National Cancer Institute CARCINOGENESIS Technical Report Series NO. 157 1979

BIOASSAY OF METHYL PARATHION

FOR POSSIBLE CARCINOGENICITY

CAS No. 298-00-0

NCI-CG-TR-157

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

BIOASSAY OF

METHYL PARATHION

FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health Bethesda, Maryland 20014

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service National Institutes of Health

DHEW Publication No. (NIH) 79-1713

BIOASSAY OF METHYL PARATHION FOR POSSIBLE CARCINOGENICITY

Carcinogenesis Testing Program Division of Cancer Cause and Prevention National Cancer Institute National Institutes of Health

This report presents the results of the bioassay of FOREWORD: methyl parathion conducted for the Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute (NCI), National Institutes of Health, Bethesda, This is one of a series of experiments designed to Maryland. determine whether selected chemicals have the capacity to produce cancer in animals. A negative result, in which the test animals do not have a greater incidence of cancer than control animals. does not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of circumstances. A positive result demonstrates that a test chemical is carcinogenic for animals under the conditions of the test and indicates that exposure to the chemical is a potential risk to man. The actual determination of the risk to man from chemicals found to be carcinogenic in animals requires a wider analysis.

CONTRIBUTORS: This bioassay of methyl parathion was conducted by the NCI Frederick Cancer Research Center (FCRC) (1), Frederick, Maryland, operated for NCI (2) by Litton Bionetics, Inc.

The manager of the bioassay at FCRC was Dr. B. Ulland, the toxicologist was Dr. E. Gordon, and Drs. R. Cardy and D. Creasia compiled the data. Ms. S. Toms was responsible for management of data, Mr. D. Cameron for management of histopathology, Mr. L. Callahan for management of the computer branch, and Mr. R. Cypher for management of the facilities. Mr. A. Butler performed the computer services. Histopathologic evaluations for rats and mice were performed by Dr. D. A. Willigan (3). The diagnoses included in this report represent his interpretations.

Animal pathology tables and survival tables were compiled at EG&G Mason Research Institute (4). Statistical analyses were performed by Dr. J. R. Joiner (5) and Ms. P. L. Yong (5), using

methods selected for the bioassay program by Dr. J. J. Gart (6). The chemicals used in this bioassay were analyzed at FCRC by Dr. W. Zielinsky (1). The chemical analyses and narrative were reviewed and approved by Dr W. Lijinsky (1).

This report was prepared at Tracor Jitco (5) under the direction of NCI. Those responsible for the report at Tracor Jitco were Dr. C. R. Angel, Acting Director of the Bioassay Program; Dr. S. S. Olin, Deputy Director for Science; Dr. J. F. Robens, toxicologist; Dr. R. L. Schueler, pathologist; Dr. G. L. Miller, Ms. L. A. Waitz, Ms. M. S. King, and Mr. W. D. Reichardt, bioscience writers; and Dr. E. W. Gunberg, technical editor, assisted by Ms. Y. E. Presley.

The following scientists at NCI were responsible for evaluating the bioassay experiment, interpreting the results, and reporting the findings: Dr. Kenneth C. Chu, Dr. Cipriano Cueto, Jr., Dr. J. Fielding Douglas, Dr. Richard A. Griesemer, Dr. Thomas E. Hamm, Dr. William V. Hartwell, Dr. Morton H. Levitt, Dr. Harry A. Milman, Dr. Thomas W. Orme, Dr. A. R. Patel, Dr. Sherman F. Stinson, Dr. Jerrold M. Ward, and Dr. Carrie E. Whitmire.

- Frederick Cancer Research Center, P.O. Box B, Frederick, Maryland.
- (2) Carcinogenesis Testing Program, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
- (3) Donald A. Willigan, Inc., 309 East Second Street, Bound Brook, New Jersey.
- (4) EG&G Mason Research Institute, 1530 East Jefferson Street, Rockville, Maryland.
- (5) Tracor Jitco, Inc., 1776 East Jefferson Street, Rockville, Maryland.
- (6) Mathematical Statistics and Applied Mathematics Section, Biometry Branch, Field Studies and Statistics, Division of Cancer Cause and Prevention, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.

SUMMARY

A bioassay of methyl parathion for possible carcinogenicity was conducted by administering the test chemical in feed to F344 rats and B6C3F1 mice.

Groups of 50 rats of each sex were administered methyl parathion at one of two doses, either 20 or 40 ppm, for 105 weeks. Matched controls consisted of 20 untreated rats of each sex. All surviving rats were killed at the end of administration of the test chemical.

Groups of 50 mice of each sex were administered methyl parathion at one of two doses, initially either 62.5 or 125 ppm. These doses were maintained for 102 weeks for the females; however, due to decreased mean body weight gain in the dosed males, the low and high doses for the males were reduced after 37 weeks to 20 and 50 ppm, respectively, and administration at the lowered doses was continued for 65 weeks. The time-weighted average doses for the male mice were 35 and 77 ppm, respectively, for the low- and high-dose groups. Matched controls consisted of 20 untreated mice of each sex. All surviving mice were killed at the end of administration of the test chemical.

Mean body weights of the dosed male and female rats and mice were lower than those of the corresponding controls throughout the bioassay and were dose related. Survival was unaffected in both species except for an increase in mortality in the high-dose female rats, in which 46% of the animals were alive at the end of the study.

No tumors occurred in any of the groups of rats or mice of either sex at incidences that were significantly higher in the dosed groups than in the corresponding control groups.

It is concluded that under the conditions of this bioassay, methyl parathion was not carcinogenic for F344 rats or B6C3F1 mice of either sex.

TABLE OF CONTENTS

			Page
I.	Intro	duction	1
II.	Mater	ials and Methods	5
	Α.	Chemical	-
	В.	Dietary Preparation	
	C.	Animals	
	D.	Animal Maintenance	
	Ε.	Subchronic Studies	
	F.	Chronic Studies	
	G.	Clinical and Pathologic Examinations	15
	н.	Data Recording and Statistical Analyses	16
III	Resu	lts - Rats	23
	A.	Body Weights and Clinical Signs (Rats)	23
	в.	Survival (Rats)	23
	с.	Pathology (Rats)	26
	D.	Statistical Analyses of Results (Rats)	27
IV.	Resu	lts - Mice	29
	Α.	Body Weights and Clinical Signs (Mice)	29
	в.	Survival (Mice)	29
	c.	Pathology (Mice)	32
	D.	Statistical Analyses of Results (Mice)	33
v.	Disc	ussion	35
VI.	Bib1	iography	37

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Administered Methyl Parathion in the Diet	39
Table Al	Summary of the Incidence of Neoplasms in Male Rats Administered Methyl Parathion in the Diet	41

Table A2	Summary of the Incidence of Neoplasms in	Page
	Female Rats Administered Methyl Parathion in the Diet	45
Appendix B	Summary of the Incidence of Neoplasms in Mice Administered Methyl Parathion in the Diet	49
Table Bl	Summary of the Incidence of Neoplasms in Male Mice Administered Methyl Parathion in the Diet	51
Table B2	Summary of the Incidence of Neoplasms in Female Mice Administered Methyl Parathion in the Diet	55
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Administered Methyl Parathion in the Diet	59
Table Cl	Summary of the Incidence of Nonneopl astic Lesions in Male Rats Administered Methyl Parathion in the Diet	61
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Administered Methyl Parathion in the Diet	67
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Administered Methyl Parathion in the Diet	73
Table Dl	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Administered Methyl Parathion in the Diet	75
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Administered Methyl Parathion in the Diet	80
Appendix E	Analyses of the Incidence of Primary Tumors in Rats Administered Methyl Parathion in the Diet	85
Table El	Analyses of the Incidence of Primary Tumors in Male Rats Administered Methyl Parathion in the Diet	87

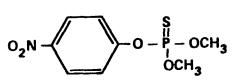

Page

Table E2	Analyses of the Incidence of Primary Tumors in Female Rats Administered Methyl Parathion in the Diet	92	
Appendix F	Analyses of the Incidence of Primary Tumors in Mice Administered Methyl Parathion in the Diet	97	
Table FlAnalyses of the Incidence of Primary Tumorsin Male Mice Administered Methyl Parathionin the Diet			
Table F2	Analyses of the Incidence of Primary Tumors in Female Mice Administered Methyl Parathion in the Diet	105	
	TABLES		
Table l	Methyl Parathion Subchronic Feeding Studies in Rats	10	
Table 2	Methyl Parathion Subchronic Feeding Studies in Mice	11	
Table 3	Methyl Parathion Chronic Feeding Studies in Rats	13	
Table 4	Methyl Parathion Chronic Feeding Studies in Mice	14	
	FIGURES		
Figure l	Growth Curves for Rats Administered Methyl Parathion in the Diet	24	
Figure 2	Survival Curves for Rats Administered Methyl Parathion in the Diet	25	
Figure 3	Growth Curves for Mice Administered Methyl Parathion in the Diet	30	
Figure 4	Survival Curves for Mice Administered Methyl Parathion in the Diet	31	

INTRODUCTION I.

Methyl parathion, 0,0-dimethyl O(4-nitropheny1)-phosphorothioate, 0₂N -(CAS 298-00-0; NCI C02971) was first marketed by Bayer AG in 1949, and today is manufactured Methyl parathion by at least four companies in the United States (Ayers and Johnson, 1976). It was the leading organophosphate insecticide used in the United States in 1974, when usage reached 53 million pounds (Ayers and Johnson, 1976; EPA, 1975). Factors contributing to its widespread use include its relatively low mammalian toxicity compared with parathion (Gaines, 1969), its similar insecticidal activity to that of parathion (Eto, 1974), its low phytotoxicity (Martin and Worthing, 1977) and its suitability as a replacement for DDT (EPA, 1975).

Methyl parathion is used in the agricultural industry (EPA, 1975) as a contact and stomach poison with broad-spectrum insecticidal activity and some efficacy against mites (EPA, 1975, Martin and Worthing, 1977). It is sold as a wettable powder or emulsifiable

concentrate for foliage application. Several formulations contain combinations of methyl parathion and ethyl parathion as well as other registered pesticides. There are 62 crops on which methyl parathion is registered for use (EPA, 1972 and 1974), but over 90% of the total volume used in 1974 was on cotton (Ayers and Johnson, 1976). It is used to some extent in California for mosquito control (EPA, 1975).

The duration of methyl parathion's insecticidal activity ranges from 2 to 4 weeks (Eto, 1974). Its persistence in soil, which varies depending on soil type, temperature, moisture, and other variables, has been studied in the laboratory and in the field. The half-life of methyl parathion in the laboratory has been reported to be as short as 3 to 11 days (King and McCarty, 1968) and as long as 50 days (Baker and Applegate, 1970). In the field, greater than 95% loss of the chemical occurred 30 days from the time of application (Lichtenstein and Schulz, 1964). More recent research has determined that much of what was previously said to be "lost" actually is not recovered because it has been bound to soil. When this is taken into account, the half-life of methyl parathion is estimated to be 30 days (Lichtenstein et al., 1977). Monitoring studies conducted in areas devoted to cotton farming show that while residues are

apparent at the end of each growing season, they are not detectable by the following planting season (Elliott, 1975).

The toxicity of methyl parathion for mammals, like that of other organophosphorus insecticides, is due to inhibition of cholinesterase, and the symptoms include restlessness, muscular twitchings, miosis, defecation, urination, lacrimation, incoordination. prostration, generalized muscular fibrillation, convulsions, and death (EPA, 1975). Toxic symptoms may occur in humans exposed to methyl parathion in manufacturing and agricultural operations, and protective standards have been established (EPA, 1975). The average acute oral LD₅₀ reported from several laboratories for methyl parathion is 11 mg/kg body weight for male rats, 16 mg/kg for female rats, and 18.5 mg/kg for grouped male and female mice (EPA, 1975). In a three-generation (twolitter-per-generation) study in rats, methyl parathion at 30 ppm in the diet reduced overall reproductive performance although there was no consistent effect on individual parameters such as number of stillbirths, physical structure of newborns, litter size, weanling weights, or percentage survival to weaning; 10 ppm methyl parathion in the diet had only sporadic effects on the reproductive performance (EPA, 1975).

Although methyl parathion does not show great persistence in the environment, residues do occur in food crops (EPA, 1975). For this reason, and because of its extremely high level of production and use, methyl parathion was selected for testing in the Carcinogenesis Bioassay Program.

II. MATERIALS AND METHODS

A. Chemical

(0,0-dimethyl 0(4-nitrophenyl)-phosphoro-Methv1 parathion thioate) was obtained from Monsanto as a brown semisolid. Its purity was determined by gas-liquid chromatography to be 94.6%, with one impurity greater than 1% and seven impurities less than The melting point was 33 to 34° C, and the refractive index 1%. 1.546 at 48.5°C; these values are consistent with the was melting point of 36°C and the refractive index of 1.552 at 48.5°C given in the literature (Eto, 1974). Elemental analysis 36.6% 5.3% showed carbon, 3.9% hydrogen, and nitrogen (theoretical: 36.5% C, 3.8% H, and 5.3% N).

The test material was stored at 5°C until used.

B. Dietary Preparation

Test diets containing methyl parathion were prepared every 1 to 1-1/2 weeks in 6- to 12-kg batches at the appropriate doses. A known weight of the chemical was first mixed with an equal weight

of autoclaved Wayne[®] Sterilizable Lab Meal containing 4% fat (Allied Mills, Inc., Chicago, Ill.), using a mortar and pestle. The mixing was continued with second and third additions of feed, and final mixing was performed with the remaining quantity of feed for a minimim of 15 minutes in a Patterson-Kelly[®] twin-shell blender. The diets were routinely stored at 5[°]C until used.

C. Animals

Male and female F344 (Fischer) rats and B6C3F1 mice were obtained as 4-week-old weanlings, all within 3 days of the same age, from the NCI Frederick Cancer Research Center (Frederick, Md.). The animals were housed within the test facility for 2 weeks and then were assigned four rats of the same sex to a cage and five mice of the same sex to a cage on a weight basis for each cage. The male rats used in the chronic study weighed 90 to 105 g, averaging at least 100 g; the female rats, 80 to 95 g, averaging at least 90 g; the male mice, 18 to 22 g, averaging at least 19.5 g; and the female mice, 17 to 21 g, averaging at least 18.5 g. Individual animals were identified by ear punch.

