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Executive Summary 

The draft Revised Up-and-Down Procedure guideline recommends profile likelihood methods, using 
established theory, for most instances where confidence intervals can be obtained. These are widely 
used methods that take into account uncertainty in the mean of the population from which the data are 
drawn. While other types of intervals could have been developed (e.g., bootstrap, isotonic, Bayesian), 
profile likelihood methods are often used for their practicality and were readily available when the 
originally proposed Up-and-Down Procedure supplemental test for slope and confidence interval was 
deleted. 

Data gathered under the Revised Up-and-Down Procedure fall into one of five scenarios. Simulations 
are provided for the performance of the Revised Up-and-Down Procedure in these five cases. 
Simulations and the fundamental mathematical structure have indicated that in three of these scenarios, 
standard probit procedures cannot be applied with data generated using the Revised Up-and-Down 
Procedure. (This can also happen with other multi-treatment-level designs.) Therefore, special 
statistical procedures are proposed for use in these cases. The point estimates are specified in the test 
guideline. These circumstances also define availability of the profile likelihood confidence interval and 
special procedures are proposed for interval estimation. 

Calculation of the profile likelihood requires maximizing the likelihood function while holding the term for 
the LD50 at a fixed assumed value. At each fixed assumed LD50, the likelihood will be maximized by 
some particular value of the slope. Calculation of the profile likelihood confidence intervals requires 
calculating the profile likelihood for different values of fixed assumed LD50s with their corresponding 
profile maximizing slopes and finding the value for which the profile likelihood equals a critical value. 
This is a computationally-intensive procedure. Consequently, special-purpose software has been 
developed. 

Each of the methods considered can be applied in some scenarios but not in others. In a small 
percentage of cases no confidence interval would be provided. 
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1.0 	 Performance and Confidence Intervals for the Revised Up-and-Down Procedure for 
Acute Oral Toxicity 

1.1	 Background and History 

Calculation of confidence intervals gives the user a basis for evaluating how to incorporate test results 
into regulatory applications. Therefore, a confidence interval calculation was included in previous 
versions of the Up-and-Down Procedure (UDP) guideline (both OECD 1998 and ASTM 1998 and 
prior). Following deletion of the proposed supplemental procedure from the previous draft Revised 
UDP, another method was needed to assist the investigator using the UDP to calculate a confidence 
interval. 

The statistical procedure in the previous version of OECD Test Guideline 425 did not produce a true 
confidence interval because it relied on an assumed value of sigma  (the slope parameter). This 
limitation was pointed out in Bruce (1985) and by the ICCVAM UDP Peer Panel (July 2000). While 
the calculation of the LD50 estimate proposed for the Revised UDP also uses an assumed sigma , a 
separate statistical procedure is proposed for obtaining the confidence intervals for the data. This 
confidence interval procedure does not rely on the assumed value of sigma. 

A provision for confidence interval calculation has been added to the statistical analysis of the LD50 
estimate from the Up-and- Down Procedure (UDP). Information on the quality of a point estimate and 
the data from which it is derived are important in understanding the outcome of the test. A confidence 
interval can be viewed as providing plausible bounds on the value of the LD50 based on the data 
collected in the particular study. A description of the added feature for calculation of confidence 
intervals has been inserted at paragraph 40 in the latest revision of the UDP guideline. 

An OECD expert group agreed with the addition of the feature for calculation of confidence intervals. 
Subsequently, the Acute Toxicity Working Group (ATWG) decided to bring the confidence interval 
insertion to the UDP Peer Panel for comment. Pursuant to these events, a government contract for 
software development was initiated. The software package for the main test provides (a) information to 
the experimenter on how many animals are to be dosed and (b) the statistical procedure for estimating 
the LD50 and confidence interval. A plan for verification of the software package is included in Section 
3.0 of this document. 

1.2	 Regulatory Applications of Confidence Intervals 
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Statisticians distinguish between point and interval estimation of parameters. Point estimation results in 
a single value estimate for a parameter, as provided, for example, by the UDP procedure for estimating 
the LD50. Interval estimation is expressed in a lower and upper bound for an interval that has a known 
probability of containing the true value of the parameter. That probability is called the confidence 
coefficient. 

To compute a confidence interval, a statistical algorithm needs both the desired confidence coefficient 
and the experimental data. In the case of the UDP, the experimental data are the doses and responses. 
The statistical algorithm is designed to compute a 95% confidence interval, which is the typical 
confidence coefficient in statistical practice. However, the algorithm is not exact but approximate, so 
that in some situations, the interval will not provide the desired coverage or may provide more than the 
desired coverage. The results from simulation studies in Appendices A and B of this document will be 
useful for experimenters to assess if the data and estimated LD50 are producing confidence intervals 
that are in the same range as simulated intervals that have the desired coverage. 

At a given confidence coefficient, the width of the confidence interval is a result of the underlying 
variability in the dose-response curve. Wider intervals imply less precision in the estimate of the LD50, 
and also that replications of this experiment with the same compound and animal species under identical 
conditions could produce meaningfully different LD50 estimates. Moreover, in comparing two different 
chemical compounds, the widths and locations of the associated confidence intervals provide an 
indication as to whether the data used to estimate the LD50s lead to estimates precise enough to 
consider one chemical's LD50 larger or smaller than the other. 

Confidence intervals, provided they can be calculated, describe the range of estimates that are 
consistent with the data seen. In addition, when comparisons of compounds are made using estimated 
LD50s, confidence intervals give a sense of the robustness of the comparisons. Consequently, any 
confidence interval is seen as adding descriptively to the data at hand and is not used to exclude 
information. 

Weight-of-evidence deliberations for risk assessments already rely on confidence intervals together with 
other study details and results. Hazard identification also relies on confidence intervals to assess the 
meaning of lethality estimates. Such regulatory determinations include: 

! decisions about special packaging requirements for products to which children might be 
exposed, 

! registration and reregistration of pesticides, 
! review of potential hazard or risk of chemicals to endangered species, and 
! hazard identification for consumer and industrial chemicals and mixtures. 

Other regulatory instances where confidence intervals are reported include assignment of chemicals or 
mixtures to toxicity categories used in the regulation of workplace or consumer products, as well as in: 
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! development of Acute Exposure Guideline Levels (AEGLs; any of three ceiling 
airborne exposure values for the general public applicable to emergency exposure 
periods ranging from less than one hour to eight hours); 

!	 routine decisions about child-resistant packaging and labeling; 

!	 classification of substances (e.g., pesticide active ingredients-technical grade); 

!	 for determining hazardous materials (HAZMAT) categories in transport; 

!	 classification of industrial chemicals used in the workplace; and 

!	 classification of mixtures such as pesticide and end-use products (the formulated 
product). 

1.3	 Examples of Regulatory Applications of Confidence Intervals 

1.3.1	 U.S. Consumer Product Safety Commission 

Application of Confidence Interval in Evaluation of Hazard and Risk 

The confidence interval is important for appropriate evaluation and use of acute toxicity data. An LD50 
with a narrow confidence interval that falls within a classification class criteria can be used reliably, 
whereas an LD50 with a very wide confidence interval (2 mg/kg to 5000 mg/kg) spanning multiple 
class criteria has to be used very judiciously. The use of numerical values of the LD50 estimate along 
with the calculated confidence interval becomes more important in a risk assessment (likelihood of 
injury/illness determination) or when the toxicities of two substances are compared. 

The confidence interval is an integral part of a statistical evaluation of toxicity data and its use will be 
increasingly more important since the number of animals used in testing is being decreased for animal 
welfare reasons. The number of animals used in a test impacts the size of the confidence interval. 
Generally, when fewer animals are used, the confidence interval is wider. The width of the confidence 
interval would determine appropriate use of the data for classification purposes, in risk assessment, or 
for comparison of toxic potential of two substances, etc. 

Regulatory Citations for Acute Toxicity Data including Confidence Intervals: 

For a substance to be defined as “hazardous substance”, the Consumer Product Safety Commission 
under its Federal Hazardous Substances Act (FHSA, 16 CFR 1500.3) requires a two-part 
determination: 1) that a substance/product has a toxic property, and 2) that it may cause substantial 
personal injury or substantial illness during or as a proximate result of any customary or reasonably 
foreseeable handling or use, including reasonably foreseeable ingestion by children. The toxicity data 
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should be statistically significant and shall be in conformity with good pharmacological practices. A 
toxicity numerical value such as an LD50 should be accompanied by an index of variability such as a 
confidence interval. 

The Commission also enforces the Poison Prevention Packaging Act (PPPA). The PPPA regulations 
for exemptions (16 CFR 1700.9 (a)(4)) state: 

“(4) In view of the fact that LD50 values in themselves do not necessarily reflect a true 
estimate of the overall toxic potential of a substance, LD50 determinations should, 
where an LD50 value may be calculated, include: 

(I) The LD50 value with 95 percent confidence limits; (ii) a slope determination for the 
dose response curve, including 95 percent confidence limits; and (iii) a description of 
the statistical method employed in the analysis of such data (with proper citation) as 
well as the statistical analysis itself.” 

1.3.2 U.S. Environmental Protection Agency (EPA) 

Regulatory Citations for Pesticides under Federal Insecticide, Fungicide, and Rodenticide Act 
(FIFRA): 

40 CFR 158.80 sets forth general policy for acceptability of data as follows: 

"In evaluating experimental design, the Agency will consider whether generally accepted 
methods were used, sufficient numbers of measurements were made to achieve 
statistical reliability, and sufficient controls were built into all phases of the experiment. 
The Agency will evaluate the conduct of each experiment in terms of whether the study 
was conducted in conformance with the design, good laboratory practices were 
observed, and results were reproducible." 

At 40 CFR 158.202(e)(1) for human health: 

"Determination of acute oral, dermal and inhalation toxicity is usually the initial step in 
the assessment and evaluation of the toxic potential of a pesticide. These data provide 
information on health hazards likely to arise soon after, and as a result of short term 
exposure. Data from acute studies serve as a basis for classification and precautionary 
labeling." 

At 40 CFR 158.202 (h)(2) for nontarget organisms in the environment: 

"The short term acute laboratory studies ... are used to establish acute toxicity levels of 
the active ingredient to the test organisms; to compare toxicity information with 
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measured or estimated pesticide residues in the environment in order to assess potential 
impacts on fish, wildlife and other nontarget organisms; and to indicate whether further 
laboratory and/or field studies are needed." 

Hazard Classification and Risk Assessment of Pesticide Formulations for Human Health: 

40 CFR 156.10 provides for hazard labeling of pesticides; Part 152.160 provides for classification of 
pesticides; and Parts 152.170, 152.171, and 152.175 provide for restricted use of pesticides. 
Historically, Agency reviewers have tended to consider only the LD50 value in assigning a pesticide 
formulation to a toxicity category in terms of its oral or dermal toxicity. The traditional acute toxicity 
study could be relied upon to provide relatively manageable confidence intervals. Confidence limits 
associated with the LD50 values have generally been reported by the performing laboratories. They 
are usually included in Agency review summaries. 

This situation has changed. With the use of acute toxicity testing protocols that minimize the numbers of 
animals tested, it becomes more important for Agency toxicologists to consider not only the findings of 
a study, but also its inherent statistical limitations, in any interpretation and regulatory decision. As a 
result, in a situation where an LD50 estimate falls so close to a classification boundary that the 
confidence limits (or bracketing range) include values well below the boundary value, Agency reviewers 
must take a conservative approach, and classify the test material in the more toxic category. Under 
these circumstances, the toxicology reviewers would normally feel comfortable with the use of 90% 
confidence limits, as there would then be only a 5% probability that the LD50 value would be below 
the lowest value of the confidence interval range. However, they would also have to take into 
consideration the presence or absence of symptoms of toxicity in the test animals, particularly in 
situations when severe and/or life-threatening reactions occur at lower dose levels with subsequent 
recovery and no mortality. 

FIFRA Section 25(c)(3) authorizes the Agency to establish Child-Resistant Packaging (CRP) 
standards, consistent with those under the authority of the Poison Prevention Packaging Act (Public 
Law 91-601), to protect children from serious injury or illness resulting from accidental ingestion or 
contact with pesticides. CRP is required for residential use products with an LD50 value of 1500 
mg/kg and less, or meeting any of the other toxicity criteria in 40 CFR 157.22(a). If there is a $5% 
probability that the oral LD50 value is at or lower than 1500 mg/kg, then a toxicology reviewer would 
recommend the use of CRP. Taking into consideration the emphasis on protecting children from 
serious injury or illness, an Agency toxicologist would also evaluate the occurrence and severity of 
toxicological symptoms in an acute oral LD50 study at doses below which mortality occurs. 

Environmental Assessment of Pesticides: 

Confidence intervals are used in risk assessment for the same purpose as in general statistics to express 
the "level of confidence" that a sample mean (or other summary statistic) represents the true population 
mean. Toxicity tests performed for regulatory purposes typically are limited in several ways (i.e., 
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sample size, standardized laboratory conditions, etc.). For these reasons, a sample mean (or statistic 
such as LD50) is generally only a very rough estimate of the actual population being sampled in the test. 
The confidence interval in this case does describe the level of confidence in the true value, but also 
serves the reader as a measure of the utility of the test overall. Confidence intervals support compliance 
with Agency Quality Assurance/Quality Control (QA/QC) principles of precision. Confidence intervals 
are principally a data QA/QC measure. Point estimates should not to be reported without some 
measure of precision. Moreover the Agency's QA/QC policies state that the Agency is to use data of 
known precision. In rating a test result submitted for registration or re-registration of a pesticide, the 
confidence interval can be considered along with other measures of the validity of the test such as 
availability of dose response of the test population's tolerance to the pesticide. 

Traditionally, toxicity tests for nontarget species are designed to address "dose response" and a narrow 
confidence interval is an indication of how well a "dose response" was achieved in the study. If the 
precision of an obtained LD50 study is inadequate, the Agency needs to know that. A good 
understanding of "dose response" is also useful in risk assessment for extrapolating effects across 
species and establishing distributional bounds for probabilistic assessments. 

The Agency plans to develop methods for probabilistic risk assessments for pesticides which will use 
confidence intervals from acute tests of nontarget species to describe uncertainty. The uncertainty in the 
LD50 estimate is an important component in estimating the overall uncertainty in a probabilistic risk 
assessment. Confidence intervals are necessary for estimating the overall uncertainty/variability in a 
distribution of risk. 

