

NCATS Microphysiological Systems (MPS) aka Tissue Chips for Drug Screening Program

ICCVAM Communities of Practice: Evolution of Complex In Vitro Models
July 21, 2025

Danilo A.Tagle, PhD, MS
Director, Office of Special Initiatives
National Center for Advancing Translational Sciences

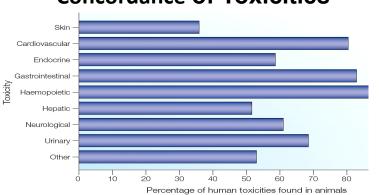
The Public Health Challenge

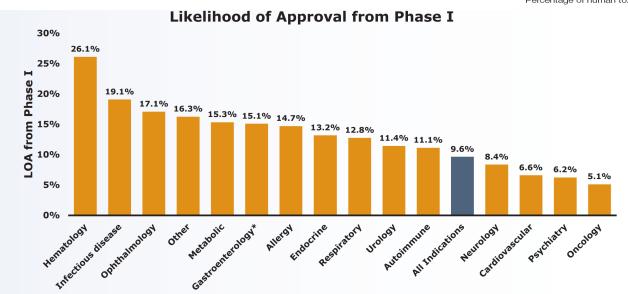
Concordance of Toxicities

10,000

Diseases

and only


5%


Have Treatments or Cures

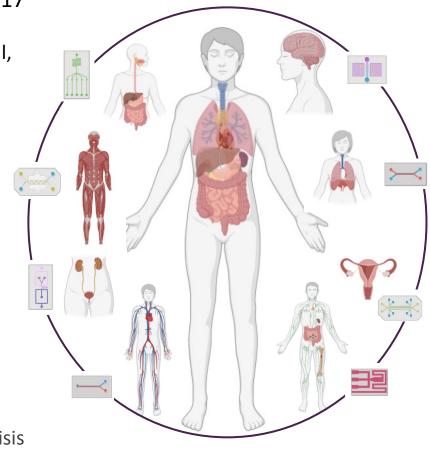
Time from early development to the medicine cabinet takes 10-15 years at a cost of \$2.6 billion per drug (\$6.16 billion in the past 20 years) 9 out of 10

HIGH ATTRITION RATE
Promising therapeutic candidates
fail in clinical trials

Need for human-relevant model systems that can reliably predict health outcomes that can vary due to sex, age, genetics, population variability and interindividual differences

Video: NCATS Tissue Chip for Drug Screening Program

Video originally placed here can be viewed at https://www.youtube.com/watch?v=4FWmstqT_gk 6 minutes into video


NIH Tissue Chips Program At A Glance

Safety Pharmacology 2012-2017

- Human relevant models especially for hepatic, neuronal, renal, CV, GI and immune toxicities
- Assessing toxicity where no physiologically and pharmacologically relevant models are available

Disease Models and Efficacy 2017-2023

- Capture the pathophysiology, mutation spectrum and phenotypic diversity of human diseases and conditions
- Response to National Health Emergencies, such as opioid crisis (HEAL) and SARS-Cov2 pandemic
- Accelerated aging through Tissue
 Chips in Space program
- Alzheimer's disease and related dementias (NINDS)
- Type 2 diabetes (NIDDK)

Partners

- 18 ICs at NIH
- FDA, NASA, DARPA, BARDA, DTRA, VA, EPA
- IQ MPS Affiliate (26 pharma companies)

Clinical Trials on Chips and **Precision Medicine** 2021-2025

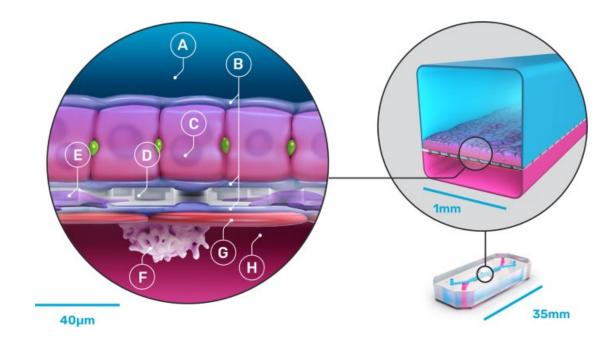
- Inform clinical trial design and execution
- Establish recruitment criteria
- Patient stratification
- Develop clinically relevant surrogate biomarkers
- Represent population and patient diversity

