THE CHICKEN EGG MODEL: AN ALTERNATIVE MODEL FOR DETECTION OF GENOTOXIC CARCINOGENS

Tetyana Cheairs, MD, MSPH

Assistant Dean for PhD Programs Assistant Professor of Pathology, Microbiology and Immunology New York Medical College

1. METHOD DESCRIPTION

HISTORICAL SIGNIFICANCE OF CHICKEN EGG MODEL

Kain K.H., et al., (2014). Dev Dyn. 243(2):216-228.

> Arch Toxicol. 2002 Oct; 76(10): 606-12. doi: 10.1007/s00204-002-0380-4. Epub 2002 Aug 10.

In ovo carcinogenicity assay (IOCA): evaluation of mannitol, caprolactam and nitrosoproline

Klaus D Brunnemann¹, Harald G Enzmann, Carmen E Perrone, Michael J latropoulos, Gary M Williams

Review > Front Biosci, 1997 Dec 15:2:c30-9, doi: 10.2741/a168.

The in ovo carcinogenicity assay (IOCA): a review of an experimental approach for research on carcinogenesis and carcinogenicity testing

H Enzmann¹, K D Brunnemann

Comparative Study > Exp Toxicol Pathol. 2013 Sep;65(6):729-35. doi: 10.1016/j.etp.2012.09.007. Epub 2012 Oct 31.

Inter-laboratory comparison of turkey in ovo carcinogenicity assessment (IOCA) of hepatocarcinogens

H Enzmann¹, K Brunnemann, M latropoulos, S Shpyleva, N Lukyanova, I Todor, M Moore, K Spicher, V Chekhun, H Tsuda, G Williams

CHICKEN EGG MODEL (CEM)

CHICKEN EGG MODEL (CEM)

- Vehicles used:
	- Deionized Water (hydrophilic compounds)
	- 20% Kolliphor Oil / Solutol HS15 (lipophilic compounds)
	- 20% Tween 20
- Positive control:
	- Quinoline
- Doses are selected based on Oral LD_{50} in rodents, solubility, or toxicity
- ~2 compounds / experiment, 3 dose levels each + controls
- At least 3 biological replicas per group per endpoint

TYPES OF DNA DAMAGE ASSESSED

STRUCTURAL DISTORTIONS

- bulky DNA adducts
- crosslinks / dimerization

DNA BACKBONE DAMAGE

• DNA strand breaks - single

SINGLE BASE CHANGE

• oxidative DNA damage

modified from https://www.researchgate.net/figure/269993727_fig1_Schematic-representation-of-comet-assay-protocol

ENHANCED (MODIFIED) COMET ASSAY

modified from https://www.researchgate.net/figure/269993727_fig1_Schematic-representation-of-comet-assay-protocol

CHICKEN EGG MODEL (CEM)

- Intact organisms, resembles in vivo conditions, but not an animal
- Large number of tested eggs per experiment
- Facile delivery of the test substance (lipo- and hydrophilic)
- Intrinsic metabolic activation / detoxication
- Specific pathogen free
- Rigorous environmental control
- Evaluation of multiple critical endpoints
- Elucidation of mechanism of action

ADVANTAGES POTENTIAL LIMITATIONS

- Developing organism
- Metabolic differences
- Route of exposure
- Undetermined sex
- Species difference

2. CONTEXT OF USE

CHEMICAL CARCINOGENESIS

DIFFERENTIATION

MUTATIONS

Created with BioRender.com

CHEMICAL CARCINOGENESIS

GENOTOXICITY ASSESSMENT

GENOTOXICITY ASSESSMENT

Corvi R, Madia F. (2017). Food Chem Toxicol. 106(Pt B):600-608

GENOTOXICITY ASSESSMENT

Corvi R, Madia F. (2017). Food Chem Toxicol. 106(Pt B):600-608

CONTEXT OF USE

- A. How is your method intended to be used?
	- **chemical screening, hazard identification, potency evaluation**
- B. What regulatory testing need does your method address?
	- **in vitro follow-up**, **minimizing use of animal assays**, **targeted endpoint evaluation**
- C. What regulatory space does your method address?
	- **- cosmetics, industrial chemicals, agrochemicals, food/food additives, pharmaceuticals**
- D. Has data generated by your method been used for regulatory submissions?
	- **- not yet**