Endangered Species Assessments for Pesticides: 

Confidence intervals for the LD50 value are not directly used in assessing effects on endangered 
species because the intent for endangered species is to protect individuals and not simply the typical 
representative (i.e., at the population mean). The slope allows the reviewer to determine any mitigation 
provisions needed to attain an endangered species no-effect level, which is what is necessary under the 
Endangered Species Act. No-effect levels, such as can be obtained by using the slope in conjunction 
with the LD50, are used for this purpose. Absent a reliable estimate of the no-effect level, a safety 
factor is applied to the LD50 value, and the reliability of the LD50 value, as indicated by the confidence 
intervals is an important feature of the test results. 

Setting Acute Exposure Guideline Levels under the Superfund Amendment and Reauthorization Act 
(SARA): 

Acute Exposure Guideline Level-3 (AEGL-3, one of three ceiling airborne exposure values for the 
general public applicable to emergency exposure periods ranging from less than one hour to eight hours 
) is the airborne concentration (expressed as ppm and mg/m3) of a substance at or above which it is 
predicted that the general population, including "susceptible" but excluding "hypersusceptible" 
individuals, could experience life-threatening effects or death. Airborne concentrations below AEGL-3 
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but at or above AEGL-2 represent exposure levels which may cause irreversible or other serious, 
long-lasting effects or impaired ability to escape. 

When a confidence interval is available for an LD50, it may be used to discriminate between studies for 
use in development of an AEGL-3, to decide whether a study can be used for calculating the LC01 that 
is the basis for an AEGL-3, or to determine the uncertainty factor in calculation. 

U.S. EPA’s Policy for Risk Characterization: 

The U.S. EPA's Science Policy Council recently issued a Risk Characterization Handbook (EPA 100
B-00-002, Dec. 2000). It focuses on how to integrate "information from the ... components of the risk 
assessment and [synthesize] an overall conclusion about risk that is complete, informative, and useful for 
decision makers." Here are some excerpts: 

(p. 11) "The overall risk characterization lets the manager, and others, know why the U.S. EPA 
assessed the risk the way it did in terms of the available data and its analysis, uncertainties, alternative 
analyses, and the choices made. A good risk characterization will restate the scope of the assessment, 
express results clearly, articulate major assumptions and uncertainties, identify reasonable alternative 
interpretations, and separate scientific conclusions from policy judgments." 

(p. 13) "Risk characterization communicates the key findings and the strengths and weaknesses of the 
assessment through a conscious and deliberate transparent effort to bring all the important 
considerations about risk into an integrated analysis by being clear, consistent and reasonable. 
Remember, though, unless you actually characterize the assessment, the risk assessment is not complete 
- - risk characterization is an integral component of every risk assessment. As an example, just giving 
the quantitative risk estimate ('the number') is not a risk characterization." 

(p. 21) "Your specific responsibilities [as a Risk Assessor] are to: 

...d) Describe the uncertainties inherent in the risk assessment and the default positions used to address 
these uncertainties or gaps in the assessment 

...f) Put this risk assessment into a context with other similar risks that are available to you and describe 
how the risk estimated for this stressor, agent or site compares to others regulated by EPA" 

(p. 36) "[Elements that affect a Risk Characterization include]: 

...f) Variability (Section 3.2.7) 

g) Uncertainty (Section 3.2.8)..." 

(p. 37) "For each stage of the assessment for human health or ecological risks, the assessor identifies: 
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 a) The studies available and how robust they are (e.g., have the findings been repeated in an 
independent lab)

 b) The major risk estimates calculated, the assumptions and the extrapolations made during the 
estimated risk calculations, and the residual uncertainties and their impact on the range of plausible risk 
estimates. Your description of the risk estimate should indicate what you are assessing (e.g., individual, 
population, ecosystem) and include such things as the high end and central tendency estimates. 

...f) Variability (see Section 3.2.7)" 

(p. 40) "3.2.7 How Do I Address Variability?

 The risk assessor should strive to distinguish between variability and uncertainty to the extent possible 
(see 3.2.8 for a discussion of uncertainty). Variability arises from true heterogeneity in characteristics 
such as dose-response differences within a population, or differences in contaminant levels in the 
environment. The values of some variables used in an assessment change with time and space, or 
across the population whose exposure is being estimated. Assessments should address the resulting 
variability in doses received by the target population. Individual exposure, dose, and risk can vary 
widely in a large population. Central tendency and high end individual risk descriptors capture the 
variability in exposure lifestyles, and other factors that lead to a distribution of risk across a population.” 

"3.2.8 How Do I Address Uncertainty?

 Uncertainty represents lack of knowledge about factors such as adverse effects of contaminant levels 
which may be reduced with additional study. Generally, risk assessments carry several categories of 
uncertainty, and each merits consideration. Measurement uncertainty refers to the usual error that 
accompanies scientific measurements -- standard statistical techniques can often be used to express 
measurement uncertainty..." 

1.4 Calculation of Confidence Intervals for the Revised UDP 

Inserted text at paragraph 40 of the Revised UDP states: 

“40. Following the main test and estimated LD50 calculation, it may be possible to 
compute interval estimates for the LD50 at specified confidence using a profile-
likelihood-based computational procedure. Such an interval utilizes information from 
the doses where accumulated response was neither 0% nor 100% (intermediate 
doses). Instead of employing an assumed sigma , however, the procedure identifies 
bounds on LD50 estimates from a ratio of likelihood functions optimized over sigma 
(profile likelihoods). Procedures are also included for certain circumstances where no 
intermediate doses exist (for instance, when testing has proceeded through a wide range 
of doses with no reversal or where doses are so widely spaced that each animal 
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provides a reversal). Implementing this set of procedures requires specialized 
computation which is either by use of a dedicated program to be available from OECD 
or developed following technical details available from OECD.” 

For many or most studies conducted according to the Revised UDP, standard probit calculations will 
not be able to provide the basis for a confidence interval. Instead, the Revised UDP uses profile 
likelihood methods based on established theory for most instances where confidence intervals can be 
obtained. These are widely used methods that take into account uncertainty in the mean of the 
population from which the data are drawn. While other types of intervals could have been developed 
(e.g., bootstrap, isotonic, Bayesian), profile likelihood methods are often used for their practicality and 
were readily available when the originally proposed UDP supplemental test for slope and confidence 
interval was deleted. 

Profile likelihood confidence intervals are based on the same kinds of functions as the point estimate, 
namely, the likelihood function and ratios of that function. In addition, the proposed confidence interval 
uses the same distributional shape assumptions as the point estimate, while making no numeric 
assumptions about its parameters (i.e., no value for sigma  is assumed). In order to reduce such 
assumptions, this method is computationally intensive using modern methods. Consequently, a 
specialized program is needed for its implementation. Software will be provided to users on request or 
through a web site (e.g., OECD’s). The OECD Expert Meeting in August 2000 supported this 
proposal. 

The calculation should and does take advantage of established theory, modern computational methods, 
and previously used and tested algorithms (Rao, 1973; Bickel and Doksum, 1977; Crump and Howe, 
1985; Meeker and Escobar, 1995) and utilizes knowledge of the full sample of observations. Results 
from doses where no or all animals respond does contribute some information on the LD50, even when 
a point estimate cannot be calculated. 

The methodology for this confidence interval has also been used (previously used and tested algorithms) 
with estimates beside the LD50, including the limit on a benchmark dose (used in U.S. EPA health risk 
assessments). 

Because similar intervals behave well in similar situations, the proposed confidence intervals are 
expected to perform appropriately for the Revised UDP. The term “behaving well” means that the 
intervals will have at least the stated coverage probability in simulated trials; that is, at least 95% of 
simulated ‘95% CIs’ include the true LD50 (see Appendix A). 

Just as with the point estimate, there are some circumstances where a standard approach will have 
computational problems. For example, as outlined in OECD TG 425 paragraph 42 or Revised UDP 
paragraph 37; there may be only increasing or only decreasing doses throughout the test. Certain 
solution choices are suggested and included in the special software. 
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1.5 Performance Characteristics of the Revised UDP Including Case Examples 

Five scenarios or cases can be distinguished for the purpose of describing the performance of the 
Revised UDP as shown in Table 1. Cases 2 and 4 permit estimation of the LD50 and confidence 
intervals. Cases 1, 3, and 5 do not permit calculation of either an LD50 using the main method, or a 
confidence interval using the profile likelihood method. Some response patterns for these cases do 
provide some information about the location of the LD50. More detail on these cases is below. 

Case 2 is the standard two parameter probit estimation situation. The case has intermediate response 
fractions (at least one animal and less than all animals respond) at some dose that is less than a dose 
where there was no response. Typically, intermediate response fractions will occur at more than one 
dose. Point estimates and confidence intervals are available. 

Case 4 has a single intermediate response fraction occurring between doses that have no response and 
doses with complete response. The LD50 can be estimated and confidence intervals can be calculated 
for this case. 

Case 1 has three possible response patterns: (a) all animals responded, (b) no animals responded, or 
(c) the geometric mean dose is lower for animals that responded than for animals that did not respond. 
Case 1a suggests that the LD50 is likely to be lower than the lowest dose while Case 1b suggests that 
the LD50 is likely to be greater than the highest dose. Case 1c suggests a reverse dose-response 
curve, that is fewer responses occur at higher doses. These inferences can be guaranteed to be true, 
because response is a chance event. 

Case 3 has no intermediate response fractions. At some doses, all animals will respond while at lower 
doses, no animals will respond. This implies that the LD50 is between highest dose with no response 
and the lowest dose where complete response. Any value between the two doses is a valid estimate 
for the LD50. No confidence interval can be computed. The situation is likely to emerge from a 
chemical with a very steep dose-response curve. 

There are two possible situations for Case 5. One possibility has an intermediate response fraction at 
the highest tested dose and no responses at lower doses. This suggests that the LD50 is around the 
highest tested dose or possibly greater. The second situation has partial response at the lowest tested 
dose and complete response at higher doses. Here, the LD50 is likely to be at or below the lowest 
tested dose. For Case 5 data (as for Case 4 data), the LD50 estimate of the software will be the dose 
with partial response. The confidence interval will be calculated using profile likelihood. 

As noted above, data gathered using the Revised UDP fall into one of five types of summary 
configurations. Simulations and the fundamental mathematics structure have indicated that in three of 
these configurations, standard probit procedures (e.g., Finney, 1971) cannot be applied with data 
generated using the Revised UDP. (This can also happen with other multi-treatment-level designs.) 
Therefore, special statistical procedures are proposed for use in these cases with the Revised UDP. 
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The point estimates are specified in the Revised UDP. These circumstances also define availability of 
the profile likelihood confidence interval and special procedures are proposed for interval estimation. 

Calculation of the profile likelihood requires maximizing the likelihood (function) while holding the term 
for the LD50 at a fixed assumed value. At each fixed assumed LD50, the likelihood will be maximized 
by some particular value of the slope. Calculation of the profile likelihood confidence intervals requires 
calculating the profile likelihood for different values of fixed assumed LD50s with their corresponding 
profile maximizing slopes and finding the value for which the profile likelihood equals a critical value. 
This is a computationally-intensive procedure. Consequently, these will be incorporated into the 
special-purpose software under development. 

Each of the methods considered can be applied in some cases but not in others. In a small percentage 
of cases, no confidence interval would be provided. 

These cases are outlined in Table 1 and Figures 1 and 2. 
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Table 1. Outcomes of the Up-and-Down Procedure: Cases and Confidence Intervals. 

Case # Definition of Case Approach Proposed Possible Findings 

1 No positive dose-response association. There 
is no variation in response: 
a) all animals tested in the study responded, or 
b) none responded, or 
c) the geometric mean dose is lower for animals 
that responded than for animals that did not 
respond. 

No confidence interval 
proposed, inference related to 
LD50 questionable. 

No statistical results. 
Possible inferences: 
1a) LD50 < lowest dose; 
1b) LD50 > highest dose; 
1c) reverse dose-response curve 

2 Standard 2-parameter probit estimation. One 
or more animals responded at a dose below some 
other dose where one or more did not respond. 
The conditions defining Case 1 do not hold. (The 
definition of Case 2 holds if there are 2 doses with 
intermediate response fractions, but holds in some 
other cases as 
well.) 

Profile loglikelihood 
computations are 
straightforward. 

The LD50 can be estimated and 
its confidence interval calculated. 

3 No intermediate response fractions. One or 
more test doses is associated with 0% response 
and one or more is associated with 100% 
response (all of the latter being greater than all of 
the former), and no test doses are associated with 
an intermediate response fraction. 

Lower bound = highest test dose 
with 0% response. 
Upper bound = lowest test dose 
with 100% response. 

High confidence that the true 
LD50 falls between the two 
bounding doses. Highest dose 
with 0% response < LD50 < 
lowest dose with 100% 
response. 

4 One partial response fraction, first subcase. 
Like Case 3 except that an intermediate response 
fraction is observed at a single test dose. That 
dose is greater than doses associated with 0% 
response and lower than doses associated with 
100% response. 

Profile loglikelihood calculations 
to be extended to this case by 
special computations. 

The LD50 can be estimated and 
its confidence interval calculated. 

14
 



5 One partial response fraction, second 
subcase. There is a single dose associated with 

Profile loglikelihood calculations 
to be extended to this case by 

The LD50 is estimated and its 
confidence interval calculated. 

partial response, which is either the highest test 
dose (with no responses at all other test doses) or 

special computations Possible inference: the LD50 is 
near the dose with the 

the lowest test dose (with 100% response at all 
other test doses). 

intermediate response fraction. 
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Figure 1. Predicted Percentage of Cases - LD50 equal to 1500 mg/kg. 
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Figure 2. Predicted Percentage of Cases - LD50 equal to 3500 mg/kg. 
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2.0	 LD50 Confidence Bounds for Revised UDP: Statistical Approach and Performance 
Characterization 

2.1	 Background. 

This section addresses the implementation of confidence bounds for the LD50, for use with acute 
toxicity data generated in accordance with the Revised UDP. Simulations presented in this document 
indicate that in a large proportion of cases, standard probit procedures (e.g., Finney, 1971) cannot be 
applied with data generated using OECD TG 425. Therefore, special statistical procedures are 
proposed for use with the Up-and-Down Procedure for LD50. 

