

Short-term atrazine exposure alters the plasma metabolome of male C57BL/6 mice and disrupts specific metabolic pathways

Zhoumeng Lin, Ph.D.

Ph.D. advisor: Dr. Nikolay M. Filipov Interdisciplinary Toxicology Program Department of Physiology and Pharmacology College of Veterinary Medicine The University of Georgia

Present address: Institute of Computational Comparative Medicine (ICCM) and the Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University

1. Introduction

Atrazine (ATR) is a widely used herbicide and a ubiquitous environmental contaminant in the US

Possible ATR Adverse Outcome Pathway(s)

(EPA, 2003; Coban and Filipov, 2007; Lin et al., 2011; Lin et al., 2013a; Lin et al., 2013b; Lin et al., 2013c; Lin et al., 2014; Toccalino et al., 2014)

2. Main methods Experimental design:

Animals: adult male C57BL/6 mice

Exposure to 0, 5, 25, 125 and 250 mg/kg/day ATR for 10 days by oral gavage

Plasma samples were collected on Day 10 and analyzed with high-performance, dual chromatography-Fouriertransform mass spectrometry.

(Lin et al, 2013a; Soltow et al., 2013)

2. Key findings (1)

ATR exposure resulted in a dose-dependent change of the mouse plasma metabolome.

Principle Component Analysis (PCA) Score Plot

2. Key findings (2)

ATR exposure dose-dependently increased the number of metabolites with ion intensities significantly different from the control group.

2. Key findings (3)

Pearson correlation analysis showed 365 m/z were strongly correlated with ATR and all its three major chlorinated metabolites.

2. Key findings (4)

> Metlin database analysis showed that ATR and its metabolites are strongly correlated with metabolites involving tyrosine, tryptophan, linoleic acid, and α -linolenic acid pathways.

Table 1 Matabalitan of interact that are strangly correlated with stranging owners

m/z	Retention time (s)	Metabolite name	Formula	Adduct	ppm	Correlation	Correlated	
						coefficient	atrazine/metabolites	
182.081	104.878	Tyrosine	C9H11NO3	M+H	0	-0.60	ATR+DE+DIP+DACT	
132.102	192.841	Leucine/Isoleucine	C6H13NO2	M+H	3	-0.56	ATR+DE+DIP+DACT	
546.355	518.894	LysoPC(20:3)	C28H52NO7P	M+H	1	-0.52	ATR+DE+DIP+DACT	
572.367	529.039	LysoPC(22:4)	C30H54NO7P	M+H	7	-0.51	ATR+DE+DIP+DACT	
162.112	102.706	Carnitine	C7H15NO3	M+H	1	-0.50	ATR+DE+DIP+DACT	
2 <mark>60.187</mark>	521.723	Hexanoylcarnitine	C13H25NO4	M+H	4	- <mark>0.4</mark> 4	ATR+DE+DIP+DACT	
166.086	100.046	Phenylalanine	C9H11NO2	M+H	1	-0.36	ATR+DE+DIP+DACT	
428,376	499.214	Stearoylcarnitine	C25H49NO4	M+H	5	-0.36	ATR+DE+DIP+DACT	
190.050	525.208	Kynurenic acid	C10H7NO3	M+H	1	0.42	ATR+DE+DIP+DACT	
279.233	507.641	Linolenic Acid	C18H30O2	M+H	2	0.53	ATR+DE+DIP+DACT	
246.075	173.374	Proglinazine	C8H12CIN5O2	M+H	1	0.60	ATR+DE+DIP+DACT	
204.064	149.866	Indolepyruvate	C11H9NO3	M+H	5	0.67	ATR+DE+DIP+DACT	
172.038	122.136	Dihydroxyindole	C8H7NO2	M+Na	6	0.84	ATR+DE+DIP+DACT	
205.097	105.479	Tryptophan	C11H12N2O2	M+H	1	-0.57	ATR+DACT	
450.358	468.727	Stearoylcarnitine	C25H49NO4	M+Na	5	0.31	ATR+DACT	

2. Key findings (5)

ATR exposure altered ion intensities of metabolites involving tyrosine, tryptophan, linoleic acid, and αlinolenic acid pathways.