Building Confidence 2016-2022

- Tissue Chips Testing Centers
- MPS Database

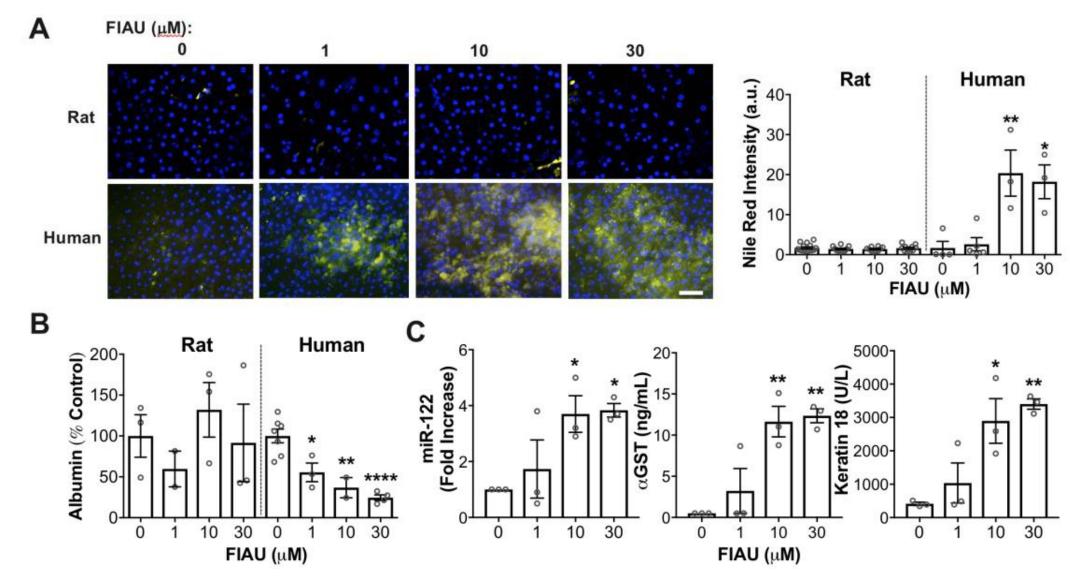
Building Community 2022-2024

- MPS World Summit
- International MPS Society


Regulatory Acceptance 2024-2028

- Botulinum Toxin Potency Assay
- Translational Centers for MPS

Are Tissue Chips Better Predictors of Human Physiological Response?


- Liver is responsible for concentrating and metabolizing a majority of medications
- Drug-induced liver injury (DILI) is the most common cause of acute liver failure (15-20 per 100,000)
- Adverse drug reactions are an important cause of liver injury that may require discontinuation of the drug, hospitalization, or even liver transplantation

- A parenchymal channel
- B extracellular matrix
- C human hepatocytes
- D porous PDMS membrane •
- E stellate cells
- F Kupffer cells
- G endothelial cells
- H vascular channel

Differences in Steatosis (Fat Deposits) in Rat and Human Liver Chips following Fialuridine (FIAU) Treatment

Follow up blinded study on liver chip to predict DILI

- A group of 22 reference compounds which were subsequently determined to be hepatotoxic
- Was advanced to human use based on previous preclinical data but was withdrawn due to toxicities which collectively are responsible for more than 200 patient deaths and 10 liver transplants
- Controlled with 5 non-hepatotoxic compounds
- Human liver chips showed an 87% sensitivity and 100% specificity in predicting drug toxicity, far outperforming liver spheroids (a common preclinical model) which showed a sensitivity of only 47%.

