ICCVAM-Recommended Test Method Protocol
The Human Peripheral Blood Mononuclear Cell/Interleukin-6 In Vitro Pyrogen Test

Originally published as Appendix C4 of “ICCVAM Test Method Evaluation Report: Validation Status of Five In Vitro Test Methods Proposed for Assessing Potential Pyrogenicity of Pharmaceuticals and Other Products”
NIH Publication No. 08-6392 – Published 2008
Available at: http://iccvam.niehs.nih.gov/methods/pyrogen/pyr_tmer.htm
This page intentionally left blank
ICCVAM Final Recommended Protocol for Future Studies Using the Human Peripheral Blood Mononuclear Cell (PBMC)/Interleukin (IL)-6 In Vitro Pyrogen Test

PREFACE

This protocol is for the detection of Gram-negative endotoxin, a pyrogen, in parenteral drugs, as indicated by the release of IL-6 from human peripheral blood mononuclear cells (PBMCs). This protocol is based on information obtained from 1) the European Centre for the Validation of Alternative Methods (ECVAM)\(^1\) PBMC/IL-6 Background Review Document (BRD) presented in Appendix A of the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) BRD (available at http://iccvam.niehs.nih.gov/methods/pyrogen/pyr_brd.htm), and 2) information provided to the National Toxicology Program (NTP) Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) by Dr. Thomas Hartung, Head of ECVAM. The ICCVAM BRD includes the ECVAM Standard Operating Procedures (SOPs) for the PBMC/IL-6 test (could be referred to as Monocyte Activation Test), which is based on various methods that use human PBMCs to detect cytokine production as a measure of pyrogen presence (Bleeker et al. 1994; Dinarello et al. 1984; Poole et al. 2003). A table of comparison between the ICCVAM recommended protocol and the ECVAM SOPs is provided in Table 1.

Users should contact the relevant regulatory authority for guidance when using this ICCVAM recommended protocol to demonstrate product specific validation, and any deviations from this protocol should be accompanied by scientifically justified rationale. Future studies using the PBMC/IL-6 pyrogen test may include further characterization of the usefulness or limitations of the assay for regulatory decision-making. Users should be aware that this protocol might be revised based on additional optimization and/or validation studies. ICCVAM recommends that test method users routinely consult the ICCVAM/NICEATM website (http://iccvam.niehs.nih.gov) to ensure that the most current protocol is used.

\(^1\)ECVAM is a unit of the Institute for Health and Consumer Protection at the European Commission's Joint Research Centre.
Table 1 Comparison of ICCVAM Recommended Protocol with the ECVAM SOPs for the PBMC/IL-6 Pyrogen Test

<table>
<thead>
<tr>
<th>Protocol Component</th>
<th>ICCVAM Protocol</th>
<th>ECVAM Catch-Up Validation SOP(^\dagger)</th>
<th>ECVAM Validation SOP(^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Substance</td>
<td>Test neat or in serial dilutions that produce no interference, not to exceed the MVD</td>
<td>Test at MVD</td>
<td>Test at MVD</td>
</tr>
<tr>
<td>Number of Blood Donors</td>
<td>Minimum of 3 (independent or pooled)</td>
<td>Minimum of 3(^2) (independent)</td>
<td>Minimum of 4 (independent)</td>
</tr>
<tr>
<td>Decision Criteria for Interference</td>
<td>Mean OD(^1) of PPC is 50% to 200% of 0.25 EU/mL EC</td>
<td>Mean OD of PPC is 50% to 200% of 0.25 EU/mL EC</td>
<td>Mean OD of PPC is 50% to 200% of 0.25 EU/mL EC</td>
</tr>
<tr>
<td>Incubation Plate for ELISA (The number of samples or controls measured in quadruplicate)</td>
<td>NSC (1)</td>
<td>NSC (1)</td>
<td>NSC (1)</td>
</tr>
<tr>
<td></td>
<td>EC (5)</td>
<td>EC (5)</td>
<td>EC (5)</td>
</tr>
<tr>
<td></td>
<td>TS (14)</td>
<td>TS (2) x EC (5) spikes = 10 TS</td>
<td>TS (2) x EC (5) spikes = 10 TS</td>
</tr>
<tr>
<td></td>
<td>PPC(^2) (0)</td>
<td>PPC (2) = 2 TS</td>
<td>PPC (2) = 2 TS</td>
</tr>
<tr>
<td></td>
<td>NPC(^2) (0)</td>
<td>NPC (2) = 2TS</td>
<td>NPC (2) = 2TS</td>
</tr>
<tr>
<td>ELISA Plate</td>
<td>Includes seven point IL-6 SC and blank in duplicate</td>
<td>Includes seven point IL-6 SC and blank in duplicate</td>
<td>Includes seven point IL-6 SC and blank in duplicate</td>
</tr>
<tr>
<td></td>
<td>Mean OD of NSC ≤0.15</td>
<td>Mean OD of NSC ≤0.15</td>
<td>Mean OD of NSC ≤0.15</td>
</tr>
<tr>
<td></td>
<td>Quadratic function of IL-6 SC r ≥0.95</td>
<td>Quadratic function of IL-6 SC r ≥0.95</td>
<td>Quadratic function of IL-6 SC r ≥0.95</td>
</tr>
<tr>
<td>Assay Acceptability Criteria</td>
<td>EC SC produces OD values that ascend in a sigmoidal concentration response</td>
<td>EC SC produces OD values that ascend in a sigmoidal concentration response</td>
<td>EC SC produces OD values that ascend in a sigmoidal concentration response</td>
</tr>
<tr>
<td></td>
<td>High responder blood donors (i.e., > 200 pg/mL IL-6) or low responder blood donors (i.e., Mean OD of 1EU/mL EC is significantly less than that of 1000 pg/mL IL-6) may be excluded</td>
<td>High responder blood donors (i.e., > 200 pg/mL IL-6) or low responder blood donors (i.e., Mean OD of 1EU/mL EC is significantly less than that of 1000 pg/mL IL-6) may be excluded</td>
<td>High responder blood donors (i.e., > 200 pg/mL IL-6) or low responder blood donors (i.e., Mean OD of 1EU/mL EC is significantly less than that of 1000 pg/mL IL-6) may be excluded</td>
</tr>
<tr>
<td></td>
<td>Outliers rejected using Dixon's test</td>
<td>Outliers rejected using Dixon's test</td>
<td>Outliers rejected using Dixon's test</td>
</tr>
<tr>
<td>Decision Criteria for Pyrogenicity</td>
<td>Endotoxin concentration TS > ELC(^6) TS</td>
<td>Endotoxin concentration TS > ELC TS</td>
<td>Endotoxin concentration TS > ELC TS</td>
</tr>
</tbody>
</table>

