Development of a Rapid Risk Assessment Process and Software Tools to Support Air Force Operational Decision-making and Technology Acquisitions

Rebecca Clewell, Predictive Risk and Toxicology Lead
AFRL/711 HPW/RHBAF
Presentation to SACATM
September 22, 2022
Rapid assessment of chemical risk

-6.2 effort to develop comprehensive model to predict individual susceptibility to chemical risk
Main Goal: Rapid assessment of human health risk due to operational chemical and physical stressors

Key Deliverable(s)/Product(s):

- **In silico models**: Curated collection of prediction models for human toxicity
 - Focused on rapid assessment of new or novel chemistries, incorporating knowledge of AF relevant exposure scenarios and physiological stressors

- **In vitro data**: Collect necessary data to improve prediction of AF chemical risk
 - Expand chemical domain of current models to improve in silico predictions for AF-specific exposures

- **Risk assessment workflows**: Curated workflow to streamline assessments
 - Initial focus is on neurotoxicity and inhaled hazards
Predictive risk products
- 6.3 products to support rapid risk assessment & chemical decisions

ToxAdvisor-lite
(Mobile app)
- Exposure guidelines
- Risk predictions
- Recommend next steps

ToxAdvisor
(Desktop application)
- Exposure guidelines
- Curated risk predictions and models
- Risk calculations, workflows

Predictive Risk Capability Build
- Exposure guideline database
- Risk prediction models
- Toxicity data database
- Dosimetry models
- Exposure scenario catalog
- Risk assessment workflows

Customer-facing

User POV - assessment process

App content process
Rapid Risk Assessment Workflow

1. **Qualitative** (i.e., hazard identification)
 - Known target toxicity?
 - Available OpEL?
 - Sufficient results?

2. **Mechanistic data?**
 - Conduct in vitro tests
 - Conduct read-across
 - Sufficient results?

3. **Chemical structure?**
 - Conduct QSAR/AI modeling
 - Sufficient results?
 - Dosimetry models (PBPK, MPPD)
 - Re-visit problem formulation

4. **Sufficient information for risk assessment?**
 - Exposure > uncertainty factor ÷ OpEL?

5. **Novel chemical**
 - Conduct in vivo extrapolation (iVIVE)

6. **Higher risk**
 - Lower risk
Rapid Risk Assessment Workflow

1. **Known target toxicity?**
 - **Mechanistic data?**
 - **Available OpEL?**
 - **Acute toxicity data?**
 - **Sufficient information for risk assessment?**
 - **Exposure > uncertainty factor ÷ OpEL?**
 - **Higher risk**
 - **Lower risk**

2. **Chemical structure?**
 - **Conduct read-across**
 - **Sufficient results?**
 - **Conduct QSAR/AI modeling**
 - **Sufficient results?**
 - **Conduct in vitro tests**
 - **Conduct in vivo extrapolation (IVIVE)**
 - **Dosimetry models (PBPK, MPPD)**
 - **Re-visit problem formulation**

3. **OpEL?**
 - **Known target toxicity?**
 - **Quantitative (i.e., risk level)**
 - **Qualitative (i.e., hazard identification)**
Rapid Risk Assessment Workflow

1. **Qualitative (i.e., hazard identification)**
 - Known target toxicity?
 - Mechanistic data?
 - Available OpEL?
 - Acute toxicity data?

2. **Quantitative (i.e., risk level)**
 - Conduct in vivo extrapolation (IVIVE)
 - Sufficient results?
 - Conduct read-across
 - Sufficient results?
 - Conduct in vitro tests
 - Conduct QSAR/AI modeling
 - Sufficient results?
 - Conduct in vivo extrapolation (IVIVE)
 - Dosimetry models (PBPK, MPPD)

3. **Sufficient information for risk assessment?**
 - Chemical structure?
 - Conduct read-across
 - Sufficient results?
 - Conduct QSAR/AI modeling
 - Sufficient results?
 - Re-visit problem formulation

4. **Exposure > uncertainty factor ÷ OpEL?**
 - Higher risk
 - Lower risk

5. **Novel chemical**
 - Conduct in vitro tests
 - Conduct QSAR/AI modeling
 - Sufficient results?
Current research efforts

1. TRV database & decision process
2. OpEL generation
3. Acute toxicity data/models
4. Read-across – preliminary OpEL
5. Acute toxicity QSAR model
6. Neurotox AI model
7. Mitochondria QSAR model
8. Lung toxicity QSAR model
9. Lung toxicity in vitro: surfactant (collaboration with Dr. Hussein)
11. Neurotoxicity in vitro: LTP/biomarkers (SBP)