3. BIOLOGICAL RELEVANCE

CEM EVALUATION

Toxicol Sci. 2014 Sep;141(1):18-28. doi: 10.1093/toxsci/kfu123. Epub 2014 Jun 27.

Chicken fetal liver DNA damage and adduct formation by activation-dependent DNA-reactive carcinogens and related compounds of several structural classes.

Williams GM¹, Duan JD², Brunnemann KD², latropoulos MJ², Vock E³, Deschl U³.

Genotoxic

Non/weakgenotoxic/ carcinogens

Non/weakgenotoxic,

carcinogens

Carcinogens

Carcinogens Genotoxic

CEM EVALUATION: GENOTOXICITY

*, denotes significant (p < 0.05) difference from control group; †, denotes significant (p < 0.05) trend

Williams et al., Toxicol. Sci. 2014. 141: 18-28

CEM EVALUATION: GENOTOXICITY

Diethylnitrosamine 2_{mg}

Vehicle (dd H_2O)

Fluorene 1.36 mg

Aflatoxin B_2 6.4 µg

Benzo[e]pyrene 500 µg

N-nitrosodiethanolamine 4 mg *Williams et al., Toxicol. Sci. 2014. 141: 18-28*

CEM EVALUATION: GENOTOXICITY

CLOFIBRIC ACID

Iatropoulos et al., Exper Tox Path. 2017

CEM EVALUATION: HISTOPATHOLOGY

PCNA

CEM EVALUATION: HISTOPATHOLOGY

Severity scale: $\boxed{ - }$ absent; $\boxed{ + }$ mild; $\boxed{++ }$ moderate; $\boxed{++ }$ severe; $\boxed{+++ }$ extensive;

Iatropoulos et al., Exper Tox Path. 2017

CEM EVALUATION: GENOMICS

Deregulation of Biological Functions in Fetal Chicken Livers Dosed with Diethylnitrosamine

*, *p*-values presented as average

METABOLIC CAPACITY

Activities of Phase I and Phase II Metabolic Enzymes in Fetal Turkey Liver

ECOD, 7-ethoxycoumarin de-ethylase; EROD, 7-ethoxyresorufin de-ethylase; ALD, aldrin epoxidase; EH, epoxide hydrolase; GST, glutathione S-transferase; GLUT, UDP-glucuronyltransferase *Perrone et al., Arch. Toxicol. 2004. 78*

METABOLIC CAPACITY

Activities of Phase I and Phase II Metabolic Enzymes in Fetal Chicken Liver

AHH, aryl hydrocarbon hydroxylase; AND, aminopyrine N-demethylase; ECOD, 7-ethoxycoumarin de-ethylase

METABOLIC CAPACITY

TARGET TISSUE EXPOSURE

Water control **Acridine orange**

> Toxicol Sci. 2016 Apr;150(2):301-11. doi: 10.1093/toxsci/kfv322. Epub 2015 Dec 29.

Structure-Activity Relationships for DNA Damage by Alkenylbenzenes in Turkey Egg Fetal Liver

Tetyana Kobets¹, Jian-Dong Duan², Klaus D Brunnemann², Sylvain Etter³, Benjamin Smith⁴, Gary M Williams²

Comparative Study > Food Chem Toxicol. 2018 May:115:228-243. doi: 10.1016/j.fct.2018.03.015. Epub 2018 Mar 13.