\(^1\)EC SC produces OD values that ascend in a sigmoidal concentration response

\(^2\)High responder blood donors (i.e., > 200 pg/mL IL-6) or low responder blood donors (i.e., Mean OD of 1EU/mL EC is significantly less than that of 1000 pg/mL IL-6) may be excluded

\(^3\)Endotoxin concentration TS > ELC TS
Abbreviations: EC = Endotoxin control; ELC = Endotoxin limit concentration; ELISA = Enzyme-linked immunosorbent assay; EU = Endotoxin units; IL-6 = Interleukin-6; MVD = Maximum valid dilution; NSC = Negative saline control; OD = Optical density; PBMC = Peripheral blood mononuclear cell; PPC = Positive product control; SC = Standard curve; SOP = Standard operating procedure; TS = Test substance

1 ECVAM PBMC/IL-6 SOPs are presented in Appendix A of the ICCVAM BRD (available at http://iccvam.niehs.nih.gov/methods/pyrogen/pyr_brd.htm).

2 Sample are cryopreserved prior to use in the assay.

3 Mean OD values are corrected (i.e., reference filter reading, if applicable, and NSC are subtracted).

4 In the ICCVAM PBMC/IL-6 protocol, PPC and NPC are assessed in the interference test described in Section 4.2, which is performed prior to the ELISA.

5 Correlation coefficient (r), an estimate of the correlation of x and y values in a series of n measurements.

6 Where unknown, the ELC is calculated (see Section 12.2).

7 Decision criteria for individual donors were defined in the ECVAM Validation SOP for the PBMC/IL-6 test method. Test method users should refer to these criteria if multiple donors are tested independently.
1.0 PURPOSE AND APPLICABILITY

The purpose of this protocol is to describe the procedures used to evaluate the presence of Gram-negative endotoxin, a pyrogen, in parenteral drugs. The presence of Gram-negative endotoxin is detected by its ability to induce the release of interleukin (IL)-6 from human peripheral blood mononuclear cells (PBMCs). The concentration of IL-6 released by incubation of PBMCs with a test substance or controls (i.e., positive and negative) is quantified using an enzyme-linked immunosorbent assay (ELISA) that includes monoclonal or polyclonal antibodies specific for IL-6. The amount of pyrogen present is determined by comparing the values of endotoxin equivalents produced by PBMCs exposed to the test substance to those exposed to an internationally harmonized Reference Standard Endotoxin (RSE) or an equivalent standard expressed in Endotoxin Units (EU)/mL. A test substance is considered pyrogenic if the endotoxin concentration of the test substance exceeds the Endotoxin Limit Concentration (ELC) for the test substance.

The relevance and reliability of this test method to detect non-endotoxin pyrogens have not been demonstrated in a formal validation study, although data are available in the literature to suggest that this assay has the potential to serve this purpose.

2.0 SAFETY AND OPERATING PRECAUTIONS

All procedures that use human blood-derived materials should follow national/international procedures for handling blood potentially contaminated with pathogens. An example of such guidelines is the Universal Precautions available at http://www.niehs.nih.gov/odhsb/biosafe/univers.htm. For non-human blood procedures (e.g., ELISAs), standard laboratory precautions are recommended including the use of laboratory coats, eye protection, and gloves. If necessary, additional precautions required for specific chemicals will be identified in the Material Safety Data Sheet (MSDS).

The stop solution used in the ELISA kit is acidic and corrosive and should be handled with the proper personal protective devices. If this reagent comes into contact with skin or eyes, wash thoroughly with water. Seek medical attention, if necessary.

Tetramethylbenzidine (TMB) solution contains a hydrogen peroxide substrate and 3, 3’, 5, 5’-TMB. This reagent is a strong oxidizing agent and a suspected mutagen. Appropriate personal protection should be used to prevent bodily contact.

Bacterial endotoxin is a toxic agent (i.e., can induce sepsis, shock, vascular damage, antigenic response) and should be handled with care. Skin cuts should be covered and appropriate personal protective devices should be worn. In case of contact with endotoxin, immediately flush eyes or skin with water for at least 15 minutes (min). If inhaled, remove the affected individual from the area and provide oxygen and/or artificial respiration as needed. Skin absorption, ingestion, or inhalation may produce fever, headache, and hypotension.

1RSEs are internationally-harmonized reference standards (e.g., WHO-lipopolysaccharide [LPS] 94/580 Escherichia coli [E. coli] O113:H10:K-; United States Pharmacopeia [USP] RSE E. coli LPS Lot G3E069; USP RSE E. coli Lot G; FDA E. coli Lot EC6). Equivalent endotoxins include commercially available E. coli-derived LPS Control Standard Endotoxin (CSE) or other E. coli LPS preparations that have been calibrated with an appropriate RSE.
3.0 MATERIALS, EQUIPMENT, AND SUPPLIES

3.1 Blood Donor Eligibility

PBMCs from fresh whole blood (WB) are the source of cells for cytokine production in the PBMC/IL-6 test method as reported by Poole et al. (2003). In the United States (U.S.), the collection of blood and blood components for transfusion and further manufacture (including the use of resulting PBMCs in a licensed test) is currently regulated under Section 351 of the Public Health Service (PHS) Act (U.S. Code [U.S.C.], Title 42, Chapter 6A) and/or the Federal Food Drug and Cosmetic Act (U.S.C., Title 21, Chapter 9), both of which require compliance with Current Good Manufacturing Practice (cGMP) regulations (21 CFR Parts 210, 211 and 600-640).

These regulations and the associated FDA guidance's provide an important resource for information regarding the currently accepted practice for blood manufacture and collection (including donor screening) (http://www.fda.gov/cber/blood.htm). Specifically, guidance regarding donor screening questionnaires and links to currently acceptable questionnaires can be found at http://www.fda.gov/cber/gdlns/donorhistques.htm#iv. If you have questions regarding the applicability of blood regulations to your specific situation, it is recommended that you e-mail the Manufacturers Assistance and Technical Training (MATT) Branch established by FDA at matt@cber.fda.gov for advice.

Any participating blood establishment should address how unused components of blood donations will be accounted for and ultimately destroyed, and if the establishment will store the blood preparation, describe the storage procedures to be followed.

