Updates from the NIEHS Division of Translational Toxicology Predictive Toxicology & Screening Group Stephen S. Ferguson, Ph.D. Group Leader # Tox21: Advancing 21st Century Tools to Evaluate & Understand Chemical Safety - NIEHS has been a global leader in the strategic exploration, development and application of NAMs - Tox21 Program, NIEHS grants, internal R&D - In partnership with Tox21 partners (i.e., NCATS, US-EPA, US-FDA), Tox21 data for thousands of drugs/chemicals made publicly available - Tox21 data widely used internationally (e.g., AI), yet limited adoption by regulatory agencies - -Why? # **Limitations of Tox21, Evolution towards MPS** - Toxicologic Pathology <u>not</u> an initial focus for Tox21 - Molecular targets & stress response pathways the focus - NAMs often display limited physiological relevance - Xenobiotic Metabolism - Species differences <u>not</u> addressed without emulation of relevant metabolite profiles, adaptive pathophysiology - Biological Coverage - Initial focus limited to available molecular assays for drug targets and stress response pathways with cancer cell lines - Translation - Likelihood for definable human health effects - Intentionally focusing integrated NAMS into regulatory practice - Uncertainties for Interindividual Susceptibility - Lack of NAMs that model key factors in toxicological susceptibility (e.g., sex, age, pre-existing disease) ## Physiological architecture of liver Tissues and Organs: a text of scanning electron microscopy, Kessel, RG and Kardon, RH, 1979. Sandwich cultures Micropatterned co-cultures AkuraFlowTM **TissUSE** **Array of MPS Platforms Have Emerged** in Biomedical Research 3D Bioprinting InSphero Akura[™] Elplasia Brown Nortis ParVivo™ # **Modeling Human Liver Toxicity with 3D Microtissues** > Toxicol Sci. 2017 Sep 1;159(1):124-136. doi: 10.1093/toxsci/kfx122. From the Cover: Three-Dimensional (3D) HepaRG Spheroid Model With Physiologically Relevant Xenobiotic Metabolism Competence and Hepatocyte Functionality for Liver Toxicity Screening Sreenivasa C Ramaiahgari ¹, Suramya Waidyanatha ¹, Darlene Dixon ¹, Michael J DeVito ¹, Richard S Paules ¹, Stephen S Ferguson ¹ Affiliations + expand PMID: 28633424 PMCID: PMC5837526 DOI: 10.1093/toxsci/kfx122 Trovafloxacin Mesylate ■ 3DRG_RPT_6d - Human DILI Prediction - Metabolically-activated hepatocellular toxicity # Enhanced Modeling of Drug-induced Liver Injury with 3D microtissues - Compounds requiring metabolic activation via CYP450 enzymes respond differently in 3D vs. 2D liver tissue models - Cyclophosphamide - Valproic acid - Benzo(a)pyrene - Aflatoxin B1 - Clinically-relevant biological response pathways identified with human drug exposures in 3D that were not observed in 2D - Enhanced transcriptomic pathway enrichment for known therapeutic targets & off-target effects with 3D liver spheroids # Mechanistic exploration of free-floating 3D liver microtissues # **Applying Liver MPS: Botanical Safety & PFAS Mixtures** # **Expanding Biological Coverage: human renal proximal tubuloids** #### **InSphero Akura Plates** ## 9 Commercial Liver MPS Collaborators Axiom Axiom #### **TEX-VAL** #### Tissue Chip Testing Center Toxicological Sciences, 2023, 196(1), 52-70 https://doi.org/10.1093/toxsci/kfad080 Advance Access Publication Date: August 9, 2023 Analysis of reproducibility and robustness of a renal proximal tubule microphysiological system OrganoPlate 3-lane 40 for in vitro studies of drug transport and toxicity Courtney Sakolish, ¹ Haley L. Moyer, ¹ Han-Hsuan D. Tsai , ¹ Lucie C. Ford, ¹ Allison N. Dickey, ² Fred A. Wright, ^{2,3,4} Gang Han, ⁵ Piyush Bajaj, ⁶ Maria T. Baltazar, ⁷ Paul L. Carmichael, ⁷ Jason P. Stanko, ⁸ Stephen S. Ferguson , ⁸ Ivan Rusyn^{1,*} TOXICOLOGICAL SCIENCES, 