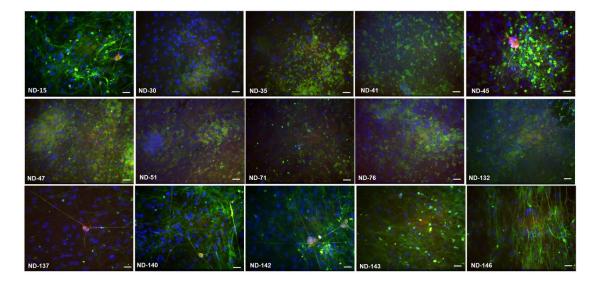
Nature Commun Med 2022: 2; 154-170.

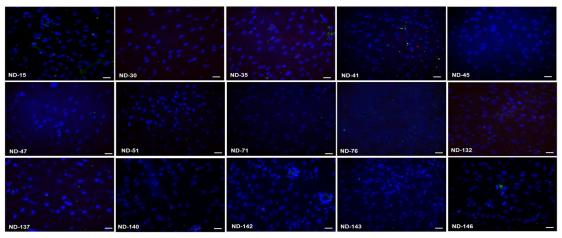
OPEN

Performance assessment and economic analysis of a human Liver-Chip for predictive toxicology

Lorna Ewart on 1 Missing Lorna Ewart on 1 Missing Normal Lorna Property Normal Lorna Lorna Lorna Lorna Property Normal Lorn

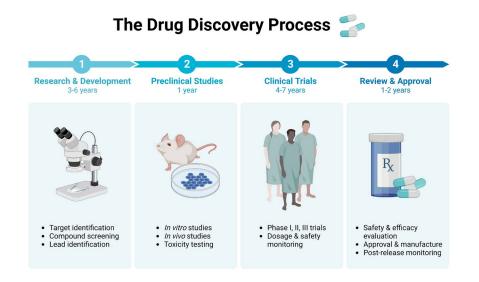
Drug	IQ MPS list	Tested in spheroid	Spheroid false negative	Garside DILI rank
Ambrisentan	Yes, matched with Sitaxsentan	Yes	No	5
Asunaprevir	Yes, no matched pair	No	No	2
Benoxaprofen	No	Yes	Yes	1
Beta-Estradiol	No	Yes	Yes	3
Buspirone	Yes, matched with Nefazodone	Yes	No	4
Chlorpheniramine	No	Yes	Yes	3
Clozapine	Yes, matched with Olanzapine	Yes	No	2
Diclofenac	Yes, no matched pair	Yes	No	2
Entacapone	Yes, matched with Tolcapone	Yes	No	4
Fialuridine	Yes, matched with FIRU	Yes	No	1
FIRU	Yes, matched with Fialuridine	No	No	5
Labetalol	No	Yes	Yes	1
Levofloxacin	Yes, matched with Trovafloxacin	Yes	Yes	2
Lomitapide	No, Mipomersen substitute	No	No	3
Nefazodone	Yes, matched with Buspirone	Yes	No	1
	Yes, matched with Clozapine	No	No	5
Pioglitazone	Yes, matched with Troglitazone	Yes	Yes	3
Simvastatin	No	Yes	Yes	2
Sitaxsentan	Yes, matched with Ambrisentan	Yes	No	1
Stavudine	No	Yes	Yes	1
Tacrine	No	Yes	Yes	2
Telithromycin	Yes, no matched pair	No	No	1
Tolcapone	Yes, matched with Entacapone	Yes	No	1
Troglitazone	Yes, matched with Pioglitazone	Yes	No	1
Trovafloxacin	Yes, matched with Levofloxacin	Yes	No	1
Ximelagatran	No	Yes	Yes	1
Zileuton	Yes, no matched pair	Yes	Yes	2

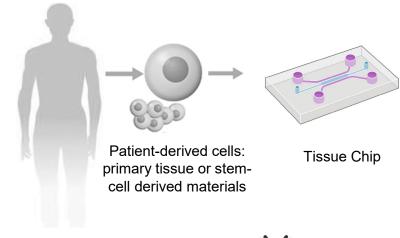

e 27 small-molecule drugs are listed according to the IQ MPS affiliate classification and their ranking in the Garside DIU severity category, where 1 corresponds to drugs with severe dinical DILI and those with no DILI31,50. Structurally related toxic and non-toxic pairs are indicated as well using bold, it alic text.

