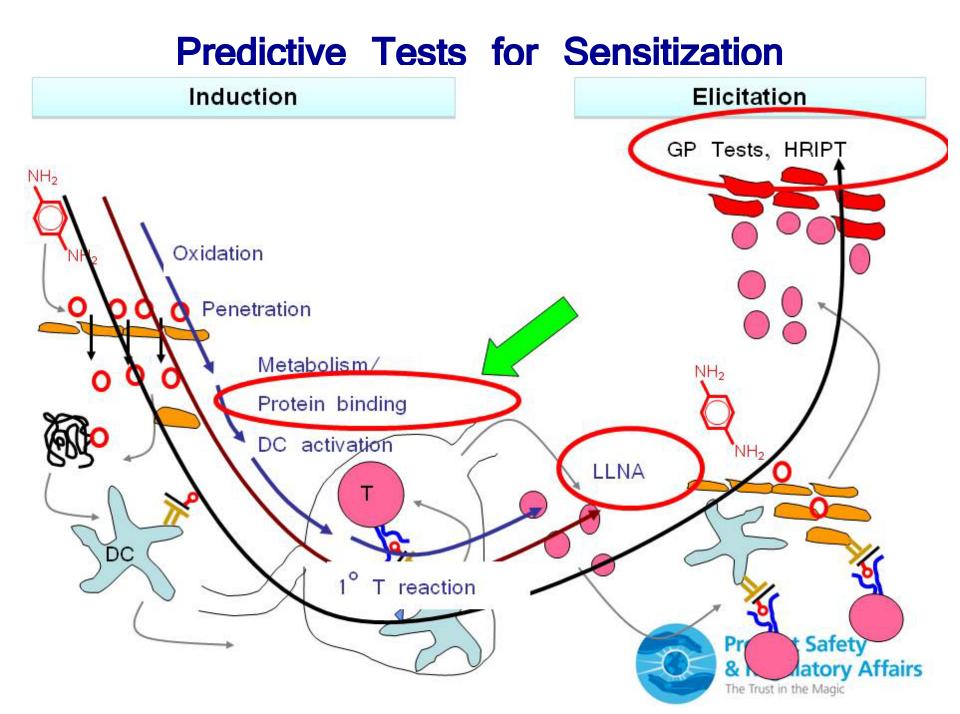
Slides for ICCVAM Meeting

The Development and Application of Peptide Reactivity Assays for Skin Sensitization Risk Assessment

G. Frank Gerberick, Leslie Foertsch, John Troutman,


Petra Kern and Jean-Pierre Lepoittevin The Procter & Gamble Company

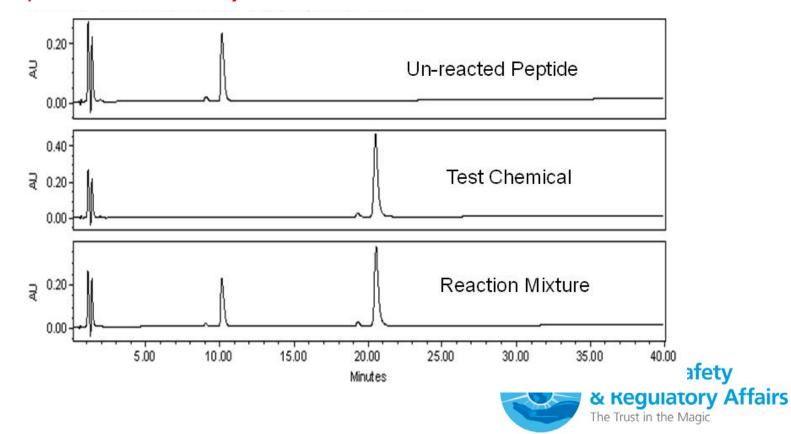
The University of Strasbourg

Presented by: Darrell R. Boverhof The Dow Chemical Company

January 20, 2011

Chemical-Protein Reactivity, Metabolism and Skin Sensitization

Nucleophilic-electrophilic interaction:


The correlation of skin protein reactivity and skin sensitization is well established and has been known for many years.

