, received from Universal Preserv-A-Chem Inc. Based on the results, the identity of the test article was confirmed to be avobenzone, with a purity of approximately 98.5%. Evaluation by gas chromatography with flame ionization detection of samples stored at various temperatures indicated avobenzone is stable when stored for 2 weeks, protected from light, at temperatures up to approximately 60°C. Nuclear magnetic resonance spectroscopic analysis of these samples, as well as samples exposed to light for 1 week, detected some conversion of enol to keto form under elevated temperature and light exposure.

The chemical comprehensive analysis included identity confirmation using infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, residual solvent analysis for volatile content using gas chromatography (GC)/headspace analysis, ultraviolet/visible (UV/Vis) spectroscopy, water content using Karl Fischer titration, elemental analysis, determination of melting point, and log P, differential scanning calorimetry (DSC), and chromatographic profiling using gas chromatography (GC) with flame ionization detection (FID). Additionally, gas chromatography/mass spectrometry (GC/MS) was performed to confirm identity of the test article.

Spectra obtained for the test article using IR and NMR spectroscopy techniques were consistent with reference spectra and the proposed structure for the enol form of the test article. One absorbance maximum was observed using ultraviolet/visible spectroscopy: 358 nm,  $\varepsilon_{max} = 36241 \pm 186(s)$ . Analysis using GC/MS with electron capture ionization provided confirmation of identity based on the molecular ion (310 Da) observed, as well as comparison to a reference spectrum.

Water content determined by Karl Fischer was  $0.223 \pm 0.008(s)$  %. Elemental analysis determined 77.36% carbon, 7.39% hydrogen, and 0.02% nitrogen compared to expected values of 77.39 carbon, 7.15% hydrogen, and no nitrogen. The observed melting point range was 83.0° to 85.5°C (literature values of 83.5°C and 81° to 86°C). The determined log P was 3.10.

Differential scanning calorimetry was performed, and the observed melting point range was consistent with the melting point range from the MSDS. The results indicated a purity of  $98.8 \pm 0.5$ (d) %. Chromatographic profiling, using GC with a DB-5 column and FID, indicated 98.7% purity, with seven reportable impurities totaling 1.26% relative to the total peak area. GC/headspace analysis indicated residual solvent peak responses for methanol and cis-1,2-dichloroethene, but they were not present at levels greater than the Class 2 Mixture A Standard. There were no other Class 1 or Class 2 solvents observed to be present in the test article.

Accelerated stability was performed using GC with FID to evaluate possible degradation of the test article. The test variability limit (TVL), which is statistically determined, established that in order to be statistically significant at the 95% confidence level, the loss or gain under ambient, refrigerated, or elevated storage conditions must be greater than 3.8% relative to the sample under the frozen storage condition. The maximum variance from the frozen storage condition was +0.7%, observed for the sample stored at approximately 60°C. Using the TVL criteria,

MRIGlobal-NTP Assignment\_2003 doc

11

avobenzone is stable when stored for 2 weeks as the bulk chemical, protected from light, at temperatures up to approximately 60°C. An additional evaluation using <sup>1</sup>H-NMR spectroscopy of the accelerated stability samples and stability samples exposed to light exhibited decreased enol/keto ratios of the –OH and –CH<sub>2</sub> functional groups for the samples stored at 60°C, as well as samples exposed to fluorescent or mercury/xenon lighting. This indicates some conversion of the enol to the keto form.

MRIGlobal-NTP Assignment\_2003 doc

# **Quality Assurance Statement**

#### Chemical Comprehensive Analysis of Avobenzone

ChemTask No. CHEM10985 MRI Project No. 110730 MRI Assignment No. 2003

This study was inspected by the Quality Assurance Unit of MRI (QAU) and the findings reported to the Study Director and Management as follows:

| Phase inspected                   | Date<br>inspected | Date reported |
|-----------------------------------|-------------------|---------------|
| Protocol Audit                    | 3/1/11            | 3/1/11        |
| In-life Audit; Stability analysis | 3/1/11            | 3/1/11        |
| Protocol Amendment No. 1 Audit    | 2/8/12            | 2/10/12       |
| Protocol Amendment No. 2 Audit    | 2/8/12            | 2/10/12       |
| Protocol Amendment No. 3 Audit    | 2/8/12            | 2/10/12       |
| Data Audit                        | 2/9/12            | 2/10/12       |
| Draft Final Report Audit          | 2/9/12            | 2/10/12       |

In addition to the study-specific audits/inspections cited above, inspection of applicable facilities and equipment was performed by the QAU and reports were submitted to management as follows:

| Facility/equipment      | Inspection date | Management submitted date |
|-------------------------|-----------------|---------------------------|
| 285N laboratory complex | 7/13/11         | 7/14/11                   |
| GC facility             | 7/14/11         | 7/15/11                   |

#### MIDWEST RESEARCH INSTITUTE



Senior Quality Assurance Officer

Approved:

Director, Quality and Regulatory Systems

February 16, 2012

MRIGlobal-NTP Assignment\_2003 doc

iv

# **Good Laboratory Practice Compliance Statement**

## Chemical Comprehensive Analysis of Avobenzone

ChemTask No. CHEM10985 MRI Project No. 110730 MRI Assignment No. 2003

All work performed at Midwest Research Institute for this assignment was conducted in compliance with the Good Laboratory Practice regulations of the U.S. Food and Drug Administration (21 *CFR* Part 58). Elemental analysis was performed by ICON Developmental Solutions, LLC, in compliance with FDA current Good Laboratory Practices (21 *CFR* Part 58).

v

The raw data and report will be stored in the MRI Archives.



2/16/12 Date:

MRIGlobal-NTP Assignment\_2003 doc



**NTP Analytical Chemistry Services** 

3040 Convestills Road + PO Box 12104 + Research Triangle Park, NC 27709-2194 + USA Telephone 919.541.5730 or 919.541.5975 + Fax 919.485.2650 + www.rti.org

Analytical Chemistry Services for the NTP NIH Contract No. HHSN273201100003C RTI Project 0212839.200.003.082 ChemTask No. CHEM11788 CAS No. 118-56-9

This pdf is an exact duplicate of the original approved report.

Program Information Coordinator

# HOMOSALATE

#### CHEMICAL REANALYSIS

September 5, 2012

Prenared by

[/ Task Leader

Approved by:

Reshah Fernando, Ph.D. Principal Investigator

09 0512 Date

Submitted to:

19-65-12

Date

National Institute of Environmental Health Sciences P.O. Box 12233 111 T. W. Alexander Drive Research Triangle Park, NC 27709-2233

# HOMOSALATE

| CAS No.: 118-56-9                                                | Study Lab: (Investigator): ILS (                        |
|------------------------------------------------------------------|---------------------------------------------------------|
| RTI Chemical ID Code: N67                                        | Lot No. (Vendor): YT0976 (Spectrum)                     |
| ChemTask No.: CHEM11788                                          | Vendor Purity: 99.88% (Spectrum COA)                    |
| RTI Log Nos. (Amt. Received):                                    | Receipt Date: Sep 14, 2010 (Bulk)                       |
| Analytical: 091410-A-14 (~50 g)<br>Reference: 091410-A-05 (~5 g) | Receipt Condition: No damage noted                      |
| Program Supported: TOX                                           | Submitter: (RTI)                                        |
| Analysis Date: May 11, 21-23, 2012                               | Shipping Container: NA (in-house transfer)              |
| Interim Results Date: May 29, 2012                               | Storage Conditions:                                     |
|                                                                  | Bulk: Room temperature<br>Reference: Freezer (~ -20 °C) |

#### STRUCTURE



MOL. WT. MOL. FORMULA 262.34 C<sub>16</sub>H<sub>22</sub>O<sub>3</sub>

#### EXECUTIVE SUMMARY

In support of the Toxicity Testing Program, an aliquot of homosalate was submitted for bulk chemical reanalysis. Chemical purity of the bulk sample was determined relative to a reference standard of the same lot/batch number which had been stored at RTI under freezer conditions. Analytical results obtained by a GC/FID chromatographic method indicated that the sample had a percent relative purity of 99.3% when compared to the frozen reference standard. The FTIR spectrum of the bulk sample matched the spectrum of the frozen reference and was consistent with an identity of homosalate.