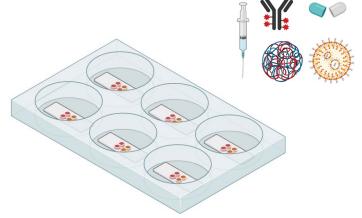


Efficacy Study: Tissue Chips Model of Rare Autoimmune Demyelinating Neuropathies

- Chronic autoimmune demyelinating neuropathies are a group of rare neuromuscular disorders including chronic inflammatory demyelinating polyneuropathy (CIDP) and multifocal motor neuropathy (MMN)
- Tissue chip model consisting of co-culture of human primary Schwann cells (SC) and induced pluripotent stem cell-derived motoneurons (MNs)
- CIDP and MMN patient sera contains anti-GM1 IgM and IgG antibodies which is sufficient to activate the classical complement pathway in SC-MN tissue chips, resulting in detection of C3b and C5b-9
- Efficacy of TNT005, a monoclonal antibody that inhibits C1s protease rescued the serum-induced complement deposition and functional deficits while treatment with an isotype control antibody has no rescue effect
- Efficacy data included in an investigational new drug application

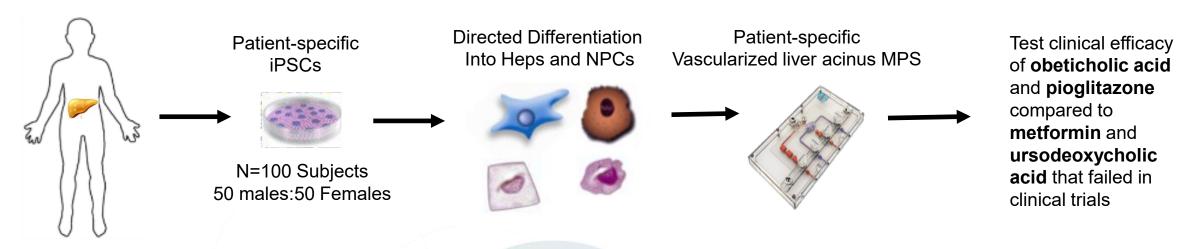



Clinical Trials" on a Chip: Tissue Chips to Inform Clinical Trial Design and Implementation in Precision Medicine


Goal of tissue chips → Inform clinical trial design and execution

- 1. Establish recruitment criteria
 - 2. Patient stratification
- 3. Develop clinically relevant biomarkers and reliable clinical trial endpoints

Phase I:
Development and validation of disease models containing patient-derived cells



Phase II:
Test potential
drugs for efficacy
and safety
assessments in
clinical trials

Patient-Specific Drug Response in Non-Alcoholic Fatty Liver Disease (NAFLD)

- NAFLD is progressively becoming the most common chronic liver condition worldwide due to close association with obesity and diabetes mellitus
- NAFLD encompasses a spectrum of liver diseases ranging from simple hepatic steatosis (fatty liver) to steatohepatitis (NASH) to cirrhosis and hepatocellular carcinoma (HCC)
- Estimated global prevalence of NAFLD is 25% of the general population
- In the US, the Hispanic population have the highest NAFLD prevalence and poorer outcomes with males associated with a higher likelihood; linked to the frequency of a polymorphism in the PNPLA3 gene in the Hispanic population

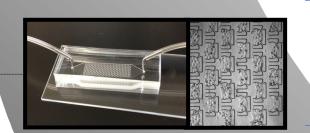
Building Confidence Towards Technology Adoption: Tissue Chip Validation Framework

Comput Struct Biotechnol J.(2016) 14: 207–210

3) Industrial (2019...)

- Use by industry and regulatory agencies
- Proprietary set of compounds
- CRO-type environment

2) Analytical (2017...)


- Independent: testing for robustness, reproducibility, reliability, relevance
- Validation set of compounds, biomarkers, assays
- TC Testing Centers

1) Physiological (2012...)

