Updates from the NIEHS Division of Translational Toxicology Predictive Toxicology & Screening Group

Stephen S. Ferguson, Ph.D. Group Leader

Tox21: Advancing 21st Century Tools to Evaluate & Understand Chemical Safety

- NIEHS has been a global leader in the strategic exploration, development and application of NAMs
 - Tox21 Program, NIEHS grants, internal R&D
- In partnership with Tox21 partners (i.e., NCATS, US-EPA, US-FDA), Tox21 data for thousands of drugs/chemicals made publicly available
- Tox21 data widely used internationally (e.g., AI), yet limited adoption by regulatory agencies
 - -Why?

Limitations of Tox21, Evolution towards MPS

- Toxicologic Pathology <u>not</u> an initial focus for Tox21
 - Molecular targets & stress response pathways the focus
 - NAMs often display limited physiological relevance
- Xenobiotic Metabolism
 - Species differences <u>not</u> addressed without emulation of relevant metabolite profiles, adaptive pathophysiology
- Biological Coverage
 - Initial focus limited to available molecular assays for drug targets and stress response pathways with cancer cell lines
- Translation
 - Likelihood for definable human health effects
 - Intentionally focusing integrated NAMS into regulatory practice
- Uncertainties for Interindividual Susceptibility
 - Lack of NAMs that model key factors in toxicological susceptibility (e.g., sex, age, pre-existing disease)

Physiological architecture of liver

Tissues and Organs: a text of scanning electron microscopy, Kessel, RG and Kardon, RH, 1979.

Sandwich cultures

Micropatterned co-cultures

AkuraFlowTM

TissUSE

Array of MPS Platforms Have Emerged

in Biomedical Research

3D Bioprinting

InSphero Akura[™]

Elplasia

Brown

Nortis ParVivo™

Modeling Human Liver Toxicity with 3D Microtissues

> Toxicol Sci. 2017 Sep 1;159(1):124-136. doi: 10.1093/toxsci/kfx122.

From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening

Sreenivasa C Ramaiahgari ¹, Suramya Waidyanatha ¹, Darlene Dixon ¹, Michael J DeVito ¹, Richard S Paules ¹, Stephen S Ferguson ¹

Affiliations + expand

PMID: 28633424 PMCID: PMC5837526 DOI: 10.1093/toxsci/kfx122

Trovafloxacin Mesylate

■ 3DRG_RPT_6d

- Human DILI Prediction
- Metabolically-activated hepatocellular toxicity

Enhanced Modeling of Drug-induced Liver Injury with 3D microtissues

- Compounds requiring metabolic activation via CYP450 enzymes respond differently in 3D vs. 2D liver tissue models
 - Cyclophosphamide
 - Valproic acid
 - Benzo(a)pyrene
 - Aflatoxin B1
- Clinically-relevant biological response pathways identified with human drug exposures in 3D that were not observed in 2D
- Enhanced transcriptomic pathway enrichment for known therapeutic targets & off-target effects with 3D liver spheroids

Mechanistic exploration of free-floating 3D liver microtissues

Applying Liver MPS: Botanical Safety & PFAS Mixtures

Expanding Biological Coverage: human renal proximal tubuloids

InSphero Akura Plates

9 Commercial Liver MPS Collaborators

Axiom Axiom

TEX-VAL

Tissue Chip Testing Center

Toxicological Sciences, 2023, 196(1), 52-70 https://doi.org/10.1093/toxsci/kfad080 Advance Access Publication Date: August 9, 2023

Analysis of reproducibility and robustness of a renal proximal tubule microphysiological system OrganoPlate 3-lane 40 for in vitro studies of drug transport and toxicity

Courtney Sakolish, ¹ Haley L. Moyer, ¹ Han-Hsuan D. Tsai , ¹ Lucie C. Ford, ¹ Allison N. Dickey, ² Fred A. Wright, ^{2,3,4} Gang Han, ⁵ Piyush Bajaj, ⁶ Maria T. Baltazar, ⁷ Paul L. Carmichael, ⁷ Jason P. Stanko, ⁸ Stephen S. Ferguson , ⁸ Ivan Rusyn^{1,*}

TOXICOLOGICAL SCIENCES, 188(2), 2022, 143-152

https://doi.org/10.1093/toxsci/kfac061 Advance Access Publication Date: 11 June 2022

