

<u>Rapid Evaluation and Assessment</u> of <u>Chemical Toxicity (REACT):</u> Per- and Polyfluoroalkyl Substances (PFAS)

Michael DeVito, Ph.D. Acting Chief, NTP Laboratory Division of the National Toxicology Program National Institute of Environmental Health Sciences

> NTP Board of Scientific Counselors December 7, 2017

PFAS Background

- Diverse group of compounds
- Used in carpeting, apparels, upholstery, food paper wrappings, and fire-fighting foams
- Persistent and bioaccumulative
- Long chain perfluorinated chemicals are well studied; their use is in decline
- Shorter and branched chain compounds increasing in production and use; less well studied

Hu et al., ES&T letters 2016 81% assoc with manufacturing site

- PFOA Chronic bioassay: Male and female rats. Exposure included a perinatal (GD 6 PND 21) and non-perinatal component to determine if early life exposure alters response.
 - Pathology tables expected to be posted early 2018 and NTP Technical Report peer reviewed in late 2018
- · 28-day toxicity studies: Male and Female Rats
 - 7 PFASs evaluated: PFBS, PFHxS, PFOS, PFHxA, PFOA, PFNA, and PFDA
 - Tables expected to posted early 2018 and Toxicity Reports to follow
- · Toxicokinetic studies in male and female rats:
 - Evaluated PFBS, PFHxS, PFOS, PFHxA, PFOA, PFDA, and 8:2 fluorotelomer
- · Immunotoxicity assessment:
 - PFDA evaluation in female rats and mice (manuscript submitted)
- · Published in vitro studies:
 - In vitro mitochondrial toxicity evaluation of 16 PFASs using rat liver: Wallace et al.. Toxicology Letters 2013; 222(3)
 - In vitro assessment of immunotoxicity of 5 PFASs: Corsini et al. Toxicology and Applied Pharmacology 2012; 258(2)
 - In vitro assessment of immunotoxicity of PFOA and PFOS: Corsini et al. Toxicology and Applied Pharmacology 2011; 250(2)
 - In vitro neurotoxicity evaluation of 4 PFASs using PC12 cells: Slotkin et al. Environmental Health Perspectives 2008; 116(6)

- Total number of PFAS >1500 chemicals.
 - Includes products, impurities and degradates.
- Significant Regulatory and Public Health Interest
 - USEPA: Several hundred of interest narrowing down to between 75-150.
 - FDA: Interested in PFAS used in packaging
 - DOD: Aqueous Fire Fighting Foams (AFFF).
 - ATSDR, CPSC, State public health agencies.
 - Federal Information Exchange on PFAS (Feb 2018)
 - National Science and Technology Council, Committee on Environment
 - EPA, DOD, NIH (co-chairs)

- Nominations more complex.
 - Class nominations:
 - PFAS
 - Flame Retardants
 - Ionic Liquids
 - PAHs
- Expectations have changed
 - Impatience at pace of traditional NTP hazard assessment studies
 - Communication is now instantaneous (email, texts, etc.)
- Challenge for high throughput screening.
 - You can't just turn on the robot and get the data.

Problem Formulation and Approach

- What are the types of biological activity and toxicological information that NTP can develop in a responsive timeframe on these classes of chemicals?
 - How can this information be used to make public health decisions?
- What are the appropriate tools to bring to this problem?
- How do we organize this information to provide useful products?
- How do we report this biological activity/toxicological information in a timely manner?

Screening and Testing Prioritization

PFAS Assessement is Based on Read Across

- Read Across
 - When the already available data of a data-rich substance (the source) is used for a data-poor substance (the target), which is considered similar enough to the source substance to use the same data as a basis for the safety assessment.
- Sufficient Similarity
 - Use structure and in vitro data to group chemicals
 - NTP has developed statistical methods for Sufficient Similarity in our Gingko Biloba studies.
- Use the PFAS from the NTP 28 day studies as anchor chemicals for read across.
- Likely need to run other PFAS as anchors.

PFAS Assessment

Staff team leads at NIEHS

- Literature Analyses Andrew Rooney
- Chemistry Suramya Waidyanatha
- In silico Scott Auerbach
- In vitro Sue Fenton
- In vivo Chad Blystone
- Mixtures Mike DeVito
- Reporting Plan Mike DeVito

NTP Monograph

NTP Monograph on Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate

- The NTP concludes that PFOA and PFOS are presumed to be immune hazards to humans based on a high level of evidence that PFOA and PFOS suppressed the antibody response in animal studies and a moderate level of evidence from studies in humans.
- https://ntp.niehs.nih.gov/go/749926

<page-header><image><section-header><section-header><section-header>

NIEHS/DNTP PFS In Vivo Studies

- Autoimmunity and PFAS in mice
- · GenX developmental toxicity study in mice
- GenX in vivo pharmacokinetic studies
- GenX has been found in high concentrations in the Cape Fear River near Wilmington NC.