**Quality Assurance Statement** 

# Chemical Name: Homosalate

Task Type: Chemical Reanalysis

Chem Task Number: CHEM11788

This study/task was audited by the Regulatory and Quality Assurance (RQA) – Quality Assurance Unit and the results of the inspections and audits were reported to the task leader/study director and management as identified below. To the best of our knowledge, the reported results accurately describe the study methods and procedures used, and the reported results accurately reflect the raw data.

| Inspections and Audits        | Inspection and Audit Date(s) | Date Inspection/Audit Report<br>Sent to Task Leader/<br>Management |
|-------------------------------|------------------------------|--------------------------------------------------------------------|
| Sample Preparation Inspection | 05/21/12                     | 05/21/12                                                           |
| Data & Report Audit           | 08/16/12                     | 08/16/12                                                           |

Prepared by:



Reviewed by:



Quality Assurance Specialist

turning knowledge into practice

9/5/12 Date

9/5/12 Date

# TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                                   |
|-----|----------------------------------------------------------------|
| 2.0 | CHEMICAL ANALYSIS                                              |
| 3.0 | CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)1         |
| 3.1 | IR Parameters                                                  |
| 3.2 | Results                                                        |
| 4.0 | DETERMINATION OF PURITY - GAS CHROMATOGRAPHY                   |
| 4.1 | Preparation of Internal Standard (IS) Solution                 |
| 4.2 | Bulk Sample and Frozen Reference Standard Solution Preparation |
| 4.3 | Analysis                                                       |
| 4.4 | Results                                                        |
| 5.0 | REFERENCES                                                     |
| 6.0 | ACKNOWLEDGMENTS                                                |

# Figures

| 0 | Infrared Spectrum of Homosalate Bulk (top spectrum) and Frozen Reference (bottom spectrum) |
|---|--------------------------------------------------------------------------------------------|
| 0 | Example Gas Chromatograms of Homosalate Reference and Bulk Sample, and a Blank             |

## HOMOSALATE

#### 1.0 INTRODUCTION

The objective of this work was to determine the purity and verify the identity of homosalate in support of studies being conducted at ILS. To accomplish this objective, a chemical reanalysis was performed. The identity of the chemical was confirmed by FTIR and its purity assessed by GC.

#### 2.0 CHEMICAL ANALYSIS

An aliquot of the bulk sample of homosalate was received on March 27, 2012 for chemical reanalysis (RTI log 091410-A-14). The aliquot was stored at room temperature. A frozen reference (RTI log 091410-A-05) sample was received May 10, 2012 and was stored at freezer temperature.

### 3.0 CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)

#### 3.1 IR Parameters

| System   | Thermo Nicolet 6700 FTIR                     |  |
|----------|----------------------------------------------|--|
| Software | Omnic, Ver. 7.3                              |  |
| Method   | NaCl disks, scan 4000 - 400 cm <sup>-1</sup> |  |

#### 3.2 Results

| Bulk Sample<br>Frequency (1/cm) | Frozen Reference Sample<br>Frequency (1/cm) | Assignment       |
|---------------------------------|---------------------------------------------|------------------|
| 3150                            | 3150                                        | O-H stretch      |
| 2953-2869                       | 2953-2869                                   | C-H stretch      |
| 1672                            | 1672                                        | C=C, C=0 stretch |
| 1614                            | 1614                                        | C=C stretch      |
| 1585                            | 1585                                        | C=C stretch      |
| 1089                            | 1089                                        | C-C, C-O stretch |
| 757                             | 757                                         | C-H bend         |

The observed spectrum for the bulk sample matched the spectrum of the frozen reference sample, and is consistent with the structure of homosalate (as reported in the bulk chemical comprehensive task CHEM11090). Figure 1 shows the bulk and frozen reference IR spectra.

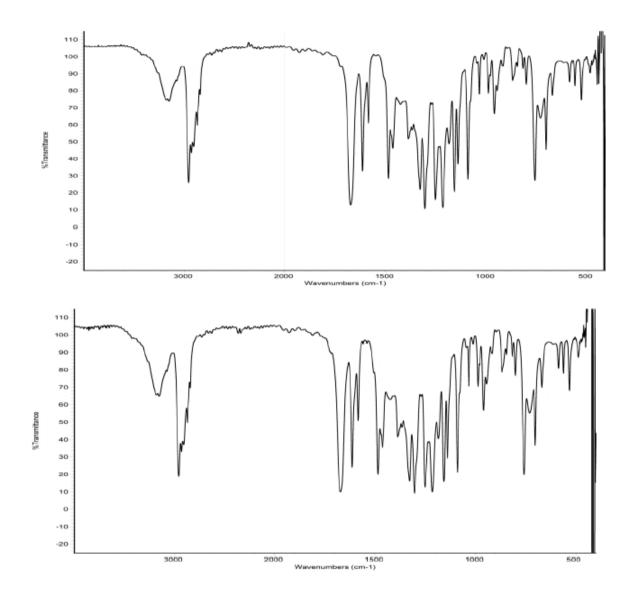



Figure 1: Infrared Spectrum of Homosalate Bulk (top spectrum) and Frozen Reference (bottom spectrum)

2

#### 4.0 DETERMINATION OF PURITY - GAS CHROMATOGRAPHY

This section describes the gas chromatographic method used to estimate sample purity.

#### 4.1 Preparation of Internal Standard (IS) Solution

A solution of IS was prepared by weighing 115.49 mg of octanophenone and transferring it into a 200-mL volumetric flask. The IS was diluted to volume with dichloromethane. The flask was mixed by inversion. The IS solution had a concentration of 0.577 mg/mL.

#### 4.2 Bulk Sample and Frozen Reference Standard Solution Preparation

Triplicate solutions of the reference standard and bulk samples were prepared by transferring approximately 25 mg of compound to individual 25-mL volumetric flasks and diluting to volume with IS solution and mixing by inversion. An aliquot of the bulk and reference solutions were transferred to GC vials for analysis. The samples were analyzed by gas chromatography.

#### 4.3 Analysis

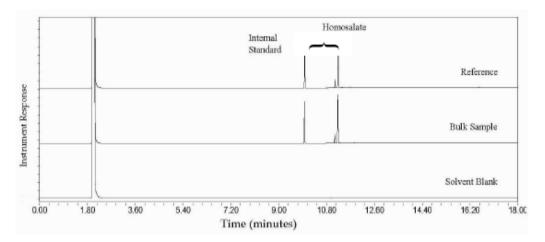
#### GC Parameters

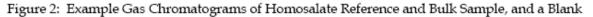
| Instrument               | Agilent 6890N GC                                                                                        |
|--------------------------|---------------------------------------------------------------------------------------------------------|
| Data System              | Empower 2; Build 2154                                                                                   |
| Column                   | Phenomenex ZB-5MS $~(30~m\times 0.25~mm$ ID, 0.5 $\mu m$ film) with 5 m pre-guard                       |
| Carrier Gas              | Helium                                                                                                  |
| Flow Rate                | 1.5 mL/min                                                                                              |
| Oven Temperature         | 70 °C for 1 min., ramp to 270 °C at 20 °C/min with a 7 min hold                                         |
| Retention Times          | Homosalate: ~11.1 min. and 11.2 min (two peaks – cis/trans<br>isomers)<br>Octanophenone (IS): ~9.9 min. |
| Injector Type and Volume | Split (20:1), 1 µL                                                                                      |
| Injector Temperature     | 250 °C                                                                                                  |
| Detector-Temperature     | FID at 290 °C                                                                                           |

| Parameter            | Criteria              | Result    | Pass/Fail |
|----------------------|-----------------------|-----------|-----------|
| Tailing Factor, T    | $0.5 \geq T \leq 2.0$ | 1.0       | Pass      |
| Column Efficiency, N | $\geq$ 250,000 plates | 2,460,486 | Pass      |
| Precision (%RSD)     | ≤5% (n=6)             | 0.2       | Pass      |
| Resolution           | $\geq 40$             | 41        | Pass      |

The suitability of the system was evaluated, and the results are shown below.

#### 4.4 Results


Calculations based on a major peak comparison technique gave the results shown in the following table. Typical chromatograms are shown in Figure 2.


| RTI Log No. | Chemical                                                                      | RRF*                    | Mean RRF<br>(%RSD) | Percent<br>Relative<br>Purity <sup>≽</sup> |
|-------------|-------------------------------------------------------------------------------|-------------------------|--------------------|--------------------------------------------|
| 091410-A-14 | Analytical Replicate #1<br>Analytical Replicate #2<br>Analytical Replicate #3 | 1.443<br>1.412<br>1.388 | 1.414 (2.0)        | 99.3                                       |
| 091410-A-05 | Reference Replicate #1<br>Reference Replicate #2<br>Reference Replicate #3    | 1.430<br>1.430<br>1.413 | 1.424 (0.69)       |                                            |

"RRF = Relative Response Factor; normalized to sample concentration.

<sup>b</sup>Relative Purity = (Mean RRF, bulk/Mean RRF, ref.) × 100.

Based on the chromatographic results, the bulk sample had not significantly changed as compared to the frozen reference, and no significant impurities were observed.





#### 5.0 REFERENCE

RTI International report "Homosalate, Characterization Protocols Development, (CHEM11293), January 6, 2012.