IN-DEPTH REVIEWS

Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium

Ivan Rusyn,*,1 Courtney Sakolish,* Yuki Kato,* Clifford Stephan,† Leoncio Vergara, † Philip Hewitt @, † Vasanthi Bhaskaran, § Myrtle Davis, § Rhiannon N. Hardwick , Stephen S. Ferguson , Jason P. Stanko, Piyush Bajaj, ™ Karissa Adkins, ™ Nisha S. Sipes, ™ E. Sidney Hunter 3rd, ™ Maria T. Baltazar. Paul L. Carmichael. Kritika Sadh. and Richard A. Becker**

journal homepage: www.elsevier.com/locate/taap

An in vitro-in silico workflow for predicting renal clearance of PFAS

Hsing-Chieh Lin ^{a,1}, Courtney Sakolish ^{a,1}, Haley L. Moyer ^a, Paul L. Carmichael ^b, Maria T. Baltazar , Stephen S. Ferguson , Jason P. Stanko , Philip Hewitt , Ivan Rusyn , Weihsueh A. Chiu

Courtney Sakolish

Ivan Rusyn

Tailoring NAM-based Data to the Needs of Regulatory Decision-making

Computational Toxicology 31 (2024) 100327

Contents lists available at ScienceDirect

Computational Toxicology

Full Length Article

- G. Patlewicz^{a,*}, R.S. Judson^a, A.J. Williams^a, T. Butler^b, S. Barone Jr.^b, K.E. Carstens^a, J. Cowden^a, J.L. Dawson^b, S.J. Degitz^a, K. Fay^b, T.R. Henry^{b,1}, A. Lowit^b, S. Padilla^a,
- K. Paul Friedman^a, M.B. Phillips^b, D. Turk^b, J.F. Wambaugh^a, B.A. Wetmore^a, R.S. Thomas^a

^a Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA

^b Office of Chemical Safety and Pollution Prevention (OSCPP), US Environmental Protection Agency, DC, USA

PFAS Mixtures Accumulation with MPS

Emulate Organ-on-a-Chip Microphysiological System

Pooled Microtissues

In Silico PFAS Bioaccumulation Predictions

PFAS	Structure	In Silico BCF (Fish/Water)	In Silico Hepatic CI _{INT,metab}
PFOS	F F F F F F F F OH	682	5.5
PFHxS	F F F F F F OH	431	5.5
PFBS	F F F F OH	28	3.1
4:4 FTOH	HO F F F F	401	40
6:2- FTNO	'	97	19

PFAS Mixtures Exposures Over 28-days in PHH Spheroids

- Longer-term exposures with some PFAS led to surprisingly robust ATP accumulation
 - PFHxS, PFHxA, PFBS
- Longer-chain PFAS (e.g., PFOA, PFNA, PFOS) tended to show sharp declines in ATP with smaller increases
- Transcriptomic assays in progress

- What are we trying to predict?
 - Comprehensive safety?
 - Hazard/risk for specific health effects? Which ones?
- NTP Histopathology Glossary: Mapping morphologies to liver MPS
 - Diagnostic histology and clinical pathology equivalents within MPS
 - MPS that display recognizable phenotypes of toxicity and disease
 - Fatty liver disease, zonal-specific fibrosis, cholestasis
 - 130 out of 411 total morphologies feasible with liver MPS
 - Developing a 'Rosetta Stone' to relate imaging and assay data with liver MPS into recognizable findings for risk assessors
- Blind spots with MPS:
 - How wrong are NAM-based potency range estimates for more vulnerable individuals?
 - Sex differences
 - Age ranges (e.g., neonatal, childhood, adult, geriatric)
 - Pre-existing disease states
- Expanding tissue coverage & establishing MPS functional benchmarks with the precious gifts of donated organs & tissues
 - PFAS toxicity involves the liver-thyroid axis

The Director's Challenge Innovation Award Program

Rationale for Prioritization of MPS Development for Chemical Safety

Renal proximal tubule
Renal glomerulus
Liver
Small intestine
Placenta
Blood-brain barrier
Lung

It takes a village to raise the bar.

Predictive Toxicology Screening

US EPA Josh Harrill Mike DeVito Katie Paul-Freedman Richard Judson Rusty Thomas John Wambaugh Nisha Sipes

