

Draft RoC Monograph Epstein-Barr Virus

Whitney D. Arroyave, PhD Social & Scientific Systems, Inc. Contract support to the ORoC

NTP Peer Review Meeting December 17, 2015

Outline

Properties

Detection

Transmission

Exposure

Mechanistic information

Human cancer studies

Preliminary level of evidence conclusions

- Also known as human herpesvirus 4 (HHV4)
- An enveloped dsDNA virus in the gammaherpesvirus subfamily, consisting of two major types (EBV-1 and EBV-2)
- EBV predominantly enters the host through contact with saliva and infects B cells in the tonsils
- Lifelong latent infection in memory B cells that is refractory to immune recognition
- Activated EBV transcription programs during latency mimic B cell proliferation and survival and in some cases result in cancer

- Detection
 - Anti-EBV antibodies in the serum
 - e.g. VCA, EA, and EBNA antibodies (IgG, IgM, or IgA)
 - EBV DNA or RNA in peripheral white blood cells or tumor tissue; DNA in plasma or serum
- Transmission
 - EBV is primarily transmitted via saliva
 - EBV in peripheral blood suggests transmission via blood is possible
 - Transmission among transfusion and organ recipients has been reported
 - Infected cells (primarily resting memory B cells) provide a permanent reservoir for EBV (Latency 0)

- Significant exposure in the United States
 - U.S. seroprevalence (2009-2010) 50% in 6-8 year olds and 89% in 18-19 year olds
 - Infection rate worldwide is high, exceeding 90%
 - The age of infection varies geographically
- EBV symptoms
 - EBV infection is asymptomatic in most individuals
 - Infection is life-long
 - Related diseases
 - EBV can lead to infectious mononucleosis, cancer
 - No vaccine

ORoC Evaluated 7 Endpoints

- Lymphomas
 - Burkitt lymphoma
 - Endemic
 - Sporadic
 - Hodgkin lymphoma
 - Immunosuppression-related non-Hodgkin lymphoma
 - NK/T-cell lymphoma (nasal type)
- Epithelial cancers
 - Nasopharyngeal carcinoma
 - Gastric cancer
 - Lymphoepithelial cancer of the salivary gland

Lymphomas

- Burkitt Lymphoma
 - Endemic
 - Sporadic
- Hodgkin Lymphoma
- NK/T-cell Lymphoma (Nasal Type)
- Immunosuppression-related Non-Hodgkin Lymphoma

Burkitt Lymphoma (Endemic)

Serological case-control studies of endemic Burkitt lymphoma and EBV

Study author(s)		OR (95% CI)
Dose response studies - EBV antibodies EBV VCA antibodies Henle et al. 1971 Medium (160) vs. Low (< 160)		[2.9 (1.6-5.2)]
High (≥ 160) vs. Low (< 160)	_ —	[13.2 (7.9–22.0)]
Carpenter e <i>t al.</i> 2008 Medium (≥ 2 and < 3.5) vs. Low (< 2) ^a	_ —	3.6 (2.3–5.6)
High (≥ 3.5) vs. Low (< 2) ^a	_ _	4.5 (2.3–8.7)
Mutalima e <i>t al.</i> 2008 Medium (1280–2560) vs. Low (< 640)		4.1 (1.6–10.1)
High (≥ 5120) vs. Low (< 640)		14.8 (5.8–38.5)
Unspecified EBV antibodies Henle et al. 1969 Medium (160) vs. Low (< 160)	_ —	[10.6 (5.9–19.6)]
High (≥ 160) vs. Low (< 160)		[52.1 (28.8–94.1)]
Other case-control studies Unspecified EBV antibodies Klein et al. 1970. EBV antigen ≥ 160		[20 0 /E 0 4 E 2 4 V
Riem et al. 1970, EBV antigen 2 100	• • • • • • • • • • • • • • • • • • •	[30.0 (5.9-153.1)]
Hirshaut <i>et al.</i> 1973, EBV antigen ≥ 640	•	[25.6 (5.4–122.4)]
EA antibodies Henle et al. 1971, exposed ≥ 5	_ 	[27.0 (15.1–48.1)]
<i>EBV DNA</i> Mulama <i>et al.</i> 2014, cellular viral load (> 2 EBV copies per mL of blood)	_	[16.2 (8.0–32.5)]
0.1	1 10 100 300 OR (95% CI)	

Burkitt Lymphoma (Endemic)

Sufficient level of evidence for endemic Burkitt lymphoma

Epidemiology Studies with positive associations	EBV antibodies or DNA: 7/7 case-control (993 cases) & 1 cohort study.
or dose-response	All statistically significant; high RR/ORs.
	Dose-response with viral titer in cohort study and several case- control studies.