D. Animal Maintenance

The animals were housed in polycarbonate cages (Lab Products, Inc., Garfield, N.J.), $19 \times 10-1/2 \times 8$ inches for the rats and $11-1/2 \times 7-1/2 \times 5$ inches for the mice. The cages were suspended from aluminum racks (Scientific Cages, Inc., Bryan, Tex.) and were covered by nonwoven polyester-fiber 12-mil-thick filter paper (Hoeltge, Inc., Cincinnati, Ohio). The bedding used was Absorb-dri[®] hardwood chips (Northeastern Products, Inc., Warrenburg, N.Y.). The feed was presterilized Wayne® Sterilizable Lab Meal containing 4% fat provided ad libitum in suspended stainless steel hoppers and replenished at least three times per week. Water, acidified to pH 2.5, was supplied ad libitum from glass bottles with sipper tubes (Lab Products, Inc.) suspended through the tops of the cages.

The contaminated bedding was disposed of through an enclosed vacuum line that led to a holding tank from which the bedding was fed periodically into an incinerator. The cages were sanitized twice per week and the feed hoppers twice per month at 82 to 88°C in a tunnel-type cagewasher (Industrial Washing Corp., Mataway, N. J.), using the detergents, Clout[®] (Pharmacal Research Laboratories, Greenwich, Conn.) or Oxford D'Chlor (Oxford Chemicals, Atlanta, Ga.). The glass bottles and sipper

tubes were sanitized at 82 to 88°C in a tunnel-type bottle washer (Consolidated Equipment Supply Co., Mercersburg, Pa.) three times per week, using a Calgen Commercial Division detergent (St. Louis, Mo.). The racks for the cages were sanitized at or above 82°C in a rack washer (Consolidated Equipment Supply Co.) once per month, using the Calgen Commercial Division detergent, and the filter paper was changed at the same time.

The animal rooms were maintained at 22 to 24°C and 45 to 55% relative humidity. Incoming air was passed through a filter of 65% efficiency and a bag filter of 95% efficiency at the intake, and was expelled without recirculation through a "Z"-type roughing filter of 30% efficiency and a bag system of 90 to 95% efficiency at the exhaust (American Air Filters, Louisville, Ky.; Mine Safety Appliances, Pittsburgh, Pa.). Room air was changed 15 times per hour. The air pressure was maintained negative to a clean hallway and positive to a return hallway. Fluorescent lighting was provided automatically on a 12-hour-per-day cycle.

Rats administered methyl parathion and their corresponding controls were housed in the same room as rats on feeding studies of the following chemicals: (CAS 128-66-5) C. I. vat yellow 4

(CAS 148-18-5) sodium diethyldithiocarbamate

Mice administered methyl parathion and their corresponding controls were housed in the same room as mice on feeding studies of the following chemicals:

```
(CAS 103-33-3) azobenzene
(CAS 128-66-5) C. I. vat yellow 4
(CAS 72-56-0) p,p'-ethyl-DDD
(CAS 20941-65-5) ethyl tellurac
(CAS 85-44-9) phthalic anhydride
(CAS 51-03-6) piperonyl butoxide
(CAS 86-06-2) 2,4,6-trichlorophenol
```

E. Subchronic Studies

Subchronic feeding studies were conducted to estimate the maximum tolerated doses (MTD's) of methyl parathion, on the basis of which two concentrations (referred to in this report as "low" and "high" doses) were determined for administration in the chronic studies. Groups of five rats and five mice of each sex were fed diets containing methyl parathion at one of several doses for 7 weeks, followed by 1 week of observation, and groups of five control animals of each species and sex were administered basal diet only. Each animal was weighed twice per week. Tables 1 and 2 show the doses fed, the survival of animals in each dosed group at the end of the study and the mean body weight of each dosed group at week 7, expressed as a percentage of the mean body weight of the corresponding controls. At the end of the 8 weeks,

	Male		Female	
Dose (ppm)	Survival (a)	Mean Weight at Week 7 as % of Control	Survival (a)	Mean Weight at Week 7 as % of Control
0	5/5	100	5/5	100
10	5/5	101	4/5	102
20	5/5	97	5/5	95
30(Ъ)	5/5	98	4/5	91
40(Ъ)	5/5	98	4/5	87
50(Ъ)	5/5	90	3/5	90
50(0)	ر ر ر	30	ر رد	90

Table 1. Methyl Parathion Subchronic Feeding Studies In Rats

(a) Number surviving/number in group.

(b) Tissues of males and females examined microscopically were essentially normal.

	Male		Female		
Dose (ppm)	Survival (a)	Mean Weight at Week 7 as % of Control	Survival (a)	Mean Weight at Week 7 as % of Control	
0	5/5	100	5/5	100	
20	4/5	115	5/5	106	
40	5/5	129	5/5	108	
60	5/5	108	5/5	103	
80	5/5	113	5/5	108	
100	5/5	118	5/5	100	
125(Ъ)	5/5	96	5/5	96	
250(Ъ,с,	d) 0/5		4/5	94	
500(c,e)	0/5		0/5		

Table 2. Methyl Parathion Subchronic Feeding Studies in Mice

- (a) Number surviving/number in group.
- (b) Histopathologic examination of males at 125 ppm and females at 250 ppm showed that all tissues were essentially normal.
- (c) Clinical signs in both sexes at 250 and 500 ppm were rough hair coat and arched back.
- (d) At necropsy five males at 250 ppm had hemorrhage of the stomach.
- (e) At necropsy three males and five females at 500 ppm had hemorrhage of the stomach.

the animals were killed using CO₂ and necropsied. The footnotes to the tables include clinical and histopathologic findings.

Ten percent depression in body weight was a major criterion for the estimation of MTD's. The doses required to produce this response were determined by the following procedure: first, least squares regressions of mean body weights versus days on study were used to estimate mean body weights of each of the dosed groups at day 49. Next, probits of the percent weights of the dosed groups at day 49 relative to weights of corresponding control groups were plotted against the logarithms of the doses, and least squares regressions fitted to the data were used to estimate the doses required to induce 10% depression in weight.

The low and high doses for chronic studies were set at 20 and 40 ppm for rats and 62.5 and 125 ppm for mice.

F. Chronic Studies

The test groups, doses administered, and durations of the chronic feeding studies are shown in tables 3 and 4. Due to decreased mean body weight gain in the dosed male mice, the doses were

Sex and Test Group	Methyl Initial Parathion No. of in Diet (b) Animals (a) (ppm)		Time on Study (weeks)
Male			
Matched-Control	20	0	105
Low-Dose	50	20	105
High-Dose	50	40	105
Female			
Matched-Control	20	0	105
Low-Dose	50	20	105
High-Dose	50	40	105

Table 3. Methyl Parathion Chronic Feeding Studies in Rats

(a) All animals were approximately 6 weeks of age when placed on study.

(b) Test and control diets were provided <u>ad libitum</u> 7 days per week.

Sex and Test Group	Initial No. of Animals (a)	Methyl Parathion in Diet (b) (ppm)	Time on Study (weeks)	Time-weighted Average Dose (c) (ppm)
Male				
Matched-Control	20	0	102	
Low-Dose	50	62.5 20	37 65	35
High-Dose	50	125 50	37 65	77
Female				
Matched-Control	20	0	102	
Low-Dose	50	62.5	102	
High-Dose	50	125	102	

Table 4. Methyl Parathion Chronic Feeding Studies in Mice

(a) All animals were approximately 6 weeks of age when placed on study.

(b) Test and control diets were provided <u>ad libitum</u> 7 days per week.

(c) Time-weighted average dose = $\sum (\text{dose in ppm x no. of weeks at that dose})$ $\sum (\text{no. of weeks receiving each dose})$ reduced after week 37 to 20 ppm for the low-dose group and 50 ppm for the high-dose group.

G. Clinical and Pathologic Examinations

All animals were observed twice daily. Observations for sick, tumor-bearing, and moribund animals were recorded daily. Clinical examination and palpation for masses were performed each month, and the animals were weighed at least once per month. Moribund animals and animals that survived to the end of the bioassay were killed using CO₂ and necropsied.

The pathologic evaluation consisted of gross and microscopic examination of major tissues, major organs, and all gross lesions. The tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following tissues were examined microscopically: skin, lungs and bronchi, trachea, bone marrow (femur), spleen, lymph nodes (mesenteric and submandibular), heart, salivary glands (parotid, thymus, sublingual, and submaxillary), liver, pancreas, esophagus, stomach (glandular and nonglandular), small and large intestine, kidney, urinary bladder, pituitary, adrenal, thyroid, parathyroid, testis,

prostate, mammary gland, uterus, ovary, brain (cerebrum and cerebellum), and all tissue masses. Peripheral blood smears were also made for all animals, whenever possible.

Necropsies were also performed on all animals found dead, unless precluded in whole or in part by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and does not necessarily represent the number of animals that were placed on study in each group.

H. Data Recording and Statistical Analyses

Pertinent data on this experiment have been recorded in an automatic data processing system, the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and the individual pathologic results, recommended by as International Union Against Cancer (Berenblum, 1969). Data tables were generated for verification of data transcription and for statistical review.

data were analyzed using the These appropriate statistical techniques described in this section. Those analyses of the experimental results that bear on the possibility of carcinogenicity are discussed in the statistical narrative section.

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. One-tailed P values have been reported for all tests except the departure from linearity test, which is only reported when its two-tailed P value is less than 0.05.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site (numerator) to the number of animals in which that site is examined (denominator). In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions prior to histologic sampling (e.g., skin or mammary tumors), or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the numbers of animals necropsied.

The purpose of the statistical analyses of tumor incidence is to determine whether animals receiving the test chemical developed a significantly higher proportion of tumors than did the control animals. As a part of these analyses, the one-tailed Fisher exact test (Cox, 1970) was used to compare the tumor incidence of a control group with that of a group of dosed animals at each dose level. When results for a number of dosed groups (k) are compared simultaneously with those for a control group, a correction to ensure an overall significance level of 0.05 may be made. The Bonferroni inequality (Miller, 1966) requires that the P value for any comparison be less than or equal to 0.05/k. In cases where this correction was used, it is discussed in the narrative section. It is not, however, presented in the tables, where the Fisher exact P values are shown.

The Cochran-Armitage test for linear trend in proportions, with continuity correction (Armitage, 1971), was also used. Under the assumption of a linear trend, this test determines if the slope

of the dose-response curve is different from zero at the onetailed 0.05 level of significance. Unless otherwise noted, the direction of the significant trend is a positive dose relationship. This method also provides a two-tailed test of departure from linear trend.

A time-adjusted analysis was applied when numerous early deaths resulted from causes that were not associated with the formation of tumors. In this analysis, deaths that occurred before the first tumor was observed were excluded by basing the statistical tests on animals that survived at least 52 weeks, unless a tumor was found at the anatomic site of interest before week 52. When such an early tumor was found, comparisons were based exclusively on animals that survived at least as long as the animal in which the first tumor was found. Once this reduced set of data was obtained, the standard procedures for analyses of the incidence of tumors (Fisher exact tests, Cochran-Armitage tests, etc.) were followed.

When appropriate, life-table methods were used to analyze the incidence of tumors. Curves of the proportions surviving without an observed tumor were computed as in Saffiotti et al. (1972). The week during which an animal died naturally or was sacrificed was entered as the time point of tumor observation. Cox's

methods of comparing these curves were used for two groups; Tarone's extension to testing for linear trend was used for three groups. The statistical tests for the incidence of tumors which used life-table methods were one-tailed and, unless otherwise noted, in the direction of a positive dose relationship. Significant departures from linearity (P less than 0.05, twotailed test) were also noted.

The approximate 95 percent confidence interval for the relative risk of each dosed group compared with its control was calculated from the exact interval on the odds ratio (Gart, 1971). The relative risk is defined as p_t/p_c where p_t is the true binomial probability of the incidence of a specific type of tumor in a dosed group of animals and p_c is the true probability of the spontaneous incidence of the same type of tumor in a control group. The hypothesis of equality between the true proportion of a specific tumor in a dosed group and the proportion in a control group corresponds to a relative risk of unity. Values in excess of unity represent the condition of a larger proportion in the dosed group than in the control.

The lower and upper limits of the confidence interval of the relative risk have been included in the tables of statistical analyses. The interpretation of the limits is that in approximately 95% of a large number of identical experiments, the true ratio of the risk in a dosed group of animals to that in a control group would be within the interval calculated from the experiment. When the lower limit of the confidence interval is greater than one, it can be inferred that a statistically significant result (P less than 0.025 one-tailed test when the control incidence is not zero, P less than 0.050 when the control incidence is zero) has occurred. When the lower limit is less than unity, but the upper limit is greater than unity, the lower limit indicates the absence of a significant result while the upper limit indicates that there is a theoretical possibility of the induction of tumors by the test chemical, which could not be detected under the conditions of this test.

III. RESULTS - RATS

A. Body Weights and Clinical Signs (Rats)

Mean body weights of the dosed male and female rats were lower than those of the corresponding controls, and were generally dose related throughout the bioassay (figure 1). Corneal opacity was observed in control and dosed groups. No other compound-related clinical signs were recorded.

B. Survival (Rats)

Estimates of the probabilities of survival for male and female rats administered methyl parathion in the diet at the doses of this bioassay, together with those for the matched controls, are shown by the Kaplan and Meier curves in figure 2. In male rats, the result of the Tarone test for dose-related trend in mortality is not significant. In females, the result of the Tarone test is significant (P less than 0.001). An indicated departure from linear trend is observed (P = 0.042) because of the relatively steep increase in mortality observed in the high-dose female rats.