## 6.0 ACKNOWLEDGMENTS

Personnel contributing to this task:



NTP Analytical Chemistry Services

\$040 Comwellis Road + PO Box 12194 + Research Triangle Park, NC 27709-2194 + USA Telephone 919.541.6730 or 919.541.5975 + Fax 910.485.2650 + www.rtl.org

Analytical Chemistry Services for the NTP NIH Contract No. HHSN273201100003C RTI Project 0212839.200.003.081 ChemTask No. CHEM11787 CAS No. 21245-02-3

This pdf is an exact duplicate of the original approved report

Program Information Coordinator

# 2-ETHYLHEXYL-P-DIMETHYL-AMINOBENZOATE (PADIMATE O)

#### CHEMICAL REANALYSIS

September 5, 2012

Prepared by:

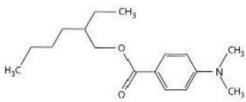
05. Date

Jask Leader

Reshan Fernando, Ph.D. Principal Investigator

Approved by:

120 90 Date


Submitted to:

National Institute of Environmental Health Sciences P.O. Box 12233 111 T. W. Alexander Drive Research Triangle Park, NC 27709-2233

the second

# 2-ETHYLHEXYL-P-DIMETHYL-AMINOBENZOATE (PADIMATE O)

| CAS No.: 21245-02-3                                                   | Study Lab: (Investigator): ILS (                                               |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| RTI Chemical ID Code: L98                                             | Lot No. (Vendor): MKBF0590V (Aldrich)                                          |
| ChemTask No.: CHEM11787                                               | Vendor Purity: 98.3% (Aldrich COA)                                             |
| RTI Log Nos. (Amt. Received):                                         | Receipt Date: Aug 20, 2010 (Bulk)                                              |
| Bulk Analytical: 082010-B-14 (~50 g)<br>Reference: 082010-B-05 (~5 g) | Bulk Receipt Condition: Good, room<br>temperature                              |
| Program Supported: TOX                                                | Submitter: (RTI)                                                               |
| Analysis Dates: May 21-22, 24, 2012                                   | Shipping Container: NA (in-house transfer)                                     |
| Interim Results Date: May 30, 2012                                    | Storage Conditions:<br>Bulk: Room temperature<br>Reference: Freezer (~ -20 °C) |
| STRUCTURE                                                             | MOL. WT. MOL. FORMULA                                                          |
| / CH3                                                                 | 277.40 C <sub>17</sub> H <sub>27</sub> NO <sub>2</sub>                         |



C<sub>12</sub>H<sub>22</sub>NO<sub>2</sub>

#### EXECUTIVE SUMMARY

In support of the Toxicity Testing Program, an aliquot of padimate O was submitted for bulk chemical reanalysis. Chemical purity of the bulk sample was determined relative to a reference standard of the same lot/batch number which had been stored at RTI under freezer conditions. Analytical results obtained by a GC/FID chromatographic method indicated that the sample had a percent relative purity of 98.1% when compared to the frozen reference standard. The FTIR spectrum of the bulk sample matched the spectrum of the frozen reference and was consistent with an identity of padimate O.

#### **Quality Assurance Statement**

**Chemical Name:** 2-Ethylhexyl-p-dimethyl-aminobenzoate (Padimate C)

| Task Type: | Chemical Reanalysis |
|------------|---------------------|
|------------|---------------------|

**RTI Task Number:** 0212839.200.003.055

Chem Task Number: CHEM11787

This study/task was audited by the Regulatory and Quality Assurance (RQA) – Quality Assurance Unit and the results of the inspections and audits were reported to the task leader/study director and management as identified below. To the best of our knowledge, the reported results accurately describe the study methods and procedures used, and the reported results accurately reflect the raw data.

| Inspections and Audits     | Inspection and Audit Date(s) | Date Inspection/Audit Report<br>Sent to Task Leader/<br>Management |
|----------------------------|------------------------------|--------------------------------------------------------------------|
| Sample Analysis Inspection | 05/15/12                     | 05/22/12                                                           |
| Data & Report Audit        | 08/20/12                     | 08/20/12                                                           |

Prepared by:

.



Quality Assurance Specialist

Reviewed by:



Quality Assurance Specialist

turning knowledge into practice

9/5/12

Date

15/12

Study Number: 9070-100794ARB

Page 100 of 128

# TABLE OF CONTENTS

| 1.0 | INTRODUCTION                                                   |
|-----|----------------------------------------------------------------|
| 2.0 | CHEMICAL ANALYSIS                                              |
| 3.0 | CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)1         |
| 3.1 | IR Parameters                                                  |
| 3.2 | Results1                                                       |
| 4.0 | DETERMINATION OF PURITY - GAS CHROMATOGRAPHY                   |
| 4.1 | Preparation of Internal Standard (IS) Solution                 |
| 4.2 | Bulk Sample and Frozen Reference Standard Solution Preparation |
| 4.3 | Analysis                                                       |
| 4.4 | Results                                                        |
| 5.0 | REFERENCES                                                     |
| 6.0 | ACKNOWLEDGMENTS                                                |

# Figures

| Figure 1. | Infrared Spectrum of Padimate O Bulk (top spectrum) and Frozen Reference<br>(bottom spectrum) |
|-----------|-----------------------------------------------------------------------------------------------|
| 0         | Example Gas Chromatograms of Padimate O Reference and Bulk Sample, and an IS Blank            |

## 2-ETHYLHEXYL-P-DIMETHYL-AMINOBENZOATE (PADIMATE O)

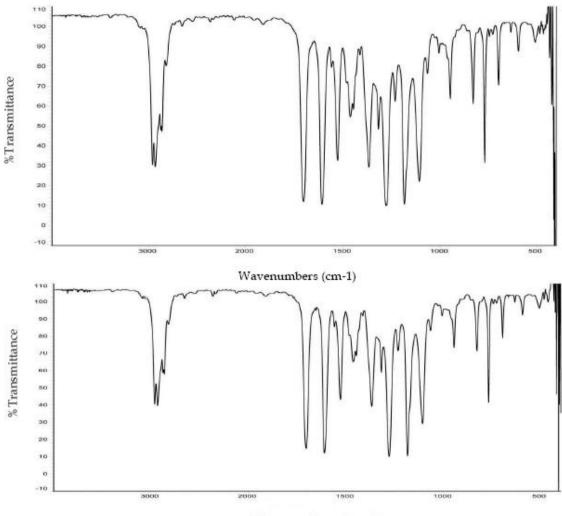
#### 1.0 INTRODUCTION

The objective of this work was to determine the purity and verify the identity of 2-Ethylhexyl-p-dimethyl-aminobenzoate (padimate O) in support of studies being conducted at ILS. To accomplish this objective, a chemical reanalysis was performed. The identity of the chemical was confirmed by FTIR and its purity assessed by GC.

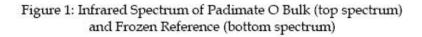
#### 2.0 CHEMICAL ANALYSIS

An aliquot of the bulk sample of padimate O was received on March 27, 2012 for chemical reanalysis (RTI log 082010-B-14). The aliquot was stored at room temperature. A frozen reference (RTI log 082010-B-05) sample was received May 10, 2012 and was stored at freezer temperature.

### 3.0 CONFIRMATION OF IDENTITY - INFRARED SPECTROMETRY (IR)


#### 3.1 IR Parameters

| System   | Thermo Nicolet 6700 FTIR                     |  |
|----------|----------------------------------------------|--|
| Software | Omnic, Ver. 7.3                              |  |
| Method   | NaCl disks, scan 4000 - 400 cm <sup>-1</sup> |  |


#### 3.2 Results

| Bulk Sample<br>Frequency (1/cm) | Frozen Reference Sample<br>Frequency (1/cm) | Assignment                   |
|---------------------------------|---------------------------------------------|------------------------------|
| 2958-2860                       | 2958-2860                                   | C-H Stretch                  |
| 2819                            | 2820                                        | N-CH <sub>3</sub> stretch    |
| 1703                            | 1703                                        | C = O stretch                |
| 1609, 1527                      | 1609, 1527                                  | C=C Stretch                  |
| 1317                            | 1317                                        | C-N (tertiary amine stretch) |
| 1183                            | 1184                                        | C = O Stretch                |
| 1107                            | 1107                                        | C-O-C Stretch                |

The observed spectrum for the bulk sample matched the spectrum of the frozen reference sample, and is consistent with the structure of padimate O (as reported in the bulk chemical comprehensive task CHEM11089). Figure 1 shows the bulk and frozen reference IR spectra.



Wavenumbers (cm-1)



#### 4.0 DETERMINATION OF PURITY - GAS CHROMATOGRAPHY

This section describes the gas chromatographic method used to estimate sample purity.

#### 4.1 Preparation of Internal Standard (IS) Solution

A solution of IS was prepared by weighing 103.4 mg of octanophenone and transferring it into a 200-mL volumetric flask. The IS was diluted to volume with dichloromethane. The flask was mixed by inversion. The IS solution had a concentration of 0.517 mg/mL.

#### 4.2 Bulk Sample and Frozen Reference Standard Solution Preparation

Triplicate solutions of the reference standard and bulk samples were prepared by transferring approximately 25 mg of compound to individual 25-mL volumetric flasks and diluting to volume with IS solution and mixing by inversion. An aliquot of the bulk and reference solutions were transferred to GC vials for analysis. The samples and an IS blank was analyzed by gas chromatography.