- Organ function and structure
- Training set of reference compounds
- TC developers

- Javelin Biotech (spin off from MIT)
 - CRO business model
- TEX-VAL Consortium
 - Play for pay model with academia, government and industry
- EveAnalytics (formerly BioSystics Analytic)
 - Quris Al
 - Tissue Chip Testing Centers:
 - · Massachusetts Institute of Technology
 - Texas A&M University
 - MPS Database: https://mps.csb.pitt.edu/
 - University of Pittsburgh

Publications: (as of Oct 2017)

A total of 506 original and review articles (cited over 5600 times) published in top tier journals, including *Nature Medicine, Nature Communications, Nature Materials, PNAS, Science, Science Translational Medicine, etc.*

Qualification of MPS as DDTs to Accelerate the Regulatory Acceptance of Innovative Drug Treatments

Who?

Key stakeholders: Patients, Pharma Companies, Regulators, Patient-Advocacy Organizations, Academics, Government Agencies

Why? / What?

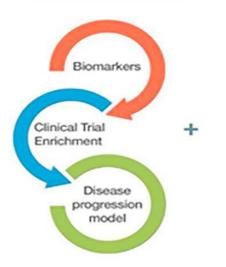
- To understand disease progression rates and responses to treatments, as these can vary significantly across different patients
- Advance Drug Development

 Table

How?

Integrate anonymized patient-level data from past clinical trials and longitudinal observational studies

CDISC Data Standards


Development of models relating key covariates over time

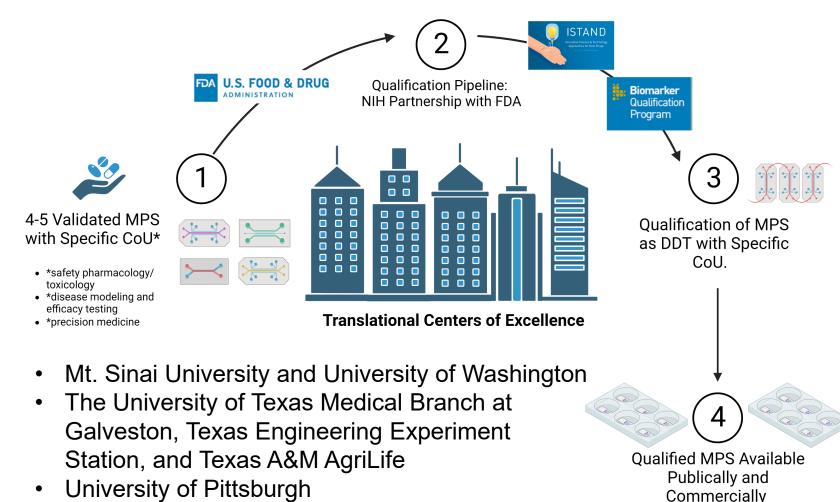
IMPACT

- Actionable data/models to inform optimal trial design
- Improved trial efficiency, and accelerated delivery of innovative treatments to the right patients

Information from model

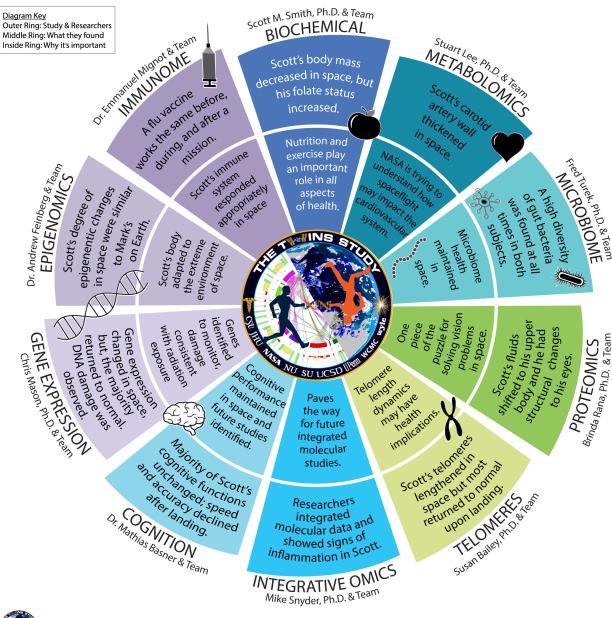
Regulatory agencies

Results in



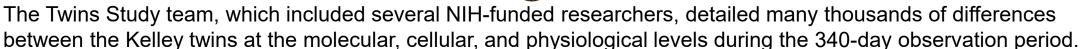
Translational Centers for Microphysiological Systems (TraCe MPS)

