International Acceptance of the Nonradioactive LLNA: BrdU-ELISA for Evaluating Allergic Contact Dermatitis Hazards

A Jacobs¹, J Matheson², V Malshet¹, J Toy¹, J Strickland³, D Allen³, T Burns³, F Stack³, W Stokes⁴

¹U.S. FDA, Silver Spring, MD, USA; ²U.S. CPSC, Bethesda, MD, USA; ³ILS, Inc., RTP, NC, USA; ⁴NICEATM/NIEHS/NIH/HHS, RTP, NC, USA
Introduction

- The murine local lymph node assay (LLNA) is a test method for assessing the potential of substances to cause allergic contact dermatitis (ACD). ACD is an allergic skin reaction characterized by redness, swelling, and itching that can result from repeated contact with a sensitizing substance.

- In response to a nomination by the U.S. Consumer Product Safety Commission in 2007, NICEATM evaluated the nonradioactive LLNA: BrdU-ELISA (Figure 1) to assess the ACD hazard potential of substances.

- Takeyoshi et al. developed the LLNA: BrdU-ELISA (Takeyoshi et al. 2001).
 - Measures BrdU incorporation in draining auricular lymph nodes as a measure of lymph node cell proliferation.

LLNA: BrdU-ELISA Test Method Protocol

- The LLNA: BrdU-ELISA protocol (Figure 1) is the same as the traditional LLNA protocol except:
 - It measures BrdU incorporation into lymph node cells via ELISA as a measure of proliferation (instead of \(^3\)H-thymidine via scintillation counter in the traditional LLNA)
 - BrdU is injected intraperitoneally instead of intravenously through the tail vein

- The reduced LLNA: BrdU-ELISA (rLLNA: BrdU-ELISA) should be considered and used to determine the ACD hazard potential of chemicals and products in testing situations where dose-response information is not required, or negative results are anticipated.
 - Like the reduced LLNA (ESAC 2007; ICCVAM 2009; Kimber et al. 2006), the rLLNA: BrdU-ELISA protocol uses only the high dose and thereby reduces animal use by up to 40%.
 - If existing information suggests a substance might have ACD hazard potential and dose-response information is needed, consider testing in the multidose LLNA: BrdU-ELISA.
Figure 1 LLNA: BrdU-ELISA Test Method Protocol

Days 1-3
- Apply 25 µl Test Substance

Day 4
- No Treatment

Days 5-6
- Prepare Single Cell Suspension
- Collect Draining Auricular Lymph Nodes
- 24 Hours Later Administer BrdU (intraperitoneal injection)

Mean BrdU Labeling Index

\[
SI = \frac{\text{Mean BrdU Labeling Index for Treatment Group}}{\text{Mean BrdU Labeling Index for Control Group}}
\]

- SI ≥ 1.6 = Sensitizer (Positive)
- SI < 1.6 = Nonsensitizer (Negative)

Abbreviations: SI = stimulation index
Current Validation Status of the LLNA: BrdU-ELISA

Accuracy

- Accuracy was assessed using a LLNA: BrdU-ELISA database of 43 substances.
 - Kojima et al. 2008 (interlaboratory validation study)
 - Takeyoshi et al. 2003; 2004a and b; 2005; 2006; 2007, and unpublished data

- Results compared to traditional LLNA data.

- LLNA: BrdU-ELISA results were compared to traditional LLNA data.

- Stimulation index (SI) ≥ 1.6 produced optimal results based on no false negatives (Figure 2).

- LLNA: BrdU-ELISA correctly identified all 32 LLNA sensitizers and 9/11 LLNA nonsensitizers.
 - Accuracy = 95% (41/43)
 - False positive rate = 18% (2/11)
 - Hexane and lactic acid: 1.6 < SI < 1.9
 - False negative rate = 0% (0/32)

Reliability

- Determined extent of agreement of LLNA: BrdU-ELISA outcomes for 18 substances (13 LLNA sensitizers and 5 LLNA nonsensitizers) with multiple test results (intra- and interlaboratory comparisons included).
 - Complete agreement for 85% (11/13) of the sensitizer outcomes.
• Two substances (hydroxycitronellal and linalool) produced SI < 1.6 in one test and SI > 1.6 in another test.
 − Complete agreement for 80% (4/5) of the nonsensitizer outcomes.