3.2 Equipment and Supplies

For all steps in the protocol, excluding the ELISA procedure, the materials that will be in close contact with samples and/or blood cells (e.g., pipet tips, containers, solutions) should be sterile and pyrogen-free.

3.2.1 Preparation of PBMCs

3.2.1.1 Equipment

- Centrifuge
- Hood; Bio-safety, laminar flow (recommended)

2 As indicated by the ECVAM Catch-Up Validation SOP for the PBMC/IL-6 test method, PBMCs that have been cryopreserved can also be used as the source of cells in the PBMC/IL-6 test method.

3 The requirements for WB can be found at 21 CFR 640.1 et seq. In addition, there are specific regulations applicable to red blood cells, platelets, and other blood components. See, for example, 21 CFR 640.10-640.27. Other regulations applicable to the manufacture of blood and blood components include 21 CFR Part 606, the cGMP requirements for blood and blood components, 21 CFR 610.40, the requirements for testing of WB donations, and 21 CFR 640.3, the requirements for determining the suitability of the donor. Blood that enters into U.S. interstate commerce should be tested for antibodies to HIV 1/2, HCV, HTLV I and II, HBc, HBsAg and RPR, WNV and Chagas.

4 The collection of blood for research and development purposes or as a component of an in vitro test (that is not subject to licensure) may potentially not be required to adhere to the FDA regulations outlined above.
• Incubator; cell culture (37±1°C + 5% CO₂)
• Lymphoprep™
• Pipetter; multichannel (8- or 12-channel)
• Pipetters; single-channel adjustable (20, 200, and 1000 µL)
• Repeating pipetter
• Vortex mixer

3.2.1.2 Consumables
• Centrifuge tubes; polystyrene (15 and 50 mL)
• Combitips; repeating pipetter (2.5 and 5.0 mL)
• Cryotubes; screw-cap, 2 mL
• Filters; sterile, 0.22 µm
• Needle set; multifly, pyrogen-free, 19 mm, 21 gauge
• Phosphate buffered saline (PBS); sterile
• Pipettes; serological, sterile (5, 10, and 25 mL)
• Plates; microtiter, 96-well, polystyrene, tissue culture
• Pyrogen-free saline (PFS)
• Reaction tubes; polystyrene (1.5 mL)
• Reservoirs; for blood collection
• RPMI-1640 cell culture medium (500 mL); supplemented with the following reagents to yield RPMI-C
 o Human serum albumin (HSA); 5 mL or a 1% final concentration)
 o L–Glutamine; 200 mM
 o Penicillin/streptomycin (10,000 IU/mL penicillin, 10 mg/mL streptomycin)
• Syringes; sterile (100 µL and 30 mL)
• Tips; pipetter, sterile, pyrogen-free (20, 200, and 1000 µL)

3.2.2 ELISA
3.2.2.1 Equipment
• Microplate mixer
- Microplate reader (450 nm with an optional reference filter in the range of 540-590 nm)\(^5\)
- Microplate washer (optional)
- Multichannel pipetter

3.2.2.2 **Consumables**

- Container; storage, plastic
- Deionized water; nonsterile
- Plates; microtiter, 96-well, polystyrene
- Pyrogen-free water (PFW)
- Reservoirs; fluid
- Tips; pipetter, nonsterile
- Tubes; polystyrene (12 mL)

3.2.2.3 **ELISA Kit**

An ELISA that measures IL-6 release is used. A variety of IL-6 ELISA kits are commercially available and the IL-6 ELISA procedure outlined in this protocol is intended to serve as an example for using an ELISA kit. The IL-6 ELISA should be calibrated using an IL-6 international reference standard (e.g., World Health Organization [WHO] 89/548) prior to use. The IL-6 cytokine assay kits do not provide the RSE or endotoxin equivalent; therefore, this reagent must be purchased separately. Results obtained using these products are subject to the assay acceptability and decision criteria described in Sections 8.0 and 9.0. IL-6 ELISA kit components may include the following:

- ELISA plates coated with anti-human IL-6 capture antibody; monoclonal or polyclonal
- Buffered wash solution
- Dilution buffer
- Enzyme-labeled detection antibody
- Human IL-6 reference standard
- PFS
- Stop solution
- TMB\(^6\)/substrate solution

\(^5\)The TMB chromagen is measured at OD\(_{450}\). However, the use of an IL-1\(\beta\) ELISA kit with a chromagen other than TMB is acceptable. The ELISA should be measured at a wavelength appropriate for the specific chromagen used.

\(^6\)The use of an IL-6 ELISA kit with a chromagen other than TMB is acceptable.
3.3 Chemicals

- Endotoxin (e.g., WHO-lipopolysaccharide [LPS] 94/580 Escherichia coli [E. coli] O113:H10:K-; United States Pharmacopeia [USP] RSE E. coli LPS Lot G3E069; USP RSE E. coli Lot G; FDA E. coli Lot EC6)

3.4 Solutions

- RPMI-C cell culture medium; supplemented as described in Section 3.2.1.2

4.0 ASSAY PREPARATION

All test substances, endotoxin, and endotoxin-spiked solutions should be stored as specified in the manufacturer's instructions. The collection of WB, the isolation of PBMCs from WB, and the procedure for cryopreservation of PBMCs is outlined in Section 6.1.

4.1 Endotoxin Standard Curve

An internationally harmonized RSE or equivalent is used to generate the endotoxin standard curve. The use of any other E. coli LPS requires calibration against a RSE using the PBMC/IL-6 pyrogen test. A standard endotoxin curve consisting of a Negative Saline Control (NSC) and five RSE concentrations (0.063, 0.125, 0.25, 0.50, and 1.0 EU/mL) are included in the incubation step (refer to Table 4-1) and then transferred to the ELISA plate.

Table 4-1 Preparation of Endotoxin Standard Curve

<table>
<thead>
<tr>
<th>Stock Endotoxin EU/mL</th>
<th>µL of Stock Endotoxin</th>
<th>µL of PFS</th>
<th>Endotoxin Concentration EU/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000^4^4</td>
<td>40</td>
<td>3960</td>
<td>20^7^</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
<td>1900</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>500</td>
<td>500</td>
<td>0.50</td>
</tr>
<tr>
<td>0.50</td>
<td>500</td>
<td>500</td>
<td>0.25</td>
</tr>
<tr>
<td>0.25</td>
<td>500</td>
<td>500</td>
<td>0.125</td>
</tr>
<tr>
<td>0.125</td>
<td>500</td>
<td>500</td>
<td>0.063</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
</tbody>
</table>

Abbreviations: EU = Endotoxin units; PFS = Pyrogen-free saline

Each stock tube should be vortexed vigorously prior to its use to make the subsequent dilution.