In ovo testing of flavor and fragrance materials in Turkey Egg Genotoxicity Assay (TEGA), comparison of results to in vitro and in vivo data

Tetyana Kobets¹, Jian-Dong Duan², Klaus D Brunnemann³, Michael J latropoulos⁴, Sylvain Etter ⁵, Christina Hickey ⁶, Benjamin Smith ⁷, Gary M Williams ⁸

Comparative Study > Mutat Res Genet Toxicol Environ Mutagen. 2019 Aug:844:10-24. doi: 10.1016/j.mrgentox.2019.06.004. Epub 2019 Jun 14.

DNA-damaging activities of twenty-four structurally diverse unsubstituted and substituted cyclic compounds in embryo-fetal chicken livers

Tetyana Kobets¹, Jian-Dong Duan², Klaus D Brunnemann³, Esther Vock⁴, Ulrich Deschl⁵, Gary M Williams⁶

> Int J Toxicol. 2022 Aug;41(4):297-311. doi: 10.1177/10915818221093583. Epub 2022 Jun 4.

Evaluation of Pharmaceuticals for DNA Damage in the Chicken Egg Genotoxicity Assay (CEGA)

Tetyana Kobets¹, Jian-Dong Duan¹, Esther Vock², Ulrich Deschl², Gary M Williams¹

> Food Chem Toxicol. 2019 Jul:129:424-433. doi: 10.1016/j.fct.2019.05.010. Epub 2019 May 8.

Assessment and characterization of DNA adducts produced by alkenylbenzenes in fetal turkey and chicken livers

Tetyana Kobets¹, Alexander T Cartus², Julia A Fuhlbrueck², Alexander Brengel², Simone Stegmüller², Jian-Dong Duan³, Klaus D Brunnemann³, Gary M Williams³

> Toxicology. 2024 Jan:501:153714. doi: 10.1016/j.tox.2023.153714. Epub 2023 Dec 22.

Assessment of no-observed-effect-levels for DNA adducts formation by genotoxic carcinogens in fetal turkey livers

Tetyana Kobets¹, Christina Hickey², George Johnson³, Jian-Dong Duan⁴, Sylvain Etter⁵, Benjamin Smith ⁶, Gary M Williams ⁴

IN OVO VS IN VITRO & IN VIVO

FDR; false discovery rate; GTX, genotoxicity assays; NEG, negative outcome; NPV, negative predictive value; POS, positive outcome; PPV, positive predictive value; for the purposes of calculations, equivocal outcomes were considered to be positive

BIOLOGICAL RELEVANCE

A. Mechanistic understanding: How does the information provided by your method support known mechanistic knowledge of the carcinogenesis process

- **elucidation of mechanism of action, carcinogenicity AOP**

B. Reference compounds: What are well-characterized and understood compounds that can be used or were used to assess the scientific validity or transferability of your method?

- over 80 compounds (aromatic amines, pharmaceuticals, phytochemicals, flavor and fragrance materials) have been evaluated in the model

- C. Comparison to existing laboratory animal methods: How does your method provide information that is equivalent or better than that from existing methods used for regulatory purposes?
	- **the model has higher accuracy, sensitivity, and specificity for the outcomes of in vivo genotoxicity and carcinogenicity testing compared to in vitro tests**
- D. How does your method contribute to the reduction, refinement, or replacement of animal assays, and what complementary method development might be needed to comprehensively address carcinogenesis?
	- **potentially replace in vivo genotoxicity assays used to investigate the genotoxic or carcinogenic potential of chemicals which tested positive in genotoxicity assays in vitro**

4. TECHNICAL CHARACTERIZATION

CONTROLS

IN OVO VS IN VIVO

DNA adducts formed in avian fetal livers *in ovo*

2- AAF, 0.6 mg/egg ~170 mg/kg bw

MEU, 4 mg/egg 1140 mg/kg bw

Williams et al., (2014) Toxicol. Sci. 141 Kobets et al., (2016). Toxicol Sci. 150: 301-311

