
• The NTP Interagency Center for the Evaluation of Alternative 
Toxicological Methods (NICEATM) has developed a workflow to 
integrate metabolite predictions into PB-K models. Monte Carlo 
simulations are used to estimate the ranges of internal exposure 
using uncertainties in metabolic clearance rages.

• The workflow is modular, producing both parent chemical and 
metabolite tissue predictions.

• Quantifying the range of tissue concentrations resulting from 
metabolic pathway variability facilitates more health-protective risk 
assessment for susceptible population groups.

• The case study was limited to a small set of CYP450 enzymes to 
correspond with metabolite prediction capabilities.

• FUTURE GOALS: This workflow will be implemented for a set of 
approximately 1 million parent chemicals and their metabolites 
available in ADMET Predictor. The predictions will be integrated into 
the Integrated Chemical Environment (ICE; 
https://ice.ntp.niehs.nih.gov).

• Models to predict toxicological endpoints, (e.g., endocrine disruption, 
acute toxicity), will be applied across parents and metabolites.
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1. Parent chemical dose, amenable to scaling, is established.
2. Generalized PB-K models from the U.S. Environmental Protection Agency’s httk R 

package (Pearce et al. 2017) are parameterized using measured data and/or 
predicted data from the Open (Quantitative) Structure-activity/property Relationship 
App (OPERA) QSAR models (Mansouri et al. 2018).

3. Information on predicted metabolites, which enzymes contribute to metabolism, and 
percent yield for each metabolite are obtained from SimulationsPlus ADMET 
Predictor® (www.simulations-plus.com).

4. Enzyme variability data are obtained from literature reports published by the European 
Food Safety Agency (EFSA; Darney et al. 2019, 2021).

5. Enzyme variability is integrated into the PB-K model by adjusting the clearance 
parameters. Monte Carlo sampling is performed on a lognormal distribution of 
clearance with coefficient of variation (CV) defined by enzyme CVs from EFSA 
reports. These enzyme CVs are scaled by relative contribution to metabolism and 
combined to create a representative value. 

6. The amount of parent chemical metabolized is used to create an intravenous dosing 
time series for each metabolite that is scaled by the metabolite’s percent yield.

7. QSAR models from OPERA also predict metabolite PB-K parameters; metabolite   
PB-K simulations are conducted using the dosing time series as inputs.

8. Parent and metabolite results can be analyzed across the Monte Carlo runs to 
evaluate the effects of genetic pathway-based variability.

• Chemicals that enter the body can be metabolically activated through enzymatic 
transformation.

• Enzyme activity varies across human populations due to inter-individual genetic 
variability, making some populations potentially more sensitive to effects from parent 
chemicals or metabolites.

• Physiologically-based kinetic (PB-K) models can help inform risk assessments for 
parent chemicals and metabolites, but current methods do not fully capture the potential 
impact of pathway-related population variability.

• In this project, we developed a generalized modular workflow (Fig. 1) to incorporate 
pathway-related variability for a range of enzymes across human populations into PB-K 
models.

• This poster presents the workflow, describes data sources, and provides a case study 
demonstration.
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Introduction

Workflow

• Each parent chemical had two to five metabolites with varying ranges 
in percent yield.

• These preliminary results demonstrate how both parent chemical and 
metabolite kinetics impact internal exposure.
• The plasma concentration profile for 1,3-diphenylpropane (Fig 2B) 

shows that the higher percent yield metabolite, Metabolite 1 (84% 
yield), generally had a higher concentration over time than 
Metabolite 2 (16% yield). This results in a higher potential Cmax
for Metabolite 1 over Metabolite 2 (Fig 3).

• Some chemicals do not show such a dramatic difference. 
Morpholine’s Metabolite 3 (42% yield) resulted in Cmax only 1% 
greater than Metabolite 2 (27% yield) (Fig 3), which may be due to 
differences in intrinsic clearance.

• Most case study chemicals have a higher Cmax for parents than 
metabolites.
• Some chemicals, like 2-(methylamino)fluoren-9-one and 

tioclomarol, have a higher simulated Cmax for the metabolites. 
These parent compounds typically have high intrinsic clearance 
rates compared to metabolites.

Discussion and Conclusion 
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Figure 1: Generalized modular workflow. Numbers correspond to descriptions in Workflow section below.
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Units: 
• Clearance: µL/min/106

hepatocytes
• PB-K profile: mg/L
• Amount metabolized and 

input: mg 

Results SummaryCase Study Methods
• The workflow was used to evaluate the 

metabolism of 10 case study chemicals 
(Table 1).

• One round of metabolism was simulated 
from the CYP1A2, CYP2C19, CYP2C9, 
CYP2D6, and CYP3A4 enzyme suites in 
the ADMET Predictor database.

• An exposure of 1 mg/kg oral dose was 
assumed. PB-K input parameters for each 
chemical and its metabolites were 
predicted with OPERA v2.8.

• Monte Carlo simulation (n=5,000) was 
used to estimate effects of population 
variability using EFSA data; analyses 
focused on the 95% interval of results.

• PB-K models were used to predict plasma 
profiles and maximum concentration 
(Cmax) distributions.

