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Introduction

» Physiologically based pharmacokinetic (PBPK) models represent
absorption, distribution, metabolism, and excretion (ADME) processes to
predict concentrations of chemicals in relevant tissues. PBPK models are based on
various assumptions and simplifications to make them computationally tractable.

« The U.S. Environmental Protection Agency’s (EPA’s) high-throughput
toxicokinetics (httk) R package [1] provides open-source PBPK models
that can accommodate integration of new compartments.

* While the httk package includes a number of compartments representing
organs and organ systems, it lacks compartments for brain and adipose
tissues. These are of interest to predict neurotoxicity potential and likelihood of
bioaccumulation.

« We have added brain and adipose compartments to the httk package (version 2.2.2)
to estimate chemical concentrations in these tissues.

Workflow

* The workflow below was used to develop a simple and a complex model:
o The simple perfusion-limited model facilitates parameterization with limited
data and assumed linear clearance.
o The complex diffusion-limited model accounts for chemical transfer across the
blood-brain barrier.
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Perfusion-Limited Model With Brain and Adipose
Compartments (Simple Model)

Model Structure Equations for Brain and Adipose Model
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httk Based Simple Model Predictions
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GastroPlus Predictions
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Model “chemical concentration vs. time (CvT)” predictions of brain Cmax (maximum
output using a generic dosing regimen of concentration) generated by the simple model
1 mg/kg daily oral dose in human showed were within 10-fold of those generated by the
higher accumulation in adipose vs. brain. commercial GastroPlus® model [4].
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For acetaminophen, predictions for both brain and adipose compartments show general
concordance with observed data from literature. The observed data and model output
also suggest a certain degree of accumulation in adipose tissue.

Diffusion-Limited Model Considering Blood-Brain

Barrier Kinetics (Complex Model)

Model Structure
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Diffusion-Limited Model Output
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Adipose - Acetaminophen (Hydrophilic)
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* For acetaminophen, the complex model
showed slightly superior performance.
However, both simple and complex models
provided comparable estimates of
experimental Cmax.

 The Cmax values predicted by the complex
model for the brain compartment were within
2-fold of the experimental data measurements,
as seen in the example hydrophilic
acetaminophen (predicted Cmax = 54.01,
observed Cmax = 74.03) and lipophilic
benzo(a)pyrene (predicted Cmax = 11.21,
observed Cmax = 9.59).

* The prediction results, compared with
available pharmacokinetic time-series data
derived from literature sources and the CvT [0]
database, showed overall low disparity
between predicted and observed data.

o For the complex model's Brain
compartment, an R-squared (R?) of 0.75
demonstrated good correlation between
predicted and observed and a root mean
square error (RMSE) of 0.58 indicated
moderate prediction error.

o The complex model's Adipose
compartment displayed strong correlation
(R? = 0.9) and moderate prediction error
(RMSE = 0.57).

Conclusion

« By expanding the existing open-source PBPK
modeling approach, this work can refine the
quantification of chemical distribution in
specific toxicologically relevant body
compartments for humans and rats.

* The alignment between the model predictions
and predictions from a commercial model and
experimental data indicates the robustness of
the expanded httk models and their
applicability in various aspects of drug
development and toxicity research.

» Separating the model outputs based on the
hydrophilic and lipophilic properties of
compounds enables a more mechanistic
understanding of chemical disposition within
these body compartments.

* The expanded httk model provides the
potential to improve prediction of brain
distribution of chemicals. The complex model
makes it possible to simulate chemical
permeability across the blood-brain barrier.

* Further improvement in the RMSE values for
the brain model could potentially be achieved
by exploring the role of transporters present
on the blood-brain barrier that are not
specifically accounted for in this model.
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