Human tissue	
Clonality	Monoclonal
% EBV-infected tumors	95%
EBV protein expression	EBNA-1

Burkitt Lymphoma (Sporadic)

Limited level of evidence for sporadic Burkitt lymphoma

Epidemiology Studies with positive associations or dose-response	EBV antibodies: 4/5 case-control studies (113 cases). Most not significant; moderate ORs
Human tissue	
Clonality	NA
% EBV-infected tumors	20%

EBV protein expression NA

Serological case-control studies of Hodgkin lymphoma and EBV

Study author(s)		OR (95% CI)
Unspecified EBV antibodies		
Goldman and Aisenberg 1970 (Young adults) ^a		[1.1 (0.4–2.9)]
Johansson <i>et al.</i> 1970 (Adults and children) ^b	-	[4.3 (1.7–10.6)]
Levine et al. 1971 (Ages not reported) ^c	-	[10.9 (3.5–33.6)]
de Schryver <i>et al.</i> 1972 (Adults and children) ^{b,i}	•	[1.5 (0.4–5.3)]
Henderson et al. 1973 (Adults) ^b	_	[2.7 (1.7–4.5)]
Hirshaut et al. 1974 (Ages not reported) ^c		[1.9 (0.5–6.8)]
Langenhuysen <i>et al.</i> 1974 (Adults) ^c		[4.9 (1.2–20.7)]
ten Napel <i>et al.</i> 1980 (Adults and children) ^d	-	[7.4 (1.2–45.0)]
EBV VCA antibodies		
Henle and Henle 1973 (Ages not reported) ^f		[4.1 (2.8–6.0)]
Rocchi et al. 1975 (Adults and children) ^{f,i,j}	- _	[15.6 (7.5–32.5)]
Gotleib-Stematsky <i>et al.</i> 1975 (Adults) ^{f,i}	\longrightarrow	[67.6 (8.7–528.1)]
Hesse et al. 1977 (Ages not reported) ^{g,i}	→	[2.7 (1.7–4.1)]
Evans <i>et al.</i> 1978 (Adults) ^{g,i}		[11.9 (4.5–31.2)]
Lange <i>et al.</i> 1978 (Children) ^{e,i,j}		[1.2 (0.5–2.9)]
Mochanko et al. 1979 (Ages not reported) ^{f,j}	•	[4.6 (1.2–18.2)]
Evans <i>et al.</i> 1980 (Adults) ⁹	-	18.9 (4.3–83.7)
Shope <i>et al.</i> 1982 (Children) ^{f,j}		[0.8 (0.2–3.6)]
Evans and Gutensohn 1984 (Adults) ^{9,i}	_	4.1 (2.6–5.9)
Merk et al. 1995 (Adults and children) ^{h,i,j}	- _	[16.2 (7.4–35.4)]
EBV DNA studies		
Gallagher <i>et al.</i> 1999 (Adults)		∞
Lei <i>et al.</i> 2000 (Adults)		∞
Musacchio <i>et al.</i> 2006 (Adults)	\longrightarrow	{120 (8.16–1765.9)}
Dinand et al. 2007 (Children)		∞

Hodgkin Lymphoma

Sufficient level of evidence from human studies

Epidemiology

Studies with positive associations or dose-response

EBV DNA: 4/4 case-control; very high ORs EBV antibodies: 17/19 case-control & 1 nested casecontrol; mostly statistically significant OR between 4 &19 Infectious mononucleosis: 10/11 case-control and 7/7 cohorts; modest ORs/RRs

Human tissue

Clonality for EBV % EBV-infected tumors Monoclonal 20-50% North America and Europe; 65% Asia; 90-100% Africa and South America

EBV protein expression

LMP-1, -2A in 50% cases

LMP- = latent membrane protein; OR = odds ratio; RR = relative risk.