Figure 2: Example workflow for a single run for a parent chemical and metabolite.  

Case Study Results: Plasma Profiles for Select Chemicals

Parent DTXSID Parent Name Chemical % Yield Clint fu LogP pKa LogHL Parent DTXSID Parent Name Chemical % Yield Clint fu LogP pKa LogHL

DTXSID50769190 Rimsulfurondesulfon

Parent 4.23 0.04 1.96 6.66 -10.88

DTXSID80862527 1,3-
Diphenylpropane

Parent 23.32 0.03 3.44 NA -3.5

M1 9 7.23 0.04 1.47 7.48 -10.82 M1 84 26.21 0.04 3.79 10.68 -5.63

M2 41 6.26 0.05 1.89 8.73 -10.8
M2 16 18.52 0.04 3.06 11.83 -5.77M3 38 1.93 0.34 1.73 6.15 -10.89

M4 12 4.07 0.03 1.63 8.4 -10.69

DTXSID10372043

5-(4-tert-
Butylphenyl)-4-[4-
(propan-2-
yl)phenyl]-2,4-
dihydro-3H-1,2,7

Parent 17.9 0.01 4.76 3.2 -7.75

DTXSID40279339 2-(methylamino)fluoren-
9-one

Parent 91.83 0.02 2.36 11.61 -8.94 M1 11 20.23 0.01 5.09 33.55 -6.9

M1 76 12.39 0.01 2.41 NA -9.35 M2 33 11.94 0.02 3.18 2.15 -9.05

M2 3 12.39 0.01 2.41 NA -9.35 M3 43 21.53 0.02 2.85 3.81 -7.78

M3 13 12.39 0.01 2.41 NA -9.35 M4 7 12.64 0.06 3.18 3.68 -7.69
M4 7 12.39 0.01 2.41 NA -9.35

DTXSID10274053
4-(7-
Methyloctyl)phen
ol

Parent 26.39 0.03 5.62 11.38 -4.97

DTXSID00532896

1-(2H-1,3-Benzodioxol-
5-yl)-3-(4-
methoxyphenyl)propane
-1,3-dione

Parent 33.11 0.02 3.29 NA -10.06 M1 5 22.3 0.01 4.73 11.12 -5.41

M1 18 9.09 0.01 2.54 5.08 -10.6 M2 30 24.21 0.03 3.76 NA -5.43

M2 82 49.05 0.03 2.47 8.4 -8.67 M3 21 30.87 0.01 4.07 10.73 -5.41

DTXSID80875354 Tioclomarol

Parent 22.74 0.02 4.06 5.79 -11.18 M4 44 31.05 0.04 4.02 11 -5.41
M1 40 8 0.07 2.76 5.99 -11.18

DTXSID90470632

3-Chloro-1-(4-
nitrophenyl)-5,6-
dihydropyridin-
2(1H)-one

Parent 3.89 0.28 2.93 0.92 -7.6

M2 28 58.01 0.03 3.42 NA -8.29 M1 5 9.65 0.32 1.77 NA -9.19

M3 27 18.91 0.06 4.01 6.1 -10.94 M2 61 66.62 0.16 3.22 -0.69 -7.62

M4 6 10.68 0.06 3.85 6.67 -10.94 M3 34 24.65 0.34 1.64 -0.9 -8.8

DTXSID00210268 Morpholine

Parent 11.42 0.21 1.36 5.52 -7.87

DTXSID00274042 2-Dodecylphenol

Parent 33.37 0.04 7.49 10.38 -5.22

M1 11 13.01 0.36 1.4 3.89 -10.15 M1 4 19.45 0.04 7.03 10.27 -7.03

M2 27 16.76 0.33 1.3 5.57 -7.95 M2 24 45.35 0.04 5.05 NA -5.81

M3 42 60.88 0.37 1.3 7.03 -7.95 M3 10 19.06 0.04 7.13 10.4 -7

M4 20 11.22 0.33 1.31 6.31 -10.11 M4 21 30.52 0.03 5.93 NA -5.89

M5 20 16.04 0.09 6.62 9.3 -6.98

Table1 : Physicochemical properties for case study chemicals and their metabolites. These properties are predicted by OPERA v2.8 and used as 
input parameters for the httk v2.2.1 models (Pearce et al. 2017).  

Acknowledgments

Figure 3: Plasma profiles for A) morpholine and B) 1,3-diphenylpropane. Black lines show PB-K simulations with OPERA-predicted parameters and colored lines show results of Monte Carlo sampling to represent 
population variability based on metabolic enzyme activity. The % yield of each metabolite is given. 
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Figure 4: Summary of Monte Carlo sampling results for parent chemicals and their metabolites using Cmax. Boxplots show minimum, maximum, interquartile range, and 
median, while transparent circles show results of PB-K simulations with OPERA-predicted parameters. 

Case Study Results: Plasma Cmax for Parent and Metabolite Chermicals

Abbreviations: Clint: intrinsic clearance (µL/min/106 hepatocytes), fu: fraction of chemical unbound to plasma protein, LogP: octanol–water partition coefficient, 
pKa: acid/base dissociation constant, LogHL: Henry’s Law
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