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= High throughput screening (HTS) methods exist for identifying
chemical concentrations that may induce changes to human
biology (e.g., Tox21, ToxCast)

= High throughput exposure (HTE) methods exist for predicting
potential human exposure for arbitrary chemicals (e.g.,
ExpoCast — Wambaugh et al., 2014)

= Toxicokinetics (TK) provides a bridge between HTS and HTE by
predicting tissue concentrations due to exposure

PR ISPl Office of Research and Development



wEPA Introduction

United States
Environmental Protection
Agency

= Toxicokinetics (TK) provides a bridge between HTS and HTE by
predicting tissue concentrations due to exposure

* Traditional TK methods are resource intensive

= Relatively high throughput TK (HTTK) methods have been used by
the pharmaceutical industry to determine range of efficacious

doses and to prospectively evaluate success of planned clinical trials
(Jamei, et al., 2009; Wang, 2010)

* Akey application of HTTK has been “reverse dosimetry” (also called
Reverse TK or RTK)

e RTK can approximately convert in vitro HTS results to daily doses
needed to produce similar levels in a human for comparison to
exposure data (Wetmore, et al., 2012)

RN ISPl Office of Research and Development
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Tox21: Examining >10,000 chemicals
using ~50 assays intended to identify
interactions with biological pathways
(Schmidt, 2009)

ToxCast: For a subset (>1000) of Tox21
chemicals ran >500 additional assays
(Judson et al., 2010)

Most assays conducted in dose-
response format (identify 50% activity
concentration — AC50 — and efficacy if
data described by a Hill function)

All data is public: http://actor.epa.gov/
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Myclobutanil

Triticonazole

Fenamidone

Hexaconazole

Iprodione

Triadimenol

Prochloraz

Difenoconazole

Fenbuconazole

Cyproconazole

Triflumizole

Imazalil

Tetraconazole

Flusilazole

1e-04 1e-02

Oral Dose (mg/kg/day)

Judson et al. (2011)
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In vitro Bioactivity, RTK, and in Vivo
Toxic Doses

Comparison of HTTK predicted
oral equivalent doses (box and
whisker plots in mg/kg/day)
with doses for no effect and low
effect groups in animal studies

m Lowest Observed Effect Level
A No Observed Effect Level
(NEL)
NEL/100

Estimated chronic exposure
levels from food residues are
indicated by vertical red lines. All
values are in mg/kg/day.
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In Vitro Bioactivity, In Vivo Toxicokinetics,
and Human Exposure

300

250

200 -

150 -

100 -

Number of Chemicals

ToxCast Phase | (Wetmore et al. ToxCast Phase Il (Wetmore et

2012)
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al. in preparation)

1 ToxCast Chemicals
Examined

B Chemicals with
Traditional Exposure
Estimates

B Chemicals with
Traditional in vivo TK

Egeghy et al. (2012):

There is a paucity of data for
providing exposure context to HTS
data



In Vitro Bioactivity, In Vitro Toxicokinetics,

A
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Environmental Protection
Agency

M ToxCast Chemicals
Examined

B Chemicals with
Traditional Exposure
Estimates

B Chemicals with High
Throughput TK

Egeghy et al. (2012):

There is a paucity of data for
providing exposure context to HTS
data

ToxCast Phase | (Wetmore et al. ToxCast Phase Il (Wetmore et

2012) al. in preparation) HTTK studies like Wetmore et al.
(2012), can address the need for
toxicokinetic data
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Wetmore et al. (2012)

" One point for each chemical-in vitro assay combination with a
systematic (Hill function) concentration response curve
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= In vitro plasma protein
binding and metabolic
clearance assays allow
approximate hepatic and
renal clearances to be
calculated