The purpose of this section is to provide an overview of the procedures proposed. Also, simulations 
are reported to evaluate the performance of the methods proposed. Performance is characterized in 
terms of the widths of confidence intervals, and in terms of “coverage” probabilities (defined in Section 
2.2). 

Based on simulations (Section 2.6), it appears that in most cases it will be possible to compute a 
confidence interval with acceptable performance by one of two methods. In cases where no animals 
respond at some doses, and all animals respond at some other doses (the latter being greater than the 
former), the lower bound for the LD50 will be the highest dose associated with no observed responses. 
Similarly, the upper bound will be the lowest dose associated with response for all animals tested at that 
dose. In most other cases, it will be possible to compute a bound using the method of profile likelihood 
(Section 2.4). In particular, it appears that the profile likelihood approach is applicable in most cases 
where there is only one dose with an intermediate response fraction (neither 0% nor 100% responding), 
a case that is not handled by standard probit methods. (Proposals for handling various cases are 
summarized in Section 2.3) 

The confidence interval procedures are to be made available in software developed for support of the 
Revised UDP. The software will also provide point estimates of the LD50 as indicated in the Revised 
UDP and will evaluate stopping criteria. 

The remainder of this section assumes a familiarity with standard probit computations as used in 
toxicology (Finney, 1971), familiarity with basic statistical procedures (although the definition of a 
confidence interval is reviewed), and familiarity with the use of Monte Carlo simulation to evaluate the 
performance of statistical procedures. 

2.2	 Confidence Intervals: Definition and Related Terminology 

Approximate 2-sided 95% confidence intervals will be implemented. Two interpretations of such an 
interval will be offered in this section. The definition that is most standard is that the probability is 0.95 
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that the true value of the parameter of interest (here, the LD50) lies within the interval. Here, the 
parameter of interest is viewed as a fixed constant and the bounds (being based on data) are viewed as 
random (e.g., Sokal and Rohlf, 1981, particularly Section 7.3). In order for this definition to be useful, 
the probability of 0.95 must hold at least approximately over the possible values of the parameter of 
interest, even though the value of that parameter is not know in a given situation. 

To understand this interpretation, it may be helpful to reflect on how simulations are used to evaluate a 
confidence interval (see Section 2.5). In fact, it is common to use simulations to illustrate the concept of 
a confidence interval (e.g., Sokal and Rohlf, 1981, Figure 7.4). 

The probability that the upper and lower bound will enclose the true LD50 is defined to be the 
coverage of the interval. If the coverage of a nominal 95% interval is precisely 95%, then the interval is 
said to be exact . In statistical practice, it is common to use confidence intervals that are not exact but 
approximate. When intervals are approximate, it is sometimes preferred that they be conservative, 
meaning that the coverage exceeds 95%. 

A second interpretation can be particularly helpful for understanding the profile likelihood approach 
proposed here. According to the second interpretation, a confidence interval for a parameter is to be 
interpreted as the range of values of the parameter that is consistent with (not excluded by) a particular 
data set. Thus, Cox and Hinkley state (1974, p. 208) that “foremost is the interpretation that ‘such and 
such parameter values are consistent with the data.’ ” Confidence intervals can be constructed by 
inverting statistical hypothesis tests, by defining the confidence interval to be the set of parameter values 
not rejected using the hypothesis test. In particular, the profile likelihood intervals proposed in this 
document invert a profile likelihood ratio test. 

These two approaches are considered to be consistent. A result given in advanced texts is that a 
confidence interval with desired coverage can be obtained by inversion of a hypothesis test (e.g., Cox 
and Hinkley, 1974, Section 7.2; Casella and Berger, 1990, Section 9.2; Bickel and Doksum, 2001, 
Section 4.2). 

2.3 Classification of Cases and Methods Proposed for Particular Cases 

Each of the methods considered can be applied in some cases but not in others. In a small percentage 
of cases, no method of computing a confidence interval is proposed. It is proposed that the selection of 
a method be based on the classification of cases displayed in Table 2. (Development of this scheme has 
benefitted from discussions with the OECD acute avian statistics group. See Table 2 footnote.) The 
rationale for the decisions indicated in this table is as follows. 

Case 1. With the stopping rules indicated for the Revised UDP, this case appears to be possible only if 
testing is stopped at a limit dose (based on non-response for three animals tested in sequence at the 
dose). No methods are proposed here for cases where there is not an observable relationship between 
dose and response. In some cases, a binomial test may be used to establish that the LD50 is above or 
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below the range of doses tested, but a significant binomial test requires testing of five or more animals at 
the same dose, and binomial tests use only data from a single test dose. Some procedures that may be 
applicable in this case have been developed for avian 
Table 2.	 Classification of Data Cases for Purposes of Confidence Interval Computation 

for Case 5 

Case # Definition of Case Approach Proposed 

1 No positive dose-response association. 
There is no variation in response (all animals 
tested in the study responded, or none 
responded), or the geometric mean dose is 
lower for animals responding than for animals 
not responding 

no confidence interval proposed, 
inference related to LD50 
questionable. 

2 Standard 2-parameter probit estimation. 
One or more animals responded at a dose 
below some other dose where one or more 
animals did not respond. The conditions 
defining Case 1 do not hold. (The definition 
holds if there are two doses with intermediate 
response fractions, but holds in some other 
cases as well.) 

profile loglikelihood computations are 
straightforward 

3 No intermediate response fractions. One or 
more test doses is associated with 0% 
responses and one or more test doses is 
associated with 100% responses (all of the 
latter being greater than all of the former), and 
no test doses are associated with an 
intermediate response fraction. 

lower bound = highest test dose with 
0% response. 
upper bound = lowest test dose with 
100% responses. 

4 One partial response fraction, first 
subcase. Like Case 3, except that an 
intermediate response fraction is observed at a 
single test dose. That dose is greater than 
doses associated with 0% responses and lower 
than doses associated with 100% responses. 

profile loglikelihood calculations to be 
extended to this case by special 
computations 

5 One partial response fraction, second 
subcase. There is a single dose associated 
with partial response, which is either the highest 
test dose (with no responses at all other test 
doses) or the lowest test dose (with 100% 
responses at all other test doses). 

profile loglikelihood calculations to be 
extended to this case by special 
computations 
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acute testing (report in press). 

Case 2.  In cases where standard probit computations can be applied, it appears that application of the 
profile likelihood (described in Section 2.4) will be straightforward. The profile likelihood approach is 
already used in this situation in the U.S. EPA benchmark dose software. 

It is common to require, as a condition for probit analysis, that there are at least two test doses with 
partial response fractions (response fractions not 0% and not 100%). Case 2 as defined here includes 
all the cases with at least two partial response fractions, but includes other cases as well. In the 
definition of Case 2, one or more animals respond at some dose, such that one or more do not respond 
at some higher dose (Silvapulle, 1981). 

In addition, the geometric mean dose must be higher for animals that respond than for animals that do 
not respond. The second condition is indicated in Revised UDP as a requirement for inferences 
regarding the LD50. 

In standard probit analysis, bounds of a confidence interval may be infinite. The standard approach for 
detecting whether the bounds are infinite is based on a test of the statistical significance of the slope 
parameter. An analogous procedure can be used with the profile likelihood approach. 

Case 3.  When there are no partial response fractions (along with other requirements of the case, as 
indicated in Table 2), for technical reasons the profile loglikelihood approach apparently cannot be 
applied in a straightforward manner. In this case, it seems that any dose within the interval bounded by 
the highest dose with no responses, and the lowest dose with 100% responses, would be about equally 
valid as an estimate of the LD50. It seems natural to consider whether those two doses can function in 
practice as an approximate confidence interval, and there does not appear to be any alternative for 
defining bounds in this case. 

For Case 3, the proposed bounds are not designed to achieve a specific confidence level. Rather, the 
approach is to ask what is the realized confidence level, if bounds are computed in a certain way. 

Case 4.  When there is a single partial response (along with other requirements for the case, as 
indicated in Table 2), the profile loglikelihood can be applied using special computations developed by 
the ICCVAM Acute Toxicity Working Group. Some technical details are given in Appendix A.. 

Case 5.  This is an infrequent case, which appears to occur primarily when an LD50 is close to a 
bound. Table 3 is an example of Case 5, generated in a simulation of the Revised UDP. 
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Table 3. Example of Case 5. 

dose (mg/kg) number tested number responding 
1.0 6 5 
1.5 2 2 

In the simulations, test doses are restricted to the range 1-5000 mg/kg. For the result displayed in 
Table 3, testing was probably stopped when three animals tested in sequence at 1 mg/kg all responded. 

It could be concluded that the LD50 is more than likely to be below 1.5 mg/kg. A profile likelihood 
calculation can be done. 

2.4. Confidence Intervals Based on Profile Likelihood 

This section provides a non-mathematical overview of profile likelihood computations proposed for use 
when the data from a given study is assigned to Case 2 or Case 4. The methods are illustrated using 
hypothetical data sets, which were generated in simulations of the Revised UDP. 
Some technical details and formulae are provided in Appendix A. The material in this section is not 
needed in order to understand the evaluation of performance of the methods using simulations, which is 
found in the sections that follow. However, it is desirable to understand the following points: First, the 
type of bounds proposed will be infinite in some cases. More precisely, both the upper bound and 
lower bound will be finite or both bounds will be infinite. This is as in standard probit analysis. Second, 
the methods proposed cannot be implemented by plugging data into a formula. Specialized computing 
skills such as numerical optimization are required for implementation. For the numerical aspects, there 
are multiple alternative algorithms that may be used without actually changing the statistical approach. 

Explicit descriptions of the profile likelihood approach are found in Barndorff-Nielsen (1991), 
Davidson and MacKinnon (1993), and Meeker and Escobar (1995), among other sources. Implicit 
justification for the approach is found in any theoretical statistics book if it is noted that (I) confidence 
intervals can be constructed by inverting statistical tests (Section 2.2) and (ii) the method proposed 
inverts a likelihood ratio test that is ordinarily presented. (These references are somewhat technical. 
The point here is to confirm that the general type of approach suggested is well established in statistics.) 
The method has been widely used in connection with nonlinear statistical models, and descriptions can 
be found in literature associated with various applications. Barndorff-Nielsen (1991) uses the term 
profile likelihood to denote the particular variant of a likelihood function that is used here, while other 
authors do not specifically name that variant. Barndorff-Nielsen (1991) also reviews refinements of the 
approach. 

According to the approach proposed, statistical results are based on likelihood curves. Figures 3 and 4 
provide two examples of likelihood curves, based on hypothetical data examples. Formulae for the 
likelihood curves are provided in Appendix A. Points to be emphasized 
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Figure 3.  Likelihood Curve for Example 1. 
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include that each distinct data set is associated with a distinct likelihood curve, from which can be read 
the statistical results (confidence bounds as well as a point estimate) for that data set. The likelihood 
curve also depends on the type of dose-response function that has been assumed. Revised UDP 
specifies the use of probit models. A logit model would also have an LD50 and a slope, closely 
analogous to the probit LD50 and probit slope, but for a given data set the likelihood curves for a probit 
model and a logit model would not be identical. 

For present purposes, it is helpful to think of the likelihood curve as providing levels of relative support 
that a specific data set give to different choices of parameter values (Edwards, 1992). In particular, the 
LD50 value with highest likelihood is the maximum likelihood estimate (MLE) and may be considered 
for a point estimate. (However, Revised UDP specifies that the LD50 point estimate will be a MLE 
based on an assumed slope.) It turns out that standard probit calculations generate maximum likelihood 
estimates although the likelihood is not computed explicitly (Finney, 1971). 

If this notion of likelihood-as-support to calculation of confidence bounds is extended, it seems that 
values inside the confidence interval should have higher likelihood than values outside the interval. The 
upper and lower bounds for the confidence interval, it seems, should have equal likelihood (see Figure 
3). This notion is the basis of the graphical approach described with the following examples. 

Example 1 . The following data were generated in a simulation of Revised UDP.. 

Table 4. Example with a Single Partial Response Dose. 

dose (mg/kg) number tested number responding 
175.0 2 0 
553.4 3 2 
1750.0 1 1 

likelihood values (see text for explanation) 
maximized loglikelihood = -1.910 
loglikelihood for bounds =-3.830= -1.91 - 1.92 
95% CI for the LD50 = 93 - 2258 mg/kg based on method of profile likelihood 

Here there is only a single partial-response dose and so standard probit programs cannot be used to 
generate an estimate of the LD50. The likelihood curve associated with these data is displayed in 
Figure 3 [the natural log of the likelihood is graphed. Use of ln(likelihood) is conventional in statistics 
for computations with likelihoods.] 

The confidence bounds can be computed graphically using Figure 3, by the following steps: 

(1) There are two parameters in the probit model, namely the slope and LD50, but the curve displayed 
is a function of the LD50 only. A 2-parameter likelihood can be defined which can be graphed in three 
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dimensions. In the context of Revised UDP, the LD50 is of primary interest. In this context, the slope 
is said to be a nuisance parameter. Therefore, it does seem useful to obtain a likelihood curve for the 
LD50 alone, if that is possible. 

One way to eliminate the slope, as used in Revised UDP point estimation and stopping rules, would 
have been to assume a value for the slope. Here, a more computationally intensive approach has been 
used. The approach proposed is the detail that defines the profile likelihood approach specifically, as a 
type of likelihood approach. According to the profile likelihood approach, at each value of the LD50 
the slope value is used that maximizes the 2-parameter likelihood. 

Since the profile likelihood curve is the only likelihood curve that will be used in this document, the 
profile likelihood (for the LD50 eliminating the slope) will be referred to as “the likelihood curve” 
although, to be more exact, it should be referred to as the “profile likelihood curve.” 

(2) For the hypothetical data, the likelihood function has a peak where the log(LD50) has the value of 
approximately 2.7 (i.e., at an LD50 value of 553 mg/kg). Note that the value of 553.4 mg/kg is the 
middle dose in this example, the dose with an intermediate response fraction. This value would not be a 
bad choice of a point estimate for the LD50 for these data. 

(3) The subsequent computations require the peak value of the ln(likelihood). In this particular 
example, special computations are needed to get the maximized (peak) ln(likelihood), which are 
presented in Appendix A. For the data considered here, these computations yield a value of -1.91 for 
the maximized ln(likelihood), which is evidently consistent with the curve in Figure 3. In cases where 
standard probit calculations can be applied, computation of the maximized ln(likelihood) involves a 
different procedure, as in Example 2 below. 