(Landsteiner and Jacobs, 1936; Dupuis and Benezra, 1982; Lepoittevin et al, 1998) Leads to stable association with proteins, in order that an immunogenic complex is created; this requires that the chemical is inherently protein reactive, or can be transformed in a protein reactive species within the skin.

Readout for Direct Peptide Reactivity Assay (DPRA): Peptide Depletion

Test chemical dissolved in acetonitrile.

Test chemical incubated with peptide (10:1 or 50:1) for 24 hours. Peptide depletion monitored by HPLC at 220 nm.

TOXICOLOGICAL SCIENCES 81, 332–343 (2004) doi:10.1093/toxsci/kfh213 Advance Access publication July 14, 2004

Development of a Peptide Reactivity Assay for Screening Contact Allergens

G. Frank Gerberick,*¹ Jeff D. Vassallo,* Ruth E. Bailey,* Joel G. Chaney,* Steve W. Morrall,* and Jean-Pierre Lepoittevin[†]

*The Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45253-8707, and †Université Louis Pasteur, Laboratorie de Dermatochimie, UMR 7123, Strasbourg, France

Received April 26, 2004; accepted June 22, 2004

Gerberick, et al. (2004) Tox. Sci. 81, 332-343

- Objective: Determine if chemical reactivity toward nucleophilic amino acids correlates with sensitization potential
 - Examined reactivity of 38 different chemicals with varying degrees of sensitization potency:
 - 11 non sensitizers
 - 7 weak sensitizers
 - 11 moderate sensitizers
 - 5 strong sensitizers
 - 4 extreme sensitizers
 - Evaluated reactivity toward glutathione, or 3 synthetic peptides (cysteine, lysine, histidine)
 - After the chemical:peptide incubation, samples analyzed by HPLC-UV for peptide depletion.
 - Also evaluated parameters such as kinetics and peptide:chemical concentration ratios

Gerberick, et al. (2004) Tox. Sci. 81, 332-343

	Peptide					
	Glutathione	Lysine	Cysteine	Histidine		
Sensitivity	55.6%	53.8%	80.8%	11.5%		
Specificity	90.9%	100.0%	90.9%	100.0%		
Accuracy	65.8%	66.7%	83.8%	36.1%		

• Results:

- Significant correlation was identified between sensitization potency and peptide depletion to glutathione and cysteine and lysine peptides
- Provided initial evidence for utility of assessing peptide reactivity for assessment of sensitization potential

Gerberick, et al. (2004) Tox. Sci. 81, 332-343

TOXICOLOGICAL SCIENCES **97(2)**, 417–427 (2007) doi:10.1093/toxsci/kfm064 Advance Access publication March 30, 2007

Quantification of Chemical Peptide Reactivity for Screening Contact Allergens: A Classification Tree Model Approach

G. Frank Gerberick,*¹ Jeffrey D. Vassallo,* Leslie M. Foertsch,* Brad B. Price,* Joel G. Chaney,* and Jean-Pierre Lepoittevin[†]

*The Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, Ohio 45252; †Laboratoire de Dermatochimie, UMR 7123, Université Louis Pasteur, Strasbourg, France

Received February 6, 2007; accepted March 13, 2007

Gerberick et al. (2007). Tox. Sci., 97, 417-427

- Test chemical set expanded to 82 (all with existing LLNA data; 38 original plus 44 new)
- 3 Nucleophiles/Peptides: Glutathione, Cysteine and Lysine
- Use two ratios of peptide: test chemical (1:10 and 1:50)
- Reaction time set to 24 hours
- Monitored peptide depletion by HPLC-UV

Gerberick et al. (2007). Tox. Sci., 97, 417-427

Results based on Cys 1:10 and Lys 1:50 (n=81)