= At steady state this allows
conversion from
concentration to
administered dose

= No oral absorption/
bioavailability included

CNo)i:IsPl Office of Research and Development

Predicting Steady-State Plasma

Concentration

Minimal Model: Lumped Single Distribution Volume J5im
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(Fraction Unbound in Plasma)
s
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Double-wells Add plasma (6 Add chemical Incubate plates to Determine
connected by semi- canor paot for allow wells with concentration in
permeable human) to one and without both wells
Fr&m hrane_ o a well protein to come {analytical
Ffapid_ Equilibrium to equilibrium chemistry)
Dialysis [RED) Plate

= Data on ToxCast chemicals initially collected at Hamner

Institutes
RED Method: =  Published:
Waters et al. (2008) . Rotroff et al. (2010) - Pilot study using 38 Phase | ToxCast Chemicals

= Wetmore et al. (2012) - Remainder of easily analyzed Phase | chemicals
. Wetmore et al. (2013) - Rat TK for 50 ToxCast/ToxRefDB compounds

YRR Office of Research and Development u Wetmore et al. (2014) — Assessed variability in metabolism for a dozen
ToxCast compounds
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Cryopreserved Add Chemical Remowve Aliquots Analytical
Hepatocytes (1 and 10 un) at 15, 30, 60, 120 Chemistry
(10 donor pool for i
& human) )

The rate of disappearance E; T_‘.H‘ 1 and 10 uM to check for
of parent compound PTEy = m“Ml saturation of metabolizing
(slope of line) is the 3 i —» enzymes.

hepatic clearance g Lt
(LL/min/10° hepatocytes) : =
[ 50 100 150
Tirme {min)
CryorepeF{rientiep acory bt
Method: Shibata et al. (2002)
= Data on ToxCast chemicals
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oral dose rate
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Steady-state Concentration (uM)

Daily Dose (mg/kg/day)

= (Can calculate predicted steady-state concentration
Office of Research and Development (CSS) foral mg/kg/day dose and multlply to get
Wetmore et al. (2012) concentrations for other doses
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Dose

Prediction

Slope = C,, for 1 mg/kg/day

Steady-state Concentration (uM)

0

oral dese rate
cl., .
(GFR*Fub){Ql*Fub*MJ = Can calculate predicted steady-state
| ub int

Office of Research and Development Concentration (Css) for d 1 mg/kg/day dose and
Wetmore et al. (2012) multiply to get concentrations for other doses

Daily Dose (mg/kg/day)

C:

SS
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Dose

Prediction

Slope = C_, for 1 mg/kg/day

Steady-state Concentration (uM)

0 . '
. J— Daily Dose (mg/kg/day)
* * * * Clint
(GFR FUb){Q' o Q|+Fub*C|imj = Can calculate predicted steady-state
Office of Research and Development concentration (C,,) for a 1 mg/kg/day dose and

Wetmore et al. (2012) multiply to get concentrations for other doses



<EPA HTTK Allows Steady-State In Vitro-
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Prediction

Slope = mg/kg/day per C 1! me/ka/day

Oral Equivalent Daily Dose

o .
? Steady-state Concentration (uM) = in vitro AC50

= Swap the axes (this is the “reverse” part of reverse dosimetry)
= Can divide bioactive concentration by C for for a 1 mg/kg/day dose to get oral equivalent dose

(LYo iils Office of Research and Development

Wetmore et al. (2012)
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= |t appears harder to prioritize on bioactive in vitro
concentration without in vivo context
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s o
f, Compound

* Translation from in vitro to steady-state oral equivalent
doses allow greater discrimination between effective

chemical potencies
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<EPA Variability in Steady-State TK

United States

Environmental Protection
Agen
o Jamei et al. (2009) MOdeI
Minimal Model: Lumped Single Distribution Valume :
PO e Sl Intestine B oral dose rate
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\ ] |
) r
e Sritemic e 1y (Passive) Renal Hepatic Clearance
lHlpnﬂc Clearance 1lhnnl s R Clearance I[Metabﬂlis.m]l

= |n vitro clearance (uL/min/10°® hepatocytes) is scaled to a whole organ clearance
using the density of hepatocytes per gram of liver and the volume of the liver
(which varies between individuals)