1To reconstitute the endotoxin, the stock vial should be vortexed vigorously for at least 30 min or sonicated in a bath sonicator for at least 5 min. Subsequent dilutions should be vortexed vigorously immediately prior to use.

2A 2000 EU/mL stock solution of endotoxin is prepared according to the manufacturer's instructions.

3The stock solution is stable for not more 14 days when stored at 2 to 8°C or for up to 6 months when kept in a -20°C freezer.

4This concentration is not used in the assay.

To prepare the endotoxin standard curve, first obtain a 2000 EU/mL stock solution by addition of PFW to the lyophilized content of the stock vial by following the instructions provided by the manufacturer (e.g., 5 mL of PFW is added to a vial containing 10,000 EU). To reconstitute the endotoxin, the stock vial should be vortexed vigorously for at least 30 min or sonicated in a bath sonicator for at least 5 min. Subsequent dilutions should be vortexed vigorously immediately prior to use. The stock solution is stable for not more 14 days when

C-81
stored at 2 to 8°C or for up to 6 months when kept in a -20°C freezer. An endotoxin standard curve is prepared as described in Table 4-1 by making serial dilutions of the stock solution in PFS with vigorous vortexing at each dilution step. Dilutions should not be stored, because dilute endotoxin solutions are not as stable as concentrated solutions due to loss of activity by adsorption, in the absence of supporting data to the contrary.

4.2 Interference Test

For every test substance lot, interference testing must be performed to check for interference between the test substance and the cell system and/or ELISA. The purpose of the interference test is to determine whether the test substance (or specific lot of test substance) has an effect on cytokine release.

4.2.1 Interference with the Cell System

All test substances must be labeled as pyrogen-free (i.e., endotoxin levels at an acceptable level prior to release by the manufacturer) to ensure that exogenous levels of endotoxin do not affect the experimental outcome. Liquid test substances should be diluted in PFS. Solid test substances should be prepared as solutions in PFS or, if insoluble in saline, dissolved in dimethyl sulfoxide (DMSO) and then diluted up to 0.5% (v/v) with PFS, provided that this concentration of DMSO does not interfere with the assay. To ensure a valid test, a test substance cannot be diluted beyond its Maximum Valid Dilution (MVD) (refer to Section 12.3). The calculation of the MVD is dependent on the ELC for a test substance. The ELC can be calculated by dividing the threshold human pyrogenic dose by the maximum recommended human dose in a single hour period (see Section 12.2) (USP 2007; FDA 1987). Furthermore, test substances should not be tested at concentrations that are cytotoxic to blood cells.

4.2.1.1 Reference Endotoxin for Spiking Test Substances

The WHO-LPS 94/580 [E. coli O113:H10:K-] or equivalent internationally harmonized RSE is recommended for preparation of the endotoxin-spike solution and the endotoxin standard curve (see Section 4.1).

4.2.1.2 Spiking Test Substances with Endotoxin

Non-spiked and endotoxin-spiked test substances are prepared in quadruplicate and an in vitro pyrogen test is performed. A fixed concentration of the RSE (i.e., 0.25 EU/mL or a concentration equal to or near the middle of the endotoxin standard curve) is added to the undiluted test substance (or in serial two-fold dilutions, not to exceed the MVD). An illustrative example of endotoxin-spiking solutions is shown in Table 4-2. For non-spiked solutions, 150 µl of RPMI-C is added to a well followed by 50 µl of the test substance (i.e., equivalent to the negative product control [NPC]) and 50 µL of PBMCs and the well contents are mixed. Endotoxin-spiked solutions are prepared by adding 100 µL of RPMI-C to each well followed by 50 µL of the test substance, and 50 µL of an endotoxin-spike solution (0.25 EU/mL) (i.e., equivalent to the positive product control [PPC]). Finally, 50 µL of PBMCs are added to each well and the wells are mixed and incubated as outlined in Section 6.1.3, Steps 6-8. An ELISA is then performed as outlined in Section 6.2, without the IL-6 standard curve.
Table 4-2 Preparation of Endotoxin-Spiked and Non-Spiked Solutions for Determination of Test Substance Interference

<table>
<thead>
<tr>
<th>Sample Addition</th>
<th>Spiked</th>
<th>Non-spiked</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPMI-C</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Endotoxin-spike solution<sup>2</sup></td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Test substance (neat and each serial dilution)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>PBMCs<sup>1</sup></td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Total<sup>4</sup></td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Abbreviations: PBMC = Peripheral blood mononuclear cells
¹n=4 replicates each
²Endotoxin concentration is 0.25 EU/mL in RPMI-C.
³PBMCs are resuspended in RPMI-C (1 x 10⁶ cells/mL).
⁴A total volume of 250 µL per well is used for the incubation.

The optical density (OD) values of the endotoxin-spiked and non-spiked test substances are calibrated against the endotoxin calibration curve. The resulting EU value of the non-spiked test substance is subtracted from the corresponding EU value of the endotoxin-spiked test substance at each dilution. The spike recovery for each sample dilution is calculated as a percentage by setting the theoretical value (i.e., endotoxin-spike concentration of 0.25 EU/mL) at 100%. For example, consider the following interference test results in Table 4-3:

Table 4-3 Example of Interference Data Used to Determine Sample Dilution

<table>
<thead>
<tr>
<th>Sample Dilution</th>
<th>% Recovery of Endotoxin Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>25</td>
</tr>
<tr>
<td>1:2</td>
<td>49</td>
</tr>
<tr>
<td>1:4</td>
<td>90</td>
</tr>
<tr>
<td>1:8</td>
<td>110</td>
</tr>
</tbody>
</table>

If a spike recovery between 50% and 200% is obtained, then no interference of the test substance with either the cell system or the ELISA is demonstrated (i.e., the test substance does not increase or decrease the concentration of IL-6 relative to the endotoxin spike). The lowest dilution (i.e., highest concentration) of a test substance that yields an endotoxin-spike recovery between 50% and 200% is determined. The test substance is then diluted in serial two-fold dilutions beginning at this dilution, not to exceed the MVD, for use in the assay. Based on the results illustrated in Table 4-3, the initial dilution of the test substance to be used in the in vitro pyrogen test would be 1:4 (i.e., the lowest dilution between 50% and 200% of the 0.25 EU/mL EC).