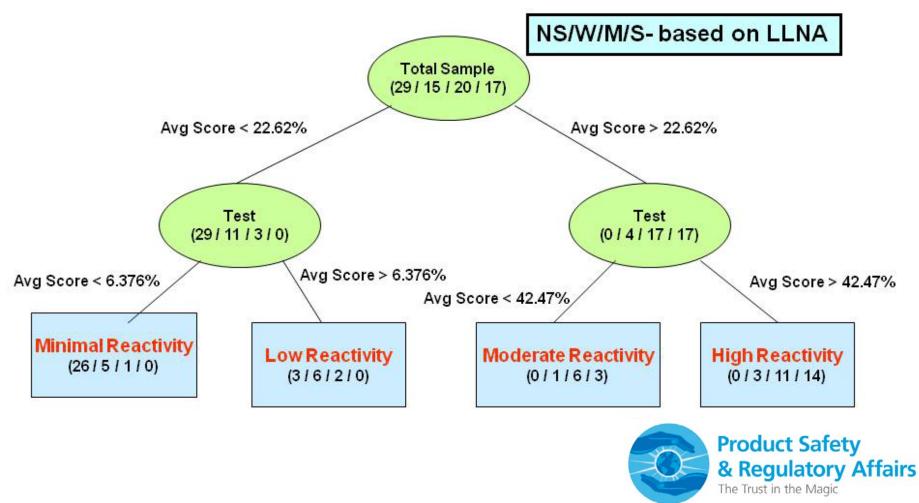
Predicted Classification (based on classification tree model)

Chemical Classification ^a LLNA data		Non-Sensitizer	Sensitizer	total	
	Non-Sensitizer	26	3	29	
	Sensitizer	6	46	52	
	total	32	49	81	
	sensitivity:	88%	(46/52)		

specificity: accuracy:

88%	(46/52)
90%	(26/29)
89%	((26+46)/81

Use of Classification Tree Approach for Analysis of GSH, Cys and Lys Data


- A form of binary recursive partitioning
- Used when observations need to be assigned to a category based on a number of predictor variables:

- non-sensitizer, weak, moderate, strong

 Used peptide depletion data and LLNA potency data to generate models

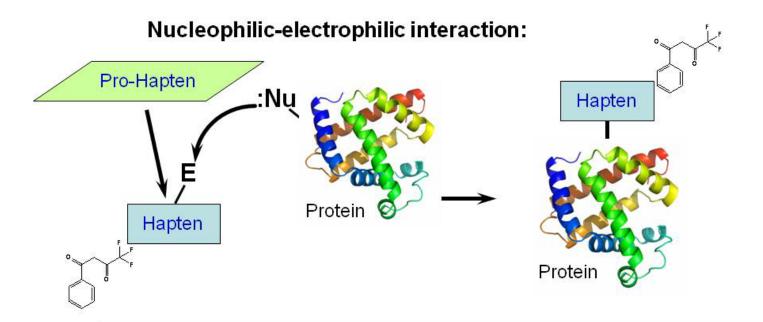
Prediction Model for predicting potency- based on Cys 1:10 and Lys 1:50 (n=81)

Additional Analysis of Chemicals in the DPRA

- 76 new test chemicals analyzed with Cysteine and Lysine since the prediction model was developed
- Total compounds tested to date = 157
 - 38 Extreme/Strong
 - 43 Moderate
 - 38 Weak
 - 38 Non-sensitizers
- Accuracy = 85%

Inter-laboratory Studies to evaluate Direct Peptide Reactivity Assay

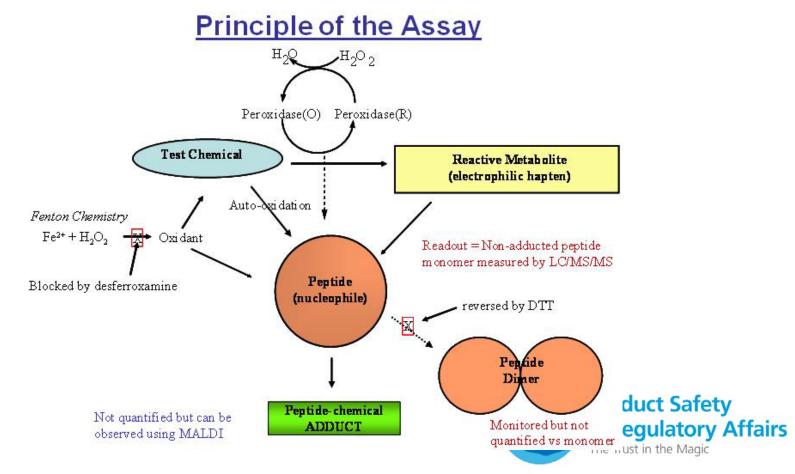
- We have completed 2 Inter-laboratory studies to evaluate the transferability of the DPRA.
- Scientists from Kao, L'Oreal and Givaudan visited P&G for "hands on" training
- Ring Trial 1 consisted of 15 chemicals with very good results
- Ring Trial 2 consisted of 28 chemicals
- The chemicals of Ring Trial 2 proved to be a bit more challenging but provided us with an opportunity to improve the SOP
- The 2 successful inter-laboratory studies encouraged us to move forward with ECVAM for validation of the assay.