#### 4.3 Analysis

#### GC Parameters

| Instrument            | Agilent 6890N GC                                                           |  |
|-----------------------|----------------------------------------------------------------------------|--|
| Data System           | Empower 2; Build 2154                                                      |  |
| · · · · · ·           | A                                                                          |  |
| Column                | Phenomenex ZB-5MS (30 m x 0.25 mm ID, 0.5 $\mu$ m film) with 5 m pre-guard |  |
| Carrier Gas           | Helium                                                                     |  |
| Flow Rate             | 1.5 mL/min                                                                 |  |
| Oven Temperature      | 70 °C for 1 min., ramp to 270°C at 20 °C/min with a 7 min hold;            |  |
| Retention Times       | Padimate O: ~13.6 min. ; Octanophenone (IS): ~9.9 min.                     |  |
| Injector Type (ratio) | Split (20:1); 1 µL                                                         |  |
| Injector Temperature  | 250 °C                                                                     |  |
| Detector-Temperature  | FID at 290 °C                                                              |  |

|                      |                     |           | -         |
|----------------------|---------------------|-----------|-----------|
| Parameter            | Criteria            | Result    | Pass/Fail |
| Tailing Factor, T    | $0.5 \le T \le 2.0$ | 0.79      | Pass      |
| Column Efficiency, N | ≥250,000 plates     | 1,070,819 | Pass      |
| Precision (%RSD)     | ≤5% (n=6)           | 0.6%      | Pass      |
| Resolution           | ≥ 40                | 91.5      | Pass      |

The suitability of the system was evaluated, and the results are shown below.

#### 4.4 Results

Calculations based on a major peak comparison technique gave the results shown in the following table. Typical chromatograms are shown in Figure 2.

| RTI Log No. | Chemical                                                                      | RRF'                    | Mean RRF (%RSD) | Percent<br>Relative<br>Purity <sup>®</sup> |
|-------------|-------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------------------------|
| 082010-B-14 | Analytical Replicate #1<br>Analytical Replicate #2<br>Analytical Replicate #3 | 1.637<br>1.647<br>1.637 | 1.640 (0.4)     | 98.1                                       |
| 082010-B-05 | Reference Replicate #1<br>Reference Replicate #2<br>Reference Replicate #3    | 1.661<br>1.645<br>1.711 | 1.672 (2.1)     |                                            |

<sup>a</sup> RRF = Relative Response Factor; normalized to sample concentration.

<sup>b</sup>Relative Purity = (Mean RRF, bulk/Mean RRF, ref.) × 100.

Based on the chromatographic results, the bulk sample had not significantly changed as compared to the frozen reference, and no significant impurities were observed.

4

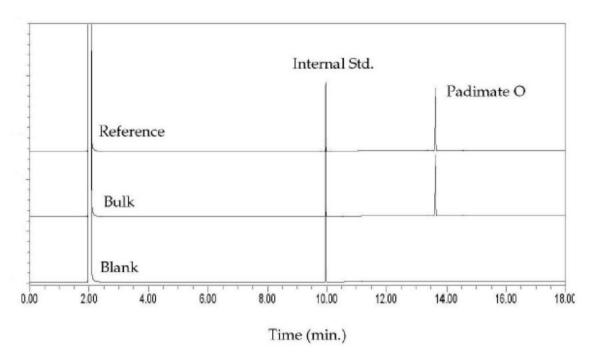



Figure 2: Example Gas Chromatograms of Padimate O Reference and Bulk Sample, and an IS Blank

## 5.0 REFERENCE

RTI International report "2-Ethylhexyl-p-dimethyl-aminobenzoate (Padimate O), Characterization Protocols Development, (CHEM11292), January 6, 2012.

#### 6.0 ACKNOWLEDGMENTS

Personnel contributing to this task:

# APPENDIX 5 Protocol and Protocol Amendment



PROTOCOL

## Androgen Receptor Binding (Rat Prostate Cytosol)

Data Requirements: OPPTS 890.1150

Study Number: 9070-100794ARB

Sponsor: National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, NC 27709 USA

> Test Facility: CeeTox 4717 Campus Drive Kalamazoo, MI 49008

> > Page 1 of 19

# CeeTox

#### **TEST PROTOCOL**

| Study Sponsor:       NIEHS/NTP (         Address:       P.O. Box 12233         Research Triangle Park, NC       Phone:         E-mail:       Phone:         Study Monitor:       Phone:         CoStudy Monitor:       N/A         Sponsor Protocol/Project No: N/A       Phone: N/A         Test Substance Name(s):       2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)         Purity:       99.6% |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Research Triangle Park, NC       Phone:         E-mail:       Phone:         Study Monitor:       Phone:         CoStudy Monitor: N/A       Phone: N/A         Sponsor Protocol/Project No: N/A       Phone: N/A         Test Substance Name(s):       2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)                                                                                                 |  |  |  |  |
| E-mail:         Study Monitor:         CoStudy Monitor:         N/A         Sponsor Protocol/Project No:         N/A         Test Substance Name(s):         2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)                                                                                                                                                                                           |  |  |  |  |
| Study Monitor:     Phone:       CoStudy Monitor: N/A     Phone: N/A       Sponsor Protocol/Project No: N/A     Phone: N/A       Test Substance Name(s):     2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)                                                                                                                                                                                            |  |  |  |  |
| Sponsor Protocol/Project No: N/A Test Substance Name(s): 2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Test Substance Name(s): 2-Phenyl-5-benzimidazolesulfonic Acid (Ensulizole)                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Purity: 99.6%                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Batch or Lot#: 05117JE                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Substance Name(s): Butyl-methoxydibenzoylmethane (Avobenzone)                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Purity: 98.5%                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Batch or Lot#: L802809                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Substance Name(s): 3, 3, 5-Trimethlycyclohexyl Salicylate (Homosalate)                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Purity: 99.3%                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Batch or Lot#: YT0976                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Test Substance Name(s): 2-Ethylhexyl-P-Dimethyl-Aminobenzoate (Padimate-O)                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Purity: 98.1%                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Batch or Lot#: MKBF0590V                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| *Proposed Experimental Start Date: January 23, 2013 (date subject to change; actual experimental start date to be provided in final report)                                                                                                                                                                                                                                                               |  |  |  |  |
| *Proposed Experimental Termination Date: February 22, 2013 (date subject to change; actual experimental termination date to be provided in final report)                                                                                                                                                                                                                                                  |  |  |  |  |

Page 2 of 19

## CeeTox

Sponsor National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, NC 27709

Contract Office Technical Representative National Toxicology Program, National Institutes of Environmental Health

National Toxicology Program (NTP) Investigator Telephone No.: Facsimile No.: E-mail:

Study Monitor

Integrated Laboratory Systems, Inc. Telephone No.: Facsimile No.: E-mail:

Project Identification ILS Project No.: N135 Study No.: 007 Human and Health Science Number: NIEHS contract number:

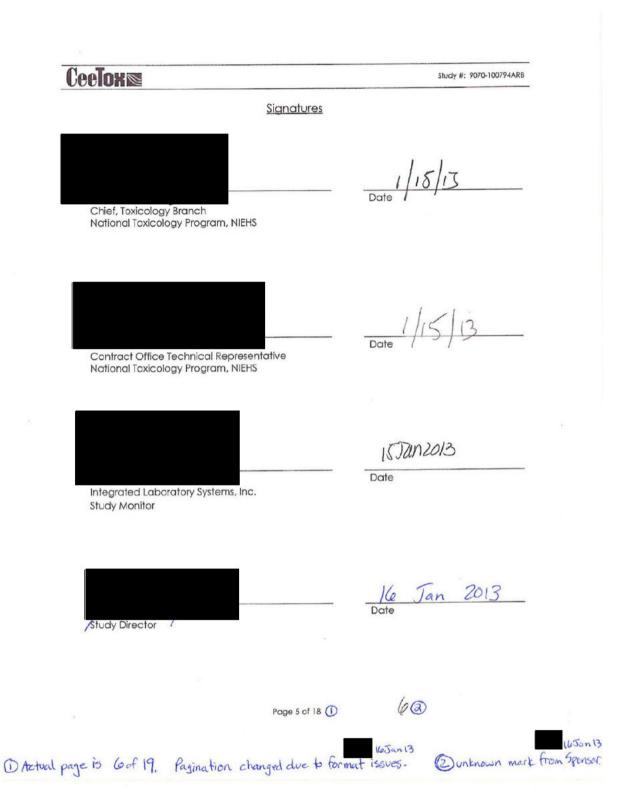
HHSN273200900005C N01ES00005

Page 3 of 19

# CeeTox 💌

#### Table of Contents

| Sign                                        | atures                                                                                                                                                                                                                                                                                                                                                                                          | .6                                     |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1.                                          | Title of Study                                                                                                                                                                                                                                                                                                                                                                                  | .7                                     |
| 2.                                          | Purpose of Study                                                                                                                                                                                                                                                                                                                                                                                | .7                                     |
| 3.                                          | Compliance Statement                                                                                                                                                                                                                                                                                                                                                                            | .7                                     |
| 4.                                          | Quality Assurance                                                                                                                                                                                                                                                                                                                                                                               | .7                                     |
| 5.                                          | Regulatory Citations                                                                                                                                                                                                                                                                                                                                                                            | .7                                     |
| 6.                                          | Test Facility                                                                                                                                                                                                                                                                                                                                                                                   | .7                                     |
| 7.                                          | Experimental Design                                                                                                                                                                                                                                                                                                                                                                             | .7                                     |
| 8.                                          | Justification of the Test System                                                                                                                                                                                                                                                                                                                                                                | .8                                     |
| 9.                                          | Identification of the Test System                                                                                                                                                                                                                                                                                                                                                               | .8                                     |
| 10.                                         | Test & Control Substance(s)                                                                                                                                                                                                                                                                                                                                                                     | .8                                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
| 10                                          | .1 Test Substance                                                                                                                                                                                                                                                                                                                                                                               | .8                                     |
|                                             | 1.1 Test Substance                                                                                                                                                                                                                                                                                                                                                                              |                                        |
| 10                                          |                                                                                                                                                                                                                                                                                                                                                                                                 | LO                                     |
| 10                                          | .2 Preparation of Test Substance                                                                                                                                                                                                                                                                                                                                                                | L0<br>L0                               |
| 10<br>10                                    | 0.2 Preparation of Test Substance                                                                                                                                                                                                                                                                                                                                                               | LO<br>LO                               |
| 10<br>10<br>11.                             | 2 Preparation of Test Substance                                                                                                                                                                                                                                                                                                                                                                 | LO<br>LO<br>L2                         |
| 10<br>10<br>11.<br>12.                      | 2 Preparation of Test Substance                                                                                                                                                                                                                                                                                                                                                                 | LO<br>LO<br>L2<br>L4                   |
| 10<br>10<br>11.<br>12.<br>13.               | 9.2       Preparation of Test Substance       1         9.3       Reference Substances       1         9.4       Stock Solution Preparation       1         9.5       Competitive Radioligand Binding Assay       1         9.6       Solubility/Precipitation Assay       1                                                                                                                    | 10<br>10<br>12<br>14                   |
| 10<br>11.<br>12.<br>13.<br>14.              | .2       Preparation of Test Substance       1         .3       Reference Substances       1         .3       Stock Solution Preparation       1         Competitive Radioligand Binding Assay       1         Solubility/Precipitation Assay       1         Competitive Binding Data Analyses       1                                                                                         | LO<br>LO<br>L2<br>L4<br>L6             |
| 10<br>10<br>11.<br>12.<br>13.<br>14.<br>15. | 9.2       Preparation of Test Substance       1         9.3       Reference Substances       1         9.4       Stock Solution Preparation       1         9.5       Competitive Radioligand Binding Assay       1         9.6       Solubility/Precipitation Assay       1         9.7       Competitive Binding Data Analyses       1         9.8       Proposed Statistical Methods       1 | LO<br>LO<br>L2<br>L4<br>L6<br>L6<br>L6 |


Page 4 of 19

# CeeTox **≥**

| 19. | Data Retention and Archiving | 18 |
|-----|------------------------------|----|
| 20. | Test Substance Disposition   | 19 |

Page 5 of 19

Study #: 9070-100794ARB



#### 1. Title of Study

Androgen Receptor Binding (Rat Prostate Cytosol)

#### 2. Purpose of Study

The objective of this study is to evaluate four test substances for the ability to compete with  $[^{3}H]$  ligand for binding androgen receptors (ARs) in rat ventral prostate tissue homogenate. The endpoint is the decays per minute (DPM) of the radioligand.

The results of this screen are intended to be used in conjunction with results from other Tier 1 in vitro and in vivo screening assays (OCSPP 890 test guideline series) that constitute the full screening battery under the Endocrine Disruptor Screening Program (EDSP). Results of the Tier 1 screening battery, along with other scientifically relevant information, are to be used in a weight-of-evidence assessment leading to the determination of a substance's potential to interact with the endocrine system. The Tier 1 battery is intended for screening purposes only and should not be used for endocrine classification or risk assessment.

#### 3. Compliance Statement

This study will be conducted in compliance with the U.S. Environmental Protection Agency Good Laboratory Practice regulations Title 40, Part 160 with the exception of section 160.113. Dose concentrations of test substance and control substances will not be verified using analytical methods.

#### 4. Quality Assurance

This study will be subjected to periodic inspections. The data and the draft final report will be reviewed by the Quality Assurance Unit of CeeTox in accordance with CeeTox standard operating procedures (SOPs).

#### 5. Regulatory Citations

Endocrine Disruptor Screening Program Test Guidelines. *OPPTS 890.1150: Androgen Receptor Binding (Rat Prostate Cytosol).* EPA 640-C-09-003. October, 2009.

#### 6. Test Facility

CeeTox, Inc. 4717 Campus Drive Kalamazoo, MI 49008 USA

#### 7. Experimental Design

The androgen receptor binding assay is to be used in conjunction with other guidelines in the OPPTS 890 series to identify substances that have the potential to interact with the estrogen, androgen, or thyroid hormone systems. This assay is intended to identify the ability of test compounds to interact with the androgen receptors (ARs) isolated from

Page 7 of 19

### **CeeTox ≥**

Sprague-Dawley rat prostates. In this assay, the test materials and the controls are incubated with rat prostate cytosol (containing the ARs) and radiolabeled R1881 (competitor) for approximately 16-20 hours at approximately 4°C. The amount of bound radiolabeled R1881 is assessed using a scintillation counter to determine the decays per minute (DPM), and specific binding is then determined. A complete concentration response curves for the positive control R1881, the weak positive control (wPC) dexamethasone, and if applicable, the test materials, will be generated each time the binding assay is performed.

#### 8. Justification of the Test System

As per the guideline (OPPTS 890.1150) prostate glands from castrated Sprague-Dawley male rats (60 to 90 days of age at time of kill) will be used to prepare the cytosol. The cytosol will be prepared and then deemed acceptable, per EPA guideline and CeeTox SOP for use in this study. Bias is not a factor in this test system. The test system (cytosol) will be identified by the isolation date. Cytosol preparation and saturation binding data will be included in the appendices of the final report.

#### 9. Identification of the Test System

Prostate glands from castrated Sprague-Dawley male rats will be used to prepare the cytosol. The prostate glands will be purchased from an outside vendor. The cytosol will be prepared, and deemed acceptable, per EPA guideline and CeeTox SOP for use in this study. The test system (cytosol) will be identified by the isolation date. Cytosol preparation information, saturation binding data and any other information deemed necessary will be included in the appendices of the final report.

#### 10. Test & Control Substance(s)

#### 10.1 Test Substance

A certificate of analysis for the test substances will be provided by the sponsor and will be stored in the study data and appended to the study report. Confirmation of the identity of the test substance, characterization and stability will be verified by the sponsor or sponsor's designee. Test substance will be either returned to the Sponsor or destroyed following finalization of the study report.

| Test Substance: | 2-Phenyl-5-benzimidazolesulfonic acid (Ensulizole) |
|-----------------|----------------------------------------------------|
| CAS No.         | 27503-81-7                                         |
| Source:         | Sigma-Aldrich                                      |
| Lot/Batch No.:  | 05117JE                                            |
| Formula:        | C13H10N2O3S                                        |

Page 8 of 19

| Description:                                                                        | White powder                                                                                                                                                                               |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Purity:                                                                             | 99.6%                                                                                                                                                                                      |
| Test Substance:                                                                     | Butyl-methoxydibenzoylmethane (Avobenzone)                                                                                                                                                 |
| CAS No.                                                                             | 70356-09-1                                                                                                                                                                                 |
| Source:                                                                             | Universal Preserv-A-Chem Inc.                                                                                                                                                              |
| Lot/Batch No.:                                                                      | L802809                                                                                                                                                                                    |
| Formula:                                                                            | $C_{20}H_{22}O_3$                                                                                                                                                                          |
| Description:                                                                        | Off White to Yellowish Crystalline Powder                                                                                                                                                  |
| Purity:                                                                             | ~98.5%                                                                                                                                                                                     |
| Test Substance:                                                                     | 3, 3, 5-Trimethlycyclohexyl Salicylate (Homosalate)                                                                                                                                        |
|                                                                                     |                                                                                                                                                                                            |
| CAS No.                                                                             | 118-56-9                                                                                                                                                                                   |
| CAS No.<br>Source:                                                                  | 118-56-9<br>Spectrum Chemical Mfg. Corp                                                                                                                                                    |
|                                                                                     |                                                                                                                                                                                            |
| Source:                                                                             | Spectrum Chemical Mfg. Corp                                                                                                                                                                |
| Source:<br>Lot/Batch No.:                                                           | Spectrum Chemical Mfg. Corp<br>YT0976                                                                                                                                                      |
| Source:<br>Lot/Batch No.:<br>Formula:                                               | Spectrum Chemical Mfg. Corp<br>YT0976<br>C <sub>16</sub> H <sub>22</sub> O <sub>3</sub>                                                                                                    |
| Source:<br>Lot/Batch No.:<br>Formula:<br>Description:                               | Spectrum Chemical Mfg. Corp<br>YT0976<br>C <sub>16</sub> H <sub>22</sub> O <sub>3</sub><br>Colorless to light yellow liquid                                                                |
| Source:<br>Lot/Batch No.:<br>Formula:<br>Description:<br>Purity:                    | Spectrum Chemical Mfg. Corp<br>YT0976<br>C <sub>16</sub> H <sub>22</sub> O <sub>3</sub><br>Colorless to light yellow liquid<br>99.3%                                                       |
| Source:<br>Lot/Batch No.:<br>Formula:<br>Description:<br>Purity:<br>Test Substance: | Spectrum Chemical Mfg. Corp<br>YT0976<br>C <sub>16</sub> H <sub>22</sub> O <sub>3</sub><br>Colorless to light yellow liquid<br>99.3%<br>2-Ethylhexyl-p-dimethyl-aminobenzoate (Padimate O) |

Page 9 of 19

Study #: 9070-100794ARB

### CeeTox 💌

Formula:(CH3)2NC6H4CO2CH2CH(C2H5)(CH2)3CH3Description:Colorless liquidPurity:98.1%

#### 10.2 Preparation of Test Substance

The stock test substances (approximately 100 mM, depending on solubility or other factors) will be formulated in dimethyl sulfoxide (DMSO) or appropriate solvent. Fresh 30X dilutions of the stock solution will be prepared in Low-Salt TEDG (Tris, EDTA, DTT, Glycerol) Buffer on the day of use such that the target concentration of test substance can be achieved by the addition of approximately 10  $\mu$ L of the dilution to an approximately 300  $\mu$ L total assay volume. Dose concentrations of test and control substances will not be verified using analytical methods.