188(2), 2022, 143-152 https://doi.org/10.1093/toxsci/kfac061 Advance Access Publication Date: 11 June 2022 #### IN-DEPTH REVIEWS #### Microphysiological Systems Evaluation: Experience of TEX-VAL Tissue Chip Testing Consortium Ivan Rusyn,*,1 Courtney Sakolish,* Yuki Kato,* Clifford Stephan,† Leoncio Vergara, † Philip Hewitt @, † Vasanthi Bhaskaran, § Myrtle Davis, § Rhiannon N. Hardwick , Stephen S. Ferguson , Jason P. Stanko, Piyush Bajaj, ™ Karissa Adkins, ™ Nisha S. Sipes, ™ E. Sidney Hunter 3rd, ™ Maria T. Baltazar. Paul L. Carmichael. Kritika Sadh. and Richard A. Becker** journal homepage: www.elsevier.com/locate/taap An in vitro-in silico workflow for predicting renal clearance of PFAS Hsing-Chieh Lin ^{a,1}, Courtney Sakolish ^{a,1}, Haley L. Moyer ^a, Paul L. Carmichael ^b, Maria T. Baltazar , Stephen S. Ferguson , Jason P. Stanko , Philip Hewitt , Ivan Rusyn , Weihsueh A. Chiu #### Courtney Sakolish Ivan Rusyn # Tailoring NAM-based Data to the Needs of Regulatory Decision-making Computational Toxicology 31 (2024) 100327 Contents lists available at ScienceDirect # Computational Toxicology #### Full Length Article - G. Patlewicz^{a,*}, R.S. Judson^a, A.J. Williams^a, T. Butler^b, S. Barone Jr.^b, K.E. Carstens^a, J. Cowden^a, J.L. Dawson^b, S.J. Degitz^a, K. Fay^b, T.R. Henry^{b,1}, A. Lowit^b, S. Padilla^a, - K. Paul Friedman^a, M.B. Phillips^b, D. Turk^b, J.F. Wambaugh^a, B.A. Wetmore^a, R.S. Thomas^a ^a Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27709, USA ^b Office of Chemical Safety and Pollution Prevention (OSCPP), US Environmental Protection Agency, DC, USA # **PFAS Mixtures Accumulation with MPS** ## **Emulate Organ-on-a-Chip Microphysiological System** Pooled Microtissues #### In Silico PFAS Bioaccumulation Predictions | PFAS | Structure | In Silico BCF
(Fish/Water) | In Silico Hepatic
CI _{INT,metab} | |--------------|--------------------|-------------------------------|--| | PFOS | F F F F F F F F OH | 682 | 5.5 | | PFHxS | F F F F F F OH | 431 | 5.5 | | PFBS | F F F F OH | 28 | 3.1 | | 4:4
FTOH | HO F F F F | 401 | 40 | | 6:2-
FTNO | ' | 97 | 19 | # **PFAS Mixtures Exposures Over 28-days in PHH Spheroids** - Longer-term exposures with some PFAS led to surprisingly robust ATP accumulation - PFHxS, PFHxA, PFBS - Longer-chain PFAS (e.g., PFOA, PFNA, PFOS) tended to show sharp declines in ATP with smaller increases - Transcriptomic assays in progress - What are we trying to predict? - Comprehensive safety? - Hazard/risk for specific health effects? Which ones? - NTP Histopathology Glossary: Mapping morphologies to liver MPS - Diagnostic histology and clinical pathology equivalents within MPS - MPS that display recognizable phenotypes of toxicity and disease - Fatty liver disease, zonal-specific fibrosis, cholestasis - 130 out of 411 total morphologies feasible with liver MPS - Developing a 'Rosetta Stone' to relate imaging and assay data with liver MPS into recognizable findings for risk assessors - Blind spots with MPS: - How wrong are NAM-based potency range estimates for more vulnerable individuals? - Sex differences - Age ranges (e.g., neonatal, childhood, adult, geriatric) - Pre-existing disease states - Expanding tissue coverage & establishing MPS functional benchmarks with the precious gifts of donated organs & tissues - PFAS toxicity involves the liver-thyroid axis # The Director's Challenge Innovation Award Program # Rationale for Prioritization of MPS Development for Chemical Safety Renal proximal tubule Renal glomerulus Liver Small intestine Placenta Blood-brain barrier Lung # It takes a village to raise the bar. #### **Predictive Toxicology Screening** # US EPA Josh Harrill Mike DeVito Katie Paul-Freedman Richard Judson Rusty Thomas John Wambaugh Nisha Sipes