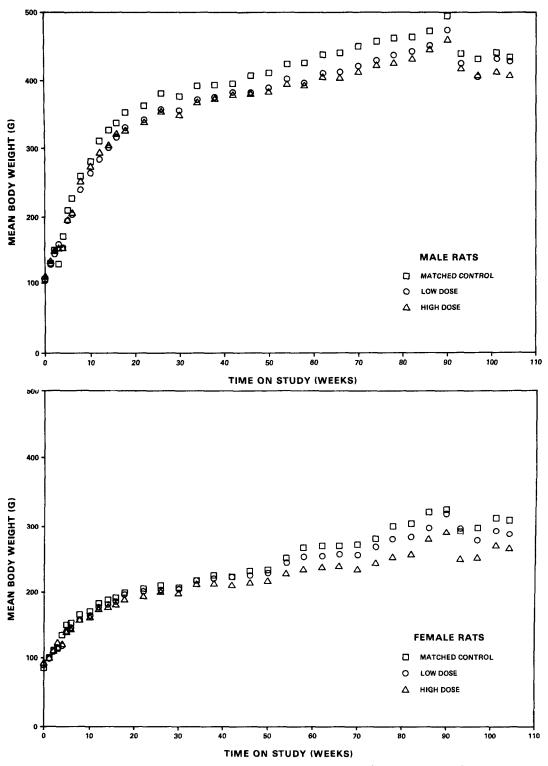


Figure 1. Growth Curves for Rats Administered Methyl Parathion in the Diet

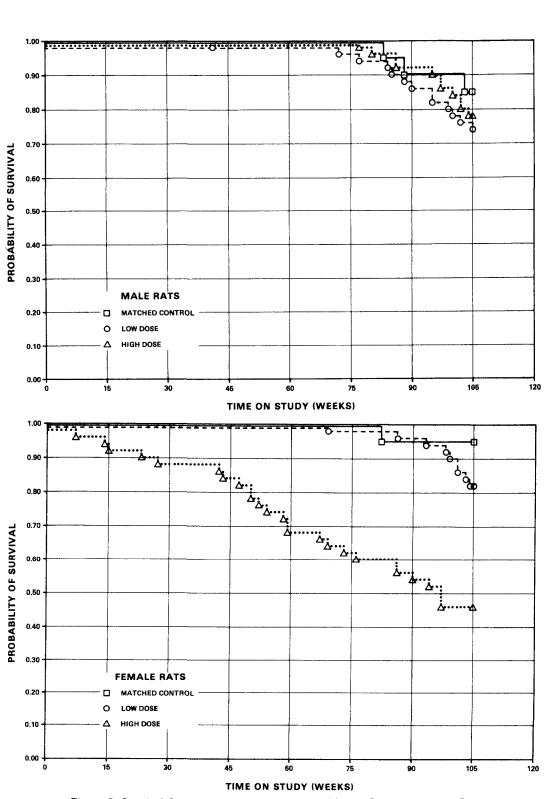


Figure 2. Survival Curves for Rats Administered Methyl Parathion in the Diet

In male rats, 39/50 (78%) of the high-dose group, 37/50 (74%) of the low-dose group, and 17/20 (85%) of the control group lived to the end of the bioassay. In females, 23/50 (46%) of the high-dose group, 41/50 (82%) of the low-dose group, and 19/20 (95%) of the control group lived to the end of the bioassay.

Sufficient numbers of rats of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Rats)

Histopathologic findings on neoplasms in rats are summarized in Appendix A, tables Al and A2; findings on nonneoplastic lesions are summarized in Appendix C, tables Cl and C2.

A variety of neoplasms were represented among the dosed and control animals. Although a variety of benign and malignant neoplasms occurred, each type has been encountered previously in aged F344 rats. Moreover, the incidence of neoplasms by type and site, also by test group and sex of animal appears to be without relationship, and hence unattributable, to exposure to the test chemical.

Nonneoplastic responses were also represented among both control and dosed animals. Such lesions have also been encountered previously and are considered to be similar to those commonly observed in aging F344 rats.

Based on the histopathologic examination, there was no evidence that methyl parathion was carcinogenic in F344 rats under conditions of this bioassay.

D. Statistical Analyses of Results (Rats)

Tables El and E2 in Appendix E contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and at an incidence of at least 5% in one or more than one group.

The results of the Cochran-Armitage tests for dose-related trend in the incidence of tumors and the results of the Fisher exact test comparing the incidences of tumors in the control and dosed groups are not significant in the positive direction in either sex.

Significant results in the negative direction are observed in the incidences of animals with either liver, prostate, pituitary, or mammary gland tumors. In females, this significance in the negative direction may be accounted for by the early mortality of the high-dose animals.

In each of the 95% confidence intervals for relative risk shown in the tables, the value of one or less than one is included; this indicates the absence of significant positive results. It should also be noted that each of the intervals, except for the incidence of mammary gland tumors in female rats, has an upper limit greater than one, indicating the theoretical possibility of tumor induction by methyl parathion, which could not be detected under the conditions of this test.

IV. RESULTS - MICE

A. Body Weights and Clinical Signs (Mice)

Mean body weights of the high-dose male and female mice were lower than those of the corresponding controls throughout the bioassay (figure 3); mean body weights of the low-dose males were decreased prior to lowering the dosage at week 38, while those of the low-dose females were unaffected. No other compound-related clinical signs were recorded.

B. Survival (Mice)

Estimates of the probabilities of survival for male and female mice administered methyl parathion in the diet at the doses of this bioassay, together with those for the matched controls, are shown by the Kaplan and Meier curves in figure 4. The result of the Tarone test for dose-related trend in mortality is not significant in either sex.

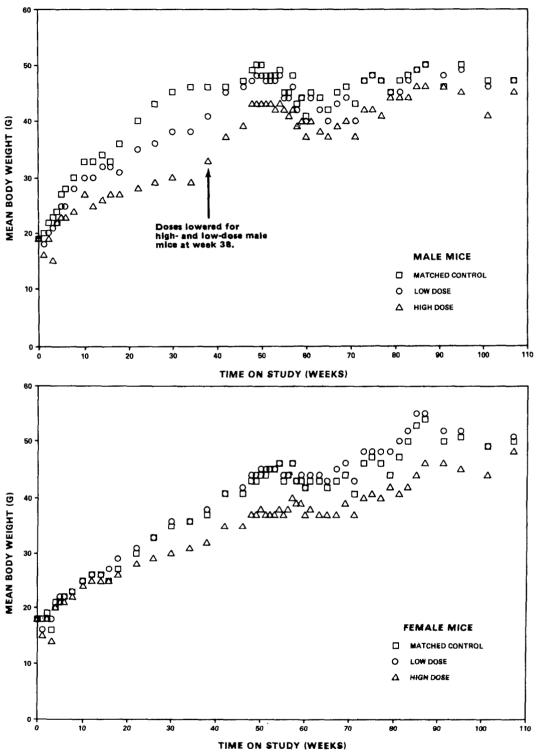


Figure 3. Growth Curves for Mice Administered Methyl Perathien in the Diet

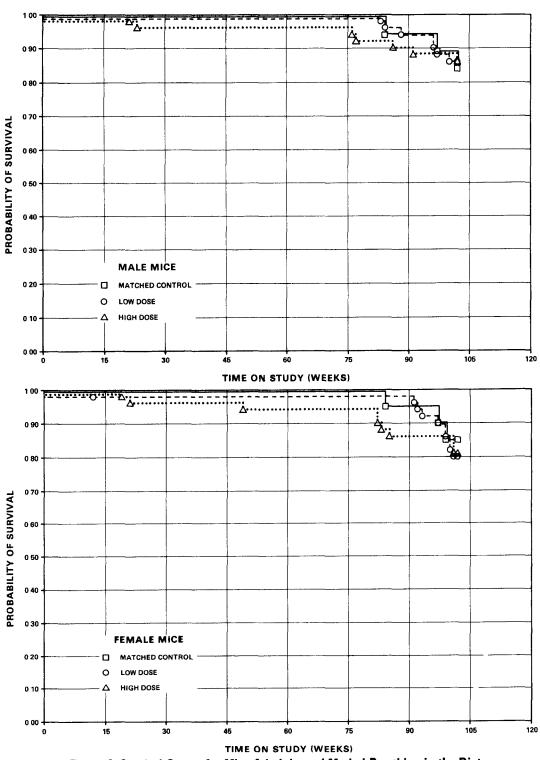


Figure 4. Survival Curves for Mice Administered Methyl Parathion in the Diet

In male mice, 43/50 (86%) of each dosed group and 16/20 (80%) of the control group lived to the end of the bioassay. In females, 40/50 (80%) of each dosed group and 17/20 (85%) of the control group lived to the end of the bioassay.

Sufficient numbers of mice of each sex were at risk for the development of late-appearing tumors.

C. Pathology (Mice)

Histopathologic findings on neoplasms in mice are summarized in Appendix B, tables Bl and B2; findings on nonneoplastic lesions are summarized in Appendix D, tables Dl and D2.

A variety of neoplasms were represented among the dosed and control animals. Each type has been encountered previously in the B6C3F1 hybrid mouse. Moreover, the incidence of neoplasms by type and site, also by test group and sex of animal is without relationship, and hence unattributable, to exposure to the test chemical.

A variety of nonneoplastic responses are represented among both control and dosed animals. Such lesions have been encountered previously and are considered to be similar to those commonly observed in aging B6C3F1 mice.

Based on the histopathologic examination, there was no evidence that methyl parathion was carcinogenic in mice under conditions of this bioassay.

D. Statistical Analyses of Results (Mice)

Tables Fl and F2 in Appendix F contain the statistical analyses of the incidences of those primary tumors that occurred in at least two animals of one group and an incidence of at least 5% in one or more than one group.

The results of the Cochran-Armitage tests for dose-related trend in the incidence of tumors and the results of the Fisher exact test comparing the incidences of tumors in the control and dosed groups are not significant in the positive direction in either sex. However, significant results in the negative direction are observed in the combined incidence of hepatocellular carcinoma and adenoma in male mice and in the incidences of pituitary tumors and of hematopoietic tumors in female mice.

In each of the 95% confidence intervals for relative risk, shown in the tables, the value of one or less than one is included; this indicates the absence of significant positive results. It should also be noted that most of the intervals have an upper limit greater than one, indicating the theoretical possibility of the induction of tumors by methyl parathion, which could not be detected under the conditions of this test.

V. DISCUSSION

Mean body weights of the dosed male and female rats and mice were lower than those of the corresponding controls and were generally dose related throughout the bioassay. Mortality was unaffected in the rats or mice except for an increase in mortality in the high-dose female rats in which 46% of the animals were alive at the end of the study. Sufficient numbers of animals were at risk for the development of late-appearing tumors.

No tumors occurred in any of the groups of rats or mice of either sex at incidences that were significantly higher in the dosed groups than in the corresponding control groups.

It is concluded that under the conditions of this bioassay, methyl parathion was not carcinogenic for F344 rats or B6C3F1 mice of either sex.

VI. BIBLIOGRAPHY

Armitage, P., <u>Statistical Methods</u> in <u>Medical Research</u>, John Wiley & Sons, Inc., <u>New York</u>, 1971, pp. 362-365.

Ayers, J. H. and Johnson, O. H., Insecticides. In: <u>Chemical</u> <u>Economics Handbook</u>, Stanford Research Institute, Menlo Park, <u>Calif.</u>, 1976, sec. 573.3003 E-F, 573.3007 G-H, 573.3007 N-O.

Baker, R. D. and Applegate, H. G., Effect of temperature and ultraviolet radiation on the persistence of methyl parathion and DDT in soils. <u>Agron. J. 62(4):509-512, 1970</u>. Cited in: <u>Initial</u> <u>Scientific</u> and <u>Minieconomic</u> <u>Review</u> of <u>Methyl</u> <u>Parathion</u>, <u>Environmental</u> Protection Agency, Office of Pesticide Programs, Criteria and Evaluation Division, Washington, D.C., 1970.

Berenblum, I., ed., <u>Carcinogenicity Testing</u>: <u>A</u> <u>Report of the</u> <u>Panel on Carcinogenicity of the Cancer Research Commission of</u> <u>UICC, Vol. 2</u>, International Union Against Cancer, Geneva, 1969.

Cox, D. R., Regression models and life tables. <u>J. R. Statist</u>. Soc. B34:187-220, 1972.

Cox, D. R. <u>Analysis of Binary Data</u>, Methuen & Co., Ltd., London, 1970, pp. 48-52.

Elliott, J., Monitoring of selected ecological components of the environment in four Alabama counties. <u>Hum. Anim. Health, Proc.</u> Annu. Conf. 4:233-279, 1975.

Environmental Protection Agency, <u>Initial Scientific and</u> <u>Minieconimic Review of Methyl Parathion</u>, U.S. Environmental Protection Agency, Office of Pesticide Programs, Criteria and Evaluation Division, Washington, D.C., 1975.

Environmental Protection Agency, <u>EPA</u> <u>Compendium of Registered</u> <u>Pesticides</u>, U. S. Government Printing Office, Washington, D.C., 1974, sec. III-D-41.16 to III-D-41.17.1

Environmental Protection Agency, <u>EPA</u> <u>Compendium</u> <u>of</u> <u>Registered</u> <u>Pesticides</u>, U. S. Government Printing Office, Washington, D.C., 1972, sec. III-D-41.2 to III-D-41.15, III-D-41.18 to III-D-41.24, III-D-41.27, III-D-41.29, III-D-41.32 to III-D-41.39. Eto, M., Parathion-methyl, methyl parathion. In: <u>Organophosphorus</u> <u>Pesticides</u>: <u>Organic</u> <u>and</u> <u>Biological</u> <u>Chemistry</u>, <u>CRC Press, Inc.</u>, <u>Cleveland</u>, <u>Ohio</u>, 1974, <u>p.</u> 242.

Gaines, T. B., Acute toxicity of pesticides, <u>Toxicol</u>. <u>Appl</u>. Pharmacol. 14:515-534, 1969.

Gart, J. J., The comparison of proportions: a review of significance tests, confidence limits and adjustments for stratification., Rev. Int. Stat. Inst. 39:148-169, 1971.

Kaplan, E. L., and Meier, P., Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc. 53:457-481, 1958.

King, P. and McCarty, P. L., A chromatographic model for predicting pesticide migration in soils. <u>Soil</u> <u>Sci.</u> <u>106</u>(4): 248-261, 1968.

Lichtenstein, E. P., Katan, J., and Anderegg, B. N., Binding of "persistent" and "nonpersistent" ¹⁴C-labeled insecticides in an agricultural soil. J. Agric. Food Chem. 25(1):43-47, 1977.

Lichtenstein, E. P. and Schulz, K. R., The effects of moisture and microorganisms on the persistence and metabolism of some organophosphorus insecticides in soils, with special emphasis on parathion. J. Econ. Entomol. 57:618-627, 1964.

Linhart, M. S., Cooper J. A., Martin, R. L., Page, N. P., and Peters, J. A., Carcinogenesis bioassay data system. <u>Comp.</u> and Biomed. Res. 7:230-248, 1974.

Martin, H. and Worthing, C. R., Parathion-methyl. In: <u>Pesticide</u> Manual, British Crop Protection Council, London, 1977, p. 400.

Miller, R. G., Jr., <u>Simultaneous</u> <u>Statistical</u> <u>Inference</u>, McGraw-Hill Book Co., New York, 1966, pp. 6-10.

Saffiotti, U., Montesano, R., Sellakumar, A. R., Cefis, F., and Kaufman, D. G., Respiratory tract carcinogenesis in hamsters, induced by different numbers of administrations of benzo(a) pyrene and ferric oxide. Cancer Res. 32:1073-1081, 1972.