- Conduct in vivo extrapolation (IVIVE)
- Conduct in vitro tests
- Conduct read-across
- Conduct QSAR/AI modeling
- Conduct in vitro tests
- Dosimetry models (PBPK, MPPD)
- Rapid PBPK model process

- Sufficient OpEL?
- Available OpEL?
- Known target toxicity?
- Mechanistic data?
- Chemical structure?
- Sufficient results?
- Frieden's energy of a chemical change
- Chemical structure
- Available data

- Re-visit problem formulation
- Higher risk
- Lower risk
- Exposure > uncertainty factor / OpEL?
QSAR models: Predicting Acute Toxicity of Poorly Characterized Chemicals

- Novel AI model
- Predicts toxic/nontoxic based on GHS classification, chemical structure

Message passing neural network (MPNN) model

Built on >40,000 chemical database

Used to predict toxicity of > 250,000 chemicals

Model validation

ACC = (TP+TN)/Nchem – accuracy
AUC – area under ROC curve
Artificial Intelligence models: Neurotoxicity Target Prediction

- Novel AI model
- Predicts ligand binding to neurotransmitter receptors

Neuro targets
- Acetylcholine
- AChE
- AMPA
- CHAT
- GABA
- Glutamate
- Glycine
- DRD2,3&4
- Kinate
- PX2
- Serotonin

McCarthy et al. 2022.
Rapid risk assessment products: creating databases, workflows and prediction tools for toxicity reference values

Hazard quotient (HQ) = Measured air concentration / toxicity reference value
Hazard index (HI) = sum of HQs for all chemicals

<table>
<thead>
<tr>
<th>Tier</th>
<th>Authorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Occupational</td>
</tr>
<tr>
<td></td>
<td>Authorities</td>
</tr>
<tr>
<td></td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>OSHA</td>
</tr>
<tr>
<td></td>
<td>NIOSH</td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
</tr>
<tr>
<td></td>
<td>WEEL (AIHA or OARS)</td>
</tr>
<tr>
<td>II</td>
<td>MEGs</td>
</tr>
<tr>
<td></td>
<td>TEEL</td>
</tr>
<tr>
<td></td>
<td>AEGL</td>
</tr>
<tr>
<td></td>
<td>CEGL</td>
</tr>
<tr>
<td></td>
<td>PPRTV</td>
</tr>
<tr>
<td></td>
<td>ERPG</td>
</tr>
<tr>
<td></td>
<td>MRL</td>
</tr>
<tr>
<td></td>
<td>HEAST</td>
</tr>
<tr>
<td></td>
<td>IRIS</td>
</tr>
<tr>
<td></td>
<td>ACGIH</td>
</tr>
<tr>
<td>III</td>
<td>Other</td>
</tr>
<tr>
<td></td>
<td>California</td>
</tr>
<tr>
<td></td>
<td>OSHA</td>
</tr>
<tr>
<td></td>
<td>SDSs</td>
</tr>
<tr>
<td></td>
<td>GESTIS</td>
</tr>
<tr>
<td></td>
<td>Hanford Site Screening Values</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tier</th>
<th>Overall Minimum TRV (ppm)</th>
<th>Tier 1 Minimum OEL (8-hr TWA) (ppm)</th>
<th>Tier 1 Minimum Ceiling equiv. TRV (C, IDLH, STEL) (ppm)</th>
<th>Tier 2 Minimum OEL (8-hr TWA) (ppm)</th>
<th>Tier 2 Minimum Acute TRV (10-min to 1 hr) (ppm)</th>
<th>Tier 2 Minimum C equiv. TRV (CRIT, up to 1 hr) (ppm)</th>
<th>Tier 2 Minimum TRV (14-dy to 1 yr) (ppm)</th>
<th>Tier 3 Minimum OEL (8-hr TWA) (ppm)</th>
<th>Calculated Ceiling Equiv. (lowest occup TWA*3)</th>
<th>Best Ceiling Equivalent (Tier 1 > 3 > 2 > calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1.30E+00</td>
<td>5.00E+01</td>
<td>3.85E+02</td>
<td>6.45E+00</td>
<td>5.02E+01</td>
<td>1.08E+03</td>
<td>2.61E-01</td>
<td>1.30E+00</td>
<td>2.25E+02</td>
<td>3.90E+00</td>
</tr>
<tr>
<td>I</td>
<td>1.70E+00</td>
<td>1.40E+00</td>
<td>6.67E+01</td>
<td>7.49E+01</td>
<td>5.02E+01</td>
<td>1.08E+03</td>
<td>1.40E+00</td>
<td>1.70E+00</td>
<td>5.10E+00</td>
<td>5.10E+00</td>
</tr>
<tr>
<td>I</td>
<td>1.30E+00</td>
<td>1.40E+00</td>
<td>7.49E+01</td>
<td>1.30E+00</td>
<td>5.10E+00</td>
<td>1.40E+00</td>
<td>3.90E+00</td>
<td>1.40E+00</td>
<td>1.30E+00</td>
<td>3.90E+00</td>
</tr>
</tbody>
</table>