• Two substances with concordant results were false positive in LLNA: BrdU-ELISA: hexane (2/2 tests had SI ≥ 1.6) and lactic acid (3/3 tests had SI ≥ 1.6).

• 71% (5/7) agreement for the discordant nonsensitizer (isopropanol).
Compared to traditional LLNA results, the lines show the change in performance characteristics for the LLNA: BrdU-ELISA with the SI used to identify skin sensitizers. This analysis used LLNA results for 32 sensitizers and 11 nonsensitizers. For 18 substances with multiple LLNA: BrdU-ELISA test results, the most prevalent outcome was used.
The LLNA: BrdU-ELISA can be used to identify potential skin sensitizers or nonsensitizers.
- Use SI ≥ 1.6 to identify potential skin sensitizers.

A slight potential for false positives with borderline weak positive responses $(1.6 < SI < 1.9)$ exists.
- Consider additional information such as dose-response relationship strength, statistical significance, evidence of systemic toxicity, and/or excessive skin irritation together with SI values.

The LLNA: BrdU-ELISA might not be appropriate for testing classes of materials with properties that interfere with the assay.
- Unlike the traditional LLNA, the LLNA: BrdU-ELISA can be used to test nickel compounds, based on its ability to correctly identify these compounds as potential skin sensitizers.
Public meetings of an international independent scientific peer review panel were held at the Consumer Product Safety Commission in Bethesda, MD, on March 4-6, 2008, and at the National Institutes of Health in Bethesda, MD, on April 28-29, 2009.

Charge to the Peer Review Panel

- Review the draft Background Review Document (BRD) for errors and omissions
- Provide conclusions and recommendations on the current validation status of the LLNA: BrdU-ELISA
- Does the information contained in the draft BRD support ICCVAM’s draft test method recommendations?
Peer Review Panel Conclusions

- Concurred that the available data and test method performance supported the use of the LLNA: BrdU-ELISA to identify substances as sensitizers and nonsensitizers, with certain limitations
- Recommended that before animal testing is conducted, consideration be given to the necessity for the substance to be tested for skin sensitization potential
- The complete LLNA Peer Review Panel Reports can be accessed at:
Independent Scientific Peer Review Panel

Michael Luster, PhD (Panel Chair)
Senior Consultant to the National Institute for Occupational Safety and Health
Morgantown, WV

Nathalie Alépée, PhD
L’Oréal Research and Development
Aulnay sous Bois, France

Anne Marie Api, PhD
Research Institute for Fragrance Materials
Woodcliff Lake, NJ

Nancy Flournoy, MS, PhD
University of Missouri–Columbia
Columbia, MO

Thomas Gebel, PhD
Federal Institute for Occupational Safety and Health
Dortmund, Germany

Sidney Green, PhD
Howard University
Washington, DC

Kim Headrick, BAdmin, BSc
Health Canada
Ottawa, Ontario, Canada

Dagmar Jírová, MD, PhD
National Institute of Public Health
Prague, Czech Republic

David Lovell, PhD
University of Surrey
Guildford, Surrey, U.K.

Howard Maibach, MD
University of California–San Francisco
San Francisco, CA

James McDougal, PhD
Wright State University
Dayton, OH

Michael Olson, PhD
GlaxoSmithKline
Research Triangle Park, NC

Raymond Pieters, PhD
Utrecht University
Utrecht, The Netherlands

Jean Regal, PhD
University of Minnesota Medical School
Duluth, MN

Jonathan Richmond, MB ChB, FRCSEd
Home Office
London, U.K.