= Glomerular filtration rate (GFR) and blood flow to the liver (Q,) both vary from
individual to individual

»  Further assume that measured HTTK parameters have 30% coefficient of variation

(o) iilsQ Office of Research and Development
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Wetmore et al. (2012)



SEPA Steady-State In Vitro-In Vivo
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4 Median
Lower 35%  Predicted C_,

Predicted C,

Upper 95%
.~ Predicted C_

Oral Equivalent Daily Dose

=

y Steady-state Concentration (uM) = in vitro AC50

= The higher the predicted C, the lower the oral equivalent dose, so the
er 95% predicted C_, from the MC has a lower oral equivalent dose

ey
21 of 45 OffiC(Po Research and Development



SEPA Human HTS With Rat HTTK

United States
Environmental Protection
Agency

e Concordance of steady state
oral equivalent doses and in o 4
vivo No Observed (o) and T
Lowest Observed (m) dose
levels provides an additional ”9 -
method for evaluation >

S,

*  Wetmore et al. (2013) chose E’ S
53 chemicals with good
coverage of in vivo o
endpoints in the Toxicity =
Reference Database
(ToxRefDB — Martin et al., <
2009) S

http://actor.epa.gov/toxrefdb/

Office of Research and Development
Wetmore, et al. (2013)
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Color Key Truth Table

TP TP FP FP FN TN

Count
100 400

e (Can find statistical
associations with indivio S

. . 05 06 07 08

ToxCast in vitro assays al Balanced Accuracy

ToxRefDB endpoints

D-Maternal-PregnancyRelated-MaternalPreglLoss (14)
D-Maternal-PregnancyRelated (14)
D-Maternal-GeneralMaternal-Systemic (42)
D-Maternal-GeneralMaternal (42)
D-Maternal (43)
M-Liver (27)
C-Tumorigen (27)
D-Developmental-General Fetal-Fetal\WeightReduction (18
C-LiverTumors (12}
C-SpleenPathology (10}
“I H C-LiverHypertrophy (26)

D-Prenatal-Loss (14)
C-KidneyNephropathy (10}

e Correlations are weak —
the n for any given
endpoint-assay
combination is too low

. M-FemaleReproductiveTract (11)
e You still need to know r 1L F l l” -LacatonPD21 (10
. . C-LiverProliferativeLesions (25)
biology, i.e., must have ”’ Ll | |”" ”' MoKidney 16)
biological hypothesis ’ | T TabllyPHDA (19
M-OffspringSurvival (22)

| ‘ I | | M-Gestationallnterval (10)
M-ReproductivePerformance (18)
M-Litter Size (14)

. 1 | IR
*  Only looking at steady- M || X S ————
state doses

RIS Office of Research and Development

C-ThyroidTumors (12)
C-LiverNecrosis (10)

ToxCast Assays Wetmore, et al. (2013)
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Domain of Applicability

= In drug development, HTTK methods estimate therapeutic doses for
clinical studies — predicted concentrations are typically on the order of
values measured in clinical trials (Wang, 2010)

= For environmental compounds, there will be no clinical trials

= Uncertainty must be well characterized ideally with rigorous statistical
methodology

=  We will use direct comparison to in vivo data in order to get an
empirical estimate of our uncertainty

= Any approximations, omissions, or mistakes should work to increase
the estimated uncertainty when evaluated systematically across
chemicals

2N WSl Office of Research and Development
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When we compare the C_
predicted from in vitro HTTK
with in vivo C values
determined from the literature
we find limited correlation (R?
~0.34)

The dashed line indicates the
identity (perfect predictor) line:

= Qver-predict for 65
= Under-predict for 22

The white lines indicate the
discrepancy between measured
and predicted values (the
residual)
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= We can use computer algorithms to analyze chemical descriptors to try to
predict when the residual will be small

= Factors included are:
* Physico-chemical properties

— Log(Kow), molecular weight, acid/base association constants (pKa), general
pharmaceutical or perfluorinated compound classification