GenX

In Silico Predictions

NTP and EPA Collaborative Effort

Proposed *in vitro* assays for toxicological characterization of the EPA's 75 PFAS Chemical Library

	NTP	EPA
Endpoint of Interest		
Hepatotoxicity	X	
Developmental Toxicity		X
Immunotoxicity	X	
Mitochondrial Toxicity	X	
Developmental Neurotoxicity		X
Hepatic Clearance	X	
Plasma Protein Binding		X
Enterohepatic Recirculation		X
In Vitro Disposition	X	X

Proposed Exploratory *in vitro* assays for toxicological characterization at NTP

Endpoint of Interest	Assay
Hepatotoxicity	Metabolomics in HepaRG
Immunotoxicity	NTP Imunotoxicity Contract
Placental Model	Using JEG cells
Mammary gland model	MCF-7 cell milk protein production
Renal Transport	Renal proximal tubule permeability assay in rats and humans

Steady state in vitro-in vivo extrapolation assumption: blood::tissue partitioning ≈ cells::medium partitioning Steady-state Concentration (μM) Prediction Oral Equivalent Daily Dose Prediction Slope = C_{ss} for 1 mg/kg/d Slope = mg/kg/d per C_{ss}^{1 mg/kg/d} 0 0 Steady-state Concentration (µM) = in vitro AC50 Daily Dose (mg/kg/day) oraldoserate C. = Swap the axes (this is the "reverse" part of reverse (GFR*F.)+ 0. dosimetry) 0 + FCan divide bioactive concentration by C_{ss} for a 1 Wetmore et al. (2012) mg/kg/day dose to get oral equivalent dose

Slide from John Wambaugh

In vivo studies

- Based on in vitro groupings, potency, IVIVE, environmental and human exposure.
 - 5-day rat hepatic transcriptomic assay
 - 28 day toxicity studies
 - Other in vivo studies possible for a limited number of PFAS

- In vitro characterization and read-across grouping of PFAS chemicals
- Estimates of oral equivalent dose to attain Cmax or Css equivalent to *in vitro* Points of Departure.
- In vivo studies on limited numbers of chemicals that provide sufficient anchors for read-across.

REACT Approach: Note of Caution

- Not every tool will work for every class of chemicals!
 - 5 day adult transcriptomic study may not predict the point of departures for developmental effects
 - Need to understand when a tool is useful and when it is not
 - We need to adapt to the problem

- Are the effects of PFAS mixtures dose additive?
 - NTP will evaluate dose addition using laboratory-prepared mixtures. Initial mixtures will be based on water sample analyses from Mark Strynar (ORD/USEPA).
- Can the toxicity of commercial mixtures of <u>A</u>queous <u>Fire-Fighting Foam</u> for MIL Specs (AFFF), be estimated based on the PFAS content?
 - NTP will evaluate the AFFF mixtures and prepare PFAS mixtures at the same mixing ratios as in the formulation.
 - Compare and contrast the effects of the AFFF mixture to that of the PFAS mixtures

Summary

- Published a systematic review on PFOA immunotoxicity.
- A number of in vivo studies are at various stages of development.
 - Publications from NTP Laboratory on PFOA.
 - Carcinogenicity and toxicity studies of PFOA.
 - 28-day toxicity studies in rats on 8 PFAS.
- Developing an approach that provides a rapid response to a large class of chemicals and mixtures
- Integrated approach that will incorporate data and information from:
 - In silico models.
 - In vitro models.
 - In vivo models.

Acknowledgements

DNTP NTPL Sue Fenton Jason Stanko Bevin Blake Kevin Mauge-Lewis Paul Dunlap Julie Rice David Crizer Toxicology Branch Chad Blystone Dori Germolec Anika Dzierlenga Program Operations Branch Suramya Waidyanatha Brad Collins Jennifer Fostel Andy Shapiro

DNTP

OHAT Andrew Rooney BSB Scott Auerbach Jui-Hua Hsieh Steve Ferguson Sreeni Ramaiahgari Nisha Sipes

NIEHS/NCI Linda Birnbaum Gabe Knudsen Ron Cannon

EPA

Rusty Thomas Reeder Sams Mark Strynar

Questions