Tarone, R. E., Tests for trend in life table analysis. Biometrika 62(3):679-682, 1975.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS ADMINISTERED METHYL PARATHION IN THE DIET

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS ADMINISTERED METHYL PARATHION IN THE DIET

		LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSILD ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	50 50 50 50	50 50 50
LNIEGUMENTAKY SYSTEM			
*SKIN PAPILLOMA, NOS SQUAMOUS CLLL CARCINOMA KERATOACANTHOMA	(20)	(50) 2 (4%)	(50) 2 (4% 1 (2% 1 (2%
*SUBCUT TISSUE ADENOCARCINOMA, NOS FIBROMA FIBROSARCOMA LIPOSARCOMA	(20) 1 (5%)	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 2 (4% 1 (2% 1 (2%
LSPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA FOLLICULAR-CELL CARCINOMA, METAS	(20) 2 (10%) 1 (5%)	(50) 3 (6%)	(50) 3 (6% 1 (2%
EMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIGNANT LYMPHOMA, NOS MYELOMONOCYTIC LEUKEMIA MONOCYTIC LEUKEMIA	(20) 2 (10%) 1 (5%)	(50) 5 (10%) 2 (4%)	(50) 3 (6% 1 (2%
#SPLLEN MALIGNANT LYMPHOMA, NOS	(20)	(50) 1 (2%)	(49)
#THYMUS THYMOMA HEMANGIOMA	(13)	(37) 1 (3%)	(34) 1 (3%
TIRCULATORY SYSTEM			
NONF	الله هم منه مربع على الله عن الله عن الله عن الله الله الله الله الله الله الله الل	الله ها، الله الله الله الله الله الله ا	

* NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
JIGESTIVE SYSTEM			
#SALIVARY GLAND	(20)	(50)	(50)
FIBROMA MIXED TUMOR, MALIGNANT	1 (5%)	1 (2%)	1 (2%)
#LIVER	(20)	(49)	(50)
HEPATOCEILULAR ADENOMA HEPATOCEILULAR CARCINOMA	1 (5%) 1 (5%)		
#SMALL INTESTINE ADENOCARCINOMA, NOS	(20)	(48)	(50) 1 (2%)
#COLON ADENOCARCINOMA, NOS	(19)	(47)	(45) 1 (2%)
#KIDNEY ADENOCARCINOMA, NOS LIPOSARCOMA	(20) 1 (5%)	(50)	(50) 1 (2¾)
LNDOCRINE SYSTEM			
#PITUITARY	(20)	(48)	(50)
ADENOMA, NOS ADENOCARCINOMA, NOS	1 (5%)	3 (6%)	5 (10%) 1 (2%)
CHROMOPHOLL ADENOMA ACIDOPHIL ADLNOMA	8 (40%)	8 (17%)	8 (16%) 1 (2%)
# ADRE NAL	(20)	(50)	(50)
CORTICAL ADENOMA PHEOCHROMOCYTOMA	3 (15%)	6 (12%)	2 (4%) 5 (10%)
#THYROID	(20)	(48)	(49)
OXYPHIL ADENOMA	• •	. ,	1 (2%)
FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA		3 (117)	1 (2%)
C-CELL CARCINOMA		2 (4%) 1 (2%)	2 (4%) 1 (2%)
CYSTADENOMA, NOS			1 (2%)
PAPILLALY CYSTADENOMA, NOS		1 (2%)	
#PANCREATIC ISLETS	(19)	(45)	(47)
ISLET-CELL ADENOMA	<u> </u>	<u> </u>	2_(4%)

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
LEPRODUCTIVE SYSTEM			
*MAMMARY GLAND PAPILLARY CYSTADENOCARCINOMA, NOS FIBRO ADENOMA	(20) 1 (5%)	(50) 1 (2%)	(50)
#PROSTATE PAPILLARY ADENOMA ACINAR-CELL ADENOMA	(20) 1 (5%) 2 (10%)	(44)	(48)
#TESTIS INTERSTITIAL-CELL TUMOR INTERSTITIAL-CELL TUMOR, MALIGNA	(20) 1 (5%) 16 (80%)	(50) 8 (16%) 32 (64%)	(50) 18 (36%) 23 (46%)
*SCROTUM LIPOMA	(20)	(50) 1 (2 %)	(50)
SPECIAL SENSE ORGANS *EXTERNAL EAK FIBRO SARCOMA	(20)	(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*PLRITONEUM MLSOTHELIOMA, NOS	(20)	(50) 1 (2%)	(50)
ALL OTHER SYSTEMS			
NONE			

* NUMBER OF ANIMALS NECHOPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	20	50	50
NATURAL DEATHD	2	9	8
MORIBUND SACE IFICE	1	4	3
SCHEDULED SACRIFICE			
ACCIDENTALLY KILLED			
IGRMINAL SACE IFICE	17	37	39
ANIMAL MISSING			
INCLUDES AUTOLYZEL ANIMALS			
UMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	20	48	48
TOTAL PRIMARY TUMORS	46	85	92
	14	30	34
TOTAL BENIGN TUMORS	23	41	54
TOTAL ANIMALS WITH MALIGNANT TUMORS	18	38	31
TOTAL MALIGNANT TUMORS	23	44	38
TOTAL ANIMALS WITH SECONDARY TUMORS#			1
TOTAL SECONDARY TUMORS			'1
IOTAL SECONDART TO HORS			•
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN CR MALIGNANT		1	
TOTAL UNCARTAIN TUMORS		1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OR METASTATIC			
FOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC	יסאוזידי עצעתאסי	PC	
SECONDARY TUMORS: METASTATIC TUMORS C	DE TUMORS IN	VASIVE INTO AN A	DJACENT OR

TABLE A1. MALE RATS: NEOPLASMS (CONTINUED)

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS ADMINISTERED METHYL PARATHION IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20 20 20	50 50	50 47
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY		,50 ,50	47 47
LNTEGUMENTARY SYSTEM			
*SUBCUT TISSUE	(20)	(50)	(47)
FIBROMA FIBROSAR COMA	1 (5%)	1 (2%)	
LIPOMA	1 (5%)	. (2.0)	
FIBROADENOMA	1 (5%)		
RESPIRATORY SYSTEM			
#L UN G	(20)	(50)	(47)
SQUAMOUS CELL CARCINOMA, METASTA ALVEOLAR/BRONCHIOLAR ADENOMA		1 (2%) 5 (10%)	1 (2%)
	1 (5%)	J (104)	
LEMATOPOIETIC SYSTEM			
*AULTIPLE ORGANS	(20)	(50)	(47)
MALIGNANT LYMPHOMA, NOS MYELOMONOCYTIC LEUKEMIA	1 (5%)	2 (4%)	1 (2%)
MONOCYTIC LEUKEMIA		1 (2%)	3 (6%)
#SPLŁEN	(20)	(50)	(47)
HEMANGIOSA BCOMA, METASTATIC	1 (5%)		
#MANDIBULAR L. NODE HEMANGICSARCOMA; METASTATIC	(20) 1 (5%)	(49)	(47)
CIRCULATORY SYSTEM			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENGMA HEPATOCELLULAE CARCINOMA	(20) 2 (10%)	(50) 4 (8%) 1 (2%)	(47)
URINARY SYSTEM			
*KIDNŁY HEMANGIOSARCOMA, METASTATIC	(20) 1 (5%)	(50)	(47)
ENDOCRINE SYSTEM			
#PITUITARY CARCINOMA,NOS ADENOMA, NOS CHROMOPHOEL ADENOMA CHROMOPHOBE CARCINOMA	(20) 10 (50%) 2 (10%)	(50) 1 (2%) 5 (10%) 13 (26%) 3 (6%)	.(47) 15 (32%)
#ADRENAL CORTICAL ADENOMA PHEOCHRO MOCYIOMA	(20) 1 (5%)	(50) 2 (4%) 1 (2%)	(47)
*THYROID PAPILLARY CARCINOMA PAPILLARY ADENOCARCINOMA C-CELL ADENOMA C-CELL CARCINOMA PAPILLARY CYSTADENOMA, NOS	(20) 1 (5%) 1 (5%)	(49) 1 (2%) 1 (2%)	(47) 1 (2%)
#EPRODUCTIVE SYSTEM			
*MAMMARY GLAND FIBBCADLNOMA	(20) 5 (25%)	(50) 2 (4%)	(47)
*VAGINA SQUAMOUS CEIL CARCINOMA	(20)	(50)	(47) 1 (2≸)
#UTERUS ENDOMETRIAL STROMAL POLYP	(20)	(50) <u>6 (12%)</u>	(46) 4_(9%)_

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

		LOW DOSE	HIGH DOS
NEEVOUS SYSTEM			
# BRAIN CARCINOMA, NOS, METASTATIC	(20)		(47)
SPECIAL SENSE ORGANS			
*LYE SQUAMOUS CELL CARCINOMA	(20)	(50) 1 (2%)	(47)
AUSCULOSKELETAL SYSTEM			
*MANDIBLE AMELOELASIOMA	(20)	(50)	(47) 1 (2
*COSTOCHOND RAL SYNCHO OSTEOSAR COM A	(20)	(50) 1 (2%)	(47)
PODA CAAILIPS			
NONŁ			
ALL OTHER SYSTEMS			
THORAX HEMANGIOSARCOMA	1		
NIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHD	20	50 6	50 24
MORIBUNE SACRIFICE SCHEDULED SACRIFICE ACCIDENTALLY KILLED	1	3	3
TERMINAL SACRIFICE ANIMAL MISSING	19	41	23
INCLUDES AUTOLYZED ANIMALS			

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

TABLE A2. FEMALE RATS: NEOPLASMS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
CUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	18 _31	33 51	20 27
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	17 26	26 39	18 21
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	4 5	10 12	5 6
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMOES	1 4	2 2	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN CR MALIGNANT TOTAL UNCERTAIN TUMOES			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SEC SECONDARY TUMORS: METASTATIC TUMORS O		-	DJACENT ORG

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE ADMINISTERED METHYL PARATHION IN THE DIET

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE **ADMINISTERED METHYL PARATHION IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING ANIMALS NECECEPSIED	1 19	50	49
ANIMALS EXAMINED HISTOPATHOLOGICALLY		50	49
INTEGUMENTARY SYSTEM			
*SKIN	(19)	(50)	(49)
KERATOACANTHOMA		x y	1 (2%)
FIBROSARCOMA, METASTATIC			1 (2%)
LIPOSARCOMA, METASTATIC			1 (2%)
*SUBCUT TISSUE	(19)	(50)	(49)
FI BROSAR COM A			1 (2%)
LIPOSARCOMA			1 (2%)
#LUNG HEPATOCEILULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAB/BRONCHIOLAR CARCINOMA FIBEOSARCOMA, METASTATIC LIPOSARCOMA, METASTATIC HEMANGIOMA	(19) 1 (5%)	(50) 1 (2%) 5 (10%) 5 (10%) 1 (2%) 1 (2%)	(49) 5 (10%) 3 (6%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(19)	(50)	(49)
MALIGNANI LYMPHOMA, NOS Malig.lymphoma, histiocytic type	1 (5%)	4 (8%) 2 (4%)	2 (4%)
*HEMATOPOIETIC SYSTEM MALIGNANI LYMPHOMA, NOS	(19) 1 (5%)	(50)	(49) 1 (2%)
#BONE MARROW	(19)	(48)	(48)
SARCOMA, NOS, METASIATIC	()	1 (2%)	,
#SPLEEN SARCOMA, NOS, METASIATIC	(18)	(48)	(49)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B1.	MALE	MICE:	NEOPLASMS	(CONTINUED)

		CHED Trol	LOW D	OSE	HIGH C	OSE
HE MA NGI C MA HL M ANGIO SARCO MA		(6%) (6%)]	(2%)	1 1	(2%) (2%)
<pre>#LYMPH NODE SARCOMA, NOS MALIG.LYMPHOMA, HISTLOCYTIC TYPE</pre>	(17)			(2%) (2%)	(48)	
*LIVER MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(19)		(49) 1	(2%)	(49)	
TRCULATORY SYSTEM						
			1	(2%)	(49)	
DIGLSTIVE SYSTEM						
#LIVER HEPATOCEILULAR ADENCMA HEPATOCELLULAR CARCINOMA SARCOMA, NOS, METASTATIC FIBROSARCOMA, METASTATIC LIPOSARCOMA, METASTATIC		(42%) (11%)	12 3 1	(24%) (6%) (2%) (2%)	6	(149 (129 (2%)
HEM ANGIOMA HEM ANGIOSABCOMA HEM ANGIOSARCOMA, METASTATIC ANGIOSARCOMA, METASTATIC	1	(5%)	1	(2%)	1	(2%) (2%)
#STOMACH ADENOCA IN ADENOMATOUS POLYP	(19)		(48)		(49) 1	(2%)
#ILEUM FIBROSARCOMA, METASTATIC	(19)		(48) 1	(2%)	(47)	
KINARY SYSTEM						
#KIDNEY LIPOSARCGMA, METASTATIC	(19)		(48)		(49) 1	(2%)
NDOCHINE SYSTEM						
#ADRENAL CORTICAL ADENOMA	(19) 3	(16%)	(43)	(9%)	(47)	<u>(11%</u>

* NUMBER CF ANIMALS NECROPSIED

TABLE B1.	MALE	MICE:	NEOPLASMS	(CONTINUED)

.