* [nvitro HTTK data

— Plasma protein binding (F ) and hepatic clearance
* Active chemical transport

— Use quantitative structure activity relationships (QSARs) to predict
likelihood each compound is a substrate for 17 different
transporters (e.g, Sedykh et al, 2013)

PNl Office of Research and Development
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From Alexander Sedykh and Alex Tropsha (UNC) and Sieto Bosgra (TNO)

Compound  assT pkmASBTX BCRP BSEP MCT1 MDR1 wpri pkmMRP1 MRP2 MRP3x MRP4x MRP5x NTCPX 0ATP281 OCTIX peprs pkm PEPTIX

2,2-Bis(4-hydroxyphenyl)-

LLvictioroetane "\ A 0.006 0.482 0.394 0.564 0.163 4425 045 0.301 0.36 0.224 0.464 0.341 0.532NA 4.142 0.071
2,4-D NA 0.012 0.405 0.378 0.584 0.082 4389 0.388 0.233 0.252 0.213 0.387 0.259 0.283 0.748 2.765 0.121
25Hexanedione  NA 0.031 0.288NA 071 0.246 45 0.368 0.174 0.126 0.437 0.185 0.197 0.105 0.832 3.253 0.193
zenenypnenas NA 0.007 0.451 0.456 0.744 0.168 4632 0.097 0.244 0.192 0.2 0.443 0.192 0.283 0.957 2969 0.116
5!:?;‘2?3"“““”“‘ NA 0.007 0.439 0.394 0.438 0.086 4454 0.413 0249 023 0.351 0.264 0.278 0.312 0.701 3551 0.097
Besisoproplatiazine NA 0.024 0.414 0.447 0.603 0.178 4402 034 016 0.145 0589 0.384 0.18 0.207 0.887 2595 0.141
Abamectin  NA 0.167 0.388 0.45NA 093 5105 0916 0698 0924 0.29NA  NA 0.076NA  NA  NA
Abamectin  NA 0.167 0.388 0.45NA 0.93 5105 0916 0.698 0924 0.29NA  NA 0.076NA  NA  NA
Acephate  NA 0.015 0.266NA 0.626 0.129 4444 0585 0.187 0.216 0.546 0.17 0.203 0.143 0.648 323 0.124
Acetaminop

hen NA 0.016 0.247 0.479 0.699 0.058 4 4// 0.254 0.183 0.188 0.062 0.279 0.18 0.218 0.796 3.352 0.237
Acetamiprid NA 0011 06 0.34 0545 0162 4326 0.415 0.169 0.143 0.431 0.29 0.159 0.276 0.797 2572 0.208
Acetochlor  NA 0.013 0.327 054 0.403 0.162 4511 0456 0.233 0.296 0.538 0.177 0.142 0.31 0528 2831 0.153
Acetylsalicyli

¢ acid NA 0.005 0.194 0.596 0.466 0.055 4524 0.366 0.238 0.235 0.08 0.318 0.182 0.229 0.747 23553 0.286
Acifluorfen NA  NA 0.641 0.348 0.364 0.309 4328 0.338 0.542 0.485 0.208NA 0.37 0.711 0.169NA  NA
Acrylamide NA  NA 0.331NA 0.913 0.268 4639 0.298 0.162 0.126 0.22 0.206NA 0.096 0.885 2132 0.138
Aflatoxin ~ NA 0.012 0537 0.626 0.468 0.468 4565 0.783 0.386 0.23 0.179 0.509 0.144 0.224 0.49NA 0.082
Alachlor  NA 0.012 0326 0537 0413 0.19 4522 0451 0.211 0.236 0.538 0.179 0.137 0.299 0574 2872 0.143
Aldicarb  NA 0.02 027 051 0495 0.064 4462 0553 0.178 0.239 0.569 0.156NA 0.173 0.587 3597 0.157

AWl Office of Research and Development
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Residuals