#### Serial Dilutions of Test Substances

Serial dilutions of test substances will be prepared in Low-Salt TEDG assay buffer, to yield the final concentrations indicated in Table 2, unless solubility limits the top concentration tested.

| Tube # | Volume of stock to<br>add for diluted<br>concentration | Volume of TEDG<br>Assay Buffer | Total volume of<br>diluted test<br>substance | Diluted test<br>substance<br>concentration | *Final test substance<br>concentration in AR<br>assay tube |
|--------|--------------------------------------------------------|--------------------------------|----------------------------------------------|--------------------------------------------|------------------------------------------------------------|
| TS1    | Use 300 µl of stock<br>test substance (100<br>mM)      | 700 µl                         | 1 ml                                         | 3 x 10 <sup>-2</sup> M                     | 1 × 10 <sup>-3</sup> M                                     |
| TS2    | Use 100 µl of dilution<br>TS1 (50 mM)                  | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-3</sup> M                     | 1 × 10 <sup>-4</sup> M                                     |
| TS3    | Use 100 µl of dilution<br>TS2 (5 mM)                   | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-4</sup> M                     | 1 x 10 <sup>-5</sup> M                                     |
| TS4    | Use 100 µl of dilution<br>TS3 (500 µM)                 | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-5</sup> M                     | 1 x 10 <sup>-6</sup> M                                     |
| TS5    | Use 100 µl of dilution<br>TS4 (50 µM)                  | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-6</sup> M                     | 1 x 10 <sup>-7</sup> M                                     |
| TS6    | Use 100 µl of dilution<br>TS5 (5 µM)                   | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-7</sup> M                     | 1 x 10 <sup>-8</sup> M                                     |
| TS7    | Use 100 µl of dilution<br>TS6 (500 nM)                 | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-8</sup> M                     | 1 x 10 <sup>-9</sup> M                                     |
| TS8    | Use 100 µl of dilution<br>TS7 (50 nM)                  | 900 µl                         | 1 ml                                         | 3 x 10 <sup>-9</sup> M                     | 1 × 10 <sup>-10</sup> M                                    |

#### Table 1. Test Substance Dilution Procedure

\*Final concentration of test substance in assay tube when 10  $\mu$ l of diluted concentration is used in a total volume of 300  $\mu$ l.

#### 10.3 Reference Substances

When testing substances for their ability to bind to the androgen receptor (AR), a solvent control, positive control (standards) and weak positive control will be included in each experiment. One set of standards is needed in each run on a given day.

Page 10 of 19

A standard curve using R1881 (CAS 965-93-5; positive control) will be included to allow for an assessment of variability in the conduct of the experiment across time. The concentration range for R1881 will be  $1 \times 10^{-11}$  to  $1 \times 10^{-6}$  M. The supplier, catalog number, lot number and purity will be included in the final report.

| Tube # | Volume of stock to<br>add for diluted<br>concentration | Volume of<br>solvent to<br>add | Total volume of<br>R1881 | Diluted R1881 concentration | Final R1881<br>concentration in AR<br>assay tube |
|--------|--------------------------------------------------------|--------------------------------|--------------------------|-----------------------------|--------------------------------------------------|
| N/A    | Use 100 µl of stock<br>R1881 (10 mM)                   | 900 µl                         | 1 ml                     | 1 x 10 <sup>-3</sup> M      | N/A                                              |
| NSB    | Use 30 µl of stock<br>R1881 (1 mM)                     | 970 µl                         | 1 ml                     | 3 x 10 <sup>-5</sup> M      | 1 x 10 <sup>-6</sup>                             |
| S2     | Use 100 µl of dilution<br>NSB (30 µM)                  | 900 µl                         | 1 ml                     | 3 x 10 <sup>-6</sup> M      | 1 x 10 <sup>-7</sup>                             |
| \$3    | Use 100 µl of dilution<br>S2 (3 µM)                    | 900 µl                         | 1 ml                     | 3 x 10 <sup>-7</sup> M      | 1 × 10 <sup>-8</sup>                             |
| S4     | Use 100 µl of dilution<br>S3 (300 nM)                  | 900 µl                         | 1 ml                     | 3 x 10 <sup>-8</sup> M      | 1 x 10 <sup>-9</sup>                             |
| S5     | Use 100 µl of dilution<br>S4 (30 nM)                   | 900 µl                         | 1 ml                     | 3 x 10 <sup>-9</sup> M      | 1 x 10 <sup>-10</sup>                            |
| S6     | Use 100 µl of dilution<br>S5 (3 nM)                    | 900 µl                         | 1 ml                     | 3 x 10 <sup>-10</sup> M     | 1 x 10 <sup>-11</sup>                            |

Table 2. Example of Dilution Procedure for Reference Standard R1881

The weak positive substance (dexamethasone; CAS 50-02-2) will be included to demonstrate the sensitivity of each experiment and to allow an assessment of variability of the conduct of the experiment across time. The concentration range for dexamethasone will be  $1 \times 10^{-10}$  to  $1 \times 10^{-3}$  M. The supplier, catalog number, lot number and purity will be included in the final report.

| Tube # | Volume of stock to<br>add for diluted<br>concentration | Volume of<br>solvent to<br>add | Total volume of<br>diluted<br>dexamethasone | Diluted<br>dexamethasone<br>concentration | Final dexamethasone<br>concentration in AR<br>assay tube |
|--------|--------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------------|----------------------------------------------------------|
| wPC1   | Use 300 µl of stock<br>wPC (100 mM)                    | 700 µl                         | 1 ml                                        | 3 x 10 <sup>-2</sup> M                    | 1 x 10 <sup>-3</sup> M                                   |
| wPC2   | Use 100 µl of dilution<br>wPC1 (50 mM)                 | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-3</sup> M                    | 1 x 10 <sup>-4</sup> M                                   |
| wPC3   | Use 100 µl of dilution<br>wPC 2 (5 mM)                 | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-4</sup> M                    | 1 x 10 <sup>-5</sup> M                                   |
| wPC4   | Use 100 µl of dilution<br>wPC3 (500 µM)                | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-5</sup> M                    | 1 x 10 <sup>-6</sup> M                                   |
| wPC5   | Use 100 µl of dilution<br>wPC4 (50 µM)                 | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-6</sup> M                    | 1 x 10 <sup>-7</sup> M                                   |
| wPC6   | Use 100 µl of dilution<br>wPC5 (5 µM)                  | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-7</sup> M                    | 1 x 10 <sup>-8</sup> M                                   |
| wPC7   | Use 100 µl of dilution<br>wPC6 (500 nM)                | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-8</sup> M                    | 1 x 10 <sup>-9</sup> M                                   |
| wPC8   | Use 100 µl of dilution<br>TS7 (50 nM)                  | 900 µl                         | 1 ml                                        | 3 x 10 <sup>-9</sup> M                    | 1 x 10 <sup>-10</sup> M                                  |

Table 3. Example of Dilution Procedure for Dexamethasone

Page 11 of 19

The Radioactive Ligand ( $[{}^{3}H]$ –R1881) supplier, catalog number and batch number will be included in the final report. The specific activity (SA) and date for which that SA was certified by the supplier will be included along with the concentration as received from the supplier (Ci/mmol) and the concentrations tested (nM).

#### 11. Stock Solution Preparation

Preparation of Stock Solutions for making Low-Salt TEDG (Tris, EDTA, DTT, Glycerol) Buffer

- 200 mM EDTA Stock Solution: For example, 7.444g disodium EDTA will be added to 100 ml purified water. This solution will be stored at approximately 4°C.
- 1M Sodium Molybdate Stock Solution: For example, 10 ml purified water will be added to 2.419g sodium molybdate. The buffer will be stored at approximately 4°C.
- 1M Tris Buffer: For example, 147.24g Tris-HCl and 8.0g Tris base will be added to 800 ml purified H<sub>2</sub>O. The final volume will be brought to 1 Liter. The buffer will be refrigerated to approximately 4°C and then pH to approximately 7.4. The buffer will be stored at approximately 4°C.