(4) An approximate lower bound for the LD50 can be read from the likelihood curve as follows. A 
horizontal line is drawn at a (log) likelihood value of -3.83, a value which is computed with a formula 
below. Referring to Figure 3, this line is seen to intersect the likelihood curve to the left of the curve 
peak, at an LD50 value of 92 mg/kg (log10( 92)=1.965). Therefore, the value of 92 mg/kg is taken to 
be the lower bound for the LD50. 

A similar approach is used for determining the upper bound of 2258 mg/kg (log10 = 3.35). The upper 
bound value is the dose value where the horizontal line crosses the likelihood at a second point, to the 
right of the point estimate. 

The Y-axis value of the horizontal line (-3.83 for this example) is calculated with the following formula 
which has been developed by mathematical statisticians: 

ln(likelihood) for bound = maximized ln(likelihood) - 1.92 

For the example, a maximized ln(likelihood) value of -1.91 has been calculated, so the Y-axis value for 
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the horizontal line is -1.91 - 1.92 = -3.83. 

In the formula above, the value of 1.92 is appropriate for computation of a 2-sided 95% interval. A 
different value would be used to compute a 90% interval, and so on. Technically, the value to be used 
is taken from tables (or the electronic equivalent) of a chi-square distribution with one degree of 
freedom. 

To see why these computations make sense, reflect again on the notion that the likelihood is a measure 
of relative support that the data give to alternative choices of an LD50. The graphical approach 
separates the possible choices of an LD50 into two sets based on their likelihoods: The confidence 
interval comprises LD50 candidates with ln(likelihood) above the horizontal line, while LD50 
candidates outside the confidence interval have ln(likelihood) below the horizontal line. The two 
bounds are dose values with equal likelihood. The procedure seems natural if LD50 candidates with 
higher likelihood are regarded as better supported by the data. 

(5) Reflection on the procedure just described indicates a possible problem. The likelihood curve was 
graphed over a finite range. The graphical approach assumes that the ln(likelihood) remains below the 
horizontal line for LD50 values not graphed. If not, then the bounds are infinite. However, as 
mentioned previously, there is a way to determine if the bounds are finite or infinite. Use of the formula 
in this case indicates that the bounds are finite. 

Example 2.  The following hypothetical data were also generated in a simulation of Revised UDP. 

Table 5. Data for Example with Infinite Bounds 

dose (mg/kg) number tested number responding 
175.00 1 0 
553.40 2 0 
1750.0 3 1 
5000.0 4 1 

Probit results: slope = 1.02, estimated LD50=14223 mg/kg 

Standard probit calculations (Finney, 1971) can be performed in this case. Probit results for the LD50 
and slope are displayed in a table footnote. According to standard probit calculations, the bounds for 
the LD50 are infinite in this case. 

The likelihood curve based on these data is displayed in Figure 4. 

The curve can be used for the point estimation because the likelihood curve has an unambiguous peak. 
If the graph is plotted over a more narrow range than that used for Figure 4, it can be seen that the 
peak actually does correspond to the probit LD50 estimate. In fact, standard probit calculations do 
generate the maximum likelihood estimates (Finney, 1971). 
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Next we need the maximized ln(likelihood). In this case, the computations are different from those used 
for Example 1. When the standard probit calculations apply (as in this example but not in Example 1), 
the maximized ln(likelihood) is computed by plugging the probit estimates of the slope and LD50 into 
the two-parameter likelihood formula. The two-parameter likelihood formula is given in Appendix A. 

As in Example 1, a horizontal line can be drawn separated from the peak ln(likelihood) by a value of 
1.92 units in the direction of the Y axis. The result of this step is the lower of two horizontal lines drawn 
on the graph (see Figure 4). In this case, although the likelihood curve dips below the horizontal line, 
the set of dose values with ln(likelihood) above the line (those values not excluded based on our data) 
stretches to infinity in each direction. Consistent with the results of standard probit computations for 
this case, the profile likelihood confidence bounds are considered infinite. 

Note that if the likelihood curve had been viewed over a narrow range of LD50 values around the 
peak, one might have concluded that the upper bound was probably infinite, but might be misled to 
suppose that the lower bound is finite. This problem can be resolved as follows. Observe that in this 
case as the LD50 approaches infinity in either direction, the likelihood curve approaches a second 
horizontal line (refer to Figure 4). In fact, it appears that in all cases the likelihood curve will approach 
some line in this way, and the location of that line can be determined. (The formula is provided in 
Appendix A.) Evidently, the bounds are finite if and only if the second line is located below the first in 
the Y-axis direction. 

Computer algorithms, particularly handling of infinite bounds. Despite what these examples may 
suggest, it is not proposed that in practice the bounds will be obtained by literally drawing lines on 
graphs. A computer program will be used to perform analogous computations. However, 
understanding of the graphical approach just given can provide an appreciation of the types of 
computer algorithms required to implement the approach. Three types of specialized computer 
algorithms are evidently needed. 

(I) The approach requires that we compute the maximized value of the ln(likelihood). When the 
results of a study fall in Case 2, an optimization (peak finding) algorithm is required. Standard probit 
calculations (Finney, 1971, Ch. 2) represent an appropriate optimization algorithm in this case, and that 
approach has been used in simulations reported in the following sections. 

(ii) Computation of the bounds requires us to identify values of the LD50 that have specific values 
of the ln(likelihood). For the simulations reported in this document, a bisection algorithm has been 
used. 

(iii) In Example 1, it was explained how the slope is eliminated from the likelihood function when 
using the profile likelihood method. (For a given value of the LD50, use the slope value that maximizes 
the likelihood.) Consequently, another optimization routine is needed. In simulations, a type of 
weighted Gauss-Newton algorithm, also termed a scoring algorithm, has been used. This is a type of 
optimization method widely used in situations such as probit fitting (Nelder and Wedderburn, 1989). 
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Each of these three operations involves a kind of iterative search procedure, meaning that some kind of 
initial guess is developed for a quantity to be computed and that guess is refined in an iterative fashion, 
until further refinements seem to have no practical effect. The implementation of these types of 
algorithms requires a specialized type of computing skill. 

For each of the three operations identified there are various algorithms that may work. The choice of 
an algorithm is not fundamental to the statistical method, but can affect the performance of a computer 
program in some ways. If a relatively poor algorithm does not produce incorrect results, computing 
speed may be slowed, or the algorithm may occasionally fail to produce results because of a variety of 
numerical phenomena. 

2.5. Simulation Procedures for Measuring the Performance of Confidence Intervals. 

In previous work, we have used simulations to evaluate the performance of OECD TG 425 for the 
purpose of estimating the LD50. In these simulations, values were assumed for the slope, LD50, and 
starting dose, and numerous data sets were simulated. In that situation, estimates of the LD50 close to 
the true value are considered desirable. Therefore, performance could be evaluated by considering the 
percent of simulated studies yielding LD50 estimates in some sense close to the true value, say within 
some factor of the true value. 

Analogous simulation procedures have been used here to evaluate the performance of the proposed 
confidence intervals. As with previous simulations, values are assumed for the LD50, the slope, and the 
initial starting dose. For a given combination of assumed values of these parameters, we simulate a 
large number of studies. The simulation results are used to compute measures of performance. While 
the procedure for simulating data sets is identical to the procedure used in evaluation of point estimates, 
different performance indices are computed from the simulated data. 

To assess the performance of the confidence intervals, we report four measures of performance, which 
are denoted PM1, PM2, PM3, and PM4 in the tables of simulation results. 

PM1.  This is the estimated percent of studies that have finite confidence bounds. (The bounds are 
both finite or both infinite.) It is desirable to have narrow confidence bounds, but it is not clear that the 
occurrence of very wide bounds should be viewed as a drawback for the method of computing 
confidence bounds, versus as a drawback of the study design. In any case, the index seems to provide 
useful information. 

PM2.  This is the coverage, which is the fraction of studies for which the true LD50 falls inside the 
confidence interval (above the lower bound and below the upper bound). For each of, say, 1000 
simulated studies, the confidence intervals are computed with the procedures proposed, and the study 
is scored as either enclosing the true LD50 or otherwise. PM2 is then the percent of the 1000 
simulated studies with bounds that enclose the true LD50. In cases where the bounds were infinite, 
they were scored as enclosing the true LD50. 
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By the definition of a 95% confidence interval, the ideal value for PM2 is 95%. Ideally, PM2 will not 
vary when the LD50, slope, and initial test dose are varied. 

PM3.  PM3 and PM4 are alternative measures of the typical widths of confidence intervals. PM3 is 
the median ratio of the upper bound to lower bound. (The ratio upper/lower is computed separately for 
each of, say, 1000 simulated studies. PM3 is then the median of the 1000 ratios.) 

In cases where the bounds were infinite, the ratio was coded as greater than 1000 (>1000). Ratios that 
were finite but greater than 1000 were also coded as simply >1000. (Otherwise some confidence 
intervals with finite bounds would be coded as more narrow than intervals with infinite bounds.) For 
many of the situations where a slope of 0.5 or 0.8 was simulated, over 50% of simulated studies had 
infinite slopes (that is, PM1>50%). (See Table B.2 of Appendix B.) In these cases , the value of PM3 
is >1000. In a few cases, PM3 was >1000 when PM1 is slightly below 50%, because of some 
intervals that are very wide but not infinite. 

Use of a value of 1000 is somewhat arbitrary but this choice does not effect the median ratio unless the 
ratio exceeds 1000 for at least 50% of simulated studies. We suggest that if the median ratio is greater 
than 1000, there is not much practical value in quantifying the proportion of confidence intervals with 
infinite bounds, versus with bounds that are finite but separated by a factor of 1000 or more. 

In several cases where a steep slope is assumed, PM3 is equal to 3.2. This is the ratio of adjacent test 
doses, except in some cases where a test dose is a limit dose. In these cases, many data sets fall under 
Case 3, for which all doses are associated with either 0% response or 100% responses.. 

PM4.  This is a second measure of typical width, the median standardized width of the confidence 
interval. For each simulated study (say for 1000 simulated studies), we compute the quantity: 

upper bound -  lower bound 
standardized width of confidence interval =  100*

true LD50 

This ratio is computed for each of, say, 1000 simulated studies. PM4 is then the median of the 1000 
standardized widths. 

In cases where the bounds were infinite, the standardized width was scored as >100,000. This is 
comparable to use of a code of >1000 for PM3 given the approximate relationship between the two 
indices. 

In interpreting these measures, it may be useful to consider the coverage measure PM2 jointly with 
measures of width (PM3 or PM4). If the coverage is larger than 95% and the intervals appear 
undesirably wide, then a case can be made for refining the statistical procedure to yield more narrow 
bounds, with coverage closer to the ideal value of 95%. 
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OECD standard simulation scenarios for acute mammalian guidelines. Simulations have been 
conducted based on two sets of scenarios. (the term scenario is used to mean a combination of true 
LD50, true slope, and initial test dose.) 

The first set of scenarios comprised 45 combinations of slope and LD50, with the initial test dose set to 
175 mg/kg in each case. The value of 175 mg/kg is the Revised UDP default initial test dose, to be 
used when there is no reliable information to indicate a better initial test dose. The combinations of 
slope and LD50 for this set are the same as for the second set. 

The second set of scenarios comprises 112 combinations of slope, LD50, and initial test doses. This 
set of scenarios has been developed by OECD workgroups for evaluation and comparison of acute 
toxicity designs. For this set, initial test doses were initially specified in terms of percentiles of the 
tolerance distribution. The test doses were then calculated from the slopes and LD50s. In simulations 
of the Revised UDP, test doses are restricted to the range of 1 to 5000 mg/kg. Therefore, 
combinations with an initial test dose outside that range have been deleted. 

In this set, scenario number 95 has been modified for the simulations reported here, by changing the 
initial test dose from 4870 to 4750 mg/kg. The LD50 is 3000 mg/kg for this scenario so that testing 
tended to be concentrated on the two doses 4870 and 5000 mg/kg, the latter being the limit dose. The 
original value of 4870 mg/kg is unrealistically close to the limit dose of 5000 mg/kg and the scenario 
was unmanageable numerically because of a large number of numerical overflows. When the initial test 
dose was changed to 4750 mg/kg, no further difficulties were encountered. (No numerical problems 
were encountered with any of the other scenarios, after some refinements of the algorithms.) 

Additional details of simulation.  The performance measures PM1-PM4 were computed only using 
data for Cases 2-4, because it is only for those cases that statistical methods are proposed in this 
document. For example, PM1 is then the percent of studies in Cases 2-4 that have finite intervals. 
However, the percentages of studies assigned to different cases were computed using the data for all 
cases. 

For each scenario, a minimum of 1000 studies was simulated. Because confidence intervals were 
computed for Cases 2, 3, and 4, the combined number of simulated studies for those 3 cases was fixed 
at 1000 for each scenario while the total number simulated studies per scenario was variable but always 
greater than 1000. 

As in previous simulations, the range of test doses has been restricted to the range of 1 to 5000 mg/kg. 

2.6 Simulation Results 

Two types of simulation results are provided in Appendix B. 

Table B.1 of Appendix B provides percentages of Cases 1-5 for each scenario. (See Table 2 of this 
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Section for the definitions of these cases.) A combined percentage is reported for Cases 1 and 5. 
Table B.1 contains the results for both sets of scenarios, those with the initial test dose fixed at 175 
mg/kg and those with initial test dose varied. 

The case frequencies are informative regarding how often particular procedures can be applied. In 
particular, the low frequency of Case 2 in many scenarios supports our assertion that standard 
procedures of probit analysis will often not be applicable with TG 425. Cases 1 and 5 occur with 
relatively high frequency when the true LD50 is close to a limit dose. This is probably a consequence 
of instances where a particular stopping rule is invoked, namely that testing is stopped if three animals 
tested in sequence at 5000 mg/kg do not respond, or if three tested in sequence at 1 mg/kg all respond. 

The relative frequencies of different cases depends strongly on the slope, for obvious reasons. If the 
slope is steep, then the percentages of animals responding changes from 0% to 100% within a narrow 
range of dose values, and the possibility for obtaining a partial response percentage therefore relatively 
small. 

Table B.2 provides the values of performance measures PM1-PM4 (defined in Section 2.5) for each 
Scenario. Overall, the results seem to suggest acceptable performance of the methods proposed. 