ECVAM Pre-validation of DPRA

- Test Submission to ECVAM February, 2009
- DPRA SOP finalized December, 2009
- Participating labs for pre-validation study identified January, 2010
- Training and Transfer plan approved February 2010
- ECVAM Pre-validation
 - Phase A, Stage I: SOP training- March 31, 2010
 - Phase A, Stage II: SOP transfer- June 30, 2010
 - Phase B, Stage I: 9 chemicals- July 31, 2010
 - Phase B, Stage II: 15 chemicals- September 15, 2010
 - Data analysis (ECVAM biostatistician)- March 31, 2011
 - Final Pre-validation Report- May 31, 2011

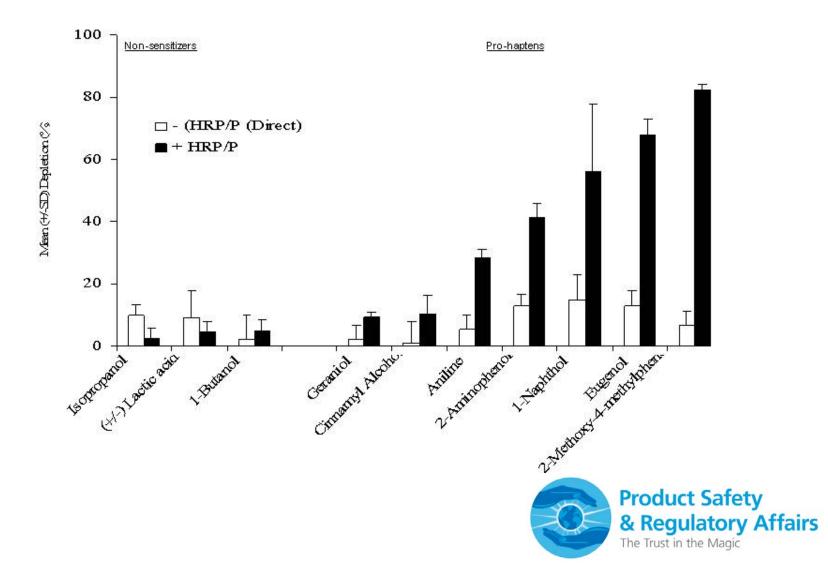
Chemical-Protein Reactivity, Metabolism and Skin Sensitization



 Limitation of the DPRA is that it cannot readily measure the reactivity of pro-hapten chemical sensitizers. Pro-haptens are chemical sensitizers that are not directly reactive and must first be bio-activated in vivo to become reactive

Next Generation Peptide Reactivity Assay

Objective: Develop a modified version of the DPRA to incorporate an activation step for identifying pro-hapten chemical sensitizers.


Optimization of Assay Conditions with Cysteine Peptide

- Peroxide
 concentration
- Peroxidase concentration
- Incubation time

- Test Chemicals:
 - o 2-Aminophenol
 - o Eugenol
 - o **1,4-**
 - Phenylenediamine
 - o 2-Methoxy-4methylphenol
 - o 3-Methylcatechol