	MATCHED Control	LOW DOSE	HIGH DOSE
<pre>#THYROID FOLLICULAR-CELL CARCINOMA PAPILLARY CYSTADENOCARCINOMA,NOS</pre>	(18) 1 (6%)	(46) 1 (2%) 1 (2%)	(48)
#PANCREATIC ISLETS ISLET-CEIL ADENOMA	(17) 1 (6%)	(45) 3 (7%)	(49)
EPRODUCTIVE SYSTEM			
*SEMINAL VESICLE PAPILLARY CYSTADENOMA, NOS	(19)	(50) 1 (2%)	(49)
*EPIDICYMIS LIPOSARCOMA, METASTATIC	(19)	(50)	(49) 1 (2%
NONE PECIAL SENSE ORGANS *LYL/LACRIMAL GLAND	(19)	(50)	(49)
PAPILLAKY ADENOMA	1 (5%)	1 (2%)	3 (6%)
USCULOSKELEIAL SYSTEM			
* k I B FI BRO SAR COMA	(19)	(50) 1 (2%)	(49)
ODY CAVITIES			
*MLSLNTERY FIBROSARCOMA, METASIATIC	(19)	(50) 1 (2%)	(49)
LL OTHER SYSTEMS			
NONE		ی میں میں 100 ملیا ہوں میں این میں	

	MATCHED Control	LOW DOSE	HIGH DOS
ANIMAL DISPOSITION SUMMARY			
ANIMAIS INITIALLY IN SIUDY NATURAL DEATHØ MORIBUNL SACRIFICE SCHEDULEL SACRIFICE	20 3	50 7	50 7
ACCIDENTALLY KILLED TERMINAL SACKIFICE ANIMAL MISSING	16 1	43	43
2 INCLUDES AUTOLYZED ANIMALS			
TUMER SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	13 22	31 49	28 39
TOTAL ANIMALS WITH BENIGN TUMORS TOTAL BENIGN TUMORS	8 15	21 29	18 22
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	6 7	18 20	16 17
TOTAL ANIMALS WITH SECONDARY TUMORS# IOTAL SECONDARY TUMORS		3 9	3 7
IGTAL ANIMALS WITH TUMORS UNCERTAIN- BENIGN OR MALIGNANT TOTAI UNCERTAIN TUMCES			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
PEIMARY TUMORS: ALL TUMORS EXCEPT SE SECONEARY TUMOES: METASTATIC TUMORS (D.LACRNT ORG

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

SECONDARY 1UMORS: METASTATIC TUMORS OF TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE ADMINISTERED METHYL PARATHION IN THE DIET

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50 1
ANIMALS MISSING ANIMALS NECECESIED	20	49	48
ANIMALS EXAMINED HISTOPATHOLOGICALLY		49	48
INTEGUMENTARY SYSTEM			
*SUBCUI TISSUL	(20)	(49)	(48)
FIERCSARCOMA		1 (2%)	1 (2%)
HEM ANGIO SARCOMA		1 (2%)	
NEUROFIEROSAK COMA		1 (2%)	
LESPIRATORY SYSTEM			
#L UNG	(20)	(49)	(48)
ALVEOLAR/BRONCHIOLAR ADENOMA		1 (2%)	1 (2%)
ALVEOLAR/BRONCHIOLAE CARCINOMA		2 (4%)	1 (2%)
FIBROSARCOMA, METASTATIC LEIOMYOSARCOMA, METASTATIC		1 (2%)	1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS	(20)	(49)	(48)
MALIGNANI LYMPHOMA, NOS	3 (15%)	10 (20%)	2 (4%)
MALIG.LYMPHOMA, HISTLOCYTIC TYPE		1 (2%)	3 (6%)
GRANULOCYTIC LEUKEMIA	1 (5%)		
#BONE MARROW	(20)	(49)	(48)
HEMANGIOMA	1 (5%)		• /
#SPLLEN	(20)	(49)	(47)
HEMANGICSARCOMA	0 (107)	1 (2%)	
MALIGNANT LYMPHCMA, NOS	2 (10%)		
#MESENTERIC L. NODE	(19)	(49)	(47)
ADENOCARCINOMA, NOS, METASTATIC		1 (2%)	• •
#ST CMACH	(20)	(48)	(48)
MALIG.LYMPHOMA, HISTIOCYTIC TYPE		1 (2%)	

NUMBER CF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY # NUMBER CF ANIMALS NECROPSIED

	MATCHED Control	LOW DOSE	HIGH DOSE
#THYMUS THYMOMA MALIGNANT LYMPHOMA, NOS	(14) 2 (14%)	(30) 1 (3%)	(34)
LIRCULATORY SYSTEM			
NONE			
JIGESTIVE SYSTEM			
#LIVER HEPATOCEILULAR ADLNOMA HEPATOCELLULAR CARCINOMA HEMANGIOSARCOMA	(20) 1 (5%)	(49) 3 (6%) 1 (2%)	(48) 2 (4%) 1 (2%)
#STOMACH SQUAMOUS LELL CARCINOMA Ale Nocak Cinoma, Nos	(20)	(48) 1 (2%)	(48) 1 (2%)
*DUODENUM ADENCCARCINCMA, NOS	(20)	(49) 1 (2%)	(46)
RINALY SYSTEM			
# KIDNEY HEMANGIOMA	(20)	(49) 1 (2%)	(48)
NLOCRINE SYSTEM			
#PITUITARY ADENCMA, NOS CHROMOPHOBE ADENOMA	(17) 4 (24%)	(45) 1 (2%) 4 (9%)	(44) 1 (2%)
#A DEENAL CORTICAL ADENOMA	(20) 2 (10%)	(49) 1 (2%)	(48) 1 (2%)
*THYROID FOLLICULAR-CELL ADENOMA PAPILLARY CYSTADENOMA, NOS	(20) 1 (5%)	(47) 1 (2%)	(46)
#PANCREATIC ISLETS ISLET-CEIL ADENOMA	(18) <u> </u>	(46)	(42)

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B2, FEMALE MICE: NEOPLASMS (CONTINUED)

MATCHED LOW DOSE HIGH DOSE CONTROL REPRODUCTIVE SYSTEM (48) 3 (6%) 1 / (49) *MAMMARY GLAND (20) ADENOCARCINOMA, NOS 1 (2%) #UTERUS (20) (48) (45) ENDOMETRIAL STROMAL POLYP 3 (7%) 1 (2%) HE M AN GIO MA HEM ANGIO SARCOMA 1 (2%) (48) #OV ARY (17) (47) 1 (2%) 1 (2%) PAPILIARY CYSTADENOMA, NOS ILRATOMA, BENIGN HEM ANGIOMA 1 (2%) ~~~~~~~~~~~ -----NERVOUS SYSTEM NONE SPECIAL SENSE ORGANS (49) *EYE/LACRIMAL GLAND (20) (48) PAPILLARY ADENOMA 1 (2%) 1 (2%) PAPILLARY CYSTADENOCAKCINOMA, NOS -----AUSCULOSKELEIAL SYSTEM NONE BODY CAVITIES *ABCOMINAL CAVITY (20) (49) (48) LEIOMYOSALCOMA 1 (2%) (20) (49) *PLRITONEUM (48) 1 (2%) MESOTHELIOMA, NOS ALL OTHER SYSTEMS NONE _____ # NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY

* NUMBER OF ANIMALS NECROPSIED

		LOW DOSE	HIGH DOSI
NIMAL DISPOSITION SUMMARY			
ANTIAL DISIGNATION SUMMAT			
ANIMALS INITIALLY IN STUDY	20	50	50
NATURAL DEATHO	3	10	7
MORIEUND SACRIFICE			2
SCHEDULEE SACRIFICE			
ACCIDENTALLY KILLED	17	11 A	"
TERMINAL SACRIFICE ANIMAL MISSING	17	40	40 1
ANIMAL MISSING			1
INCLUDES AUTOLYZED ANIMALS			
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	• •	30	20
TOTAL PRIMARY TUMORS	18	42	22
TOTAL ANIMALS WITH BENIGN TUMORS	7	13	8
TOTAL BENIGN TUMORS	10	17	9
IOTAL BERIGN TOHORS	10	• /	,
TOTAL ANIMALS WITH MAIIGNANT TUMORS	8	22	11
TOTAL MALIGNANT TUMORS	8	25	12
TOTAL ANIMALS WITH SECONDARY TUMORS#		2	1
TOTAL SECONDARY TUMORS		2	1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN CR MALIGNANT TOTAL UNCERTAIN TUMCRS			1
TUTAL UNCERTAIN JUMERS			1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
PRIMARY OB METASTATIC			
TOTAL UNCERTAIN TUMORS			
PRIMARY TUMORS: ALL TUMORS EXCEPT SE SECONDARY TUMORS: METASTATIC TUMORS			D TACENE OP
SECONDARY TUMORS: METASTATIC TUMORS			DUACENT UNG

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS ADMINISTERED METHYL PARATHION IN THE DIET

TABLE C1.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20 20	50 50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN EPIDERMAL INCLUSION CYST ULCER, CHRONIC	(20)	(50) 1 (2%)	(53) 2 (4%)
RESPIRATORY SYSTEM			
#LUNG	(20)	(50)	(50)
EMPHYSEMA, NOS Hyperplasia, adenomatous Hyperplasia, alveolar epithelium	1 (5%)	1 (2%)	1 (2%)
#LUNG/ALVEOLI EDEMA, NOS		(50)	(50) 1 (2%)
HEMATOPOIETIC SYSTEM			
<pre>#BONE MARROW HYPERPLASIA, HEMATOPOIETIC</pre>	(20) 2 (10%)	(50)	(50) 3 (6%)
#SPLEEN HEMATOPOIESIS	(20)	(50) 1 (2%)	(49) 6 (12%)
#MANDIBULAR L. NODE LYMPHANGIECTASIS CONGESTION, NOS FIBROSIS DUASMACYTOSIS	(20) 6 (30%)	(50) 6 (12%) 2 (4%)	(50) 3 (6%) 3 (6%) 1 (2%) 1 (2%)
PLASMACYTOSIS Hyperplasia, reticulum cell Hyperplasia, lymphoid	1 (5%)	1 (2%) 4 (8%)	1 (2%)
#PANCREATIC L.NODE LYMPHANGIEUTASIS	(20) <u>1_(5%)</u>	(50)	(50)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS **ADMINISTERED METHYL PARATHION IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
*MESENTERIC L. NODE LYMPHANGIECTASIS CONGESTION, NOS EDEMA, NOS	(20) 1 (5%)	(50) 1 (2系) 1 (2%)	(50) 2 (4%)
HEMORRHAGE ATROPHY, NOS HYPERPLASIA, RETICULUM CELL HYPERPLASIA, LYMPHOID	1 (5%)	1 (2%) 1 (2%) 3 (6%) 2 (4%)	5 (10%)
#THYMUS HEMCRRHAGE ATROPHY, NGS	(13) 13 (100%)	(37) 29 (78%)	(34) 2 (6%) 21 (62%)
CIRCULATORY SYSTEM			
#HLART FIBROSIS, FOCAL FIBROSIS, DIFFUSE	(20)	(50) 1 (2%) 1 (2%)	(50)
*hLART/ATRIUM Thrombosis, Nos	(20)	(50)	(50) 1 (2%)
# MY OC A RDI UM INFLA MMATICN, NCS INFLAMMATION, CHRONIL FI BROSIS	(20) 14 (70%) 1 (5%)	(50) 35 (70%)	(50) 1 (2%) 19 (38%)
*PANCREATIC ALTERY, HYPERTROPHY, NOS	(20) 1 (5%)	(50)	(50)
DAGESTIVE SYSTEM			
#SALIVARY GLAND Fibrosis, diffuse	(20)	(50)	(50) 1 (2%)
#LIVER FIBROSIS NECROSIS, NOS NECROSIS, COAGULATIVE LIPOIDOSIS ANGIECTASIS	(20) 12 (60%)	(49) 17 (35%) 3 (6%) 1 (2%) 2 (4%)	(50) 6 (12%) 1 (2%) 3 (6%) 2 (4%)
<pre>#LIVER/CENTBILOBULAR NECROSIS, NOS</pre>	(20)	(49)	(50)

	MATCHED Control	LOW DOSE	HIGH DOSE
LIPCIDOSIS			1 (2%)
#LIVEB/PERIPORTAL LIPOIDOSIS	(20) 1 (5%)	(49)	(50)
#LIVER/HEPAIOCYTES CYTOPLASMIC VACUOLIZATION HYPLEPLASIA, NOS	(20) 12 (60%) 15 (75%)	(49) 25 (51%) 16 (33%)	(50) 11 (22%) 3 (6%)
#BILE DUCT Hyperplasia, Nos	(20) 17 (85%)	(49) 38 (78%)	(50) 35 (70%)
*PANCREAS INFLAMMATION, CHRONIC PERIARTERITIS	(19) 1 (5%) 2 (11%)	(45) 1 (2%) 7 (16%)	(47) 2 (4%) 3 (6%)
#PANCREATIC ACINUS ATROPHY, FOCAL	(19)	(45) 1 (2%)	(47) 1 (2%)
*STCMACH HYPERPLASIA, EPITHELIAL	(20)	(48) 1 (2%)	(50)
#SMALL INTESTINE HYPERPLASIA, LYMPHOID	(20)	(48)	(50) 1 (2%)
*DUODENUM ULCER, NOS	(20)	(48) 1 (2%)	(50)
#DUODENAL MUCOSA NECROSIS, NOS	(20)	(48) 1 (2%)	(50)
#ILEUM ULCER, CHRONIC	(20) 1 (5%)	(48)	(50)
JAINARY SYSTEM			
*KIDNEY INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC FOCAL NEPHROPATHY	(20) 16 (80%)	(50) 34 (68%) 3 (6%)	(50) 22 (44%) 1 (2%) 12 (24%)
<pre>#KILNEY/CORTL& CYST, NOS</pre>	(20)	(50)	(50) 1 (2%)

	MATCHED Control	LOW DOSE	HIGH DOSE
#KIDNLY/GLOMLRULUS NEPHROPATHY	(20)	(50) 3 (6%)	(50) 1 (2%)
#URINARY BLADDER ELOSION	(20)	(46) 1 (2%)	(50)
#U. BLADDER/MULOSA NECROSIS, NOS	(20)	(46) 1 (2%)	(50)
ENDOCHINE SYSTEM			
#PITUITARY CYST, NOS HEMORRHAGIC CYST HYPERPLASIA, NOS HYPERPLASIA, FOCAL	(20) 2 (10%) 2 (10%)	(48) 2 (4%) 1 (2%)	(50) 2 (4%) 1 (2%) 2 (4%)
#ADRE NAL ANGIECTASIS	(20)	(50) 5 (10%)	(50) 3 (6%)
#ADRENAL COBTEX LIPCIDOSIS HYPERPLASIA, NOS	(20) 2 (10%)	(50) 4 (8%) 2 (4%)	(50) 1 (2%)
#ADRENAL MECULLA HYPERPLASIA, NOS	(20) 1 (5%)	(50)	(50)
<pre>#THYROID FOLLICULAE CYST, NOS HYPERPLASIA, C-CELL</pre>	(20) 2 (10%) 2 (10%)	(48) 2 (4%)	(49) 2 (4%)
#PARATHYROIC Hyperplasia, Nos	(2)	(8) 1 (13%)	(14)
LPRODUCTIVE SYSTEM			
*MAMMARY GLAND GALACTOCELE HYPERPLASIA, NOS LACTATION	(20) 2 (10%) 1 (5%)	(50) 2 (4%)	(50) 5 (12%) 1 (2%) 1 (2%)
#PROSTATE INFLAMMATION, SUPPURATIVE	(20)	(44) <u> </u>	(48)