The results indicate a strong dependence on the slope. As the slope increase, the percentage of infinite 
bounds is lower (PM1), the coverage increase (PM2), and the intervals become more narrow (PM3, 
PM4). 

With regard to coverage (PM2) the ideal value is 95%, and ideally the coverage will not depend on the 
slope. Therefore, the PM2 values of 99%-100%, associated with steep slopes, are not necessarily to 
be viewed favorably. However, in the steep-slope situations, the confidence intervals tend to be 
narrow (PM3, PM4). Thus, the conservatism of the methods when the slope is steep (as quantified by 
PM2) do not seem to represent a serious drawback of the methods proposed. 
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3.0 Software 

3.1 Purpose and Description 

Because the Revised UDP is relatively complex statistically, dedicated software has been developed to 
integrate all statistical features of the test, including a) multiple stopping criteria; b) estimation of an 
LD50; and c) provision of confidence intervals , together with their appropriate places in the laboratory 
protocol. This software was developed for a Windows environment and is accompanied by a user 
manual. The software and manual are designed to be readily understood and implemented by scientists 
outside the U.S. who may have limited facilities and English comprehension. It will be a stand-alone 
package designed for analysis only, with provision for an investigator to create reports that include 
animal identifiers that match those in a laboratory's standard data maintenance files, thereby permitting 
data verification. 

Development of this software is being carried out under contract to the U.S. EPA, through work 
assignments 4-06 and 5-03 of Contract No. 68-W7-00285. Building the package follows practice for 
verification, which is an abbreviated form of standard practice such as that outlined by the FDA draft 
guidance for industry on general principles for software validation. The FDA guidance states: 

“Verification is defined in 21 CFR 820.3(aa) as "confirmation by examination and 
provision of objective evidence that specified requirements have been fulfilled." In a 
software development environment, software verification is confirmation that the output 
of a particular phase of development meets all of the input requirements for that phase. 
Software testing is one of several verification activities, intended to confirm that 
software development output meets its input requirements. Other verification activities 
include walkthroughs, various static and dynamic analyses, code and document 
inspections, both informal and formal (design) reviews and other techniques”. 

The model of verification is not unlike the QA/QC Check of the Benchmark Dose System (BMDS) 
Software for the U.S. EPA (Contract No. 68-C9-8007, Work Assignment 1-10, December 1999). 

Completion of all construction, testing, and documentation is scheduled for summer 2001. 

3.2 Quality Assurance/Quality Control 

Software requirements are being set out by the U.S. EPA and the contractor regarding environment, 
input/output/functions, user interfaces, error handling; design is considering implementation (coding) 
issues; and testing will be performed to ascertain that the package does what it is designed to do. 
Some of this testing will be in the form of stressing the program by pushing it to unusual circumstances 
(and sample data sets are currently under construction). Some of these data sets generally can be 
described by the case descriptions in section 2 of this document. The sets specifically encompass, 
however, such situations as possible data entry errors and the various stopping circumstances, as well 
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as unusual dose magnitudes. Some of it will constitute simulations characterizing the behavior of 
Revised UDP that can be compared to independently programmed output regarding Revised UDP 
behavior. When completed, these activities will constitute a verification of the analysis package. 

At the first stage, an outline of the program has been created, identifying its structure (with data, 
calculation, and report modules, and, for testing, a simulation module), how modules will interact, what 
each module will do and, as appropriate, the mathematics for those operations; enumerating the 
possible configurations of data and which will and will not give numeric solutions; describing messages 
(prompts, warning, error) from package to user and their circumstances; and outlining the testing and 
simulation processes. Concurrently, an outline of the user manual was delivered. 
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Appendix A 

Performance Characteristics of the Revised UDP Point Estimate and Confidence Interval 

1.1	 LD50 Confidence Bounds for Revised UDP: Technical Specifications and Numerical 
Programming 

This appendix provides technical detail and mathematical formulas, and supports technical peer review 
and programming. 

The preliminary approach, described in this Appendix, was to limit the numerical search for a bound to 
a finite interval above or below a point estimate of the LD50. This approach was used because no 
procedure was readily available to determine from the data, a priori, whether the bound is finite or 
infinite. It was suggested that the search interval may be made sufficiently wide so that, if a bound is 
outside the interval, it might be considered infinite for practical purposes. 

However, it appears that there is actually a criterion that can be used to determine whether the bounds 
are finite or infinite. The probit model can be parameterized in terms of µ = log10(LD50) and the slope 
($). According to the method of profile likelihood, the decision of whether a value of µ is inside or 
outside the confidence interval is made by optimizing the slope parameter with µ fixed at the value of 
interest, and thus obtaining an optimized loglikelihood value corresponding to a particular µ value. The 
value of µ in question falls within the confidence region if and only if the maximized loglikelihood is 
greater than or equal to a critical loglikelihood that can be denoted as lcrit. The computation of lcrit is as 
described in this Appendix. 

As the value of µ is taken toward infinity in either direction, and the slope is optimized for each value of 
µ, the optimized slope value is observed to converge to zero. The loglikelihood is observed to 
converge to a value that can be computed directly, by substituting for each predicted response 

g g
percentage the pooled response percentage p = � r � ni where ri and n i are thepooled ii=1 i=1 

numbers of animals that respond and the number tested at the ith of g dose levels tested. 

This behavior can be understood as follows. For definiteness, consider computation of the lower 
bound. As µ is taken toward negative infinity, the value of $ approaches zero. If $ did not approach 
zero, then all of the predicted response probabilities would go to zero. However, the methods are 
applied only when some animals respond and others do not. Therefore, $ goes to zero to fit a mixture 
of animals that responded and did not respond as µ is taken to infinity. When $ is close to zero, the 
doses become, for purposes of probit analysis, about the same dose. (For purposes of probit analysis, 
the magnitude of dose ratios is considered relative to the slope.) Therefore, as µ is taken to infinity and 
$ optimized at each value of µ, the fitted probit line approaches a line connecting the point 
(µ,probit(0.5)) to the point ( x ,probit(ppooled)) where x is the mean log dose. 
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Therefore, the criterion for determining whether or not the bounds are finite is as follows. Let lpool 

denote the value of the loglikelihood computed with each response percentage set equal to ppooled. 
Since the profile loglikelihood will approach lpool as µ approaches ± 4, the bounds are finite if and only 
if lpool is less than lcrit. 

Figure 3 in Section 2.4 of this document, and the associated discussion of Example 1 is misleading. If 
the loglikelihood is graphed over a sufficiently wide range of doses, the loglikelihood is seen not to be 
convex and the nonlinear equations that define the bounds have more than two roots. (In the graphs of 
Section 2.4 of this document, the curve crosses the line more than twice.) In this case, according to the 
criterion just described, the lower bound as well as the upper bound is infinite, which is also the result 
obtained with the standard probit methods. 

1.2 Background. The ATWG proposes to implement confidence bounds for the LD50, for use 
with acute toxicity data generated in accordance with the Revised UDP. The method for calculating the 
confidence interval will be available in software developed to support the Revised UDP; this software 
will also provide point estimates of the LD50 and will evaluate stopping criteria. The decision to 
develop new confidence interval procedures is based on simulations that indicate that standard 
procedures (for analysis of data under a 2-parameter probit model) will very often not be applicable 
with data generated according to the Revised UDP. This Appendix is intended to support statistical 
peer review of confidence interval procedures, and (subject to modifications based on the review) to 
support numerical programming. 

Based on simulations presented in Section 2 of this document, it appears that in most cases it will be 
possible to compute a confidence interval using one of two procedures and that these procedures will 
have acceptable performance. 

In cases where no animals respond at some doses, and all animals respond at some other doses (the 
latter being greater than the former), it is proposed that the lower bound for the LD50 will be the 
highest dose associated with no observed response. Similarly, the upper bound will be the lowest dose 
associated with responses for all animals tested at the dose. 

In most other cases, it will be possible to compute a bound using the method of profile likelihood (see 
Barndorff-Nielsen, 1991, Section 10.2.4). In particular, it is proposed that this approach will be used 
in most cases where there is only one dose with an intermediate response fraction (neither 0% nor 
100% responding), a case that is not handled by standard probit methods. (Proposals for handling 
various cases are summarized in Section 1.5 of this Appendix. ) 

Of the two procedures, the profile likelihood approach is the primary focus of this Appendix. The 
approach requires handling of a number of special cases and specification of other technical details. 

Although a description of the profile likelihood approach has been included here, this document is 
intended to be reviewed primarily by individuals with some background in likelihood based statistical 
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procedures. In addition, it is assumed that readers are familiar with certain types of numerical 
techniques (line searching and optimization) as used in implementation of nonlinear statistical models. 

The material which follows is organized into three sections. 

Section 1.3 presents notation, the probit dose-response model, and the profile likelihood approach for 
computation of confidence intervals. Comments are provided on alternative parameterizations of the 
probit model. 

Section 1.4 discusses numerical algorithms. Three types of specialized numerical routines are required: 
2-dimensional optimization to calculate maximum-likelihood estimates, line searching to compute 
bounds, and 1-dimensional optimization (nested within the line search). 

Section 1.5 presents a classification of cases, with proposals regarding how each case is to be 
handled. Different cases require different confidence interval computations and, for some low-
frequency cases, confidence intervals are not proposed. 

1.3 Overview of parametric approach 

Notation for describing grouped data. For present purposes, it is convenient for the data to be 
summarized by dose level. Let: 

g = number of dose levels tested;
 
di = ith dose level evaluated, I = 1,...,g. We assume that d1 is lowest test dose, dg is the highest,
 

and so on. 
x i = log10( di ) 
ni = number of animals tested at the ith dose level, I = 1,...,g; 
ri = number of animals observed to respond at the ith dose level, I = 1,...,g. 

While data summarized in this way are convenient for the computations described here, some 
computations associated with the stopping rules cannot be calculated from data summarized in this way. 

Probit dose-response model. A probit curve is fitted to the data, relating the fraction of animals that 
respond and the logarithm of dose. The probit model has two parameters. According to one 
parameterization (the parameterization proposed for final results), the probity parameters are the slope 
(say $) and the LD50. For purposes of this document, it is convenient to make use of the parameter 
µ=log10( LD50). For likelihood-based statistical procedures such as those used here, it is permissible 
to do estimates and confidence intervals directly for µ and then transform those results to results for the 
LD50. 

Let p( x ;µ, $ ) denote the probability of response, where x is the common logarithm of dose. Then an 
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expression for the probity model is: 

p( x ;, $ ) = M[ ( x  -µ ) · $ ] 

where M( z ) denotes the cumulative distribution function (CDF) for a standard normal distribution. 

Calling the parameter $ a “slope” is a toxicological convention. Probity analysis is commonly described 
as a linear regression of a transformed response (probity percentage response) against the logarithm of 
dose. To see this, rearrange the expression above as follows: 

M -1 [ p( x ; LD50, $ ) ]= $ · x  - $· log10( LD50 ) ) 

where M -1 denotes the inverse of function corresponding to M, so that evidently the relationship 
between dose and response can be transformed to a linear relationship with slope $ and intercept 
$log10(LD50)). 

Note the use here of the common (base-10) logarithm of dose, which is a toxicological convention. 
For some purposes, the choice of a base for logarithms is arbitrary, but the common logarithm needs to 
be used in software designed to support Revised UDP, in order to have comparability of results 
obtained with different programs. In particular, the value of the slope estimate will depend on the base 
chosen for logarithms. 

An alternative parameterization, associated with a particular interpretation of the probity model, is: 

p( x ; µ, F ) = M[ ( x  - µ ) / F ] 

where µ = log10( LD50 ) and F = 1/$. Of course, µ and F2 are conventional notation for the mean 
and variance of a normal distribution. This parameterization may be preferred particularly when the 
probity model is interpreted in terms of a tolerance distribution. According to that interpretation, 
variation among test animals in response to a particular dose is related to individual variation in 
sensitivity to the test substance. The tolerance of a single individual is defined to be the dose that will 
cause that individual to respond, given its sensitivity to the test substance. Then the fraction responding 
at a given dose equals the fraction of individuals with tolerance below that dose. A frequency 
distribution is assumed for variation of tolerances among individuals. The probity formulae result from 
assuming a lognormal distribution for tolerances, with parameters µ and F. 

For purposes of the procedures described in this Appendix, the µ, $ parameterization has proved to be 
more convenient than the µ, F parameterization. In particular, it appears that widely different values of 
F can be associated with slope values about equal to zero, and log-likelihood values that are not much 
different. 

Point estimation of the LD50.  This Appendix is concerned primarily with interval estimates rather 
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than with point estimates. However, the following remarks may help to place in perspective the various 
computations that need to be implemented in the software. The purpose of acute testing under the 
Revised UDP is to obtain an LD50 estimate. In this context, the probity slope is a nuisance parameter. 
Revised UDP specifies that when estimating the LD50, a value will be assumed for the slope parameter 
(the default assumption is a slope of 2) and that the LD50 will be estimated based on the resulting 1
parameter model using maximum likelihood. Revised UDP provides an expression for the likelihood 
function. The LD50 point estimate is not used in the computations for the confidence interval 
developed in this Appendix. Computations for the Revised UDP stopping rule also involve a distinct 
point estimate of the LD50, for different reasons. 

Two-parameter and profile log-likelihood functions for grouped data. Likelihood functions are 
functions of model parameters, which are used in statistical inferences about those parameters. Each 
distinct data set yields a distinct likelihood function. It can be helpful to think of a likelihood function as 
measuring the relative support that the data provide for alternative choices of parameter values, with 
higher loglikelihood values indicating relatively stronger support. For example, the maximum-likelihood 
estimates of the parameters µ and $ are the parameter values that maximize the 2-parameter function. 
The exact roles of these functions in computation of confidence intervals are described in detail below. 

The following two likelihood functions need to be defined for the methods proposed. The log-
likelihood function for the two-parameter probity model is: 

l(m , b ) = 
g

r • ln( ( ; , )) + (n - r ) • ln( - p x { p x m b 1 ( ;m , b ))}i i i i i� i=1 

(Note the use here of the natural logarithm rather than the common logarithm, which contrasts with the 
transformation of doses.) 