4.2.2 Interference at the MVD
If the data obtained from the experiment in Section 4.2.1 suggests the presence of interference at the MVD, then consideration should be given for using another validated pyrogen test method.
5.0 CONTROLS

5.1 Benchmark Controls

Benchmark controls may be used to demonstrate that the test method is functioning properly, or to evaluate the relative pyrogenic potential of chemicals (e.g., parenteral pharmaceuticals, medical device eluates) of a specific class or a specific range of responses, or for evaluating the relative pyrogenic potential of a test substance. Appropriate benchmark controls should have the following properties:

- consistent and reliable source(s) for the chemicals (e.g., parenteral pharmaceuticals, medical device eluates)
- structural and functional similarities to the class of substance being tested
- known physical/chemical characteristics
- supporting data on known effects in animal models
- known potency in the range of response

5.2 Endotoxin Control

The EC (i.e., PBMCs incubated with an internationally harmonized RSE) serves as the positive control in each experiment. The results should be compared to historical values to insure that it provides a known level of cytokine release relative to the NSC.

5.3 Negative Saline Control

The NSC (i.e., PBMCs incubated with PFS instead of the test substance) is included in each experiment in order to detect nonspecific changes in the test system, as well as to provide a baseline for the assay endpoints.

5.4 Solvent Control

Solvent controls are recommended to demonstrate that the solvent is not interfering with the test system when solvents other than PFS are used to dissolve test substances.

6.0 EXPERIMENTAL DESIGN

6.1 Incubation with Test Samples and Measurement of IL-6 Release

6.1.1 Collection of Human Blood

Human volunteers that have met the donor eligibility criteria described in Section 3.1 are used as the source of WB. All components of the blood collection system (e.g., syringes, tubes, connecting lines) must be sterile and pyrogen-free. WB is drawn by venipuncture from the medial cubital or cephalic vein of either the right or left arm and collected in a sterile container that contains anticoagulant solution (e.g., heparin). The total volume of

7WB is obtained using Universal Precautions (e.g., latex gloves, labcoats, safety glasses) and sterile equipment (e.g., syringes, needles, collection tubes) within a hospital or clinical setting by qualified and adequately trained personnel (i.e., registered nurse, licensed phlebotomist, or medical doctor).
blood collected per donor (i.e., up to 500 mL) will be dictated by experimental design and determined by the test method user. All subsequent handling of WB should be performed in a laminar flow hood using sterile technique to prevent contamination.

6.1.1.1 Isolation of PBMCs from WB
PBMCs are isolated from WB using density gradient centrifugation. The PBMC suspension must be isolated within 2 hr of WB collection using Lymphoprep™. The isolated PBMC suspension may be used immediately (Section 6.1.2) or frozen for later use (Section 6.1.1.3). The isolation procedure described below is a modification of the manufacturer's instructions as outlined in the ECVAM SOP for the PBMC/IL-6 pyrogen test.

To form a lower, denser layer, 15 mL of PBS and 20 mL of Lymphoprep™ should be added to each tube containing 15 mL of WB. The tubes are then centrifuged at 340 x g for 45 min at RT. After centrifugation, a white band of PBMCs should be visible at approximately the 25 mL graduation mark on the tube. If cryopreservation of PBMCs is to be performed (see Section 6.1.1.3), carefully remove 18 mL of supernatant above the PBMC band and transfer it to a new tube for preparing a cryoprotective solution. The remaining supernatant above the PBMC band should be aspirated and discarded. Using a 10 mL pipet, transfer the PBMC layer to a new centrifuge tube.

6.1.1.2 Washing PBMCs
The PBMCs are resuspended in a total volume of 50 mL of PBS and centrifuged at 340 x g for 15 min. The supernatant is poured off and the cellular sediment resuspended in 10 mL of PBS by pipetting up and down several times with a serological pipet. The total volume in each tube is adjusted to 50 mL with PBS and centrifuged at 340 x g for 10 min. After centrifugation, the PBMCs should be resuspended in RPMI-C and an equal volume of cell suspension from multiple individual donors should be pooled.

Prior to use in the assay, the pooled PBMCs should be examined under a microscope to determine that the morphology of the cells is consistent with the appearance of cells that previously yielded acceptable results. It is advisable that cell number and cell viability be determined using appropriate methods (e.g., hemocytometer and vital dye or flow cytometer and fluorescent marker). The cell count of the PBMC suspension should be adjusted to 1 x 10^6 cells/mL in RPMI-C. The percentage of viable PBMCs should exceed 80% for their inclusion in the test. The results of these examinations should be included in the study report. If PBMCs are prepared from fresh WB, then the cell suspension must be used in the assay within 4 hr from the time of WB collection.

6.1.1.3 Procedure for Cryopreservation and Thawing of PBMCs
To freeze the PBMCs, prepare a cryoprotective solution by adding 2 mL of pyrogen-free DMSO to the supernatant (18 mL) collected in the centrifugation procedure outlined in Section 6.1.1.1. Cool the cryoprotective solution to between 2 and 8°C. Centrifuge the isolated PBMCs as instructed in Section 6.1.1.2 and then add 6 mL of the chilled cryoprotective solution to the cell sediment and prepare aliquots in cryotubes. The cryotubes

8Multiple donors (i.e., a minimum of three) should meet the acceptability criteria as outlined in Section 8.0 either as a pool of multiple individual donors or as multiple individual donors tested independently.
are placed in a Styrofoam box for thermal insulation and slowly frozen in a -80°C freezer. After 72 hr, the tubes can be transferred to liquid nitrogen for prolonged storage.

To thaw the cryopreserved PBMCs, submerge the tubes in a water bath at 37±1°C. After thawing, the cell suspensions are pooled in a single 50 mL centrifuge tube and RPMI-C is added to give a total volume of 40 mL. The PBMCs are centrifuged at 340 x g for 10 min, the supernatant removed, and the cells resuspended in 10 mL of RPMI-C.

Prior to use in the assay, it is advisable that cell number and cell viability be examined as described in Section 6.1.1.2. The cell count of the PBMC suspension should be adjusted to 1 x 10^6 cells/mL in RPMI-C. The percentage of viable PBMCs should exceed 80% for their inclusion in the test. The results of this examination should be included in the study report.

6.1.2 Incubation Plate

Test substances are prepared at a level of dilution that did not show interference with the test system, provided that this dilution does not exceed the MVD. Each incubation plate can accommodate an endotoxin standard curve, a NSC, and 14 test samples (see Table 6-1).