Preparation of Low-Salt TEDG Buffer (pH approximately 7.4)

- For example to make 100 ml of low-salt TEDG buffer, the following will be added in order:
- 87.15 ml purified water
- 1.0 ml 1M Tris
- 10.0 ml glycerol
- 100 µl 1M sodium molybdate
- 750 µl 200 mM EDTA
- 0.5 ml Calbiochem Protein Inhibitor Cocktail, Set III, EDTA Free (with PMSF) or equivalent
- 15.4 mg DTT (will be added immediately before use, see below)
- The pH of the final solution will be checked to make sure it is approximately 7.4 at approximately 4°C (the solution will be adjusted with HCl (approximately 1M) or NaOH (approximately 1N) as necessary).
- 15.4 mg DTT will be added directly to 100 ml low-salt TEDG buffer the morning of the receptor isolation (final concentration = 1 mM DTT).

Preparation of 60% hydroxyapatite (HAP) slurry

For example to prepare 1L of 50 mM Tris Buffer:

Page 12 of 19

- 50 ml of 1M Tris will be added to 950 ml purified water. This solution will be stored at approximately 4°C. The pH of the final solution will be checked to make sure it is approximately 7.4 at approximately 4°C (the solution will be adjusted as necessary).
- BIO-RAD HT-Gel (Bio-Rad; Hercules, CA) or equivalent will be shaken until all the hydroxyapatite (HAP) is in suspension. The evening before the receptor extraction, an appropriate volume will be poured into a graduated cylinder, the top will be sealed and placed in the refrigerator for at least 2 hours.
- The phosphate buffer supernatant will be poured off, and the volume brought to 100 ml with 50 mM Tris. The HAP will be suspended by sealing the top and inverting several times and left to settle. The HAP will be washed two more times with fresh 50 mM Tris buffer, as above. After the last wash, the HAP is left to settle overnight at 4°C.
- The next morning the 50 mM Tris is removed and the fully settled HAP is resuspended in enough 50 mM Tris to make the final solution 60% slurry.
- This will be stored at approximately 4°C until ready for use in the extraction.

#### Preparation of [<sup>3</sup>H]-R1881 Stock Solutions

- For example the original stock of [<sup>3</sup>H]–R1881 will be diluted to 0.1  $\mu$ M (i.e., 1 X 10-<sup>7</sup> M) by pipetting approximately 1  $\mu$ l of the stock solution for every specific activity unit (Ci/mmol) and diluting this to approximately 10.0 ml with ethanol. The [<sup>3</sup>H]–R1881 stock solution and dilutions will be stored at approximately -20°C.
- A 1 x 10<sup>-8</sup> M stock of [<sup>3</sup>H]–R1881 will be prepared by making a 10-fold dilution of the 1 x 10<sup>-7</sup> M stock.
- A copy of the Certificate of Analysis for [<sup>3</sup>H]–R1881 will be maintained with the study records.

#### Preparation of 100X Radioinert R1881 Solutions

- A 5 mM solution of R1881 will be prepared in DMSO. For example, 5.00 mg of radioinert R1881 will be weighed in a tared amber vial and 3.516 ml solvent added. The 5 mM stock 1:500 will be diluted in the same solvent to get the 10 μM stock. The R1881 stock solution and dilutions will be stored at approximately -20°C.
- The 1  $\mu$ M radioinert R1881 stock will be prepared by diluting the 10  $\mu$ M stock 1:10 in an amber vial. This will be the 1  $\mu$ M radioinert R1881 stock.
- The 0.1  $\mu$ M radioinert R1881 stock will be prepared by pipetting the 1  $\mu$ M stock 1:10 in an amber vial. This will be the 0.1  $\mu$ M radioinert R1881 stock.

#### Preparation of Triamcinolone Acetonide Stock and Working Solutions

 For 600 μM solution, for example 13.04 mg of triamcinolone acetonide will be added to DMSO in a total volume of 50 ml. This will be mixed thoroughly and stored at approximately -20°C.

Page 13 of 19

 The desired amount of 60 μM triamcinolone acetonide working solution will be prepared for the assay by making a 1:10 dilution of the 600 μM stock in DMSO. This will be mixed thoroughly and stored at approximately -20°C.

#### 12. Competitive Radioligand Binding Assay

The competitive binding assay will be performed a minimum of three times. The optimal amount of cytosolic protein added will contain enough receptor to bind no more than 10-15% of the radiolabeled R1881 that has been added to the tube.

Preparation of test substance stock solutions

Test substances will be prepared at 30X the desired final concentration (listed in Table 2). Initial stocks will be prepared in assay buffer at a concentration of approximately 30 mM.

| Table 4. Summary | of Assay Conditions |
|------------------|---------------------|
|                  |                     |

|                                                       |                    | Competitive Binding Assay Protocol        |  |
|-------------------------------------------------------|--------------------|-------------------------------------------|--|
| Source of receptor                                    |                    | Rat prostate cytosol                      |  |
| Concentration of radioli                              | gand               | 1 nM                                      |  |
| Concentration of receptor                             |                    | Sufficient to bind 10-15% of radioligand) |  |
| Concentration of test substance (as serial dilutions) |                    | 100 pM to 1 mM                            |  |
| Temperature                                           |                    | ~4°C                                      |  |
| Incubation time                                       |                    | 16-20 hours                               |  |
| Composition of assay                                  | Tris               | 10 mM (pH 7.4)                            |  |
| buffer                                                | EDTA               | 1.5 mM                                    |  |
|                                                       | Glycerol           | 10% (v/v)                                 |  |
|                                                       | Protease Inhibitor | 0.5% (v/v)                                |  |
|                                                       | DTT                | 1 mM                                      |  |
|                                                       | Sodium Molybdate   | 1 mM                                      |  |

The specific activity (SA) of [<sup>3</sup>H]-R1881 will be adjusted for decay over time. The SA will be calculated on the day of the assay using the following equation:

 $SA_{adjusted} = SA * e^{-Kdecay*Time}$ 

SA<sub>adjusted</sub>/SA = Fraction Isotope Remaining (FIR)

Where:

SA is the specific activity on the packaging date (both SA and the packaging date are printed on the stock bottle from the manufacturer).

 $K_{decay}$  is the decay constant for tritium (equal to 1.54 x 10<sup>-4</sup>/day)

Time = number of days since the printed date on the stock bottle from the manufacturer

The  $[^{3}H]$ -R1881 will be diluted with TEDG + PI buffer so that each assay tube contains 1 nM final concentration of  $[^{3}H]$ -R1881 using the following procedure:

Page 14 of 19

The specific activity will be converted from Ci/mmole to nM. If SA = X Ci/mmole, and Y = concentration of radiolabel, then X Ci/mmole will be converted to nM and the SA activity adjusted for decay over time by the following conversion:

(Y mCi/ml / X Ci/mmole) \* 1 Ci/1000 mCi \*  $10^6$  nmole/mmole \* 1000 ml/L = (Y/X) \*  $10^6$  nM.

A 10 nM diluted stock of the [ ${}^{3}$ H]-R1881 was prepared so that 30 µl in a total volume of 300 µl per assay tube gave a final concentration of 1 nM. The 10 nM [ ${}^{3}$ H]-R1881 was kept on ice until standards, test chemicals, and assay tubes were prepared.

#### Assay Preparations

12 x 75 mm (or appropriately sized) siliconized glass tubes will be used for the assay. Approximately 30 µl of 10 nM [<sup>3</sup>H]-R1881 (1 x 10<sup>-8</sup> M) and approximately 50 µl triamcinolone acetonide (60 µM working solution) will be added to all tubes. For the 3 tubes at the beginning of assay and at the end of assay, 100X inert R1881 (30 µl of 1 µM) will also be added; these are the nonspecific binding tubes. The tubes will be placed in a speed-vac and dried. An aliquot of cytosol will be thawed on ice and diluted to the predetermined optimal protein concentration.

#### Individual Tubes

For the assay tubes, approximately 10  $\mu$ l of each concentration of test chemical or control will be added by pipette, followed by approximately 300  $\mu$ l of the diluted cytosol. The temperature of the tubes and contents will be kept at approximately 4°C prior to the addition of the cytosol. The assay tubes will be vortexed after additions and incubated at approximately 4°C for approximately 16 to 20 hours on a rotator.

#### Separation of bound [3H]-R1881 from free [3H]-R1881

Following the approximately 16-20 hour incubation, the AR assay tubes will be removed from the rotator and placed in an ice-water bath. A repeating pipette will be used to add approximately 500 µl of ice cold HAP slurry (60% in 50 mM Tris buffer) to fresh new 12 x 75 mm (or appropriately sized) siliconized assay tubes. Approximately 100 µl of each incubation tube will be transferred to the appropriate labeled tubes containing the HAP. The tubes will be vortexed for approximately 10 seconds at approximately 5 minute intervals for a total of approximately 20 minutes with tubes remaining in the ice-water bath between vortexing. Following the vortexing step, approximately 2 ml of the cold 50 mM Tris buffer will be added, the tubes will be quickly vortexed, and centrifuged at approximately 4°C for approximately 10 minutes at 700 x g. After centrifugation, the supernatant containing the free [<sup>3</sup>H]-R1881 will immediately be decanted and discarded. The HAP pellet contains the androgen receptor bound [<sup>3</sup>H]-R1881. Approximately 2 ml of ice-cold 50 mM Tris buffer will be added to each tube and vortexed to resuspend the pellet. The tubes will be centrifuged again at approximately 4°C for approximately 10 minutes at approximately 700 x g. The supernatant will be guickly decanted and discarded. The wash and centrifugation steps will be repeated three more times. After

Page 15 of 19

the final wash, the supernatant will be decanted. The assay tubes will be allowed to drain briefly for approximately 30 seconds.