Here, statistical inferences will focus on µ, whereas $ will be treated as a nuisance parameter. In this 
context it is useful to define a type of loglikelihood that is a function of µ only, with $ eliminated. The 
profile loglikelihood function is: 

lP( ) m = supb l(m b , ) 
In words, define the profile loglikelihood function to be the function of µ only, obtained by setting $ 
equal to that value which maximizes the 2-parameter likelihood l(µ,$ ), fixing µ. This requires a 
numerical optimization (numerical techniques are described in the next section). In practice the profile 
likelihood is handled using the same procedures as the likelihood of a single-parameter model, e.g., in 
likelihood ratio tests (Barndorff-Nielsen, 1991). 

Confidence intervals based on profile log-likelihood, “basic” approach . For the likelihood-based 
intervals considered here, the interval is the set of parameter values not rejected using a likelihood ratio 
test. The procedure can be stated most simply in the case where unique, finite maximum likelihood 
estimates (MLEs) exist for both probity parameters, in the interior of the space of allowable values. In 
this case the approach is fairly straightforward. 
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Let $ be the MLE for µ and let b$ denote the ML for $, which is to say that m$ and b$ are the choices 

of parameter values that maximize the likelihood function. Then the maximized value of the log-
likelihood , say lsup, is obtained by plugging the MLEs into the likelihood expression. Thus: 

lsup = l(m$ , b$) = lP(m$) 

(Here “sup” is short for “supremum.”) Then, for a 2-sided 95% confidence interval, the upper bound 
and lower bounds for µ, say m and m , are obtained by solution of the following nonlinear equations: 

lP ( ) m = lP (m ) = lsup - . , m < m < m1921 $ . 

In general, to compute a 100(1 - ")% confidence interval, the bounds are defined by the equation: 

1 2l ( ) m = l (m ) = l - c (1- a ), m < m$ < mP P sup 12 

(Bickel and Doksum, 2001) where c1
2 (1- a ) denotes the (1-")th quantile of a chi-square distribution 

with a single degree of freedom. (In particular 2 (0 95) = 3.84=2*1.92.) It is useful to definec1 . 

1
lcrit = lsup - c1

2 (1- a )
2 

which is the critical value of the profile loglikelihood that the bound values must satisfy. 

Use of these expressions requires numerical searches among values of µ above and below m$ . In 

some cases a solution does not exist, in which case the bound may be taken to be ±4. In particular 
cases, graphs of the profile likelihood suggest an approach to an asymptote that falls short of the critical 
value. Unless conditions can be derived and automated for identifying the apparent infinite-bound 
cases, the search must be restricted to a finite interval. When the search is restricted to a finite interval, 
one cannot distinguish between bounds that are very wide and bounds that are actually infinite. 

Example. The following hypothetical data were generated in a simulation of the Revised UDP. The 
profile loglikelihood curve for these data is displayed in Figure A.1 
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Table A.1. Data for Profile Loglikelihood Example 

dose (mg/kg) number tested number responding 
175.0 1 0 
553.4 2 0 
1750.0 3 1 

5000.0 4 1 
MLEs: m$ = 4.153, b$ = 1.020, estimated LD50=14223 mg/kg
 

95%CI for LD50 (1950 mg/kg,>2*105 mg/kg)
 
maximized loglikelihood: lsup = -4.603
 
critical loglikelihood for bounds: lcrit=-6.524
 

This data set was analyzed in the following steps. The 2-parameter probit model was fitted to the data 
using a conventional probit methods (weighted Gauss-Newton optimization). That approach is 
considered to yield MLEs of model parameters in this case. The MLEs are displayed in table 
footnotes. 

Evaluation of the loglikelihood at the MLEs gives lsup=-4.603 (see Figure A.1). Therefore, any bounds 
must have profile loglikelihood equal to lcrit.=-6.524. A line search below the MLE found the lower 
bound for µ of 3.29 (or LD50=1950). A search for an upper bound failed to find a value of µ with the 
required profile loglikelihood within a factor of 15 of the MLE. Therefore, the upper bound would be 
reported as greater than 213000 (=15*14223). In this case, the absence of a useful upper bound 
probably results from the restriction of test doses to values not exceeding 5000 units 
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Figure A.1 Profile Loglikelihood Example 

Profile loglikelihood example 

-4 

maximized loglikelihood
 
lsup = -4.60
 

-5 

-6 

-6.52 

-7 
3 4 5 6 

lower bound MLE = 4.15 mm=log(LD50)
= 3.29 maximizes loglikelihood 

P
ro

fi
le

 lo
g

lik
el

ih
o

o
d


 

44
 



Extension of the approach to cases with a single intermediate response fraction. In some cases, 
the computations just described will not be applicable. However, the approach has been extended to 

doses are associated with 100% response. This is Case 4 as described in Table 1. 

In the cases considered above, the loglikelihood supremum lsup was found by evaluating the 
loglikelihood at the MLEs. For Case 4, it appears that lsup has a natural definition, although the value of 

one case that is not ordinarily analyzed under a 2-parameter probit model. This is the case where there 
is only a single test dose with an intermediate response fraction (the percentage responding is neither 
0% nor 100%), and where any lower test doses are associated with 0% response, and any higher test 

is obtained as a limit and does not correspond to particular finite values of and $l µ .sup

Within the ranges allowed for and $, the fitted probit curve can be made to match the data as closelyµ
as we like by specifying $ to be sufficiently steep. Consider the family of curves that exactly match the 
single partial response, with different slopes. Steeper slopes allow the 0's to be matched more closely 
at one end, and the 100's to be matched more closely at the other end. This argument suggests that the 
supremum of the loglikelihood can be calculated by taking appropriate limits, resulting in the expression: 
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where j is the index of the dose associated with a partial response fraction. This expression is obtained 
from the 2-parameter log-likelihood l(µ,$) by deleting the contributions from doses other than dose j, 
and for dose j by setting the predicting response percentage equal to the observed response percentage 
rj /nj. For the terms other than the jth, the limit is zero as the slope is taken to infinity. The jth observed 
response fraction equals the corresponding observed fraction because for any finite slope value, the 
intercept can be adjusted so that the results for the jth dose are matched exactly. 

A second requirement for implementation of a profile likelihood approach is to define a finite interval of 
µ values in which to search for an upper or lower bound. Where there is an unambiguous MLE, an 
upper bound is searched for among values of µ above the MLE, and a lower bound is searched for 
below the MLE. In the case under consideration, where there is a single dose with partial response, we 
use the dose that has partial response as a bound for the search interval. 

Example with one partial response dose. The following data were generated in a simulation of 
Revised UDP. 
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Table A.2. Example with a Single Partial Response Dose. 

dose (mg/kg) number tested number responding 
175.0 2 0 
553.4 3 2 
1750.0 1 1 

maximized loglikelihood: lsup = -1.910 
critical loglikelihood for bounds: lcrit=-3.830 
95%CI 1.97 - 3.35 for µ, 93 - 2258 mg/kg for the LD50 

In this example, there is only a single partial response dose. The maximized loglikelihood is calculated 
using the formula given. (The LD50 would be 553.4.) The graph of the profile loglikelihood (Figure 
A.2) does not suggest any problem with this way of defining lsup. Each point plotted corresponds to 
specific finite values of the parameters, but nevertheless the proposed method for calculating lsup (which 
does not correspond to any particular parameter values) appears consistent with the rest of the curve. 
The use of such a profile loglikelihood presents no obvious problems. 
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Figure A.2. Profile Likelihood: Example with Single Partial Response. 
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1.4 Numerical Algorithms for Likelihood Calculations 

A number of technical decisions are required in order to implement a profile likelihood procedure. It is 
desirable first of all to have criteria for determining if a 2-parameter maximization of the loglikelihood 
can be performed. In that case, the parameter values that maximize the loglikelihood are the MLEs. In 
any case, the computation of a bound for the LD50 requires a line search of a finite interval. Some 
procedure is needed to define the interval that will be searched for a bound. The line search involves 
evaluation of the profile loglikelihood function lP(µ) for different values of µ. Each evaluation of the 
profile loglikelihood involves a 
1-dimensional optimization ($ is optimized with µ fixed). 

Each of these procedures requires a number of technical decisions. Most of these decisions are not 
related to the fundamental method, being more to production of a reliable algorithm. Here, a 
description is provided of the implementation used. In simulations, it appears that this algorithm never 
aborts because of numerical overflows or divisions by zero, etc. For concreteness, the procedure is 
described for computing the upper bound. The modifications needed for computation of a lower bound 
seem obvious in most cases. 

Computation of MLEs by 2-dimensional optimization. When an optimum can be determined for the 
likelihood function, the results are used in calculating bounds by the profile likelihood method. There 
are many optimization techniques that can be considered for this purpose. In probit analysis, it is 
conventional to use a weighted Gauss-Newton approach devised by R.A. Fisher. This algorithm is 
described in Finney’s (1971) Chapter 4. The approach is considered to generate maximum likelihood 
estimates in probit analysis. This algorithm is considered to be a perfectly good approach viewed from 
the standpoint of modern nonlinear statistical modeling. The algorithm is actually a special case of an 
approach widely used for generalized linear models, a broad class of nonlinear models (McCullagh and 
Nelder, 1989). The algorithm is closely related to the more familiar Newton-Raphson algorithm, but 
involves a simplified expression for the Hessian. 

It is known that finite MLEs do not exist in some cases. Silvapulle (1981) has presented necessary and 
sufficient conditions for existence of MLEs for logit and probit models. The conditions are very 
general, addressing models with many regressors. In the case of probit analysis, the conditions 
apparently reduce to a requirement that some dose where one or more animals respond is lower than 
some other dose where one or more animals do not respond. A particular case of Silvalpulle’s 
condition is the case where there are at least two doses with partial response fractions. The latter is 
sometimes used as a criterion for when probit analysis can be performed. Another case is when the 
observed relation between dose and fraction responding deviates from monotonicity. 

Silvapulle’s criterion allows an estimate if the probit slope equal to zero. If the slope is zero, the same 
response fraction is predicted at every dose. In that case either there is no estimate of the LD50 or else 
every dose is estimated to be the LD50. A great many applications of probit or logit models are not 
concerned with estimation of an LD50, and Silvapulle in particular does not discuss estimation of the 
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LD50. 

Currently, 2-dimensional optimization is performed when the Silvapulle condition holds and when an 
additional criterion is met, which indicates a positive relationship between dose and observed response. 
(The handling of various cases is summarized in the following section.) In addition to the Silvapulle 
condition, a requirement is that the geometric mean dose is higher for animals that respond than for 
animals that do not respond. This condition is indicated in Revised UDP as a requirement for 
inferences regarding the µ. 

Specification of interval searched for a bound. A numerical search for a bound for the LD50 must 
be restricted to a finite interval, particularly in view of the possibility that a bound may be infinite. The 
search interval is defined using two numbers, a point estimate and a multiplicative factor, say Fsearch. 
For computation of the upper bound, the search interval is 

[LD50 point estimate, LD50 point estimate* Fsearch]. 

For the lower bound, the search interval is 

[LD50 point estimate / Fsearch, LD50 point estimate]. 

With regard to notation, the usual practice of using µ (=log10( LD50)) instead of LD50 is deviated 
from. This is because, in the software, it is expected that all results will be expressed in terms of the 
LD50. The variable Fsearch will be accessible for modification for the user. Therefore, Fsearch is 
represented as a multiplicative factor applied to a point estimate of the LD50. 

Here, use of the term “point estimate” is possibly the source of some confusion. The LD50 value 
which defines the search interval is not the LD50 point estimate indicated in Revised UDP. Therefore, 
the term “center of search interval” may be used in the remainder of the document. To avoid having to 
define additional symbols, m$  will continue to denote the center of the search interval although, in 

statistics, the “hat” (ˆ) over a parameter symbol ordinarily indicates a maximum likelihood estimate. 

Determining if a bound exists within the search interval (bracketing step). The line search 
algorithm has two steps, a bracketing step and a bisection step. The bracketing step serves to 
determine whether a bound exists within the search interval. Also, the bracketing step produces 
quantities useful in the bisection step, which follows. 

Expressing the model in terms of µ, the search interval for an upper bound can be denoted ( m$ , m$  + 

log10( Fsearch)). A bound exists within the search interval provided that 
lP( m$  + log10( Fsearch)) < lcrit. If this condition holds, then the bisection step can be used to locate the 

bound value within the search interval. Otherwise, the upper confidence bound is reported only as 
being greater than the bound of the search interval, i.e., as greater than 
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m$  + log10( Fsearch). 

This suggest that the bracketing step need only involve evaluation of the profile loglikelihood at the 
bounds of the search region. However, a more complex set of computations is used: Observe that 
evaluation of lP involves optimization of $. A starting estimate of $ is required for each optimization. 
Therefore, it is reasonable to evaluate a sequence of µ values m$ , m$ +*, m$ +2*, ..., where * is some 

constant, stopping when the value of lP is less than lcrit or the bound of the search region is attained. If 
this approach is used, then good starting values of $ are usually available. The optimized value of $ 
from one evaluation of lP is a good starting value for use in the next optimization. 

In simulations, Fsearch = 50 is used currently, and a value of * is used such that the bound of the search 
region is attained in 40 steps. 

Calculation of a bound by bisection. The use of bisection to calculate a bound for µ requires two 
values, say µ1 and µ2, that satisfy lP(µ1) > lsup and lP(µ2)< lsup. Such values are provided by the final 
two values of µ evaluated in the bracketing step. 

Gauss-Newton algorithm to optimize $ with µ fixed. The profile loglikelihood function lP(µ) is a 
function of µ obtained from the 2-parameter loglikelihood l(µ, $) by optimizing $, with µ fixed. 

The Gauss-Newton approach, conventional for 2-dimensional optimization in probit analysis, is easily 
developed for the case of 1-dimensional optimization of $. First, for the benefit of individuals familiar 
with generalized linear models, the probit model can be written in the following form: 

M -1 [ p( x ;µ, $ ) ]= ( x - µ ) $ = x * C $. 

where, as previously, x denotes the common logarithm of dose. From this it is evident that the 1
parameter model with µ fixed can be treated as a generalized linear model with a single regressor x * 

(=log10(dose)-µ), with no intercept term, and with link function M -1 (the probit link). As usual in probit 
analysis, binomial variation is assumed at a given dose, which results in a factor of p(1-p) in the 
regression weights. 