<table>
<thead>
<tr>
<th>Number of Wells</th>
<th>Sample</th>
<th>RPMI-C</th>
<th>EC</th>
<th>Test Sample</th>
<th>PBMCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>20^4</td>
<td>EC</td>
<td>100</td>
<td>50</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>NSC</td>
<td>100</td>
<td>0</td>
<td>0^2</td>
<td>100</td>
</tr>
<tr>
<td>56^3</td>
<td>Test samples</td>
<td>100</td>
<td>0</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Abbreviations: EC = Endotoxin control; IL-6 = Interleukin-6; NSC = Negative saline control; PBMC = Peripheral blood mononuclear cell

1 Five EC concentrations (0.063, 0.125, 0.25, 0.50, and 1.0 EU/mL) in quadruplicate
2 50 µL of PFS is added instead of the test sample.
3 14 test samples (n=4 each) per plate
4 An IL-6 standard curve is prepared in Columns 11 and 12 on the ELISA plate (see Table 6-3). Therefore, 80 wells are available for test samples and controls on the incubation plate.

6.1.3 Incubation Assay for IL-6 Release

Test substances should be vortexed vigorously for at least 30 min or sonicated in a bath sonicator for at least 5 min prior to use in the assay. Test substances should be prepared in serial two-fold dilutions beginning at a level of dilution that did not show interference with the test system (see Section 4.2) in as many subsequent dilutions that are necessary to be within the linear range of the endotoxin standard curve, not to exceed the MVD. PBMC samples are prepared in a microtiter plate using a laminar flow hood (refer to Section 6.1.1). All consumables and solutions must be sterile and pyrogen-free. Each plate should be labeled.

C-86
appropriately with a permanent marker. An overview of the incubation plate preparation is shown in Table 6-1. The incubation procedure is outlined below:

Step 1. Refer to the suggested incubation plate template presented in Table 6-2.

Step 2. Using a pipetter, transfer 100 µL of RPMI-C into each well.

Step 3. Transfer 50 µL of test sample or 50 µL of PFS for the NSC into the appropriate wells as indicated in the template.

Step 4. Transfer 50 µL of the EC (standard curve) in quadruplicate into the appropriate wells according to the template.

Step 5. Transfer 100 µL of a well-mixed PBMC suspension into each well and mix by gently swirling the plate.

Step 6. Mix the contents of the wells thoroughly by pipetting up and down several times using a multichannel pipetter, changing the tips between each row in order to avoid cross-contamination.

Step 7. Place the covered plate in a tissue culture incubator for 16 to 24 hr at 37±1°C in a humidified atmosphere containing 5% CO₂.

Step 8. Prior to transferring the test samples to the ELISA plate, mix the contents of the wells by pipetting up and down using a multichannel pipetter, changing the tips between each row in order to avoid cross-contamination.

Table 6-2 Incubation Plate - Sample and Control Template

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EC 1.0</td>
<td>EC 1.0</td>
<td>EC 1.0</td>
<td>EC 1.0</td>
<td>TS3</td>
<td>TS3</td>
<td>TS3</td>
<td>TS3</td>
<td>TS11</td>
<td>TS11</td>
<td>Void³</td>
<td>Void</td>
</tr>
<tr>
<td>B</td>
<td>EC 0.50</td>
<td>EC 0.50</td>
<td>EC 0.50</td>
<td>EC 0.50</td>
<td>TS4</td>
<td>TS4</td>
<td>TS4</td>
<td>TS4</td>
<td>TS11</td>
<td>TS11</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>C</td>
<td>EC 0.25</td>
<td>EC 0.25</td>
<td>EC 0.25</td>
<td>EC 0.25</td>
<td>TS5</td>
<td>TS5</td>
<td>TS5</td>
<td>TS5</td>
<td>TS12</td>
<td>TS12</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>D</td>
<td>EC 0.125</td>
<td>EC 0.125</td>
<td>EC 0.125</td>
<td>EC 0.125</td>
<td>TS6</td>
<td>TS6</td>
<td>TS6</td>
<td>TS6</td>
<td>TS12</td>
<td>TS12</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>E</td>
<td>EC 0.063</td>
<td>EC 0.063</td>
<td>EC 0.063</td>
<td>EC 0.063</td>
<td>TS7</td>
<td>TS7</td>
<td>TS7</td>
<td>TS7</td>
<td>TS13</td>
<td>TS13</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>F</td>
<td>NSC</td>
<td>NSC</td>
<td>NSC</td>
<td>NSC</td>
<td>TS8</td>
<td>TS8</td>
<td>TS8</td>
<td>TS8</td>
<td>TS13</td>
<td>TS13</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>G</td>
<td>TS1²</td>
<td>TS1</td>
<td>TS1</td>
<td>TS1</td>
<td>TS9</td>
<td>TS9</td>
<td>TS9</td>
<td>TS9</td>
<td>TS14</td>
<td>TS14</td>
<td>Void</td>
<td>Void</td>
</tr>
<tr>
<td>H</td>
<td>TS2</td>
<td>TS2</td>
<td>TS2</td>
<td>TS2</td>
<td>TS10</td>
<td>TS10</td>
<td>TS10</td>
<td>TS10</td>
<td>TS14</td>
<td>TS14</td>
<td>Void</td>
<td>Void</td>
</tr>
</tbody>
</table>

Abbreviations: EC = Endotoxin control; NSC = Negative saline control; TS = Test substance

¹EC value (e.g., EC 1.0) represents the endotoxin concentration in EU/mL.
²TS number (e.g., TS1) represents an arbitrary sequence for individual test substances.
³Columns 11 and 12 are reserved for the IL-6 standard curve on the ELISA plate (see Table 6-3).
6.2 ELISA to Measure IL-6 Release

6.2.1 IL-6 Standard Curve
An IL-6 standard, supplied with the ELISA kit, is used. IL-6 standards are typically supplied in lyophilized form and should be reconstituted according to the manufacturer's instructions. The stock solution should be diluted in RPMI-C to the following concentrations: 0, 62.5, 125, 250, 500, 1000, 2000, and 4000 pg/mL in volumes of at least 500 µL. Each well on the ELISA plate will receive 50 µL of an IL-6 blank or standard.