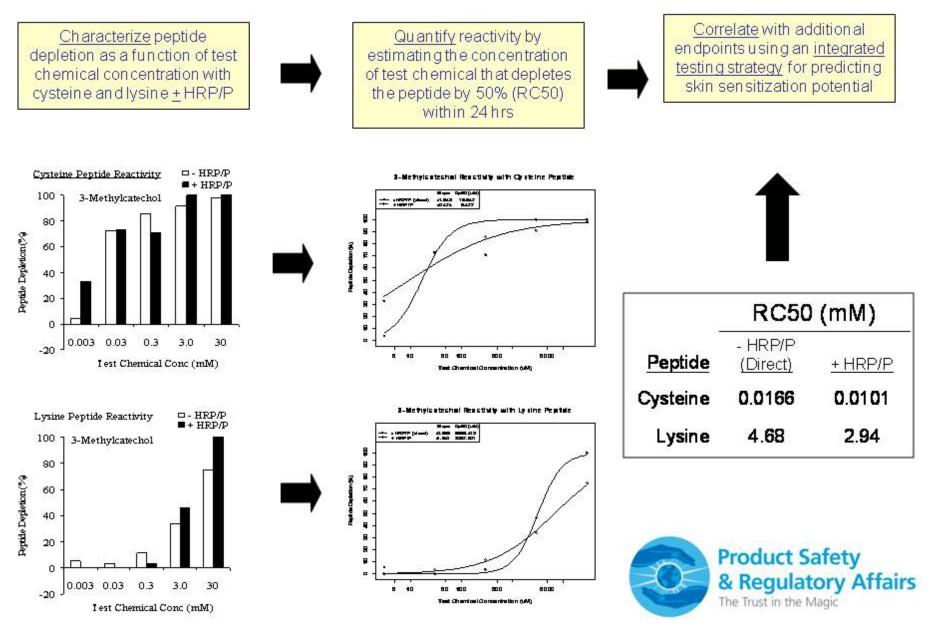
Reactivity Screen with Cysteine under optimized Conditions

Reactivity Screen with Cysteine under optimized Conditions

TOXICOLOGICAL SCIENCES **112(1)**, 164–174 (2009) doi:10.1093/toxsci/kfp192 Advance Access publication September 11, 2009

Investigation of Peptide Reactivity of Pro-hapten Skin Sensitizers Using a Peroxidase-Peroxide Oxidation System

G. Frank Gerberick,^{*,1} John A. Troutman,^{*} Leslie M. Foertsch,^{*} Jeffrey D. Vassallo,^{*} Mike Quijano,[†] Roy L. M. Dobson,[†] Carsten Goebel,[‡] and Jean-Pierre Lepoittevin§


*Central Product Safety, Miami Valley Innovation Center, The Procter & Gamble Company, Cincinnati, Ohio 45253; †Analytical Global Capability Organization, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040; ‡Central Product Safety, Darmstadt Innovation Center, The Procter & Gamble Service GmbH, 64283 Darmstadt, Germany; and §University of Strasbourg, Laboratoire de Dermatochimie, UMR 7177 Strasbourg, France

Received June 25, 2009; accepted August 4, 2009

- <u>Peptide Reactivity Summary</u>:
- Depletion was generally < 10% for <u>non-sensitizers</u> with or without HRP
- Prohapten sensitizers showed minimal to no peptide depletion in the absence of HRP/P
- Addition of HRP/P resulted in statistically significant increases in peptide depletion for all pro-haptens