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATION, ACUTE INFLAMMATION, CHRONIC ATROPHY, NOS HYPERPLASIA, NOS HYPERPLASIA, EPITHELIAL HYPERPLASIA, FOCAL	1 (5%) 1 (5%) 11 (55%) 1 (5%)	3 (7%) 1 (2%) 25 (57%) 1 (2%)	6 (13%) 11 (23%) 2 (4%) 2 (4%)
#TESTIS Atrophy, Nos Hyperplasia, interstitial cell	(20) 1 (5%)	(50) 2 (4%)	(50) 2 (4%) 1 (2%)
#TESTIS/TUBULE DLGENERATION, NOS	(20)	(50) 1 (2%)	(50)
* LPIDICYMIS LIPOGRANULOMA	(20)	(50)	(50) 1 (2%)
NERVOUS SYSTEM			
SPECIAL SENSE ORGANS			
*LYE CATAR ACT	(20) 14 (70%)	(50) 16 (32%)	(50) 7 (14%
*LYE ANTERIOR CHAMBER HEMORRHAGL	(20) 1 (5%)	(50)	(50)
*EYL/CCRNEA CALCIFICATION, FOCAL	(20) 1 (5%)	(50)	(50)
*EYEBALL TUNICA VASCU INFLAMMATION, NOS	(20) 6 (30%)	(50)	(50)
INFLAMMATION, ACUTE INFLAMMATION, ACUTE/CHEONIC INFLAMMATION, CHRONIC		1 (2%)	1 (2%) 1 (2%) 1 (2%)
*LYE/RETINA Airophy, Nos	(20) 13 (65%)	(50) 16 (32%)	(50) 6 (12%)
USCULOSKELETAL SYSTEM			
* BONE FIBROUS OSTLODYSTROPHY	(20)	(50) 1 (2%)	(50)

TABLE C1. MALE RATS: NONNEOPLASTIC LESIONS (CONTINUED)

* NUMBER OF ANIMALS WITH TISSUE EXAMINE * NUMBER OF ANIMALS NECROPSIED

	MATCHED		
		LOW DOSE	HIGH DOSE
BODY CAVITIES			
NONE			
ALL CTHER SYSTEMS			
NONE			
SPECIAL MORPHOLOGY SUMMARY			
NONE			
# NUMBER OF ANIMALS WITH TISSUE EXAMINE * NUMBER CF ANIMALS NECROPSIED			

TABLE C2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	50 50	47 47
NTEGUMENTARY SYSTEM			
NONE			
ESPIRATORY SYS1EM			
#LUNG/BECNCHUS GRANULOMA, FOREIGN BODY	(20)	(50)	(47) 1 (2%
#LUNG/BRCNCHIOLL HYPERPLASIA, ADENOMATOUS	(20)	(50) 1 (2%)	(47)
#LUNG HYPEREMIA	(20)	(50)	(47) 4 (9%
LDEMA, NOS HEMORRHAGE			3 (6% 4 (9%
BRONCHOPNEUMONIA, NOS PNEUMONIA, ASPIRATION		1 (2%)	1 (2%
HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM		. (24)	3 (6% 1 (2%
EMATOPOIETIC SYSTEM			
BONL MARROW	(20)	(50)	(47)
HYPOPLASIA, NOS HYPERPLASIA, HEMATOPOIETIC	1 (5%)		1 (2%
#SPLEEN	(20)	(50)	(47)
FIBROSIS, MULTIFOCAL SIDEROSIS HEM ATOPOIESIS	1 (5%)		1 (2% 1 (2%
#MANDIBULAR L. NODE	(20)	(49)	(47)
LYMPHANGILCTASIS	·····	<u> </u>	(**)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS **ADMINISTERED METHYL PARATHION IN THE DIET**

	MATCH Contr		W DOSE	HIGH DOSE
INFLAMMATION, ACUTE HYPERPLASIA, LYMPHOID	1 (5 1 (5	·%) %)	1 (2%) 1 (2%)	
#MESENTERIC L. NODE HEMORRHAGE PIGMENTATION, NOS HYPERPLASIA, NOS	(20)		49)	(47) 1 (2%) 1 (2%) 1 (2%)
HYPERPLASIA, LYMPHOID	1 (5	%)	1 (2%)	
#THYMUS HYPEREMIA HEMORRHAGE	(20)		46) 1 (2%)	(39) 1 (3%) 4 (10%
ATROPHY, NOS Hyperplasia, lymphoid	19 (9	15%) ž	24 (52%) 1 (2%)	
#THYMIC MEDULLA HEMORRHAGE	(20)	-	46)	(39) 1 (3%)
IRCULATORY SYSTEM				
*HEART FIBROSIS, FOCAL	(20)	(<u></u>	50)	(47) 1 (2%)
#HEART/ATRIUM THRCMBOSIS, NOS	(20)		50) 1 (2%)	(47)
#MY OCA RDIUM INFLAMMATICN, CHRONIC F1 BROSIS DEGENERATION, NOS NECROSIS, NOS	(20) 11 (5	5%) (5	50) 15 (30%)	(47) 2 (4系) 1 (2系) 1 (2系)
*AORTA INFLAMMATION, FOCAL	(20)	(5	50)	(47) 1 (2%)
#HEPATIC SINUSOID HYPERPLASIA, NOS	(20)			(47) 1 (2%)
IGESTIVE SYSTEM				
SALIVARY GIAND FIBROSIS, DIFFUSE ATROPHY, NOS	1 (5	74		(46) <u>2 (4%)</u>

	MATCHED Control	LOW DOSE	HIGH DOSE
#LIVER INFLAMMATION, GRANULOMATOUS	(20)	(50) 1 (2%)	(47)
INFLAMMATION, NECRO GRAN FIBROSIS	1 (5%)	2 (4%)	1 (2%
NECROSIS, NOS	1 (5%)	1 (2%)	1 (2%)
LIPOIDOSIS		1 (2%)	2 (4%
BASOPHILIC CYTO CHANGE		6 (12%)	12 (26
FOCAL CELLULAR CHANGE Hyperplasia, nos	1 (5%)	2 (4%)	1 (2% 1 (2%
#LIVER/PERIPOBTAL LIPOIDOSIS	(20)	(50) 1 (2%)	(47)
#LIVER/HEPA TOCYTES NLC ROSIS, NOS	(20)	(50) 1 (2%)	(47)
CYTOPLASMIC VACUOLIZATION	2 (10%)		
HYPERPLASIA, NOS	18 (90%)	32 (64%)	
#BILE DUCT	(20)	(50)	(47)
HYPERPLASIA, NOS	9 (45%)	12 (24%)	
#PANCREAS	(20)	(50)	(44)
INFLAMMATION, CHBONIC	1 (5%)	1 (2%)	
*PANCREATIC ACINUS ATROPHY, FOCAL	(20)	(50) 1 (2%)	(44)
# ST CMA CH	(20)	(50)	(47)
INFLAMMATION, CHRONIC	1 (5%)		• •
#GASTRIC MUCOSA ULCER, NOS	(∠0)	(50) 2 (4%)	(47) 1 (2%
#COLON NEMATODIASIS	(20)	(48) 1 (2%)	(47)
RINARY SYSTEM			
* KLDNEY	(20)	(50)	(47)
HYDRONEPHKOSIS	1 (5%)	2 (4%)	
INFLAMMATION, CHRONIC NEPHROPATHY	4 (20%)	2 (4%) 2 (4%)	3 (6%)
#KIDNEY/CCRTEX CYST, NOS	(20)	(50)	(47) <u>1_(2%</u>

	MATCHED Control	LOW DOSE	HIGH DOSE
DEGENERATION, NOS		1 (2%)	
#KIDNEY/GLCME&ULUS NLPHROPATHY	(20) 1 (5%)	(50) 1 (2%)	(47)
ENDOCRINE SYSTEM			
#PITUITARY CYST, NOS HEMORRHAGIC CYST HYPERPLASIA, CHROMOPHOBE-CELL	(20) 1 (5%)	(50) 7 (14%) 2 (4%) 1 (2%)	(47) 2 (4%)
# ADRENAL ANGIECTASIS	(20)	(50) 2 (4%)	(47)
#ALRENAL/CAFSULE FIB ROSIS	(20)	(50)	(47) 1 (2%)
#ADRENAL COETEX CYST, NOS LIPOIDOSIS HYPERPLASIA, NOS	(20) 1 (5%) 1 (5%) 7 (35%)	(50) 2 (4%) 4 (8%)	(47)
#ADRENAL METULLA LYMPHCCYICSIS	(20)	(50)	(47) 1 (2%)
<pre>#ThYROID FOLLICULAR CYST, NOS HYPERPLASIA, C-CELL</pre>	(20) 1 (5%)	(49) 1 (2%) 7 (14%)	(47)
LEPRODUCTIVE SYSTEM			
*MAMMARY GLANJ GALACTOCELE HYPERPLASIA, CYSTIC LACTATION	(20) 11 (55%)	(50) 4 (8%) 1 (2%)	(47) 3 (6%) 1 (2%) 1 (2%)
#UT ERUS HY DROMET RA L1 POGRAN ULOMA	(20) 1 (5%)	(50) 2 (4%)	(46)
#UIERUS/ENDCMLTKIUM CYST_NOS	(20) <u>3 (15%)</u>	(50) <u> </u>	(46) <u>1_(2%</u>

MATCHED Control	LOW DOSE	HIGH DOSE
	1 (2%) 1 (2%)	1 (2%
(20) 1 (5%)	(50)	(46)
(20)	(50) 1 (2%)	(46)
(20)	(50) 1 (2%)	(47) 1 (2%)
(20) 1 (5%)	(50)	(47)
(20)	(50) 3 (6%)	(47) 2 (4%)
(20)	(50) 4 (8%)	(47) 1 (2%)
(20)	(50)	(47) 1 (2%)
	1	
-	CONTROL (20) (20) (20) (20) (20) (20) (20) (20) (20) (20) (20)	CONTROL LOW DOSE 1 (2%) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50) (20) (50)

	MATCHED		
	CONTROL	LOW DOSE	HIGH DOSE
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED		1	5

* NUMBER CF ANIMALS NECROPSIED

.

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE ADMINISTERED METHYL PARATHION IN THE DIET

.

TABLE D1.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	20	50	50
ANIMALS MISSING ANIMALS NECEOPSIED	1 19	50	49
ANIMALS READESTED ANIMALS READESTED		50	49 49
INTEGUMENTARY SYSTEM			
*SKIN CYST, NOS	(19)	(50)	(49) 1 (2%)
EPIDERMAL INCLUSION CYST	1 (5%)		
SEBACEOUS CYST Abscess, Chronic	1 (5%)	1 (2%)	1 (2%)
*SUBCUT TISSUE	(19)	(50)	(49)
ABSCESS, CHRONIC	1 (5%)		1 (2%)
RE SPIRATORY SYSTEM #LUNG INFLAMMATION, FOCAL HYPERPLASIA, ALVEOLAR EPITHELIUM	(19) 1 (5%)	(50) 1 (2%) 1 (2%)	(49)
#LUNG/ALVEOLI	(19)	(50)	(49)
EDEMA, NCS HISTIOCYTOSIS	1 (5%)	1 (2%)	
LEMATOPOIETIC SYSTEM			
<pre>#BONL MARROW HYPERPLASIA, HEMATOFOLETIC</pre>	(19)	(48)	(48) 1 (2%)
#SPLEEN	(18) 7 (39%)	(48) 17 (35%)	(49) 14 (29%
HYPERPLASIA, LYMPHOID HEMATOPOIESIS	1 (378)	1 (2%)	2 (4%)
*LYMPH NODE GRANUIOMA, NOS	(17)	(47)	(48) 1 (2%)
#MANDIBULAE L. NODŁ HYPERPLASIA, LYMPHCID	(17)	(47) 7 (15%)	(48) <u>2 (4%)</u>

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE **ADMINISTERED METHYL PARATHION IN THE DIET**

	MATCHED Control	LOW DOSE	HIGH DOSE
HEMATCPOILSIS		1 (2%)	
#MESENTERIC L. NODE CONGESTICN, NOS HEMORRHAGE INFLAMMATION, NOS INFLAMMATION, ACUTE	(17) 2 (12%) 1 (6%)	(47) 3 (6%) 2 (4%)	(48) 2 (4%) 7 (15%) 3 (6%)
IN FLAMMATION, ACUTE HEMORRHAGIC LYMPHOID DEPLETION HYPERPLASIA, RETICULUM CELL HYPERPLASIA, LYMPHOID HEMATOPOIESIS	3 (18%) 2 (12%) 8 (47%)	$ \begin{array}{c} 1 & (2\%) \\ 1 & (2\%) \\ 15 & (32\%) \\ 12 & (26\%) \end{array} $	3 (6%) 3 (6%) 13 (27%)
#THYMUS ATROPHY, NOS HYPERPLASIA, LYMPHOID	(12) 8 (67%) 1 (8%)	(35) 32 (91%) 1 (3%)	(35) 30 (86%)
LARCULATORY SYSTEM			
#RIGHT VENTRICLE THROMBOSIS, NOS	(19)		(49)
DIGLSTIVE SYSTEM			
#LIVER LYMPHOCYTIC INFLAMMATORY INFILTR INFARCT, NOS	(19) 1 (5%)	(49)	(49) 1 (2%)
LIPOIDOSIS HYPERTROPHY, FOCAL	1 (34)	2 (4%)	3 (6%) 1 (2%)
#LIVER/HEPATOCYTES LIPCIDOSIS CYTOPLASMIC VACUCLIZATION HYPERPLASIA, NOS	(19) 1 (5%) 1 (5%)	(49) 1 (2%) 1 (2%)	(49) 1 (2%) 2 (4%)
*GALLBIADDER HYPERPLASIA, EPITHEIIAL POLYP	(19)	(50) 1 (2%)	(49) 1 (2%)
*MUCOSA OF GALLBLADDE CYST, NOS	(19) 1 (5%)	(50)	(49)
#STOMACH <u>HYPERPLASIA, EPITHELIAL</u>	(19) <u>1 (5%)</u>	(48)	(49)

TABLE D1. MALE MICE: NONNEOPLASTIC LESIONS (CONTINUED)