6.2.2 ELISA
The manufacturer's instructions provided with the ELISA kit should be followed and a typical experimental design is outlined below. The ELISA should be carried out at RT and therefore all components must be at RT prior to use. Frozen specimens should not be thawed by heating them in a water bath. A suggested ELISA plate template is shown in Table 6-3, which includes a five-point EC standard curve, an eight-point IL-6 standard curve (0 to 4000 pg/mL), and available wells for up to 14 test substances and a NSC each in quadruplicate. The EC standard curve, the NSC, and the test sample supernatants are transferred directly from the incubation plate. The IL-6 standard curve is prepared as described in Section 6.2.1. An overview of the ELISA plate preparation is shown in Table 6-4.

Step 1. After pipetting up and down very carefully three times (avoid detachment of the adherent PBMCs) to mix the supernatant, transfer 50 µL from each well of the Incubation Plate (A1-10; H1-10) to the ELISA plate.

Step 2. Add 50 µL of each IL-6 standard (0 to 4000 pg/mL) into the respective wells on the ELISA plate.

Step 3. Add 200 µL of the enzyme-labeled detection antibody (neat as supplied, or diluted, if necessary) to each of the wells.

Step 4. Cover the microtiter plate(s) with adhesive film and incubate for 2 to 3 hr at RT.

Step 5. Decant and wash each well three times with 300 µL Buffered Wash Solution and then rinse three times with deionized water. Place the plates upside down and tap to remove water.

Step 6. Add 200 µL of TMB/Substrate Solution to each well and incubate at RT in the dark for 15 min. If necessary, decrease the incubation time.

Step 7. Add 50 µL of Stop Solution to each well.

Step 8. Tap the plate gently after the addition of Stop Solution to aid in mixing.

Step 9. Read the OD₄₅₀ within 15 min of adding the Stop Solution. Measurement with a reference wavelength of 540 to 590 nm is recommended.9

9The TMB chromagen is measured at OD₄₅₀. However, the use of an IL-1β ELISA kit with a chromagen other than TMB is acceptable. The ELISA should be measured at a wavelength appropriate for the specific chromagen used.
Table 6-3 ELISA Plate - Sample and Control Template

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EC¹</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>TS3</td>
<td>TS3</td>
<td>TS3</td>
<td>TS3</td>
<td>TS11</td>
<td>TS11</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>B</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>TS4</td>
<td>TS4</td>
<td>TS4</td>
<td>TS4</td>
<td>TS11</td>
<td>TS11</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>C</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>TS5</td>
<td>TS5</td>
<td>TS5</td>
<td>TS5</td>
<td>TS12</td>
<td>TS12</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>D</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>TS6</td>
<td>TS6</td>
<td>TS6</td>
<td>TS6</td>
<td>TS12</td>
<td>TS12</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>E</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>EC²</td>
<td>TS7</td>
<td>TS7</td>
<td>TS7</td>
<td>TS7</td>
<td>TS13</td>
<td>TS13</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>F</td>
<td>NSC</td>
<td>NSC</td>
<td>NSC</td>
<td>NSC</td>
<td>TS8</td>
<td>TS8</td>
<td>TS8</td>
<td>TS8</td>
<td>TS13</td>
<td>TS13</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>G</td>
<td>TS1²</td>
<td>TS1</td>
<td>TS1</td>
<td>TS1</td>
<td>TS9</td>
<td>TS9</td>
<td>TS9</td>
<td>TS9</td>
<td>TS14</td>
<td>TS14</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
<tr>
<td>H</td>
<td>TS2</td>
<td>TS2</td>
<td>TS2</td>
<td>TS2</td>
<td>TS10</td>
<td>TS10</td>
<td>TS10</td>
<td>TS10</td>
<td>TS14</td>
<td>TS14</td>
<td>IL-6</td>
<td>IL-6</td>
</tr>
</tbody>
</table>

Abbreviations: EC = Endotoxin control; NSC = Negative saline control; TS = Test substance
¹EC value (e.g., EC 1.0) represents the endotoxin concentration in EU/mL.
²TS number (e.g., TS1) represents an arbitrary sequence for individual test substances.
³IL-6 values in columns 11 and 12 are in pg/mL.

Table 6-4 Overview of ELISA Procedure

<table>
<thead>
<tr>
<th>Material transfer from Incubation Plate (µL)</th>
<th>IL-6 standard (0 to 4000 pg/mL) (µL)</th>
<th>Enzyme-labeled Antibody (µL)</th>
<th>Cover the Incubation Plate and incubate for 2 to 3 hr at RT.</th>
<th>Decant and wash each well three times with 300 µL Buffered Wash Solution and three times with deionized water.</th>
<th>TMB/Substrate Solution (µL)</th>
<th>Incubate for less than 15 min at RT in dark.</th>
<th>Stop Solution (µL)</th>
<th>Read each well at OD(450) with a 540 to 590 nm reference filter.</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: OD(450) = Optical density at 450 nm; RT = Room temperature

7.0 EVALUATION OF TEST METHODS

7.1 OD Measurements

The OD of each well is obtained by reading the samples in a standard microplate spectrophotometer (i.e., plate reader) using a visible light wavelength of 450 nm (OD(450) with
a 540 to 590 nm reference filter (recommended)\(^\text{10}\). OD values are used to determine assay acceptability and in the decision criteria for pyrogen detection (see Sections 8.0 and 9.0).

8.0 CRITERIA FOR AN ACCEPTABLE TEST

An EC (five-point standard curve) and a NSC should be included in each experiment. An IL-6 standard curve should be included in each ELISA as shown in the template presented in Table 6-3. An assay is considered acceptable only if the following minimum criteria are met:

- The quadratic function of the IL-6 standard curve produces an \(r \geq 0.95 \)\(^\text{11}\) and the OD of the blank control is below 0.15.
- The endotoxin standard curve produces OD values that ascend in a sigmoidal concentration response.

Blood donors (or a pool of blood donors) are considered to be low responders if their OD\(_{450}\) value obtained for 1.0 EU/mL EC is below the OD\(_{450}\) value obtained for 1000 pg/mL IL-6. Blood donors (or a pool of blood donors) who produce an OD\(_{450}\) value for the NSC that is above the OD\(_{450}\) value at 500 pg/mL IL-6 are considered to be high responders. Low and high responders should be excluded from analysis. The preparation being examined is required to pass the test with blood donations from at least three different donors (i.e., either as a pool of three individual donors or as three individual donors tested independently).

An outlying observation that represents either a pool of multiple independent donors or a single individual donor may be excluded if there is confirmation that the accuracy of the medical information provided by an individual donor is suspect, or if the aberrant response is identified using acceptable statistical methodology (e.g., Dixon's test [Dixon 1950; Barnett and Lewis 1994], Grubbs' test [Barnett and Lewis 1994; Grubbs 1969; Iglewicz and Houghlin 1993]).