= The higher the C_, the lower the oral equivalent dose

= |deally the residuals (difference between the literature value and the
prediction) are small or R = C_/C Ped = 1
= If a residual is large, we would prefer to over-predict C_ to be conservative,
le.R<1
75 v . PO
e :-;-""".-';‘-;-r-' -. it II""..-LL;H -.'-'- qu :‘M- g F“a :HL-]":
gt ; WP i ai e e e |
LIL* R=5 XX R=1.02 AL R=10 A. R=0.5 ™ R=0.9
' Fu=0.5 ' F,,= 0.06 " F,=0.08 F,,= 0.04 © F,=0.02
F .<0.07
% Y G A
e Tﬂajf ~, N o Yes No i o5 le;ﬁr hd_TI 1
W -\-"'m:-u-"ﬁ':‘-':"f. = il LA | -] H
R=1.02 .~ R=05 > R=029 LI r=s JIJLr=10
F,.= 0.06 F .= 0.04 F,=0.02 ' Fu=0.5 F,,=0.08

LN/l Office of Research and Development
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o
§ Predicted_ Css:- 0.5
S
Q \
S
>
]
g ~ Inhibition Transporter OATP2B1 <0.38
o+
=

‘ . : pKa>=6.6
Predicted from in vitro
1.1 x Under 2 3 xUnde

= Regression tree predicts expect 8.9% 16 %
residual based on physico- Transporter_MDR1_IC50 <4.3 Fup < 0.11

chemical properties, transporte Tramsporter MDR1_IC50 >= 4.3
* Over

QSARs, and in vitro HTTK data 7%
' @zom)
= We can use this predicted error 6% ?

as a chemical-specific estimate Inhibition_Transporter_OATP2B1 < 0.066
of the accuracy of HTTK predict (76 % Over)
» [f the predicted C  underestime 12 %
value, the necessary exposure
will be higher (2x over)

10 %

pLcNoi /ISl Office of Research and Development



< EPA Evaluation of HTTK Performance
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and Domain of Applicability

=  Through comparison to in vivo data, a
cross-validated predictor (random
forest, using 50,000 classifier trees) of
success or failure of HTTK has been
constructed

100 -

=  The largest single class of chemicals
fall into the category of “On the
order” (within approximately a factor
of three)

=  More likely to overestimate
(conservative error) than
underestimate plasma concentrations
from an exposure

Number of HTTK Chemicals

& 3 i o )
5'“@ 5’*@@ q;@otw 5'1@1 5’*@@
y G“O‘p R ‘up"a o ‘ﬂ‘\}rﬁ“ ngt‘é‘a
Ed e S Ed
Triage Category

Office of Research and Development




<EPA RTK Assumptions
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= To date, the TK models used for environmental chemicals have been
relatively simple, making three key assumptions:

1)  Whole body is at the same concentration (i.e., plasma)

2)  Environmental exposure is constant and uniform (i.e., constant
infusion)

3) Enough time has passed that the plasma concentration is at steady-
state with respect to the environment

= QSARs for tissue-specific properties address the first

= We can test the second two assumptions using dynamic simulation (e.g.,

more realistic, sporadic dosing) of physiologically-based toxicokinetic
(PBTK) models

RIS Office of Research and Development



SEPA High Throughput Physiologically-based
Toxicokinetic Models (HTPBTK)

= PBTK models typically require more data than simpler models like we used
for C,,, but we can build generic, high throughput PBTK (HTPBTK) models
parameterized with:

* the same in vitro HTTK data used for RTK, plus
* QSARs for tissue-specific properties
* Assumptions about unknown dynamic processes, such as absorption

= We use these HTPBTK models perform both simulation experiments and
compare model predictions from in vitro data with human and rat in vivo
measurements

RN/l Office of Research and Development
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Physiologically-based Toxicokinetic

Inhaled Gas
Lung Tissue Qardiac
> Lung Blood >
Qe Kidney Tissue
C)~kidney
«——| KidneyBlood ——
= Gut Lumen
8 qut
o I— Gut Blood <
(7]
=]
5]
[ =
(]
>
Liver Tissue
o~metab qut
P Liver Blood f
N QIiver
Rest of Body
Qrest
P Body Blood <

RN/ Office of Research and Development

poo|g |elsuy

(PBTK) Model

Some tissues (e.g., arterial blood) are simple compartments,
while others (e.g., kidney) are compound compartments
consisting of separate blood and tissue sections.