The standard approach leads to the following scheme for updating the estimate of $: 

[ $ at (I+1)th iteration ] = [ $ at ith iteration ] + d$ 

where d$ can be computed with the expression: 
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� ¶ � 
� l(m b , )�
Ł ¶b  ł

d = b g 2*(� w x )i ii =1 

with the quantities wi, x i, y i defined in the following steps (recall definitions given already for 
d i , r i, and n i): 

x i
* = log10( d i ) - µ = value of “regressor” for ith treatment level, I=1,...,g; 

Probiti = x i
* C $ = predicted probit value for ith treatment level; 

p i = M( Probiti ) = predicted response fraction at ith treatment level; 
binVi = p i ( 1 - p i ) / n i = binomial variance. 
fi = exp( -Probiti2 / 2 ) / %( 2B ) 

= weight contribution associated with probit dose-response 
function; 

wi = fi 
2 / binVi = weight for ith treatment level; 

p i
obs = ri / n i = observed response fraction at ith treatment level; 

and 

¶ g * obs - 1l(m b , ) = � fi • xi • ( pi - pi ) • binVii =1¶b 

the last quantity being the partial of the 2-parameter loglikelihood with respect to $. 

$ is not constrained to be non-negative in these computations. An argument can be made for 
constraining $ to be non-negative, or greater than some small positive value such as 0.5. Adding a 
constraint of this sort does not appear to be technically difficult, and would probably narrow some of 
the confidence intervals. 

Convergence criteria. All that is needed from the 1-dimensional optimization is a profile-loglikelihood 
value. A relative gradient criterion can be used. Convergence occurs when 

¶ 
l(m b , ) # 0.00001.¶b 

l(m b , ) 
For 2-dimensional optimization, a criterion based on relative change in parameter values is used 
currently. 

Stabilization of parameter changes. When the starting values are too far from the optimum, the 
search direction indicated by the algorithm may be reasonable, while the magnitude of change in that 
direction may be such as to miss the optimum significantly. Improvements on the basic algorithm may 
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involve use of the search direction, with modification of the magnitude of change in that direction, for 
example by use of halving or line searching (Myers, 1990, particularly Section 9.4; Seber and Wild, 
1989). 

For the 1-dimensional optimizations, the magnitude of parameter change (d$) is constrained to absolute 
values not exceeding 0.5. d$ is set to 0.5 whenever d$  is greater than 0.5 and d$ is set to -0.5 
whenever d$ is less than -0.5. This feature eliminated some problems that occurred otherwise. 

Computation of starting values for optimizations. Convergence is expected to be rapid and reliable 
within a sufficiently small neighborhood of the optimum. Many authors emphasize computation of 
starting values likely to be close to the optimum solution. In the case of probit analysis, an obvious 
approach for computing starting values is by a linear regression of transformed response fraction (probit 
transformation) against log dose. The probit transformation is not finite valued if the response fraction is 
0 or 1, hence a small constant may be added or subtracted from the observed response fractions, to 
obtain finite probit values for use in the regression. 

A starting slope value is not calculated from the data when fitting the probit function. Experience with 
the standard Gauss-Newton algorithm used in probit analysis has shown that numerical failures may be 
associated with computation of weights. Note that the weight computations involve division by the 
quantities p i( 1 - p i ) where p i is the predicted response fraction at the ith treatment level based on the 
current parameter values. Numerical failures are often related to values of one or more of the p i that 
are too close to 0 or 1, so that division by zero occurs. This outcome can be prevented by setting the 
initial value of the slope at a small value 
(a value of 0.5 is used). For a starting value for the LD50, the geometric average of test doses is used. 

A starting slope value from the data is not calculated when fitting the probit function. Instead, for a 
starting value for the LD50, the geometric average of test doses is used. Starting values of the slope 
are also needed for the 1-dimensional optimizations of $ (fixing µ). For most of these optimizations, an 
optimized value of $ corresponding to a nearby value of µ is available. Otherwise, a value of 0.5 can 
be used. 

1.5 Classification of Cases 

It is proposed that whether a confidence interval can be calculated, and if so the computations to be 
used, will be based on the following classification (see Table A.3). 

In development of this scheme, discussions with the OECD avian stat group have been very helpful, 
although that group has developed a somewhat different classification (report in press). For example, 
the avian scheme does not explicitly use the results of Silvapulle. 

The conditions for cases are checked in the order that the cases are displayed in the table, so 

when the conditions for a given case are met, none of the higher-number cases obtain. Table A.4
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indicates the computational procedures proposed for each case. Subsequent text expands upon the 

suggestions summarized in this table. 

Table A.3. Classification of Data Cases for Purposes of Confidence Interval Calculation 

Case Description 

1 (“No positive dose-response association”). There is no variation in response (all 
animals tested in the study responded, or none responded), or the geometric mean dose 
is lower for animals responding than for animals not responding. 

2 (“Standard 2-parameter probit computations”). The Silvapulle criterion holds (i.e., one 
or animals responded at a dose below some other dose where one or more did not 
respond. The conditions defining Case 1 do not hold. 

3 (“No partial response fractions.”). All doses tested are associated with response 
fractions of 0% or 100%, with the doses associated with 0% response lower than the 
doses associated with 100% response. One or more doses is associated with 0% 
response and one or more doses is associated with 100% response. 

4 (“One partial response fraction, first subcase”). There is a single dose associated with a 
partial response fraction. One or more lower test doses is associated with 0% 
response, and one or more higher test doses is associated with 100% response. 

5 (“One partial response fraction, second subcase”). There is a single dose associated 
with partial response, which is either the highest test dose (with no responses at all other 
test doses) or the lowest test dose (with 100% response at all other test doses). 

Acknowledgement. The development of this scheme was helped by conversations with the OECD 
avian acute statistics group, which has developed a similar classification (report in press). 

53
 



Table A.4. Classification of Data Cases for Purposes of Confidence Interval Calculation with Computational Procedures 

Case Description 
Confidence 

interval approach 

2
parameter 

MLE 
calculated 

Profile likelihood procedures 

log-likelihood 
supremum 

center of search 
region 

1 No positive dose-response 
association 

no confidence 
interval computed 

no not applicable 

2 Standard 2-parameter probit 
computations 

basic profile 
likelihood approach 

yes equal to loglikelihood 
evaluated at the MLEs 

MLE for LD50 

3 No partial response fractions and 
not Case 1. 

lower bound is 
highest with 0% 
response, etc. 

no not applicable 

4 One partial response fraction, 
0% response at some lower 
doses and 100% at some higher 
doses 

profile loglikelihood 
extended by special 
computations 

no expression in footnote1 
Dose associated 
with partial 
response 

5 One partial response fraction, at 
either high test dose or low test 
dose 

profile loglikelihood 
extended by special 
computations 

no expression in footnote1 
Dose associated 
with partial 
response 

1 Suppose the jth dose is associated with a partial response. Then the loglikelihood supremum is 

sup ln ln 
j
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where n j and rj denote the number of animals treated and the number that respond at the jth treatment level (see Section 1). 
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The decisions indicated in the table are as follows: 

Case 1. With the stopping rules indicated for Revised UDP, this case appears to be possible only if 
testing is stopped at a limit dose (based on non-response for three animals tested in sequence at the 
dose). No methods are proposed here for cases where there is not an observable relationship between 
dose and response. In some cases, a binomial test may be used to establish that the LD50 is above or 
below the range of doses tested, but a significant binomial test requires testing of 5 or more animals and 
would use only the data from one test dose. Some procedures that may be applicable in this case have 
been developed for avian acute testing (report in press). 

Case 2.  Where the data allow, both probit parameters are estimated using maximum likelihood. The 
loglikelihood supremum is the value of the 2-parameter loglikelihood, evaluated at the MLEs. 

This loglikelihood supremum is used to calculate a critical loglikelihood, which the bound values must 
satisfy. A search above the LD50 MLE is used to calculate an upper bound and a search below the 
LD50 MLE is used to calculate a lower bound. 

Case 3.  When there are no partial response fractions (along with other requirements of the case, as 
indicated in Table A.4) the profile loglikelihood approach apparently cannot be used. In this case, it 
seems that any dose within the interval bounded by the highest dose with no response, and the lowest 
dose with 100% response, would be equally valid as an estimate of the LD50. Simulations suggest that 
these two doses will perform acceptably when used as confidence bounds. Graphs of the profile 
loglikelihood indicate discontinuities at those doses, so that the profile loglikelihood approach cannot be 
implemented in a straightforward manner. 

Case 4.  When there is a single partial response (along with other requirements for the case, as 
indicated), the profile loglikelihood can be applied using special computations as described in Section 1. 
It is proposed that, when searching numerically for a bound, the dose with partial response can be used 
to define the search interval. 

Case 5.  This is an infrequent case which occurs mainly if the LD50 is close to a bound. 
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Table B.1. Percentages of Cases 1-5 among Simulated Studies 

Scenario# LD50 slope initial test % Case 1 % Case 2 % Case 3 % Case 4 
dose + Case 5 

(I) Scenarios with initial test dose 175 units 
1 1.5 8.33 175 21.3 0.0 78.7 0.0
 
2 4 175 53.1 3.0 42.6 1.3
 
3 2 175 41.6 31.0 18.5 8.9
 
4 0.8 175 19.7 61.6 6.0 12.7
 
5 0.5 175 11.5 67.7 5.7 15.1
 
6 2.5 8.33 175 0.0 0.0 99.2 0.8
 
7 4 175 10.8 6.3 64.7 18.2
 
8 2 175 13.9 38.5 21.9 25.8
 
9 0.8 175 10.6 66.3 6.7 16.5
 
10 0.5 175 9.3 70.4 5.1 15.2
 
11 20 8.33 175 0.0 0.0 35.3 64.7
 
12 4 175 0.0 9.3 24.9 65.8
 
13 2 175 0.0 40.6 14.8 44.6
 
14 0.8 175 0.2 61.9 7.6 30.3
 
15 0.5 175 1.5 61.7 7.2 29.7
 
16 50 8.33 175 0.0 0.0 29.8 70.2
 
17 4 175 0.0 7.3 24.0 68.7
 
18 2 175 0.0 37.2 12.4 50.4
 
19 0.8 175 0.0 54.9 8.4 36.7
 
20 0.5 175 0.3 57.5 7.0 35.2
 
21 150 8.33 175 0.0 0.0 36.7 63.3
 
22 4 175 0.0 4.1 26.6 69.3
 
23 2 175 0.0 26.1 15.8 58.1
 
24 0.8 175 0.0 48.5 9.8 41.7
 
25 0.5 175 0.6 56.6 8.0 34.9
 
26 600 8.33 175 0.0 0.0 30.3 69.7
 
27 4 175 0.0 6.7 22.9 70.4
 
28 2 175 0.0 32.6 12.7 54.7
 
29 0.8 175 0.6 54.3 9.0 36.1
 
30 0.5 175 1.9 58.9 8.6 30.6
 
31 1500 8.33 175 0.0 0.0 39.9 60.1
 
32 4 175 0.2 9.3 24.8 65.8
 
33 2 175 1.2 43.4 13.5 41.9
 
34 0.8 175 4.4 59.8 6.5 29.3
 
35 0.5 175 6.0 62.1 5.8 26.0
 
36 3000 8.33 175 9.5 1.1 82.4 7.0
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Scenario# LD50 slope initial test % Case 1 % Case 2 % Case 3 % Case 4 
dose + Case 5 

37 4 175 21.0 25.4 30.0 23.5
 
38 2 175 14.7 52.4 11.3 21.6
 
39 0.8 175 11.2 62.9 6.4 19.5
 
40 0.5 175 11.2 60.1 5.2 23.5
 
41 3500 8.33 175 27.4 1.0 70.5 1.1
 
42 4 175 36.1 24.9 28.0 11.1
 
43 2 175 22.4 50.9 9.5 17.2
 
44 0.8 175 12.1 62.6 6.4 18.9
 
45 0.5 175 11.0 60.0 6.8 22.3
 

(ii) Scenarios with initial test dose varied 
46 1.5 8.33 1.1 0.0 2.1 66.0 31.9
 
47 1.5 1.2 9.2 22.0 67.6
 
48 1.9 8.0 9.3 43.1 39.6
 
49 4 1.5 4.2 27.6 16.1 52.1
 
50 2.4 18.6 27.8 23.9 29.7
 
51 2 1.5 9.1 40.6 12.3 38.0
 
52 4 30.9 39.0 14.1 16.0
 
53 0.8 1.5 15.5 52.5 6.2 25.9
 
54 16.9 19.5 58.7 6.5 15.2
 
55 0.5 1.5 19.3 50.0 6.7 24.0
 
56 72.3 8.2 67.4 5.8 18.6
 
57 2.5 8.33 1.8 0.0 0.1 67.6 32.3
 
58 2.5 0.0 0.0 26.1 73.9
 
59 3.1 0.0 0.0 50.1 49.9
 
60 4 1.2 0.0 10.1 33.4 56.5
 
61 2.5 0.7 8.2 22.6 68.4
 
62 4.1 6.5 8.9 43.3 41.3
 
63 2 2.5 3.1 38.4 14.1 44.5
 
64 6.6 1.5 40.0 13.6 44.9
 
65 0.8 2.5 11.8 53.3 7.0 28.0
 
66 28.2 6.8 60.4 7.5 25.3
 
67 0.5 2.5 14.0 54.3 6.4 25.4
 
68 120.5 7.1 67.3 5.9 19.6
 
69 20 8.33 14 0.0 0.2 74.1 25.7
 
70 20 0.0 0.0 25.7 74.3
 
71 25.2 0.0 0.0 50.0 50.0
 
72 4 9.6 0.0 9.5 34.0 56.5
 
73 20 0.0 5.0 21.7 73.3
 
74 32.5 0.0 10.8 34.3 54.9
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Scenario# LD50 slope initial test % Case 1 % Case 2 % Case 3 % Case 4 
dose + Case 5 