Extraction and Quantification of [<sup>3</sup>H]-R1881 bound to AR

Approximately 2 ml of absolute ethanol will be added to each assay tube. The tubes will be allowed to sit at room temperature for approximately 15 to 20 minutes, vortexing for approximately 10 seconds at approximately 5-minute intervals. The assay tubes will be centrifuged for approximately 10 minutes at approximately 700 x g. The supernatant will be decanted into a 20 ml scintillation vial containing an appropriate amount of scintillation cocktail (Perkin Elmer Opti-Fluor, cat# 6013199, or equivalent). The vial will be capped and shaken. The vials will be placed in a scintillation counter (Perkin Elmer Tri-Carb 2910TR Liquid Scintillation Analyzer Model B2910, or equivalent) and each vial will be counted for at least one minute with quench correction for determination of DPMs per vial.

#### 13. Solubility/Precipitation Assay

The limit of test substance solubility will be determined by laser based light scattering. The test substance will be prepared in the TEDG buffer alone (no cytosol) at the final exposure concentrations and added to wells of a 96-well plate. The samples will be assessed using a NEPHELOstar nephelometer (BMG LabTech, Ortenberg, Germany), or equivalent.

#### 14. Competitive Binding Data Analyses

#### Estimating the IC<sub>50</sub>

An AR competitive binding assay measures the binding of a single concentration of  $[{}^{3}H]$ -R1881 in the presence of increasing concentrations of a test substance. The competitive binding curve is plotted as specific  $[{}^{3}H]$ -R1881 binding (as a percent of total binding) versus the concentration (log<sub>10</sub> units) of the competitor. The concentration of the test substance that inhibits 50% of the maximum specific  $[{}^{3}H]$ -R1881 binding is the IC<sub>50</sub> value. Estimates of IC<sub>50</sub> values are determined using XLfit (Guildford, Surrey, UK).

#### Calculation of RBA

The relative binding affinity (RBA) for each competitor will be calculated by dividing the  $IC_{50}$  for R1881 by the  $IC_{50}$  of the competitor and expressing as a percent.

$$\% \text{ RBA} = IC_{50} \text{ R1881} X 100$$

IC<sub>50</sub> Test Substance

#### Competitive Binding Performance Criteria

The competitive binding assay is functioning correctly if all of the following criteria have been met:

Page 16 of 19

Increasing concentrations of unlabeled R1881 displace [<sup>3</sup>H]-R1881 from the receptor in a manner consistent with one-site competitive binding. Specifically, the curve fitted to the radioinert R1881 data points using non-linear regression descend from 90% to 10% over approximately an 81-fold increase in the concentration of radioinert R1881.

Ligand depletion is minimal.

The parameter values (top, bottom, and slope) for the standard curve (R1881) and the weak positive control are within the tolerance bounds provided in Table 6.

The solvent control substance does not alter the sensitivity or reliability of the assay.

 Table 5. Suggested Upper and Lower Limits for Parameters in Competitive Binding Assay

 Curves for the Standards (Radioinert R1881 and Dexamethasone)

| Substance      | Parameter  | Lower Limit | Upper Limit |
|----------------|------------|-------------|-------------|
| Standard Curve | Slope      | -1.2        | -0.8        |
|                | Top (%)    | 82          | 114         |
|                | Bottom (%) | -2.0        | +2.0        |
| Weak Positive  | Slope      | -1.4        | -0.6        |
|                | Top (%)    | 87          | 106         |
|                | Bottom (%) | -12         | +12         |

For all test substances, it is recommended that the top of the curve fall within 80-115% binding.

#### 15. Proposed Statistical Methods

For each of the three valid independent runs of the competitive binding assays, the following statistics will be assessed; mean specific binding (%), standard deviation (SD), standard error of the mean (SEM), percent coefficient of variation (% CV), residuals, squared residuals, and the  $Log_e(S_{yx})$  (ie.  $Log_e(residual standard deviation)$ ) using XLfit (Guildford, Surrey, UK).

#### 16. Classification Criteria

The classification of a test substance as a binder or non-binder is made on the basis of the average results of three runs. The data interpretation criteria are presented in Table 7.

Page 17 of 19

### CeeTox

| Table 6. Data Interpretation Criteria | Table 6. | Data Interp | retation Criteria |
|---------------------------------------|----------|-------------|-------------------|
|---------------------------------------|----------|-------------|-------------------|

|                                                       | Criteria                                                                              | Classification |
|-------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|
| Data fit 4-parameter<br>nonlinear regression<br>model | Average curve across all runs crosses 50%*                                            | Binder         |
|                                                       | Average lowest portion of the curves across all runs is between 50 and 75% activity** | Equivocal      |
|                                                       | Average lowest portion of curves across<br>all runs is greater than 75% activity**    | Non-Binder     |
| Data do not fit the model                             |                                                                                       |                |

\*Ordinarily, a binding curve will fall from 90% to 10% over 2 log units with a slope near -1. If the curve falls outside the range for the weak positive control (-0.6 to -1.4), the run will be classified as equivocal. Unusually steep curves may be a sign that the protein is being denatured or that solubility problems are being encountered.

\*\*If the test substance is not soluble above  $10^{-6}$  M and the binding curve does not cross 50%, the substance is judged to be untestable. If the curve is steeper than -2.0 the result is considered to be equivocal.

#### 17. Final Study Reports

The data to be reported will be determined per Standard Operating Procedure (SOP) and will include (but will not be limited to) the following information: assay date and run number, laboratory personnel involved in the study, reference/test substance information (including but not limited to substance name, code, molecular weight, concentrations tested, notes regarding solubility), and data, data analysis and interpretation and classification of the test substances.

#### 18. Alterations of the Study Design

Alterations of this protocol may be made as the study progresses. No changes in the protocol will be made without the specific written request or consent of the Sponsor. In the event that the Sponsor authorizes a protocol change verbally, CeeTox will honor such a change. However, written authorization will be obtained to document this verbal request. All protocol amendments with justifications will be documented, signed and dated by the Study Director and the Sponsor's Representative. A copy of the protocol and all amendments will be issued to the Sponsor and originals will be placed in the study binder.

#### 19. Data Retention and Archiving

All original data [including the original signed study protocol and all amendments (if any), test substance information, observations, etc.] and the original final report will be transferred to the National Toxicology Program Archives following finalization of the study report to the address below:

NTP Archives

615 Davis Drive, Suite 300 Durham, NC 27713

Page 18 of 19

# **CeeTox ≥**

#### 20. Test Substance Disposition

Test substance will be either returned to the sponsor or destroyed following finalization of the study report.

Page 19 of 19



#### **Protocol Amendment 1**

Study Number: 9070-100794ARB

Title of Study to be Amended: Androgen Receptor Binding (Rat Prostate Cytosol)

**<u>Reason for Amendment to Protocol:</u>** This amendment to correct two sections of the protocol. First, section 10.2 Preparation of Test Substance (page 10) states that:

"The stock test substances (approximately 100 mM, depending on solubility or other factors) will be formulated in dimethyl sulfoxide (DMSO) or appropriate solvent. Fresh 30X dilutions of the stock solution will be prepared in Low-Salt TEDG (Tris, EDTA, DTT, Glycerol) Buffer on the day of use such that the target concentration of test substance can be achieved by the addition of approximately 10  $\mu$ L of the dilution to an approximately 300  $\mu$ L total assay volume. Dose concentrations of test and control substances will not be verified using analytical methods."

This section will now read as follows (changes in bold red):

"The stock test substances (approximately 100 mM, depending on solubility or other factors) will be formulated in dimethyl sulfoxide (DMSO) or appropriate solvent. Fresh 30X dilutions of the stock solution will be prepared in **DMSO** on the day of use such that the target concentration of test substance can be achieved by the addition of approximately 10  $\mu$ L of the dilution to an approximately 300  $\mu$ L total assay volume. Dose concentrations of test and control substances will not be verified using analytical methods."

This amendment is also to correct the type of assay tube used in the study. The protocol states, in Section 12, page 15 under the subsection <u>Assay Preparations</u> and the subsection <u>Separation of bound [<sup>3</sup>H]-R1881 from free [<sup>3</sup>H]-R1881</u> that "12 x 75 mm (or appropriately sized) siliconized glass tubes" will be used.

The OPPTS 890.1150 guideline does not state that the glass tubes need to be siliconized for the ARB assay. Therefore, non-siliconized tubes will be used throughout the assay.

Page 1 of 2

12-Feb-13

CeeTox Study # 9070-100794ARB

**Signatures** 



Chief, Toxicology Branch National Toxicology Program, NIEHS



Contract Office Technical Representative National Toxicology Program, NIEHS

2/13/13 Date

2/13/13 Date

Integrated Laboratory Systems, Inc Study Monitor

12. Feb 2013 Date

13 Feb 2013 Date

12-Feb-13

CeeTox, Inc.

Page 2 of 2

Study Director

Study Number: 9070-100794ARB