	MATCHED Control	LOW DOSE	HIGH DOSE
#GASTRIC FUNDUS HYPERPLASIA, EPITHELIAL	(19)	(48) 1 (2%)	(49)
<pre>#PLYERS PATCH INFLAMMATION, ACUTE HYPLRPLASIA, LYMPHOID</pre>	(19)	(48) 1 (2%) 1 (2%)	(47) 1 (2%
IRINARY SYSTEM			
#KIDNLY HYDRONEPHROSIS LYMPHOCYTIC INFLAMMATORY INFILTR INFARCT, HEALED	(19) 1 (5%)	(48) 1 (2%) 1 (∠%)	(49) 1 (2%) 4 (8%)
#KIDNLY/CORTLX CYST, NOS	(19)	(48)	(49) 2 (4%)
*KIENEY/FELVIS INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE HYPERPLASIA, EPITHELIAL	(19) 1 (5%)	(48) 1 (2%) 1 (2%)	(49)
URINARY BLADDER INFLAMMATION, NOS	(18)	(44) 1 (2%)	(44)
NDOCRINE SYSTEM			
<pre>#PITUITARY CYST, NOS</pre>	(15) 2 (13%)	(42) 1 (2%)	(45)
#ADRENAL COSTEX HYPERPLASIA, NOS	(19) 1 (5%)	(43)	(47)
#ADRENAL MECULLA HYPERPLASIA, NOS	(19)	(43) 1 (2%)	(47)
#THYROID Follicular cyst, Nos Hyperplasia, follicular-cell	(18)	(46) 2 (4%)	(48) 1 (2%
<pre>#PANCREATIC ISLETS HYPERPLASIA, NOS</pre>	(17)	(45) <u>4_(9%)</u>	(49) <u>4_(8%</u>

	MATCHED Control	LOW DOSE	HIGH DOSE
REPRODUCTIVE SYSTEM			
*NA MMA RY GLAND GALACTOCELE	(19)	(50) 1 (2%)	(49)
*PREPUTIAL GLAND DILATATION, NOS	(19)	(50) 1 (2%)	(49)
*PROSTATE INFLAMMATION, CHRONIC	(17) 1 (6%)	(46)	(46)
*PROSTATIC GLAND HYPERPLASIA, NOS	(17)	(46)	(46) 1 (2%)
*SEMINAL VESICLE DILATATICN, NOS	(19) 6 (32%)	(50) 31 (62%)	(49) 16 (33%
CYSI, NOS LIPOGRANULOMA		1 (2%)	1 (2%)
*EPIDIDYMIS GRANULOMA, NOS	(19)	(50) 1 (2%)	(49) 1 (2%)
VERVOUS SYSTEM			
#BRAIN CORFORA AMYLACEA	(18) 3 (1 7%)	(47) 8 (17%)	(48) 4 (8%)
SPECIAL SENSE ORGANS			
*EYE/CCRNEA INFLAMMATION, CHRONIC	(19)	(50)	(49) 1 (2%)
*EYE/LACRIMAL GLAND HYPERPLASIA, NOS	(19)	(50) 1 (2%)	(49)
AUSCULOSKELETAL SYSTEM			
NG NE			
DODY CAVITIES			
*MESENTERY LIPOGRANULOMA	(19) <u> </u>	(50)	(49)

	MATCHED Control	LOW DOSE	HIGH DOSI
ALL OTHER SYSTEMS	** ** ** ** ** ** ** ** ** ** ** ** **		****
ALIPOSE TISSUE LIPOGRANULOMA		1	
SPECIAL MCREHOLOGY SUMMARY			
ANIMAL MISSING/NO NECROPSY Autolysis/no necropsy	1		1
<pre># NUMBER CF ANIMALS WITH TISSUE EX # NUMBEL OF ANIMALS NECROPSIED</pre>	AMINED MICROSCOPI	CALLY	

TABLE D2.

	MATCHED Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN SILLY ANIMALS MISSING	20	50	50 1
ANIMALS NECROPSILD ANIMALS EXAMINED HISTOPATHOLOGICALLY	20 20	49 49	48 48
INTEGUMENTARY SYSTEM			
*SKIN SLBACEOUS CYST	(20)	(49) 1 (2%)	(48)
INFLAMMATION, ACUTE/CHRONIC		. ,	1 (2%)
ALOPECIA		1 (2%)	
HESPIRATORY SYSTEM			
*L UN G	(20)	(49)	(48)
HYPERPLASIA, ALVEOLAK EPITHELIUM HISTIOCYTOSIS		1 (2%)	1 (2%)
IEMATOPOIETIC SYSTEM			
#BONE MARROW	(20)	(49)	(48)
HYPEEPLASIA, HEMATOPOIETIC Hypeeplasia, leythroid		1 (2%) 1 (2%)	1 (2%)
*SPLEEN	(20)	(49)	(47)
INFLAMMATION, ACUTE INFLAMMATION, FOCAL GRANULOMATOU		1 (2%)	1 (2%)
ADHESION, NOS Hyperplasia, lymphoid	8 (40%)	12 (24%)	1 (2%) 13 (28%)
HEMATOPOILSIS	1 (5%)	5 (10%)	1 (2%)
#LYMPH NODL Thrombosis, Nos	(19)	(49) 1 (2%)	(47)
#MANDIBULAR L. NODE	(19)	(49)	(47)
HEMCRRHAGIC CYS1 Inflammation, acute			1 (2%) 1 (2%)
LYMPHOID D_PILTION			1 (2%)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE ADMINISTERED METHYL PARATHION IN THE DIET

		LOW DOSE	HIGH DOSE
HYPERPLASIA, RETICULUM CELL Hyperplasia, lymphoid	1 (5%)	1 (2%)	3 (6%)
★MLSENTERIC L. NODE HEMORRHAGE LYMPHOID → EPIETION HYPERPLASIA, RETICULUM CELL HYPERPLASIA, LYMPHOID HEMATOPOILSIS	(19) 4 (21%) 3 (16%)	(49) 1 (2%) 2 (4%) 9 (18%)	(47) 1 (2%) 1 (2%) 1 (2%) 10 (21%)
#THYMUS HEMORRHAGE ATROPHY, NOS HYPERPLASIA, LYMPHOID	(14) 7 (50%)	(30) 16 (53%) 2 (7%)	(34) 1 (3%) 29 (85%)
CIRCULATORY SYSTEM #HLART DEGENERATION, GRANULAR	(20)	(49)	(48) 1 (2%)
DIGLSTIVE SYSTEM *SALIVARY GIAND LYMPHOCYTIC INFLAMMATORY INFILTR HYPERPLASIA, LYMPHOID	(20) 1 (5%)	(47) 3 (6%)	(47) 2 (4%) 1 (2%)
#LIVER LYMPHCCYTIC INFLAMMATORY INFILTR INFLAMMATION, GRANULOMATOUS GRANULOMA, NOS INFLAMMATION, FOCAL GRANULOMATOU NECROSIS, FOCAL NECROSIS, COAGULATIVE	(20) 2 (10%) 1 (5%) 1 (5%)	(49) 4 (8%) 1 (2%) 1 (2%)	(48) 1 (2%)
LIPOIDOSIS LYNPHOCYTOSIS #LIVER/HEPATOCYTES	1 (5%) (20)	1 (2%) (49)	1 (2%) (48)
NECROSIS, NOS *GALLBLACDEE HYPERPLASIA, EPITHELIAL	1 (5%) (20)	(49) 1 (2%)	(48)
*PANCREAS DILATATICN/DUCTS	(18)	(46)	(42) <u>1 (2%)</u>

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATION, CHRONIC			1 (2%)
<pre>#PANCREATIC ACINUS ATROPHY, NOS</pre>	(18)	(46)	(42) 1 (2%)
*STOMACH INFLAMMATION, ACUTE PERIARTERITIS	(20) 1 (5%)	(48)	(48) 1 (2%)
#GASTRIC MUCOSA CYST, NOS	(20)	(48) 1 (2%)	(48)
#GASTRIC SEROSA INFLAMMATION, CHRONIC	(20) 1 (5%)	(48)	(48)
#PEYERS PATCH Hyperplasia, lymphoid	(20) 1 (5%)	(49)	(46) _1 (2%)
JRINARY SYSTEM			
#KIDNEY LYMPHOCYTIC INFLAMMATORY INFILTR PERIARTERITIS INFARCT, HEALED PLASMACYTOSIS HYPERPLASIA, LYMPHOID	(20) 6 (30%)	<pre>{49} 4 (8%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)</pre>	(48) 1 (2%)
<pre>#KIDNEY/GLOMERULUS NEPHROPATHY</pre>	(20) 1 (5%)	(49)	(48) 1 (2%)
#KILNEY/FELVIS LYMPHCCYTIC INFLAMMATORY INFILTR	(20)	(49)	(48) 1 (2%)
#ULINARY BLAEDLR LYMPHOCYTIC INFLAMMATORY INFILTR	(19)	(45) 3 (7%)	(43)
INFLAMMATION, CHRONIC HYPERPLASIA, LYMPHOID		2 (4%)	1 (2%) 1 (2%)
NDOCRINE SYSTEM			
#PITUITARY CYST, NOS	(17)	(45)	(44) 1 (2%)
#ALRENAL CYST, NOS	(20)	(49) 1 (2%)	(48)

	MATCHED Control	LOW DOSE	HIGH DOSE
INFLAMMATICN, CHBONIC HEMATOPOILSIS	1 (5%) 1 (5%)		
#ADRENAL COFTEX CYST, NOS HYPERPLASIA, NOS	(20)	(49)	(48) 1 (2%) 1 (2%)
#THYROID CYSTIC FOLLICIES HYPERPLASIA, FOLLICULAR-CELL	(20)	(47) 1 (2%)	(46) 1 (2%)
*PANCREATIC ISLETS HYPELPLASIA, NOS	(18)	(46) 1 (2%)	(42)
EPRODUCTIVE SYSTEM			
*MAMMARY GLAND GALACTOCELE METAPLASIA, SQUAMOUS LACTATION	(20)	(49)	(48) 1 (2%) 1 (2%) 1 (2%)
#UTERUS HYDROMETRA HYPERPLASIA, STROMAL	(20) 3 (15%)	(48) 3 (6%)	(45) 3 (7%) 1 (2%)
#UTERUS/ENDCMETEIUM CYST, NOS	(20)		(45) 3 (7%)
HYPERPLASIA, NOS Hyperplasia, cystic	.3 (15%) 14 (70%)	5 (10%) 31 (65%)	15 (339 16 (369
#OVARY/PAROVARIAN INFARCT, NOS	(20)	(48)	(45) 1 (2%)
#OVARY Cyst, Nos	(17)	(48) 3 (6%)	(47)
FOLLICULAR CYST, NOS HEMORRHAGIC CYST	2 (12%)	8 (17%) 3 (6%)	5 (11%
ATROPHY, NOS	15 (88%)	25 (52%)	28 (60%
#OVARY/FOLLICLE HEMORRHAGE HEMOBRHAGIC CYST	(17)	(48) 1 (2%) 1 (2%)	(47) [*] 1 (2%)
LEVOUS SYSTEM			
# BRAIN PERIVASCULAR CUFFING	(18)	(49) <u>1 (2%)</u>	(48)

	MATCHED	LOW DOSE	HIGH DOSE
CORFORA AMYLACEA	2 (11%)		
5PLCIAL SENSE ORGANS			
NONE			
AUSCULOSKELETAL SYSTEM			
*BONE RESORPTION	(20)	(49) 1 (2%)	(48)
*JOINT OSTEO ARTHRITIS	(20)	(49)	(48) 1 (2%
ODY CAVITIES			
* ABDOMINAL CAVITY LIPCGEAN DLOMA	(20)	(49)	(48) 1 (2%
*PERITONEUM INFLAMNATION, ACUTE	(20)	(49)	(48) 1 (2%
*MESENTERY HEMORRHAGIC CYST	(20)	(49)	(48) 1 (2%
LL OTHER SYSTEMS			
ADIPOSE TISSUL LIPOGRANULOMA	1	1	1
SPECIAL MORPHOLOGY SUMMARY			
ANIMAL MISSING/NO NECROPSY AUTOLYSIS/NO NECROPSY		1	1 1
NUMBER OF ANIMALS WITH TISSUE A NUMBER OF ANIMALS NECROPSIED	LXAMINED MICROSCOPI	CALL Y	

APPENDIX E

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN RATS ADMINISTERED METHYL PARATHION IN THE DIET

Topography: Morphology	Matched Control	Low Dose	High Dose	
iopography. norphorogy	JOHETOT	<u>D036</u>	DOSE	
Lung: Alveolar/Bronchiolar Carcinoma or Adenoma (b)	2/20 (10)	3/50 (6)	3/50 (6)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.600	0.600	
Lower Limit		0.076	0.076	
Upper Limit		6.860	6.860	
Weeks to First Observed Tumor	105	105	105	
Hematopoietic System:				
Lymphoma or Leukemia (b)	3/20 (15)	8/50 (16)	4/50 (8)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		1.067	0.533	
Lower Limit		0.295	0.102	
Upper Limit		5.813	3.410	
Weeks to First Observed Tumor	88	90	102	

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered Methyl Parathion in the Diet (a)

	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Liver: Hepatocellular Carcinoma or Adenoma (b)	2/20 (10)	0/49 (0)	0/50 (0)	
P Values (c,d)	P = 0.025 (N)	N.S.	N.S.	
Departure from Linear Trend (e)	P = 0.044			
Relative Risk (f)		0.000	0.000	
Lower Limit		0.000	0.000	
Upper Limit		1.372	1.345	
Weeks to First Observed Tumor	105			
Pituitary: Adenoma,				
or Adenocarcinoma (b)	9/20 (45)	11/48 (23)	15/50 (30)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.509	0.667	
Lower Limit		0.242	0.346	
Upper Limit		1.197	1.478	
Weeks to First Observed Tumor	83	41	104	

Table El.	Analyses of the Incidence of Primary Tumors in Male Rats
	Administered Methyl Parathion in the Diet (a)

	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Adrenal: Pheochromocytoma (b)	3/20 (15)	6/50 (12)	5/50 (10)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.800	0.667	
Lower Limit		0.195	0.147	
Upper Limit		4.615	4.014	
Weeks to First Observed Tumor	105	100	105	
Thyroid: C-cell Carcinoma				
or Adenoma (b)	0/20 (0)	3/48 (6)	3/49 (6)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		Infinite	Infinite	
Lower Limit		0.261	0.255	
Upper Limit		Infinite	Infinite	
Weeks to First Observed Tumor		105	97	

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered Methyl Parathion in the Diet (a)

	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Pancreatic Islets: Islet-cell				
Adenoma (b)	2/19 (11)	4/45 (9)	2/47 (4)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.844	0.404	
Lower Limit		0.136	0.032	
Upper Limit		8.864	5.318	
Weeks to First Observed Tumor	105	95	104	
Prostate: Acinar-cell				
Adenoma (b)	2/20 (10)	0/44 (0)	0/48 (0)	
P Values (c,d)	P = 0.027 (N)	N.S.	N.S.	
Relative Risk (f)		0.000	0.000	
Lower Limit		0.000	0.000	
Upper Limit		1.524	1.400	
Weeks to First Observed Tumor	105			

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered Methyl Parathion in the Diet (a)

	Matched	Low	High	
Topography: Morphology	<u>Control</u>	Dose	Dose	
Testis: Interstitial-cell				
Tumor (b)	17/20 (85)	40/50 (80)	41/50 (82)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.941	0.965	
Lower Limit		0.781	0.802	
Upper Limit		1.291	1.310	
Weeks to First Observed Tumor	88	41	80	

Table El. Analyses of the Incidence of Primary Tumors in Male Rats Administered Methyl Parathion in the Diet (a)

(a) Dosed groups received 20 or 40 ppm.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95% confidence interval of the relative risk between each dosed group and the control group.