9.0 DATA INTERPRETATION/DECISION CRITERIA

9.1 Decision Criteria for Pyrogen Detection\(^\text{12}\)

A test substance is considered pyrogenic when the endotoxin concentration of the test substance exceeds the ELC for the test sample. The ELC can be calculated as shown in Section 12.2.

10.0 STUDY REPORT

The test report should include the following information:

Test Substances and Control Substances

- Name of test substance

\(^\text{10}\)The TMB chromagen is measured at OD\(_{450}\). However, the use of an IL-1\(\beta\) ELISA kit with a chromagen other than TMB is acceptable. The ELISA should be measured at a wavelength appropriate for the specific chromagen used.

\(^\text{11}\)Correlation coefficient (\(r \)), an estimate of the correlation of \(x \) and \(y \) values in a series of \(n \) measurements.

\(^\text{12}\)Decision criteria for individual donors were defined in the ECVAM SOP for the PBMC/IL-6 test method. Test method users should refer to these criteria if multiple donors are tested independently.
• Purity and composition of the substance or preparation
• Physicochemical properties (e.g., physical state, water solubility)
• Quality assurance data
• Treatment of the test/control substances prior to testing (e.g., vortexing, sonication, warming, resuspension solvent)

Justification of the In Vitro Test Method and Protocol Used

Test Method Integrity
• The procedure used to ensure the integrity (i.e., accuracy and reliability) of the test method over time
• If the test method employs proprietary components, documentation on the procedure used to ensure their integrity from “lot-to-lot” and over time
• The procedures that the user may employ to verify the integrity of the proprietary components

Criteria for an Acceptable Test
• Acceptable concurrent positive control ranges based on historical data
• Acceptable negative control data

Test Conditions
• Cell system used
• Calibration information for the spectrophotometer used to read the ELISA
• Details of test procedure used
• Description of any modifications of the test procedure
• Reference to historical data of the model
• Description of evaluation criteria used

Results
• Tabulation of data from individual test samples

Description of Other Effects Observed

Discussion of the Results

Conclusion

A Quality Assurance Statement for Good Laboratory Practice (GLP)-Compliant Studies
• This statement should indicate all inspections made during the study and the dates any results were reported to the Study Director. This statement should also confirm that the final report reflects the raw data.

If GLP-compliant studies are performed, then additional reporting requirements provided in the relevant guidelines (e.g., OECD 1998; EPA 2003a, 2003b; FDA 2003) should be followed.
11.0 REFERENCES

12.0 TERMINOLOGY AND FORMULA

12.1 Assay Sensitivity (λ)1

The variable λ is defined as the labeled sensitivity (in EU/mL) of the LAL Reagent in endpoint assays (e.g., the BET gel-clot technique). For kinetic BET assays, λ is the lowest point used in the endotoxin standard curve.

12.2 Endotoxin Limit Concentration (ELC)1,2

The ELC for parenteral drugs is expressed in Endotoxin Units (EU) per volume (mL) or weight (mg). The ELC is equal to K/M, where:

- K is the threshold human pyrogenic dose of endotoxin (EU) per body weight (kg). K is equal to 5.0 EU/kg for intravenous administration. For intrathecal administration, K is equal to 0.2 EU/kg (see also Section 12.5).
- M is the rabbit test dose or the maximum recommended human dose of product (mL or mg) per body weight (kg) in a single hour period (see also Section 12.8).

For example, if a non-intrathecal product is used at an hourly dose of 10 mL per patient, then the ELC would be 0.50 EU/mL.

12.3 Maximum Valid Dilution (MVD)1,2

The MVD is the maximum allowable dilution of a test substance at which the endotoxin limit can be determined. The calculation of the MVD is dependent on the ELC for a test substance. When the ELC is known, the MVD is1:

$$\text{MVD} = \left(\frac{\text{ELC} \times \text{Product Potency [PP]}}{\lambda}\right)$$

As an example, for Cyclophosphamide Injection, the ELC is 0.17 EU/mg, PP is 20 mg/mL, and the assay sensitivity is 0.065 EU/mL. The calculated MVD would be 1:52.3 or 1:52. The test substance can be diluted no more than 1:52 prior to testing.

If the ELC is not known, the MVD is1:

$$\text{MVD} = \frac{\text{PP} \times \text{Minimum Valid Concentration (MVC)}}{\lambda}$$

where, MVC = $\frac{(\lambda \times M)}{K}$

where, M is the maximum human dose

As an example, for Cyclophosphamide Injection, the PP is 20 mg/mL, M is 30 mg/kg, and assay sensitivity is 0.065 EU/mL. The calculated MVC is 0.390 mg/mL and the MVD is 1:51.2 or 1:51. The test substance can be diluted no more than 1:51 in the assay prior to testing.

12.4 Negative Product Control (NPC)

For interference testing, the NPC is a test sample to which pyrogen-free saline (PFS) is added. The NPC is the baseline for determination of cytokine release relative to the endotoxin-spiked PPC.

1From FDA (1987)
2From USP (2007)
12.5 Parenteral Threshold Pyrogen Dose (K)\(^{1,2}\)

The value K is defined as the threshold human pyrogenic dose of endotoxin (EU) per body weight (kg). K is equal to 5.0 EU/kg for parenteral drugs except those administered intrathecally; 0.2 EU/kg for intrathecal drugs.

12.6 Positive Product Control (PPC)

For interference testing, the PPC is a test substance spiked with the control standard endotoxin (i.e., 0.5 EU/mL or an amount of endotoxin equal to that which produces ½ the maximal increase in optical density (OD) from the endotoxin standard curve) to insure that the test system is capable of endotoxin detection in the product as diluted in the assay.

12.7 Product Potency (PP)\(^{1,2}\)

The test sample concentration expressed as mg/mL or mL/mL.

12.8 Rabbit Pyrogen Test (RPT) Dose or Maximum Human Dose (M)\(^{1,2}\)

The variable M is equal to the rabbit test dose or the maximum recommended human dose of product per kg of body weight in a single hour period. M is expressed in mg/kg or mL/kg and varies with the test substance. For radiopharmaceuticals, M equals the rabbit dose or maximum human dose/kg at the product expiration date or time. Use 70 kg as the weight of the average human when calculating the maximum human dose per kg. If the pediatric dose/kg is higher than the adult dose, then it shall be the dose used in the formula.