Estimate preliminary TRV from nearest neighbor, using ICE tanimoto score tool
Inhalation toxicity – predicting toxicity for poorly characterized chemicals

Surfactant effects
Irritation/Corrosion
Interaction with cell membrane
Physical injury

Clippinger 2016 – NICEATM webinar
Predictive risk products
- 6.3 products to support rapid risk assessment & chemical decisions

ToxAdvisor-lite
(Mobile app)
- Exposure guidelines
- Risk predictions
- Recommend next steps

ToxAdvisor
(Desktop application)
- Exposure guidelines
- Curated risk predictions and models
- Risk calculations, workflows

Predictive Risk Capability Build
- Exposure guideline database
- Risk prediction models
- Toxicity data database
- Dosimetry models
- Exposure scenario catalog
- Risk assessment workflows
Possible homepage includes:

- Risk overview – allows 1-click results for OpEL/Hazard
- Guided assessment provides user assistance in decision-making
- More detailed information if desired
- User guidance
 - Provide context, recommendations for next steps
Inhalation Hazard

Chemical Hazards
- Inhalation
- Dermal
- Oral
- Eye Irritation
- Skin Sensitization
- Skin Irritation

Operational Exposure Limits (OpEL)

Do Not Exceed
- 6-15 Min Max: 56,186 ppm
- 1 Hour: 0.896 ppm
- 14 Day: 0.016 ppm

Potential Health Risk

Exposure Danger
- Eye Damage: Category 2A
- Skin Irritation: Category 4B
Mobile App – **Output and utility**

Results provide data & context:

- Requested endpoint actual value vs. predicted
 - If only predicted is available, user alert will call attention to the fact this is a predicted value

- Graphic provides context:
 - Comparison to well known “benchmark chemicals”
 - Rank order to show relationship to benchmark chemicals and greater chemical database
 - Color coding indicates relative toxicity classification

- Automated professional judgement
Current Activities

Database

Toxic Effect
- **GHS labels**
- **In vivo data**
 - EPA, NIH/NTP/NICEATM
 - ECHA/REACH, DoD/DTIC
- **In vitro data**
 - HT assays (ToxCast, OECD)
 - Organotypic assays (DoD, published, collabs)
 - Cardiac, lung*, CNS*

Predictive Models
- 6-pack acute toxicity model*
- QSAR-based structural alerts*
 - Acute toxicity
 - Allergic contact dermatitis*
 - Skin/eye corrosion, etc.
- Read-across
- Machine learning models*
 - Neurotoxicity*
 - Lung toxicity*

Risk Level
- **Toxicity Reference Values**
 - AEGLS, MEGs, TLVs, etc
 - GHS classifications (1-5)
- **In vivo NOELs/LD50s**
- **In vitro NOELs/EC50s**

Risk Assessment
- TTC categories (1-3)
- Read-across
- Systems biology models*

Exposures
- **Historical data**
 - Common AF scenarios

Dosimetry
- **Chemical properties**
- **Particulate characterization**

Other exposure models
- JH/APL OE model*
- HTTK, rapid PBPK models*
- Chemical-specific PBPK*
Acknowledgements

- Caleb Anthony
- Tammie Covington
- Slava Chushak
- Thomas Jaworek
- Andrew Keebaugh
- Teri Sterner
- Lisa Sweeney

- David Mattie
- Dirk Yamamoto
- Darrin Ott
- Janiece Hope
- William Hurtle
- Barry Marcel (USAFSAM)
- Keith Westpfahl (USAFSAM)

- Jeff Gearhart
- Megan Steele
- Mike McCarthy
- Elaine Merrill
QUESTIONS?