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What is the Life Cycle?
“the major activities in the course of the product’s life-span from its manufacture, use, and 
maintenance, to its final disposal, including the raw material acquisition required to manufacture the 
product.”      -EPA 2006 (Life Cycle Assessment: Principles and Practice)
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Life 
Cycle 

Stages

https://nepis.epa.gov/Exe/ZyNET.exe/P1000L86.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D:%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000002%5CP1000L86.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8%2Fr75g8%2Fx150y150g16%2Fi425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL
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What does this have to do with Toxicology?
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Five Steps of LCIA Framework for Impact Categories

Hauschild et al. 2013

ISO 14040 standard, adapted by 
Hauschild and Huijbregts (2015) 
Life Cycle Impact Assessment, Ch 1

https://doi.org/10.1007/s11367-012-0489-5


Context for this work
• 30,000−100,000 unique chemical substances are commonly used worldwide in various 

products, processes, or services

• LCIA is a comparative assessment approach that includes characterizing toxicological impacts 
on human health from all possible chemical exposures associated with the life cycles of those 
products, processes, or services

• Points of Departure (PODs) are are essential part of characterizing toxicity-related human 
health impacts in LCA

• Regulatory/authoritative PODs cover a very limited set of chemicals

• Treating “no number” chemicals as non-toxic underestimates impacts, which can bias 
decision-making

4 July 2019
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Unified Probabilistic 
Framework for Dose-Response 
Assessment
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Lu et al. (in press, JTEH-B)



Focus on KDM 1: 
Point of Departure 
Determination
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Lu et al. (in press, JTEH-B)

Regulatory / 
Authoritative POD 
from EPA, ATSDR, 

CalEPA, etc.
Surrogate POD 

based on 
analysis of 
ToxValDB QSAR-Based 

POD based on 
Chemical 

Descriptors

Fixed value 
based on TTC

Hierarchy recommended for Life Cycle Impact Assessment in 
Fantke et al. 2021: https://doi.org/10.1007/s11367-021-01889-y 

Focus of this 
presentation

https://doi.org/10.1007/s11367-021-01889-y


Surrogate POD 
based on 

analysis of 
ToxValDB

Develop a workflow for deriving PODs with 
quantified uncertainty for chemical substances 
with animal toxicology data but without 
regulatory/authoritative assessments.

A: Data curation and selection
B-C: Calibration to overlapping regulatory 

PODs from authoritative sources
D: Application to dataset from A
E: Uncertainty analysis

Oral PODs: Aurisano et al. 2023
Inhalation PODs: Aurisano et al. 2024

s
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https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207


1
0

Data-richData-poor Data-richData-poor

Rep/dev effectsGeneral non-cancer effects

s

Aurisano et al. 2023, 2024

https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207


1
1

General non-cancer effects Rep/dev effects

s

• High variability across chemicals
• Regulatory PODs (▽) typically fall 

below the median effect values 
across chemicals

Aurisano et al. 2023, 2024

https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207
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Simple hypothesis: Regulatory 
PODs can be “modeled” as a 
”conservative” %ile of the (curated) 
ToxValDB data for each chemical.

• Data-rich: %ile from fitted on a log-
normal distribution

• Data-poor: %ile from a fixed log-normal 
distribution (“avg” data-rich chemical)

Results using 25th %-ile
• Oral General non-cancer (n=744): 
 R2=0.85 RSE = 0.46 (log10 units) 
• Oral Rep/dev (n=41):
 R2=0.78 RSE = 0.53 (log10 units)
• Inhalation General & Rep/dev (n=174):
 R2=0.76 RSE = 0.82 (log10 units)

s

Aurisano et al. 2023, 2024

https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207
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Tiered uncertainty characterization 
based on number of (curated) 
ToxValDB data points, inter-, and 
intra-study variability

General non-cancer effects Rep/dev effects s

Aurisano et al. 2023, 2024

https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207


Surrogate POD 
based on 

analysis of 
ToxValDB

Approach: Expand coverage of chemicals with 
(non-cancer) toxicity values by
• Created a consistent and curated data set of in 

vivo chronic dose-response toxicity data from 
EPA ToxValDB

• Developed a statistical approach for calibrating 
toxicity data against regulatory values

• Quantified uncertainty from inter- and intra-
study variability

Results: Surrogate PODs can be derived using the 
25th %ile from ToxValDB
• Oral PODs expanded by n > 10,000
• Inhalation PODs expanded by n > 2,000

Limitations
• Tens of thousands of chemicals 

have no or inadequate data in 
ToxValDB

• In vivo testing data on these 
chemicals unlikely to expand 
substantially in the near future

Machine Learning to the Rescue?

Aurisano et al. 2023, 2024

https://doi.org/10.1289/ehp11524
https://doi.org/10.1021/acs.est.4c00207
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QSAR-Based 
POD based on 

Chemical 
Descriptors

Conditional Toxicity Value (CTV) Predictor 
(2018)
• QSAR built on regulatory toxicity values
• Predicts oral and inhalation 

(experimental) NOAELs
Two-Stage Machine Learning Model (2024)
• QSAR for PODs building on surrogate 

oral PODs from Aurisano et al. (2023)
• Model for inhalation PODs in 

development
Both approaches perform better than 
ToxCast/in vitro NAMs for predicting 
regulatory PODs

https://toxvalue.org

https://wchiu.shinyapps.io/Two-
Stage-ML-Results-Browser/ 

Approach RMSE MedAE R2

CTV N.R. 0.70 0.45
Two-Stage ML 
(general non-
cancer) 0.69 0.40 0.48
Two-Stage ML 
(repro/dev) 0.58 0.31 0.49
ToxCast+httk 
(general non-
cancer) 1.87 1.22 <0
ToxCast+httk 
(repro/dev) 1.52 0.84 <0