DNA adducts formed in the livers of F344 male rats in vivo

2-AAF, 2.24 mg/kg bw 4 weeks

MEU, 3000 mg/kg bw 8 weeks

Williams G.M., et al. (2013). Food Chem Toxicol. 53 Williams G.M., et al. (2015). Tox Res 4: 233

ALKENYLBENZENES DNA ADDUCTS *IN OVO*

ALKENYLBENZENES DNA ADDUCTS *IN OVO*

Ultra high-performance liquid chromatography electrospray ionization tandem mass spectrometry

TECHNICAL CHARACTERIZATION

A. How have the sources of variability (e.g., interference, culture conditions, technique, contaminants) been evaluated?

- the protocol allows to avoid environmental variability

- B. How has robustness (i.e., the ability of the method to be reproduced under different conditions or circumstances, without the occurrence of unexpected differences in the obtained results) been evaluated?
	- **- several compounds were evaluated at different timepoints of termination or under similar conditions in a turkey egg model with a similar outcomes**
- C. How has intra-laboratory reproducibility (i.e., the consistency of individual test results obtained within a laboratory using the same test protocol and test samples) been evaluated?

- yes, the results in the model are reproducible

D. How has transferability (i.e., the ability of the method to be accurately and reliably performed in different, competent laboratories) been evaluated (if relevant)?

- IN DEVELOPMENT, open to collaborations

CONCLUSIONS

- CEM is a reliable alternative model for the evaluation of chemical-induced genotoxic and related events
- The model exhibits high sensitivity and specificity for genotoxic and nongenotoxic compounds
- Findings in the model are congruent with findings in other species
- The assay allows demonstration of the biological consequences of chemical genotoxicity and elucidation of chemical mode of action
- The use of mechanistic dose-effect studies for genotoxic endpoints can provide critical information for prioritization of concerns for risk assessment
- Avian models offer a potentially more acceptable alternative to current animal models for follow-up of in vitro positives in genotoxic assays

ACKNOWLEDGEMENTS

Gary M. Williams

Jian-Dong Duan

Klaus D. Brunnemann

Michael Iatropoulos

Yax Thakkar

George Johnson

Benjamin Smith

Sylvain Etter

Christina Hickey

Ulrich Deschl

Esther Vock

Alexander T. Cartus

Tetyana Cheairs, MD, MSPH

New York Medical College BSB, 425

Tel: (914) 594-3105

Tetyana_Kobets@nymc.edu

THANK YOU!

5. ADDITIONAL SLIDES

IN OVO MECHANISTIC DOSE-EFFECT STUDIES

Genetic Factors

DNA ADDUCTS AS BIOMARKERS

NOELS FOR DNA ADDUCTS

- Thresholds exist for key steps in the multistep process of chemical carcinogenesis
- Adduct formation is a key event along the Adverse Outcome Pathway to cancer induced by DNA-reactive chemicals and can be treated as indicator assay or key initiating event assay
- Adduct NOELs are therefore expected to be at lower doses than cancer NOELs
- Safe levels of exposure can be delineated using the lowest threshold and safety factors
- Adducts in vivo are not considered to be suitable proxy for cancer bioassay for risk assessment yet, more a biomarker of exposure, however, they are chemical specific
- The conventional chronic bioassay can be replaced with alternatives

NOELS FOR GENOTOXIC CARCINOGENS *IN OVO*

Benzo[a]pyrene Qinoline CYP
+ EH **DNA** CYP **DNA** adducts HO, HO ŌН OH **BP** BP-7.8-diol anti-BPDE $(syn-BPDE)$ CYP H_2O_2 AKR peroxidase **DNA DNA** adducts **NADPH** Óŀ DNA oxidative **BPQ ROS** BP catechol radical-cation **DNA** damage **DNA** depurinated adducts

BENZO[A]PYRENE

QUINOLINE

2-ACETYLAMINOFLUORENE

BMD AND POTENCY RANKING

SUMMARY OF DOSE-RESPONSE FINDINGS