Sufficient evidence from human studies

	NK/T-cell leukemia/lymphoma (nasal type)	Immunosuppression-related non- Hodgkin lymphoma
Epidemiology Studies with positive association	Consistent evidence in case series studies; at least 16 case-series with more than 400 cases	2/2 case-control studies; nonsignificant increase in OR
	2 case-comparison studies: EBV DNA found in plasma CD3+ or CD3- cells of cases but not in controls	
Human tissue Clonality for EBV	Monoclonal	Monoclonal
% EBV-infected tumors	100%	100% (primary CNS NHL, HIV+) 50% (diffuse large-cell and immunoblastic NHL, HIV+) >50% post transplant lymphoproliferative disease (PTLD)
EBV protein expression	EBNA-1, LMP-1, -2A	LMP-1, -2A, -2B, EBNAs
Other	EBV found in majority of CD56+ tumors	Treatment with cytotoxic T-cells sensitized to EBV protect against or reduce viral load and tumor size in PTLD

EBNA = Epstein-Barr nuclear antigen; LMP = latent membrane protein; NHL = non-Hodgkin lymphoma; CNS = central nervous system; HIV = human immunodeficiency virus.

Epithelial cancers

- Nasopharyngeal carcinoma
- Gastric cancer
- Lymphoepithelial carcinoma/salivary gland

Direct evidence

- EBV has been shown to transform lymphoblastoid cells in culture and can transform epithelial cells when co-cultured with transformed lymphoblastoid cells
- EBV infected B cells have been shown to cause B-cell lymphomas in immunodeficient (SCID) mice
- EBV proteins, EBNA-1, -2, -3A, -3C, LMP-1 are all necessary for immortalization of B-lymphocytes
 - EBNA-1 allows for increased survival and genomic instability;
 LMP-1 enables replicative immortality via NFkappaB pathway

Latency II proteins expressed in epithelial cancers

- EBNA-1, LMP-1, -2A, EBERs
- Nasopharyngeal cancer
- Lymphoepithelial cancer of salivary glands
- Gastric cancer
 - Latency I and II patterns found in gastric cancers with approximately 50% expressing LMP-2A which enhances proliferation and survival factors

Nasopharyngeal Carcinoma

Serological case-control studies of nasopharyngeal carc. and EBV

Study author(s)	OR (95% CI)	or RR (95% CI) ^a
Case-control studies		OR (95% CI)
VCA antibodies		100 (10 10)
Pearson <i>et al.</i> 1983 (VCA/IgA)	_ _	{23 (13–40)}
Zheng et al. 1994 (VCA/IgA)		55 (11–280)
Lennette et al. 1993 (VCA/IgM)		[138 (31–606)]
Chen et al. 2001 (VCA/IgA)	_ 	{63 (35–119)}
Leung et al. 2004 (VCA/IgA)	- _	88 ({35–228})
EA antibodies		
Pearson et al. 1983 (EA/IgG)		{32 (18–57)}
Fan et al. 2004 (EA/IgG)	· · · · · · · · · · · · · · · · · · ·	{21 (6–90)}
EBV DNase		
Chen <i>et al.</i> 1987	_ —	[166 (91–302)]
Chen <i>et al.</i> 2001		{41 (25–66)}
EBV DNA		
Mutirangura et al. 1998		∞
Lo <i>et al.</i> 1999	\longrightarrow	{376 (51–3864)}
Lin e <i>t al.</i> 2001		∞
Fan e <i>t al.</i> 2004	\rightarrow	{86 (13–3538) }
Leung et al. 2004	\longrightarrow	820 ({212–3639})
Lin e <i>t al.</i> 2004		∞
Cohort/nested case-control studies (VCA antibodies)		
Nested case-control studies		RR (95% CI)
Lanier et al. 1980 (VCA/IgG)	•	[0.8 (0.1–8)]
Chan et al. 1991 (VCA/IgA)	+	1.0 (0.1–11)
Cohort studies		
Chien et al. 2001 (VCA/IgA)	│ _ • _ ·	22 (7–67)
Ji <i>et al.</i> 2007 (VCA/IgA)	→	9 (7–13)
0.1	1 10 100 1000 OR (95% CI) or RR (95% CI)	10000

Sufficient evidence from human studies

Epidemiology	EBV
Studies reporting positive associations	high t
	asso

EBV antibody: 11/11 case-control and 2 cohort studies; high to very high statistically significant RRs; no association in 2 small nested case-control studies. EBV DNA: 6/6 case-control studies; very high RR

Human tissue	
Clonality for EBV	Monoclonal in precancer and cancer
% EBV-infected tumors	98% in nonkeratinizing tumors
EBV protein expression	EBNA-1, LMP-1,-2A

EBNA = Epstein-Barr nuclear antigen; LMP = Latent membrane protein; RR = relative risk.