Peter Theran, VMD
Consultant, Massachusetts Society for the Prevention of Cruelty to Animals
Novato, CA

Stephen Ullrich, PhD
M.D. Anderson Cancer Center
Houston, TX

Michael Woolhiser, PhD
Dow Chemical
Midland, MI

Takahiko Yoshida, MD, PhD
Asahikawa Medical College
Hokkaido, Japan
International Acceptance of the LLNA: BrdU-ELISA

- ICCVAM agreed with the OECD Expert Consultation Group that a single SI ≥ 1.6 to classify substances as skin sensitizers would avoid false negative and indeterminate results, which are not useful for regulatory purposes.

- OECD Test Guideline 442B Skin Sensitization: Local Lymph Node Assay: BrdU-ELISA, which includes the SI ≥ 1.6 to classify substances as skin sensitizers, was adopted on July 22, 2010 (OECD 2010).

- OECD Test Guideline 442B can be accessed at http://www.oecd-ilibrary.org/

- International acceptance of the LLNA: BrdU-ELISA is expected to result in broader use of LLNA tests.
 - Will further reduce and refine animal use for ACD hazard assessments on a global basis, while ensuring human safety
 - Will reduce costs and environmental hazards associated with the use of radioactive substances
ICCVAM Interagency Immunotoxicity Working Group

Consumer Product Safety Commission
Joanna Matheson, PhD (Working Group Co-chair)
Marilyn Wind, PhD (to July 2010)

Environmental Protection Agency
Office of Pesticide Programs
Jonathan Chen, PhD
John R. "Jack" Fowle III, PhD, DABT
Masih Hashim, DVM, PhD
Marianne Lewis
Deborah McCall
Timothy McMahon, PhD
John Redden
Jenny Tao, PhD

Office of Pollution Prevention and Toxics
Elizabeth Margosches, PhD
Ronald Ward, PhD

Office of Research and Development
Marsha Ward, PhD

Food and Drug Administration
Center for Devices and Radiological Health
Vasant G. Malshet, PhD, DABT
Jeffrey Toy, PhD

Center for Drug Evaluation and Research
Ruth Barratt, PhD, DVM
Paul Brown, PhD
Abigail Jacobs, PhD (Working Group Co-chair)
Jiaqin Yao, PhD

Center for Food Safety and Applied Nutrition
Donnie Lowther
Neil Wilcox, DVM, MPH (to April 2011)

Office of the Commissioner
Suzanne Fitzpatrick, PhD, DABT

National Institute of Environmental Health Sciences
Warren Casey, PhD, DABT
Dori Germolec, PhD
William Stokes, DVM, DACLAM

National Institute for Occupational Safety and Health
B. Jean Meade, DVM, PhD
Paul D. Siegel, PhD

National Library of Medicine
Pertti Hakkinen, PhD

European Centre for the Validation of Alternative Methods - Liaison
Silvia Casati, PhD
Alexandre Angers, PhD

Japanese Center for the Validation of Alternative Methods - Liaison
Hajime Kojima, PhD
References

Acknowledgments

The Intramural Research Program of the National Institute of Environmental Health Sciences (NIEHS) supported this poster. Technical support was provided by ILS, Inc., under NIEHS contract N01-ES 35504.

This poster reflects the views of the authors. The views expressed above have not been reviewed or approved by the U.S. Consumer Product Safety Commission or any other U.S. Federal agency and do not necessarily represent the official position of any U.S. Federal agency.

Since the poster was written as part of the official duties of the authors, it can be freely copied.

NICEATM and ICCVAM gratefully acknowledge the following individuals and institutions that submitted data to NICEATM used to evaluate the LLNA: BrdU-ELISA.

Masahiro Takeyoshi, PhD
Chemicals Evaluation and Research Institute
Saitama, Japan

Hajime Kojima, PhD
Japanese Center for the Validation of Alternative Methods
National Institute of Health Sciences
Ministry of Health, Labour and Welfare
Tokyo, Japan