16

(continued)

	Matched	Low	High	
Topography: Morphology	<u>Control</u>	Dose	Dose	
Lung: Alveolar/Bronchiolar Adenoma (b)	0/20 (0)	5/50 (10)	1/47 (2)	
P Values (c,d)	N.S.	N.S.	N.S.	
Departure from Linear Trend (e)	P = 0.037			
Relative Risk (f) Lower Limit Upper Limit		Infinite 0.525 Infinite	Infinite 0.023 Infinite	
Weeks to First Observed Tumor		93	105	
Hematopoietic System:			·······	
Leukemia or Lymphoma (b)	1/20 (5)	3/50 (6)	4/47 (9)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f) Lower Limit Upper Limit		1.200 0.106 61.724	1.702 0.186 81.978	
Weeks to First Observed Tumor	105	101	86	

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular			
Carcinoma or Adenoma (b)	2/20 (10)	5/50 (10)	0/47 (0)
P Values (c,d)	P = 0.046 (N)	N.S.	N.S.
Relative Risk (f)		1.000	0.000
Lower Limit		0.184	0.000
Upper Limit		10.007	1.429
Weeks to First Observed Tumor	105	105	
Pituitary: Adenoma or			
Carcinoma (b)	12/20 (60)	22/50 (44)	15/47 (32)
P Values (c,d)	P = 0.021 (N)	N.S.	P = 0.031 (N)
Relative Risk (f)		0.733	0.532
Lower Limit		0.465	0.312
Upper Limit		1.331	1.031
Weeks to First Observed Tumor	105	93	97

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Mammary Gland: Fibroadenoma (b)	5/20 (25)	2/50 (4)	0/47 (0)
P Values (c,d)	P = 0.001 (N)	P = 0.018 (N)	P = 0.002 (N)
Relative Risk (f)		0.160	0.000
Lower Limit		0.017	0.000
Upper Limit		0.900	0.332
Weeks to First Observed Tumor	105	105	
Uterus: Endometrial Stromal			an a
Polyp (b)	4/20 (20)	6/50 (12)	4/46 (9)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (Matched			
Control) (f)		0.600	0.435
Lower Limit		0.164	0.092
Upper Limit		2.659	2.148
Weeks to First Observed Tumor	105	105	86

Table E2. Analyses of the Incidence of Primary Tumors in Female Rats Administered Methyl Parathion in the Diet (a)

(continued)

- (a) Dosed groups received 20 or 40 ppm.
- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- 95
- (f) The 95% confidence interval of the relative risk between each dosed group and the control group.

APPENDIX F

ANALYSES OF THE INCIDENCE OF PRIMARY TUMORS IN MICE ADMINISTERED METHYL PARATHION IN THE DIET

,

	Matched	Low	High	
Iopography: Morphology	Control	Dose	Dose	
Lung: Alveolar/Bronchiolar Carcinoma (b)	0/19 (0)	5/50 (10)	3/49 (6)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f) Lower Limit Upper Limit		Infinite 0.501 Infinite	Infinite 0.243 Infinite	
Weeks to First Observed Tumor		84	102	
Lung: Alveolar/Bronchiolar Carcinoma or Adenoma (b)	1/19 (5)	10/50 (20)	8/49 (16)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f) Lower Limit Upper Limit		3.800 0.613 160.949	3.102 0.470 134.436	
Weeks to First Observed Tumor	102	84	102	

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
Hematopoietic System:			
Lymphoma (b)	2/19 (11)	8/50 (16)	3/49 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.520	0.582
Lower Limit		0.348	0.074
Upper Limit		13.949	6.640
Weeks to First Observed Tumor	97	96	23
Liver: Hepatocellular		· · · · · · · · · · · · · · · · · · ·	<u> </u>
Carcinoma (b)	2/19 (11)	3/49 (6)	6/49 (12)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.582	1.163
Lower Limit		0.074	0.237
Upper Limit		6.640	11.202
Weeks to First Observed Tumor	84	102	102

Table Fl.	Analyses of the Incidence of Primary Tumors in Male Mice
	Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular			
Carcinoma or Adenoma (b)	10/19 (53)	14/49 (29)	12/49 (24)
P Values (c,d)	P = 0.034 (N)	N.S.	P = 0.028 (N)
Relative Risk (f)		0.543	0.465
Lower Limit		0.294	0.241
Upper Limit		1.152	1.018
Weeks to First Observed Tumor	84	102	102
All Sites: Hemangiosarcoma (b)	2/19 (11)	0/50 (0)	1/49 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Departure from Linear Trend (e)	P = 0.033		
Relative Risk (f)		0.000	0.194
Lower Limit		0.000	0.003
Upper Limit		1.278	3.563
Weeks to First Observed Tumor	102		102

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	Control	Dose	Dose
All Sites: Hemangioma	1/19 (5)	3/50 (6)	1/49 (2)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.140	0.388
Lower Limit		0.101	0.005
Upper Limit		58.635	29.845
Weeks to First Observed Tumor	102	102	102
All Sites: Hemangiosarcoma	<u> </u>		<u>, ,</u>
or Hemangioma (b)	3/19 (16)	3/50 (6)	2/49 (4)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.380	0.259
Lower Limit		0.057	0.024
Upper Limit		2.658	2.118
Weeks to First Observed Tumor	102	102	102

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Adrenal: Cortical Adenoma (b)	3/19 (16)	4/43 (9)	5/47 (11)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.589	0.674
Lower Limit		0.113	0.150
Upper Limit		3.737	4.039
Weeks to First Observed Tumor	102	102	102
Pancreatic Islets: Islet-cell			
Adenoma (b)	1/17 (6)	3/45 (7)	0/49 (0)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.133	0.000
Lower Limit		0.101	0.000
Upper Limit		58.167	6.484
Weeks to First Observed Tumor	102	102	

Table Fl. Analyses of the Incidence of Primary Tumors in Male Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Eye/Lacrimal Gland: Papillary			
Adenoma (b)	1/19 (5)	1/50 (2)	3/49 (6)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		0.380	1.163
Lower Limit		0.005	0.103
Upper Limit		29.260	59.809
Weeks to First Observed Tumor	102	102	102

Table Fl.	Analyses of the Incidence of Primary Tumors in Male Mice
	Administered Methyl Parathion in the Diet (a)

(a) Dosed groups received time-weighted average doses of 35 or 77 ppm.

(b) Number of tumor-bearing animals/number of animals examined at site (percent).

- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95% confidence interval of the relative risk between each dosed group and the control group.

	Matched	Low	High	
Topography: Morphology	<u>Control</u>	Dose	Dose	
Lung: Alveolar/Bronchiolar				
Carcinoma or Adenoma (b)	0/20 (0)	3/49 (6)	2/48 (4)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		Infinite	Infinite	
Lower Limit		0.255	0.128	
Upper Limit		Infinite	Infinite	
Weeks to First Observed Tumor		102	102	
Hematopoietic System:	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	<u> </u>		
Lymphoma or Leukemia (b)	8/20 (40)	12/49 (24)	5/48 (10)	
P Values (c,d)	P = 0.004(N)	N.S.	P = 0.008(N)	
Relative Risk (f)		0.612	0.260	
Lower Limit		0.286	0.081	
Upper Limit		1.499	0.799	
Weeks to First Observed Tumor	97	91	82	

.

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Methyl Parathion in the Diet (a)

Topography: Morphology	Matched Control	Low Dose	High Dose	
All Sites: Hemangiomas (b)	1/20 (5)	3/49 (6)	0/48 (0)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f) Lower Limit Upper Limit		1.224 0.108 62.958	0.000 0.000 7.780	
Weeks to First Observed Tumor	102	102		
All Sites: Hemangiosarcoma or Hemangioma (b)	1/20 (5)	5/49 (10)	2/48 (4)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f) Lower Limit Upper Limit		2.041 0.254 94.440	0.833 0.047 48.155	
Weeks to First Observed Tumor	102	102	101	

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High
Topography: Morphology	<u>Control</u>	Dose	Dose
Liver: Hepatocellular			
Carcinoma or Adenoma (b)	1/20 (5)	4/49 (8)	2/48 (4)
P Values (c,d)	N.S.	N.S.	N.S.
Relative Risk (f)		1.633	0.833
Lower Limit		0.179	0.047
Upper Limit		78.704	48.155
Weeks to First Observed Tumor	102	93	102
Pituitary: Adenoma (b)	4/17 (24)	5/45 (11)	1/44 (2)
P Values (c,d)	P = 0.010 (N)	N.S.	P = 0.019 (N)
Relative Risk (f)		0.472	0.097
Lower Limit		0.120	0.002
Upper Limit		2.166	0.902
Weeks to First Observed Tumor	102	100	82

Table F2.	Analyses of the Incidence of	of Primary Tumors in Female Mice
	Administered Methyl Parath	hion in the Diet (a)

m	Matched	Low	High	
Topography: Morphology	Control	Dose	Dose	
Adrenal: Cortical Adenoma (b)	2/20 (10)	1/49 (2)	1/48 (2)	
P Values (c,d)	N.S.	N.S.	N.S.	
Relative Risk (f)		0.204	0.208	
Lower Limit		0.004	0.004	
Upper Limit		3.754	3.830	
Weeks to First Observed Tumor	102	102	102	
Mammary Gland:	<u></u>		<u> </u>	
Adenocarcinoma (b)	0/20 (0)	3/49 (6)	1/48 (2)	
P Values (c,d)	N.S	N.S.	N.S.	
Relative Risk (f)		Infinite	Infinite	
Lower Limit		0.255	0.023	
Upper Limit		Infinite	Infinite	
Weeks to First Observed Tumor		102	83	

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Methyl Parathion in the Diet (a)

	Matched	Low	High	
Topography: Morphology	<u>Control</u>	Dose	Dose	
Uterus: Endometrial Stromal				
Polyp (b)	0/20 (0)	0/48 (0)	3/45 (7)	
	N.S.		N.S.	
P Values (c,d)	N•5•		N • 5 •	
Relative Risk (f)			Infinite	
Lower Limit			0.278	
Upper Limit			Infinite	
Weeks to First Observed Tumor			102	
weeks to first observed idmor			102	

Table F2. Analyses of the Incidence of Primary Tumors in Female Mice Administered Methyl Parathion in the Diet (a)

109

(continued)

(a) Dosed groups received 62.5 or 125 ppm.

- (b) Number of tumor-bearing animals/number of animals examined at site (percent).
- (c) Beneath the incidence of tumors in the control group is the probability level for the Cochran-Armitage test when P is less than 0.05; otherwise, not significant (N.S.) is indicated. Beneath the incidence of tumors in a dosed group is the probability level for the Fisher exact test for the comparison of that dosed group with the matched-control group when P is less than 0.05; otherwise, not significant (N.S.) is indicated.
- (d) A negative trend (N) indicates a lower incidence in a dosed group than in the control group.
- (e) The probability level for departure from linear trend is given when P is less than 0.05 for any comparison.
- (f) The 95% confidence interval of the relative risk between each dosed group and the control group.

.

Review of the Bioassay of Methyl Parathion* for Carcinogenicity by the Data Evaluation/Risk Assessment Subgroup of the Clearinghouse on Environmental Carcinogens

December 13, 1978

The Clearinghouse on Environmental Carcinogens was established in May, 1976, in compliance with DHEW Committee Regulations and the Provisions of the Federal Advisory Committee Act. The purpose of the Clearinghouse is to advise the Director of the National Cancer Institute on the Institute's bioassay program to identify and evaluate chemical carcinogens in the environment to which humans may be exposed. The members of the Clearinghouse have been drawn from academia, industry, organized labor, public interest groups, and State health officials. Members have been selected on the basis of their experience in carcinogenesis or related fields and, collectively, provide expertise in chemistry, biochemistry, biostatistics, toxicology, pathology, and epidemiology. Representatives of various Governmental agencies participate as ad hoc members. The Data Evaluation/Risk Assessment Subgroup of the Clearinghouse is charged with the responsibility of providing a peer review of reports prepared on NCI-sponsored bioassays of chemicals studied for carcinogenicity. It is in this context that the below critique is given on the bioassay of Methyl Parathion.

The reviewer for the report on the bioassay of Methyl Parathion agreed with the conclusion that the compound was not carcinogenic under the conditions of test. After a brief description of the experimental design, he said that no data were given on the stability and content of the compound in the diet mix and that the size of the matched control groups was too small. He added, however, that the shortcomings were not significant. Based on the results of the study, the reviewer said that Methyl Parathion would not appear to pose a risk of cancer for human beings. He moved that the report on the bioassay of the compound be accepted as written. The motion was seconded and approved without objection.

Clearinghouse Members Present:

Arnold L. Brown (Chairman), University of Wisconsin Medical School Joseph Highland, Environmental Defense Fund William Lijinsky, Frederick Cancer Research Center Henry Pitot, University of Wisconsin Medical Center Verne A. Ray, Pfizer Medical Research Laboratory Verald K. Rowe, Dow Chemical USA Michael Shimkin, University of California at San Diego Louise Strong, University of Texas Health Sciences Center Kenneth Wilcox, Michigan State Health Department

* Subsequent to this review, changes may have been made in the bioassay report either as a result of the review or other reasons. Thus, certain comments and criticisms reflected in the review may no longer be appropriate.

✿U.S. GOVERNMENT PRINTING OFFICE: 1979-281-217/3072

DHEW Publication No. (NIH) 79-1713

.