- To accelerate the translational use of MPS in drug development through regulatory acceptance and adoption for industrial use
- Letter of Agreement between NCATS and FDA (Critical Path Institute)
- Qualifying MPS as DDT that are fit-for-purpose for industry needs and have specific context of use (CoU) that will meet regulatory qualification


University of Rochester and Duke University

NASA Twins Study in Space

Photo and image courtesy of NASA



Tissue Chips in Space Projects

- <u>SpaceX 16:</u> December 5, 2018
 - Immunosenescence
- SpaceX 17: May 4, 2019
 - Lung infection/bone marrow; kidney stone formation; osteoarthritis; BBB permeability
- SpaceX 20: March 6, 2020
 - Cardiomyopathy; gut inflammation
- SpaceX 21: Dec 5, 2020
 - Cardiomyopathy;
 osteoarthritis; muscle wasting
- SpaceX 22: June 3, 2021
 - Kidney stone formation
- SpaceX 24 December 21, 2021
 - Blood-brain barrier
- <u>SpaceX 25</u> July 15, 2022
 - Immunosenescence; muscle wasting
- SpaceX 26 November 22, 2022
 - Muscle wasting
- SpaceX 27 March 14, 2023
 - Cardiomyopathy

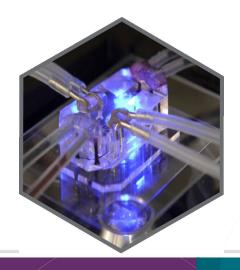
Photo Credit: Dan Tagle

Video: Biomedical Research in Space

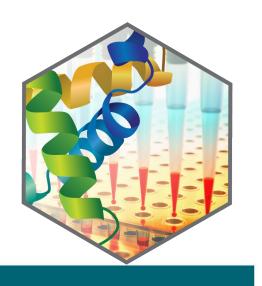
Video originally placed here can be viewed at https://www.youtube.com/watch?v=4FWmstqT_gk 25 minutes into video

New Program: Compliment-ARIE – Integrate MPS with in silico, in chemico and other NAMs (1)

Digital Twin Models


Digital Twins for treatment of cancers and neuropsychiatric diseases, host-gut microbiome studies

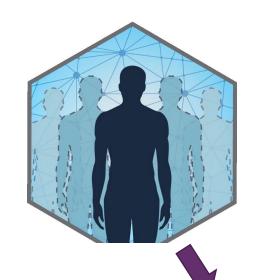
In Silico Models


In silico and ML/AI models for neurodegenerative disease, wound healing, learning/behavior, SARS-CoV-2 propagation, many other diseases

Complex In Vitro Systems

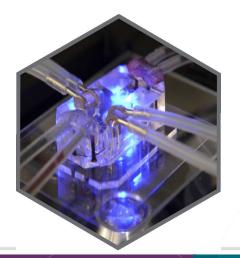
MPS and 3D organoid models for multiple tissues, organs and disease conditions

In Chemico Screening

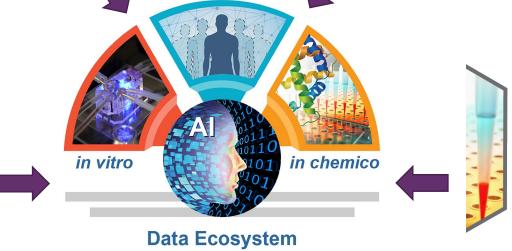

Tox21 high-throughput studies, biochemical assays for skin irritation, ocular toxicity

New Program: Compliment-ARIE – Integrate MPS with in silico, in chemico and other NAMs (2)

Digital Twin Models


Digital Twins for treatment of cancers and neuropsychiatric diseases, host-gut microbiome studies