Current Process being considered for RA

Preliminary Results with Cysteine and Lysine + HRP/P with Dose-Response

		RC50 (mM)*					$\langle \rangle$		
		Cysteine Peptide Lysine Peptide							
Test Chemical	Concrange examined (m M)	-HRP/P (Direct)	+ HRP/P	-HRP/P (Direct)	+ HRP/P	Lowest RC50 Observed (mM)	Corresponding Nucleophile		LLNA Potency Category
Glycerol	0.003-30	NC	NC	NC	NC	/ NC	minimal reactivity (<10%)		non-sensitizer
Hexane	0.003-30	NC	NC	NC	NC	NC	hinimal reactivity (<10%)		non-sensitizer
1-Butanol	0.003-30	NC	NC	NC	NC	NC	minimal reactivity (<10%)	1	non-sensitizer
(+/-)Lactic acid	0.003-30	NC	NC	NC	NC	NC	minimal reactivity (<10%)	1	non-sensitizer
Methyl salicylate	0.003-30	NC	NC	NC	NC V	NC	minimal reactivity (<10%)	1	non-sensitizer
Geraniol	0.003-30	NC	NC	NC	NC	NC	minimal reactivity (<10%)		weak
3,4-Dihydrocoumarin	0.003-30	NC	NC	4.2	ND	NC	Lysine (Direct)		moderate
2-Phenylpropionaldehyde	0.003-30	NC	NR	NC	85.1	85.1	Lysine +HRP/P	1	moderate
Cirnamic alcohol	0.003-30	NC	37	NC	NC	37	Cysteine (+ HRP/P)	1	weak
Isopropanol	0.003-30	33.2	NC	NC	NC	33.2	Cysteine (Direct)	1	non-sensitizer
Phenylacetaldehyde	0.003-30	NC	28.4	NC	NC	28.4	Cysteine (+ HRP/P)		moderate
Hydroxycitronellal	0.003-30	NC	NC	NC	17.2	17.2	Lyshe (+ HRP/P)		weak
2,3-Butanedione	0.003-30	11.7	NC	NR	NC	11.7	Cyseine (Direct)		weak
1,2-Dibromo-2,4-dicyanobutane	0.003-30	11.0	13.7	NC	NC	11.0	Cyseine (Direct)		strong
Aniline	0.003-30	NC	10.6	NC	NC	10.6	Cyseine (+ HRP/P)		weak
Cinnamaldehyde	0.008-10	5.1	17	NC	ND	5.1	Cyseine (Direct)		moderate
Cinnamaldehyde	0.003-30	4.3	16	NC	ND	4.3	Cysteine (Direct)		moderate
Glyoxal	0.003-30	0.887	6.80	14.4	17.9	0.887	Cysteine (Direct)		moderate
Glutaraldehyde	0.003-30	0.753	9.26	3.74	3.15	0.753	Cysteine (Direct)	١.	strona
1-Chloro-2,4-dinitrobenzene	0.003-30	0.41	31.2	NC	NC	0.41	Cysteine (Direct)	1	strong
Diethyl maleate	0.003-30	0,409	NC	NC	NC	0.409	Cysteine (Direct)	1	moderate
Hydroquinone	0.003-30	3.45	0.307	2.64	0.613	0.307	Cysteine (+ HRP/P)	1	strong
p-Benzoquinone	0.00032-1.0	0.282	0.578	2.5	ND	0.282	Cysteine (Direct)		extreme
1-Naphthol	0.003-30	NR	0.187	22.5	NR	0.187	Cysteine (+ HRP/P)		moderate
4-Amino-m-cresol	0.0001-1.0	0.137	0.420	NC	NR	0.137	Cysteine (Direct)	1	moderate
Eugenol	0.0001-1.0	NC	0.0813	NC	NC	0.0813	Ovsteine (+ HRP/P)	1	weak
Isoeugenol	0.0001-1.0	0.0676	0.0475	NC	NC	0.0475	Vsteine (+ HRP/P)		moderate
1,4-Phenylenediamine	0.00032-1.0	0.0394	0.0185	NC	ND	0.0185	Cysteine (+ HRP/P)		strong
3-Methylcatechol	0.003-30	0.0166	0.0101	4,68	2.94	0.0101	Cysteine (+ HRP/P)		strong/mod
3-Methylcatechol	0.003-30	0.0168	0.00948	6.89	3.24	0.00948	Cysteine (+ HRP/P)		strong/mod

*RC50 values were estimated using RExcel which fits a two-parameter log-logistic model to peptide reactivity data, and graphs the rawdata and fitted curves.

NC = not calculated (peptide depletion did not exceed 10% across concentration range)

NR = not reported (peptide depletion did not exceed 10% for the two highest concentrationstested, or depletion was low

(< 20%) and did not increase with an increase in test chemical concentration)

ND = not determined (not tested to date)

Rank order from low to high for the most reactive nucleophile

Trends in peptide reactivity appear to coincide well with general trends in LLNAbased potency classifications

Summary

- Gerberick et al. have made significant progress on the development of a non-animal test for the assessment of skin sensitization potential
- Results with the DPRA have shown great promise and have led to wider validation efforts
- Initial results evaluating the addition of HRP/P to the assay system show promise for the identification of pro-haptens
- Initial RD50 potency assessment approach also looks promising