RMSE: Root-mean-squared-error (log10 units)
MedAE: Median absolute error (log10 units)
R2: Coefficient of determination (<0 means worse 
that naïve constant model)

Wignall et al. 2018; Kvasnicka et al. 2024

https://doi.org/10.1289/ehp2998
https://doi.org/10.1021/acs.est.4c00172
https://toxvalue.org/
https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/
https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/
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Conceptual Framework: Two-Stage QSAR Model
Stage 1 Stage 2

Chemical IDs 
(e.g., DTXSID)

Standardization Workflow

“QSAR-Ready” 
Structures

Run OPERA
QSAR Models

Parsing & Cleaning

Features (X) Run POD 
QSAR Model

(Fitted Pipeline)
Transformations

Predicted 
Surrogate 

PODs (ypred)

Why a two-stage model?

• Most chemical descriptors can be hard to interpret by a toxicologist 
or risk assessor (as opposed to a chemo-informaticist)

• Existing OPERA models provide open-source predictions for 
interpretable physical-chemical-toxicological parameters 

• Analogous to a “supervised” neural network with a single 
intermediate layer composed of interpretable features.

Kvasnicka et al. 2024

https://doi.org/10.1021/acs.est.4c00172
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Conceptual Framework: Two-Stage QSAR Model
Stage 1 Stage 2

Chemical IDs 
(e.g., DTXSID)

“QSAR-Ready” 
Structures

Run OPERA
QSAR Models

Features (X) Run POD 
QSAR Model

(Fitted Pipeline)

Training Data Collection, & Preprocessing

Predicted 
Surrogate 

PODs (ypred)
Standardization Workflow Parsing & Cleaning Transformations

g: general noncancer
rd: reproductive/developmental

Data Collection
Surrogate PODs from 
Aurisano et al. 2023

(yobs)

Data Filtering 
> 3 in vivo studies in ToxValDB 

& “QSAR-Ready”

Feature Preparation
Run OPERA 

to generate features (X)ng = 5,209
nrd = 4,938

ng = 1,791
nrd = 2,228

Model Training & Evaluation

Full 
X & yobs

“Inner loop” for 
feature selection 

“Outer loop” for evaluation

Predict w/
Selected 
Features

Outer 
ytrain

Outer 
ytestInner 

ytrain

Inner 
ytest Performance:

RMSE
MedAE

R2

Model Pipeline 
for Each 
Replicate

1. Feature 
Preprocessing

2. Random Forest 
Regression

Kvasnicka et al. 2024

https://doi.org/10.1021/acs.est.4c00172


Model Evaluation
In-Sample Model Fitting Out-of-Sample (Cross-Validation) Performance
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Expected performance based on cross-validation results:
• Average Error (RMSE): factor of 4~5 
• Typical Error (MedAE): factor of 2~2.5 
• Explained Variance: ~50%
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QSAR-Based 
POD based on 

Chemical 
Descriptors

https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/ 

Applied to 
800K+ chemicals 

from EPA 
CompTox 

Dashboard

Limitations
• Same uncertainty estimate for 

every prediction
• Certain classes of chemicals 

excluded based on OPERA QSAR 
standardization workflow

https://wchiu.shinyapps.io/Two-Stage-ML-Results-Browser/
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Explore use of “Uncertainty-
Aware” ML methods

• Conformal prediction (CP)

• Bayesian neural network (BNN)

QSAR-Based 
POD based on 

Chemical 
Descriptors

• Addresses 
aleatoric and 
epistemic 
uncertainty

• Applied to 
>130K 
marketed 
chemicals

von Borries et al. in preparation
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QSAR-Based 
POD based on 

Chemical 
Descriptors

Explore use of “Uncertainty-
Aware” ML methods

• Conformal prediction (CP)

• CP models performed better than BNN
o Good coverage & well-calibrated confidence intervals
o Capture overall heteroscedasticity in prediction errors
o Higher uncertainty for new chemicals that are unlike 

training set chemicals

von Borries et al. in preparation
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QSAR-Based 
POD based on 

Chemical 
Descriptors

Explore use of “Uncertainty-
Aware” ML methods

• Uncertainty hotspots
– polychlorinated and polybrominated compounds
– metals and organometallics
– alkaloids and phenothiazines
– Peptides

• Drivers of uncertainty
– low representation in the training data
– low applicability of molecular descriptor developed for 

small organic molecules
– (highly toxic) outliers

von Borries et al. in preparation



Summary: A Tiered Hierarchy of 
Probabilistic PODs

• LCIA requires PODs for tens-hundreds of thousands of chemicals for 
characterizing human health impacts of product, process, or service 
life cycles

• Regulatory/authoritative PODs cover a very limited set of chemicals

• Two classes approaches can fill these data gaps while also quantifying 
their uncertainty with varying degrees of sophistication

• Key limitation: Calibrated to existing regulatory PODs, which are 
largely based on experimental animal studies.

• Counterfactual: If we were to have new regulatory/authoritative 
assessments based on animal studies in the absence of any human 
data, we would make decisions based on them!

4 July 2019

Regulatory / 
Authoritative 

POD from EPA, 
ATSDR, CalEPA, 

etc.

Surrogate POD 
based on 

analysis of 
ToxValDB

QSAR-Based 
POD based on 

Chemical 
Descriptors

Fixed value 
based on TTC
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