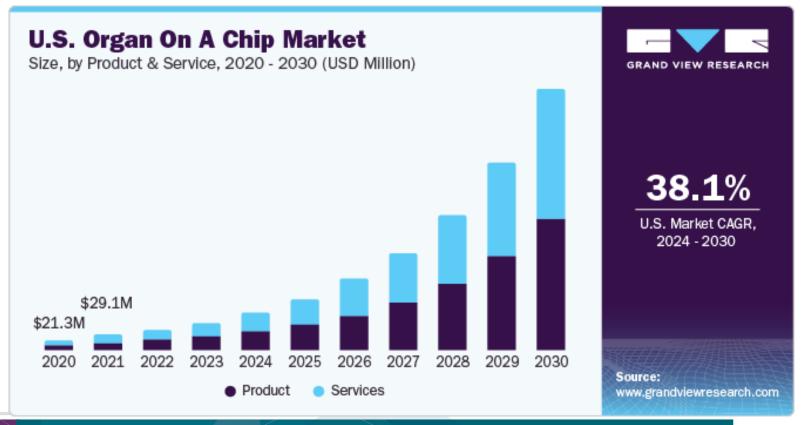
In Silico Models


In silico and ML/AI models for neurodegenerative disease, wound healing, learning/behavior, SARS-CoV-2 propagation, many other diseases

Complex In MPS and 3D (

for multiple t

in silico


In Chemico Screening

Tox21 high-throughput studies, biochemical assays for skin irritation, ocular toxicity

Global Market for Tissue Chips

- Global for tissue chips market was valued at USD \$117.1 million in 2020
- Projected to reach > \$1.6 billion by 2030, growing at a CAGR of 35.1% from 2024 to 2030

Recent Announcements on MPS & other NAMs

FDA NEWS RELEASE

FDA Announces Plan to Phase Out Animal Testing Requirement for Monoclonal Antibodies and Other Drugs

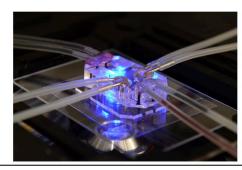
For Immediate Release: April 10, 2025

Today, the U.S. Food and Drug Administration is taking a groundbreaking step to advance public health by replacing animal testing in the development of monoclonal antibody therapies and other drugs with more effective, human-relevant methods. The new approach is designed to improve drug safety and accelerate the evaluation process, while reducing animal experimentation, lowering research and development (R&D) costs, and ultimately, drug prices.

Zeldin to pursue new ban on animal testing at EPA

Administrator Lee Zeldin plans to revive a ban on animal testing at the Environmental Protection Agency, The Washington Times has learned.

The EPA had pursued a phaseout of animal testing during the first Trump administration, but the Biden administration erased the deadlines, effectively neutering the policy.


Now, Mr. Zeldin plans to put it back in place. The Washington Times - Thursday, April 10, 2025

Tuesday, April 29, 2025

NIH to prioritize human-based research technologies

New initiative aims to reduce use of animals in NIH-funded research.

The National Institutes of Health (NIH) is adopting a new initiative to expand innovative, human-based science while reducing animal use in research. Developing and using cutting-edge alternative nonanimal research models aligns with the U.S. Food and Drug Administration's (FDA) recent initiative of to reduce testing in animals. While traditional animal models continue to be vital to advancing scientific knowledge, using new and emerging technologies can offer unique strengths that, when utilized correctly or in combination, can expand the toolbox for researchers to answer previously difficult or unanswerable biomedical research questions.

NIH, FDA Announce New Joint Venture in Nutrition

The Food and Drug Administration (FDA) and NIH have announced a new research collaboration.

MPS for Chemical Risk Assessments in Food

June 6, 2025 Vol. LXXVII, No. 12

Join us for the 5th MPS WS In Washington, D.C.

At the Walter E. Washington Convention Center

May 26-29, 2026

2022 New Orleans, LA

2023 Berlin, Germany

2024 Seattle, WA

2025 Brussels, Belgium

Forming a Local Organizing Committee

National Center for Advancing Translational Science