75 2 4.6 0.0 41.1 14.6 44.3 
76 20 0.0 28.1 16.6 55.3 
77 52.7 0.0 32.3 14.3 53.4 
78 0.8 20 0.1 51.2 8.9 39.8 
79 225.4 0.1 62.4 7.8 29.7 
80 0.5 20 0.9 59.5 8.2 31.4 
81 964.4 1.5 71.6 6.3 20.6 
82 50 8.33 35.1 0.0 0.0 73.9 26.1 
83 50 0.0 0.0 22.6 77.4 
84 63.1 0.0 0.0 50.8 49.2 
85 4 23.9 0.0 9.2 36.1 54.7 
86 50 0.0 3.3 20.9 75.8 
87 81.2 0.0 8.8 34.8 56.4 
88 2 11.4 0.0 35.6 15.0 49.4 
89 50 0.0 27.4 14.2 58.4 
90 131.8 0.0 32.1 13.5 54.4 
91 0.8 1.3 0.0 68.1 7.6 24.3 
92 50 0.0 51.8 8.0 40.2 
93 563.6 0.0 58.7 8.6 32.7 
94 0.5 50 0.8 57.4 8.2 33.5 
95 2411.1 1.5 69.6 7.2 21.8 
96 150 8.33 105.3 0.0 0.0 71.8 28.2 
97 150 0.0 0.0 24.6 75.4 
98 189.3 0.0 0.0 50.0 50.0 
99 4 71.7 0.0 9.5 33.0 57.5 
100 150 0.0 4.9 21.4 73.7 
101 243.5 0.0 9.3 34.7 56.0 
102 2 34.3 0.0 36.0 14.5 49.5 
103 150 0.0 26.7 16.8 56.5 
104 395.3 0.0 32.0 13.6 54.4 
105 0.8 3.8 0.2 70.0 5.4 24.5 
106 150 0.0 51.5 9.1 39.4 
107 1690.9 0.3 62.0 8.0 29.7 
108 0.5 150 0.7 55.7 8.2 35.4 
109 600 8.33 421 0.0 0.1 72.7 27.2 
110 600 0.0 0.0 26.9 73.1 
111 757.2 0.0 0.1 51.4 48.5 
112 4 286.9 0.0 11.4 33.7 54.9 
113 600 0.0 4.3 25.3 70.4 
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Scenario# LD50 slope initial test % Case 1 % Case 2 % Case 3 % Case 4 
dose + Case 5 

114 974 0.0 13.2 35.8 51.0 
115 2 137.2 0.0 36.8 14.8 48.4 
116 600 0.1 26.7 16.3 56.9 
117 1581.1 0.4 31.8 14.1 53.7 
118 0.8 15 0.1 69.6 7.1 23.2 
119 600 1.2 52.9 8.4 37.5 
120 0.5 1.6 1.5 75.5 5.1 17.9 
121 600 3.0 59.6 6.4 31.0 
122 1500 8.33 1052.5 0.0 0.0 72.9 27.1 
123 1500 0.0 0.0 23.4 76.6 
124 1892.9 0.0 0.0 52.4 47.6 
125 4 717.3 0.0 7.5 34.2 58.3 
126 1500 0.2 5.1 23.6 71.2 
127 2435 0.0 9.4 34.6 56.0 
128 2 343 3.8 39.8 17.2 39.2 
129 1500 3.0 30.3 14.2 52.6 
130 3952.8 0.5 37.2 13.9 48.4 
131 0.8 37.5 4.7 69.0 6.2 20.1 
132 1500 11.0 51.8 7.4 29.8 
133 0.5 4.1 5.2 74.6 5.2 15.0 
134 1500 15.1 52.4 6.6 25.9 
135 3000 8.33 2105.1 5.4 2.9 66.4 25.3 
136 3000 0.8 4.9 23.2 71.1 
137 3785.8 0.2 1.5 52.7 45.6 
138 4 1434.6 27.3 14.9 39.7 18.1 
139 3000 3.0 24.8 20.1 52.1 
140 4750 0.7 17.7 35.1 46.6 
141 2 686 11.5 46.3 11.9 30.3 
142 3000 8.5 40.5 11.8 39.2 
143 0.8 75 7.9 67.5 5.4 19.2 
144 3000 14.0 52.7 4.8 28.5 
145 0.5 8.2 5.5 76.4 4.5 13.6 
146 3000 18.2 52.9 6.9 22.0 
147 3500 8.33 2455.9 17.8 6.6 53.3 22.3 
148 3500 1.9 13.4 19.8 64.9 
149 4416.8 0.0 4.8 50.5 44.7 
150 4 1673.7 37.8 18.0 28.3 15.9 
151 3500 4.7 30.4 16.0 48.9 
152 2 800.4 13.9 50.0 9.0 27.1 
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Scenario# LD50 slope initial test 
dose 

% Case 1 
+ Case 5 

% Case 2 % Case 3 % Case 4 

153 
154 
155 
156 
157 

3500 8.1 43.4 11.2 37.3 
0.8 87.5 9.2 66.8 6.0 18.0 

3500 15.5 52.4 5.8 26.2 
0.5 9.6 13.3 69.3 5.1 12.3 

3500 18.1 54.2 5.2 22.4 
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Table B.2. Performance Measures PM1-PM4 (defined in Section 2.5). 

Scenario LD50 slope initial PM1(%) PM2(%) PM3 PM4(%)
 
# test
 

dose
 
(I) Scenarios with initial test dose of 175 units
 

1 1.5 8.33 175 100.0 100.0 5.5 302
 
2 4 175 98.4 99.6 5.5 302
 
3 2 175 76.4 93.8 10.5 449
 
4 0.8 175 53.8 87.2 >1000 3033
 
5 0.5 175 45.2 79.6 >1000 >100000
 
6 2.5 8.33 175 100.0 100.0 5.5 181
 
7 4 175 99.6 99.9 5.5 181
 
8 2 175 89.7 96.5 7.0 275
 
9 0.8 175 58.2 88.1 >1000 2167
 
10 0.5 175 46.6 80.9 >1000 >100000
 
11 20 8.33 175 100.0 96.0 4.2 178
 
12 4 175 99.1 92.7 4.2 178
 
13 2 175 88.2 89.0 8.8 213
 
14 0.8 175 58.0 77.4 260.5 3425
 
15 0.5 175 52.5 73.2 >1000 5029
 
16 50 8.33 175 100.0 95.3 4.0 118
 
17 4 175 97.0 90.7 4.4 185
 
18 2 175 75.2 88.8 11.1 269
 
19 0.8 175 56.8 85.6 89.4 2012
 
20 0.5 175 52.2 81.8 >1000 4332
 
21 150 8.33 175 100.0 97.8 24.5 457
 
22 4 175 95.9 93.9 24.5 457
 
23 2 175 74.1 88.7 24.5 457
 
24 0.8 175 56.3 80.6 24.5 1250
 
25 0.5 175 50.0 79.1 >1000 >100000
 
26 600 8.33 175 100.0 93.8 4.0 191
 
27 4 175 96.9 89.2 4.2 191
 
28 2 175 77.8 89.0 10.5 224
 
29 0.8 175 55.3 84.0 63.3 4092
 
30 0.5 175 48.2 81.0 >1000 >100000
 
31 1500 8.33 175 100.0 97.1 4.1 135
 
32 4 175 98.8 93.0 4.1 214
 
33 2 175 82.6 89.0 10.3 247
 
34 0.8 175 51.7 79.8 >1000 >100000
 
35 0.5 175 44.7 76.9 >1000 >100000
 
36 3000 8.33 175 99.8 100.0 2.9 108
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Scenario LD50 slope initial PM1(%) PM2(%) PM3 PM4(%)
 
# test
 

dose
 
37 4 175 93.4 98.4 3.6 108
 
38 2 175 73.0 93.9 14.2 574
 
39 0.8 175 46.6 81.2 >1000 >100000
 
40 0.5 175 43.9 75.3 >1000 >100000
 
41 3500 8.33 175 99.7 100.0 2.9 93
 
42 4 175 90.2 99.5 3.6 93
 
43 2 175 64.0 94.6 108.9 1296
 
44 0.8 175 48.0 83.0 >1000 >100000
 
45 0.5 175 45.3 75.5 >1000 >100000
 

(ii) Scenarios with initial test dose varied 
46 1.5 8.33 1.1 97.9 99.9 3.2 159
 
47 1.5 91.9 100.0 5.7 216
 
48 1.9 93.3 98.8 9.2 332
 
49 4 1.5 73.0 99.1 12.4 441
 
50 2.4 74.5 98.7 14.4 510
 
51 2 1.5 57.2 94.1 12.4 441
 
52 4 59.6 97.1 16.5 702
 
53 0.8 1.5 42.8 90.8 >1000 >100000
 
54 16.9 40.5 81.6 >1000 >100000
 
55 0.5 1.5 43.7 86.2 >1000 >100000
 
56 72.3 46.9 74.7 >1000 >100000
 
57 2.5 8.33 1.8 99.9 99.9 3.2 156
 
58 2.5 100.0 100.0 15.6 329
 
59 3.1 100.0 99.2 3.2 268
 
60 4 1.2 90.0 97.3 4.4 192
 
61 2.5 92.2 99.4 15.6 329
 
62 4.1 94.0 99.6 5.8 224
 
63 2 2.5 63.4 96.3 19.9 532
 
64 6.6 63.6 94.4 24.5 1033
 
65 0.8 2.5 44.4 88.3 >1000 >100000
 
66 28.2 52.6 79.5 >1000 4415
 
67 0.5 2.5 42.5 87.0 >1000 >100000
 
68 120.5 46.8 77.4 >1000 >100000
 
69 20 8.33 14 99.8 100.0 3.2 151
 
70 20 100.0 100.0 24.5 391
 
71 25.2 100.0 99.3 3.2 272
 
72 4 9.6 90.9 97.7 4.4 213
 
73 20 95.0 98.9 24.5 391
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Scenario LD50 slope initial PM1(%) PM2(%) PM3 PM4(%) 
# test 

dose 
74 32.5 89.2 99.0 24.5 295 
75 2 4.6 80.7 87.7 10.8 317 
76 20 72.6 93.7 24.5 575 
77 52.7 74.4 90.6 24.5 479 
78 0.8 20 52.7 85.2 63.2 2288 
79 225.4 63.6 76.6 70.2 1125 
80 0.5 20 47.0 80.8 >1000 >100000 
81 964.4 56.7 77.3 >1000 4874 
82 50 8.33 35.1 100.0 99.9 3.2 152 
83 50 100.0 100.0 24.5 391 
84 63.1 100.0 99.1 3.2 86 
85 4 23.9 91.5 96.8 4.4 183 
86 50 96.7 99.1 24.5 391 
87 81.2 91.2 98.7 24.5 295 
88 2 11.4 81.5 89.1 10.9 282 
89 50 72.7 91.0 24.5 575 
90 131.8 74.0 90.7 24.5 479 
91 0.8 1.3 72.8 77.0 81.4 2301 
92 50 54.4 84.0 63.3 1238 
93 563.6 66.9 73.9 33.2 973 
94 0.5 50 48.7 79.3 >1000 >100000 
95 2411.1 58.9 75.8 >1000 4121 
96 150 8.33 105.3 100.0 99.9 3.2 152 
97 150 100.0 100.0 24.5 391 
98 189.3 100.0 99.7 3.2 273 
99 4 71.7 90.7 97.1 4.4 251 
100 150 95.1 98.9 24.5 391 
101 243.5 90.8 98.9 24.5 295 
102 2 34.3 83.0 91.4 8.8 272 
103 150 73.5 92.0 24.5 575 
104 395.3 72.2 90.7 24.5 479 
105 0.8 3.8 70.0 78.6 120.2 3826 
106 150 53.3 84.0 64.5 1238 
107 1690.9 62.7 76.3 75.8 1139 
108 0.5 150 50.5 80.0 >1000 25569 
109 600 8.33 421 100.0 99.9 3.2 152 
110 600 100.0 100.0 24.5 391 
111 757.2 99.9 99.3 3.2 86 
112 4 286.9 92.5 97.0 4.9 207 
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Scenario LD50 slope initial PM1(%) PM2(%) PM3 PM4(%) 
# test 

dose 
113 600 95.7 98.7 24.5 391
 
114 974 90.7 99.2 4.8 219
 
115 2 137.2 80.8 91.1 9.1 281
 
116 600 73.3 92.6 24.5 575
 
117 1581.1 74.9 91.7 24.5 266
 
118 0.8 15 65.1 81.2 183.2 3419
 
119 600 50.8 84.4 >1000 1509
 
120 0.5 1.6 62.2 78.7 >1000 >100000
 
121 600 45.5 82.5 >1000 >100000
 
122 1500 8.33 1052.5 100.0 100.0 4.8 263
 
123 1500 100.0 100.0 25.6 405
 
124 1892.9 100.0 99.3 3.2 86
 
125 4 717.3 92.6 98.1 4.0 166
 
126 1500 95.0 99.6 25.6 405
 
127 2435 90.6 98.9 10.7 295
 
128 2 343 74.6 94.0 6.7 261
 
129 1500 72.7 96.1 27.0 617
 
130 3952.8 69.2 87.7 10.5 358
 
131 0.8 37.5 59.3 84.0 >1000 63283
 
132 1500 46.0 90.8 >1000 >100000
 
133 0.5 4.1 51.7 78.5 >1000 >100000
 
134 1500 45.4 87.3 >1000 >100000
 
135 3000 8.33 2105.1 98.4 99.9 2.4 96
 
136 3000 95.6 100.0 7.1 225
 
137 3785.8 98.7 99.1 3.2 86
 
138 4 1434.6 89.3 99.9 3.5 119
 
139 3000 77.0 99.3 13.7 256
 
140 4750 82.8 99.1 4.4 137
 
141 2 686 58.6 93.2 24.5 231
 
142 3000 57.2 95.0 13.7 256
 
143 0.8 75 51.8 82.9 >1000 >100000
 
144 3000 42.2 90.1 >1000 >100000
 
145 0.5 8.2 52.3 79.9 >1000 >100000
 
146 3000 42.1 85.7 >1000 >100000
 
147 3500 8.33 2455.9 94.7 99.3 2.0 73
 
148 3500 87.4 100.0 5.2 172
 
149 4416.8 95.3 99.4 3.2 86
 
150 4 1673.7 83.4 99.9 9.8 254
 
151 3500 69.7 99.4 11.8 229
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Scenario LD50 slope initial PM1(%) PM2(%) PM3 PM4(%) 
# test 

dose 
152 2 800.4 53.7 94.6 864.9 23232 
153 3500 54.5 96.1 24.5 229 
154 0.8 87.5 56.3 80.4 >1000 >100000 
155 3500 40.8 89.8 >1000 >100000 
156 0.5 9.6 46.6 81.1 >1000 >100000 
157 3500 39.7 86.6 >1000 >100000 
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