Some specific tissues (lung, kidney, gut, and liver) are modeled
explicitly, others (e.g., fat, brain, bones) are lumped into the
“Rest of Body” compartment.

e Partition coefficients from Schmitt (2008a and b)

* Describe a specific species using chemical-independent physiology
(Davies and Morris, 1993)

Chemical enters the body primarily through oral absorption, but
we don’t know absorption rate and bioavailability (assume
“fast”, i.e. 1/h and 100%)

The only way chemicals “leave” the body are through
metabolism (change into a metabolite) in the liver or excretion
by glomerular filtration into the proximal tubules of the kidney
and out of the body



<EPA Evaluating RTK Assumptions
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=  Canuse HTPBTK simulations to evaluate appropriateness of RTK assumptions

= Can use HTPBTK to predict traditional TK metrics, such as peak concentration (C,,) and time
integrated area under the curve (AUC) for various tissues

=  Below we show approach to “steady-state” due to three simulated daily doses

Dibutyl Phthalate Triclosan Bisphenol A Carbaryl

Serum Contentration (uM
Srnjll— Concentration (uM)
Serum Concentration (uM )
Serum Concentration (uM )

Day Day Day . Day

Dieldrin Perfluorooctanoic Acid PCB 153 Perfluorooctane Sulfonamide

Serum Concentration (UM
Serum Concentration IL"".'I
Serum Concentration (Ul
Serum Concentration (UM )

Day Day Day Day

RV NI Office of Research and Development

Figure from Robert Pearce
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= For most non-therapeutic compounds, it is unlikely that there will ever be
controlled human TK data

= Though some in vivo TK data exists to allow statistical assessment of HTTK
predictions, these data are predominantly for pharmaceutical compounds

= Wetmore et al., (2013): Rat HTTK data for 53 chemicals

= Compile and collect in vivo TK data for some or all of the rat HTTK
compounds:

* Allows evaluation of predictions based on in vitro and QSAR (e.g., clearance
and volume of distribution)

* Allows measurement of other key processes (e.g., absorption rates, extra-
hepatic metabolism).

RSNl Office of Research and Development
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10000

from In Vitro Data

HTPBTK predictions for the
AUC (time integrated plasma
concentration or Area Under
the Curve)

in vivo measurements from
the literature for various
treatments (dose and route)
of rat (R2 ~ 0.69)

Predictions are generally
conservative —i.e., predicted
AUC higher than measured

Oral dose AUC ~5.4x higher
than intravenous dose AUC
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Peak Concentration vs. C_

mg/L)

<1000 (252) *

10.000

> 1000 (20)

Peak serum
concentrations from the
HTPBTK model are
compared against the
steady-state concentration
predicted by the three
compartment model for a
constant infusion exposure
(as in Wetmore et al.
2012)

The dashed, identity (1:1)
line indicates that for most
compounds the peak
concentrations are very
similar to C,



<EPA Evaluation of Steady-State

United States
Environmental Protection

Predictions

Lo = Using HTPBTK and assuming
three daily doses (every
eight hours)

w
o
|

= This allows us to evaluate
the plausibility of the
steady-state dosing
assumption.

Number of chemicals
]
(]

=  We find that the majority of
chemicals reach steady state

.J in a few weeks

-
o
|

10 1000 10000 = A second population of
Days to Steady-State chemicals never reach
< 1000 (252) > 1000 (20) Steady state.
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and Domain of Applicability
=  Through comparison to in

vivo data, a cross-validated
(random forest) predictor

of success or failure of
HTTK has been constructed

= Add categories for
chemicals that do not reach
steady-state or for which
plasma binding assay fails
| jE—— .