Gastric Cancer

Sufficient level of evidence from human studies

Epidemiology	Case-series
Studies with positive associations	3/3 case-control studies (77 EBV cases/184 gastric); statistically significant high ORs
	2/3 nested case-control studies; statistically significant modest ORs
Human tissue	
Clonality for EBV	Monoclonal
% EBV-infected tumors	8 to 11%
EBV protein expression	EBNA-1, LMP-1, -2A
Other	Unique molecular profile

Methylation Patterns in Human Gastric Cancer

Modified from: The Cancer Genome Atlas Research Network (2014) *Nature* 513:202-209.

Altered Pathways with EBV-related Gastric Cancer

Signaling pathway	Biological effect
Micro RNAs	Unknown
CDKN2A (p16)	Tumor suppressor, slows G1 to S transition
JAK2	Cell growth and division; LMP-1 activates
PI3K/Akt	Cell growth and division, inhibits apoptosis, promotes genomic instability; LMP-2 activates
ERBB2	Cell growth and division
ARID1A	Cell-cycle progression
BCOR	Transcription and chromatin regulation
CD274 (PD-L1)	Immunosuppression
PDCD1LG2 (PD-L2)	Immunosuppression
IL-12	Immune stimulation in response to antigen
NF-kappaB	Resists apoptosis; cell proliferation; LMP-2A activates

Limited level of evidence from human studies

Epidemiology Positive association	Consistent evidence in case series (208/209 cases) A case-case study found EBV DNA in salivary gland lymphoepithelial carcinoma tumors but not other types of salivary gland tumors
Human tissue	
Clonality for EBV	Monoclonal (evidence from one study)
% EBV-infected tumors	100%
EBV protein expression	EBNA-1, LMP-1,-2A (few samples) No additional supporting mechanistic data.

- Cancer sites with sufficient evidence
 - Burkitt lymphoma (endemic)
 - Hodgkin lymphoma
 - Nasopharyngeal cancer
 - Immunosuppression-related non-Hodgkin lymphoma
 - Extranodal NK/T-cell lymphoma (nasal type)
 - Gastric cancer
- Cancer sites with limited evidence
 - Burkitt lymphoma (sporadic)
 - Lymphoepithelial cancer of the salivary gland
- Latent viral transcripts enable cell survival, increase genomic instability, increase cell proliferation.

Clarifications?

All sections: Comment on whether the information is clear and technically accurate and identify any information that should be added or deleted,

Properties, Detection and Human Exposure

 and whether adequate information is presented to document past and/or current human exposure.

Human Cancer Studies

 and provide any scientific criticisms of NTP's cancer assessment of the epidemiologic studies of exposure to the virus.

Mechanistic and Other Relevant Data

 and provide any scientific criticisms of the NTP's synthesis of these data assessing effects of the virus.

EBV is known to be a human carcinogen based on sufficient evidence in humans.

- Cancer sites with sufficient evidence
 - Burkitt lymphoma (endemic)
 - Hodgkin lymphoma
 - nasopharyngeal cancer
 - immunosuppression-related non-Hodgkin lymphoma
 - extranodal NK/T-cell lymphoma (nasal type)
 - gastric cancer
- Cancer sites with limited evidence
 - lymphoepithelial cancer of the salivary gland
 - Burkitt lymphoma (sporadic)

EBV

Epstein-Barr virus (EBV) is *known to be a human carcinogen* based on sufficient evidence from studies in humans.

This conclusion is based on evidence from epidemiological, clinical, and molecular studies, which show that EBV causes endemic Burkitt lymphoma, Hodgkin lymphoma, immune-suppression-related non-Hodgkin lymphoma, extranodal natural killer –T-cell lymphoma nasal type, nasopharyngeal carcinoma, and some forms of stomach cancer.

There is also limited evidence for an association with sporadic Burkitt lymphoma and lymphoepithelial cancer of the salivary gland.

- Contains NTP's preliminary recommendation of the listing status of the substance.
- Summarizes the scientific information that is key to reaching a recommendation.
- Provides information on properties, use, production and exposure.
- Provides information on existing federal regulations and guidelines.

Peer Reviewer Comments

- Provide any new comments (e.g., not previously provided on the same facts or issues in the cancer hazard evaluation section) on whether the information on properties and detection, human exposure, cancer studies in humans and mechanistic data is clear and technically accurate.
- Comment on whether the substance profile highlights the information on cancer studies in humans and mechanistic data that are considered key to reaching the listing recommendation.