Pathway/Metabolite	m/z ratio	Adduct	Control	125 mg/kg atrazine	p value
Tyrosine metabolism				Statistic Int	
Beta-tyrosine	182.0810	M+H	189283.992 ± 37488.177	98210.812 ± 27956.879	0.087
Tryptophan metabolism					
Tryptophan	205.0969	M+H	1019420.962 ± 147828.090	645464.129 ± 213771.769	0.188
Indolepyruvate	204.0643	M+H	1947.036 ± 168.859	66304.072 ± 28804.879	0.095
Kynurenic acid	190.0501	M+H	31028.104 ± 16880.597	23194.91 ± 2871.946	0.660
N-Acetylisatin	190.0501	M+H	31028.104 ± 16880.597	23194.91 ± 2871.946	0.660
Indolepyruvate/Tryptophan ratio		M+H	0.00168 ± 0.000133	0.180 ± 0.0907	0.095
Kynurenic acid/Tryptophan ratio	(*)	M+H	0.0338 ± 0.0223	0.0717 ± 0.0282	0.322
N-Acetylisatin/Tryptophan ratio	-	M+H	0.0338 ± 0.0223	0.0717 ± 0.0282	0.322
inoleic acid metabolism					
Y-Linolenate	279.2325	M+H	26377.484 ± 10676.857	99976.905 ± 29811.562	0.049
Crepenynate	279.2325	M+H	26377.484 ± 10676.857	99976.905 ± 29811.562	0.049
9-OxoODE	295.2274	M+H	174688.392 ± 46316.891	227818.573 ± 42553.150	0.423
13-OxoODE	295.2274	M+H	174688.392 ± 46316.891	227818.573 ± 42553.150	0.423
-Linolenic acid metabolism					
α-Linolenic acid	279.2325	M+H	26377.484 ± 10676.857	99976.905 ± 29811.562	0.049
13(S)-HpOTrE	311,2223	M+H	84042.802 ± 22155.600	325147.659 ± 66906.121	0.009
12,13EOTrE	293.2113	M+H	63114.041 ± 21272.621	143606.124 ± 19669.706	0.024
12-OPDA	293.2113	M+H	63114.041 ± 21272.621	143606.124 ± 19669.706	0.024
OPC8	295.2274	M+H	174688.392 ± 46316.891	227818.573 ± 42553.150	0.423
13(S)-HpOTrE/α-Linolenic acid	14	M+H	19.384 ± 11.852	4.658 ± 1.519	0.253
12,13-EOTrE/a-Linolenic acid	-	M+H	6.821 ± 2.759	2.142 ± 0.706	0.139
12-OPDA/α-Linolenic acid		M+H	6.821 ± 2.759	2.142 ± 0.706	0.139
OPC8/a-Linolenic acid	-	M+H	73.522 ± 42.879	3.742 ± 1.951	0.143

2. Key findings (6) > Proposed ATR Adverse Outcome Pathways (AOPs).

A. Hyperactivity AOP B. Cognitive deficit AOP

3. Summary

- ATR alters plasma metabolome and disrupts multiple metabolic pathways.
- ATR-induced perturbation of periphery tyrosine and tryptophan metabolism may be reflective of the previously reported alterations of brain dopamine and serotonin homeostasis.
- Two AOPs for ATR toxicity are proposed. However, additional studies are needed to verify these results and to identify molecular initiating events involved in these AOPs.
- The alterations in the plasma metabolome, especially of the αlinolenic acid and linoleic acid metabolic pathways, are potential novel and sensitive biomarkers of ATR toxicity, and could be used for identification of novel AOPs.

Acknowlegements

THE UNIVERSITY OF GEORGIA® College of Veterinary Medicine

Interdisciplinary Toxicology Program

- Ph.D. advisor: Dr. Nikolay M. Filipov
- Lab members: Dr. Celia A. Dodd, Irina I. Georgieva, Saritha Krishna
- Graduate assistantships: Interdisciplinary Toxicology Program,
- Graduate School, and Department of Physiology and Pharmacology of
- The University of Georgia
- Collaborators: Dr. Dean P. Jones, Dr. James R. Roede from Emory University, and Chunla He from The University of Georgia
- Travel support: National Toxicology Program Interagency Center for the
- **Evaluation of Alternative Toxicological Methods (NICEATM)**
- **Postdoc mentor**: Dr. Jim E. Riviere from the Institute of
- **Computational Comparative Medicine at the Kansas State**
- University