196 .@6

100

a0

n.
1
S

Number of HTTK Chemicals

S \ 2 o
@ @
& & WO@B P P S *;"a%
q#o& of o® o® o® 25 ©
" A7 A7 A R
£° ?\aeﬁ‘
D
Triage Category

oNo) WIS Office of Research and Development



wEPA Chemicals with HTTK Data

United States
Environmental Protection
Agency

= Invitro assays limited by time needed to develop chemical-specific analytical
chemistry method

Existing Rat data
M Rotroff et al. 2010

B Wetmore et al. 2012
® Tonnelier et al. 2012

B Wetmore et al. 2013

B Hamner Institutes
M ToxCast

= Pharmaceutical Literature
Existing Human data

VAN &Ll Office of Research and Developméht 100 200 300 400
Chemicals with HTTK Data
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Intrinsic hepatic clearance
and plasma protein
binding data

Wetmore et al., (2012)

239
Chemicals

To be published in 2015

181

Collected Summer 2014

88

iR W:Isl Office of Research and Development

New Data for HTTK

ToxCast HTTK testing:

= Measuring metabolism by human
hepatocytes

= Improved assays for measuring binding of
chemicals to human plasma protein

= Obtain data on ToxCast chemicals not
investigated by the Hamner Institute studies

= Reinvestigate chemicals that proved difficult
in previous efforts

This data will eventually allow determination of
human oral equivalent doses (mg/kg BW/day)
for most ToxCast chemicals.
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Predictions

B Pharmaceuticals (Obach
et al. 2008)

B Environmental Chemicals
| (Wetmore et al. 2012)

Anticipated Data

National Toxicology

Existing TK Data Program Legacy Data

Ay A4 m New Experiments
0 100 200 300 400 500 600
Chemicals with HTTK Data and In Vivo Evalution Data

= Goal of HTTK modeling of pharmaceuticals is to determine efficacious

doses for follow-on human clinical trials, the degree of confidence needed
is different

= For environmental compounds, their uncertainty must be well
characterized ideally with rigorous statistical methodology

ielo)W:lsl Office of Research and Development



wEPA HTTK Future Directions

United States
Environmental Protection
Agency

=  Working to make all data and models available as R package (“httk”)

= Collecting new HTTK data on chemicals using improved (serial dilution of plasma)
methodology for measuring plasma binding

= Current MC simulations focus on adults

* Expanding populations variability analysis to include sensitive population
groups to reflect NHANES and beyond (e.g., children <6yo)

= Current in vivo data for evaluation of models is from heterogeneous studies.
Ongoing efforts to

e Collect data from limited in vivo studies (EPA/NHEERL and Research Triangle
Institute)

e Organize data from larger, systematic studies (e.g., National Toxicology
Program) into computable format

 |Improved evaluation data will allow better assessment of predictive ability and

determination of domain of applicability

The views expressed in this
presentation are those of the
author and do not necessarily

VWLl Office of Research and Development reflect the views or policies of the
U.S. EPA
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= Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue
concentrations due to exposure

= HTTK methods developed for pharmaceuticals have been adapted to
environmental testing

= A primary application of HTTK is “Reverse Dosimetry” or RTK

e Can infer daily doses that produce plasma concentrations equivalent to the
bioactive concentrations, but:

* Must consider domain of applicability

* Chemical-specific analytical chemistry methods make HTTK slower than
bioactivity HTS or HTE

= Although we used MC simulation to characterize some aspects of human
variability (e.g., body weight of adults), any key determinants of variability that are
not included in our simulation have not been be assessed

= We must carefully characterize the uncertainty in our approach

The views expressed in this
presentation are those of the
author and do not necessarily

Office of Research and Development reflect the views or policies of the
U.S. EPA
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