Usefulness and Limitations of the Cytosensor® Microphysiometer (CM) Test Method for Ocular Safety Testing

W Stokes¹, D Lowther², J Redden³, E Lipscomb¹, J Truax⁴, N Johnson⁴, D Allen⁴
¹NICEATM/NIEHS/NIH/HHS, RTP, NC, USA; ²U.S. FDA/CFSAN, College Park, MD, USA; ³U.S. EPA, Washington, DC, USA; ⁴ILS, Inc., RTP, NC, USA

Introduction

- The Cytosensor® microphysiometer (CM) test method evaluates damage to corneal and conjunctival epithelium.
- Use of CM is restricted to water soluble substances.
- CM evaluates interference with keratocyte, fibroblast, and conjunctival epithelial cell function, by monitoring the rate of acidification in a chamber containing a multi-well plate of cells.
- Rate of pH change per well is taken as a relative measure of cell function and lower values are indicative of presence of irritation.

Figure 1. Diagram of the Operating Components of CM

Figure 2. ICCVAM-Recommended Protocol for CM

Figure 3. Example of CM Data and MRD_{50} Calculation

Table 1. Decision Criteria for the EPA and GHS Classification Systems Used for CM Evaluation

<table>
<thead>
<tr>
<th>Substance</th>
<th>EPA Classification</th>
<th>GHS Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Category IV</td>
<td>Category 1</td>
</tr>
<tr>
<td>≤ 12</td>
<td>Category II-III</td>
<td>Category 2</td>
</tr>
<tr>
<td>> 12</td>
<td>Category I</td>
<td>Category 3</td>
</tr>
</tbody>
</table>

Table 2. Accuracy for Surfactant-Containing Substances

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>False Positive Rate</th>
<th>False Negative Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>52</td>
<td>66</td>
<td>19/29</td>
<td>67</td>
<td>16/24</td>
</tr>
<tr>
<td>GHS</td>
<td>50</td>
<td>44</td>
<td>23/25</td>
<td>71</td>
<td>5/7</td>
</tr>
</tbody>
</table>

Table 3. Accuracy for Nonsurfactant Substances

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Accuracy</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>False Positive Rate</th>
<th>False Negative Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA</td>
<td>92</td>
<td>92</td>
<td>23/25</td>
<td>71</td>
<td>5/7</td>
</tr>
<tr>
<td>GHS</td>
<td>90</td>
<td>90</td>
<td>23/25</td>
<td>71</td>
<td>5/7</td>
</tr>
</tbody>
</table>

Test Method Accuracy

Distinguishing Ocular Corrosives and Severe Irritants from All Other Ocular Hazard Categories
- For these studies, select from the list of ICCVAM-recommended reference substances for the CM test method.
- Use the CM test method to identify corrosives/severe irritants and substances not labeled as irritants.

ICCVAM Recommendations: Usefulness and Limitations

- Valid across different chemical structures and test results may be compared across testing laboratories.
- Test results may be compared with other irritant severity classification systems.
- Test results may be compared with other irritant severity classification systems.
- Test results may be compared with other irritant severity classification systems.

References

Acknowledgements

The Intramural Research Program of the National Institutes of Environmental Health Sciences (NIEHS) supported this research. Technical support was provided by NIEHS under NIEHS contract N01-ES-65505. The views expressed in this article are those of the author(s) and do not necessarily reflect the official positions of any agency or department.