NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 253

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of chemically induced disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development, validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is comprised of four charter DHHS agencies: the National Cancer Institute, National Institutes of Health; the National Institute of Environmental Health Sciences, National Institutes of Health; the National Center for Toxicological Research, Food and Drug Administration; and the National Institute for Occupational Safety and Health, Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the N1EHS. NTP TECHNICAL REPORT ON THE

CARCINOGENESIS STUDIES OF ALLYL ISOVALERATE (CAS NO. 2835-39-4) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDY)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park North Carolina 27709

May 1983

NTP-82-4 NIH Publication No. 83-2509 NTP TR 253

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

This is one in a series of experiments designed to determine whether selected chemicals produce cancer in animals. Chemicals selected for testing in the NTP carcinogenesis bioassay program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

This study was initiated by the National Cancer Institute's Carcinogenesis Testing Program, now part of the National Institute of Environment Health Sciences, National Toxicology Program.

Comments and questions about the National Toxicology Program Technical Reports on Carcinogenesis Bioassays should be directed to the National Toxicology Program, located at Room 835B, Westwood Towers, 5401 Westbard Ave., Bethesda, MD 20205 (301-496-1152) or at Research Triangle Park, NC 27709 (919-541-3991).

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to communicate any mistakes to the Deputy Director, NTP (P.O. Box 12233, Research Triangle Park, NC 27709), so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP.

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650).

Single copies of this carcinogenesis bioassay technical report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

TABLE OF CONTENTS

	Page
Abstract	. 7
Contributors	. 9
Reviewers	. 11
Summary of Peer Review Comments.	. 12
I. Introduction	. 15
Metabolism	. 16
Mutagenicity	. 18
Carcinogenicity	. 18
II. Materials and Methods	. 19
Chemical Analyses	, 20
Dose Preparation	. 20
Short-Term Studies	. 21
Single-Dose Studies	. 21
Fourteen-Day Studies	. 21
Thirteen-Week Studies	. 21
Two-Year Studies.	. 22
Study Design	. 22
Source and Specifications of Test Animals	. 22
Animal Maintenance	. 22
Clinical Examinations and Pathology	. 22
Data Recording and Statistical Methods	. 23
III, Results	. 29
Rats	. 30
Short-Term Studies	. 30
Single-Dose Studies	. 30
Fourteen-Day Studies	. 30
Thirteen-Week Studies	. 31
Two-Year Studies	. 33
Body Weights and Clinical Signs	. 33
Survival	. 34
Pathology and Statistical Analyses of Results	. 36
Mice	. 39
Short-Term Studies	. 39
Single-Dose Studies	. 39
Fourteen-Day Studies	. 39
Thirteen-Week Studies	. 40
Two-Year Studies	. 42
Body Weights and Clinical Signs	. 42
Survival	. 43
Pathology and Statistical Analyses of Results	. 45
IV. Discussion and Conclusions	. 51
V. Reterences	. 55

TABLES

Table 1	Experimental Design and Materials and Methods of Short-Term and Two-Year Studies	25
Table 2	Survival and Mean Body Weights of Rats Administered Allyl Isovalerate by Gavage for 14 Days	30
Table 3	Survival and Mean Body Weights of Rats Administered Allyl Isovalerate by Gavage for 13 Weeks	31
Table 4	Numbers of F344/N Rats with Liver Lesions in the 13-Week Study	32
Table 5	Cumulative Mean Body Weight Change (Relative to Controls) of Rats Administered Allyl Isovalerate by Gavage for 2 Years	34

Table 6	Incidences of Hematopoietic Tumors in F344/N Rats	36
Table 7	Incidences of Preputial Gland Tumors in Male F344/N Rats	37
Table 8	Incidences of F344/N Rats with Neoplastic and Nonneoplastic Lesions in the Liver in the 2-Year Study	37
Table 9	Incidences of Pituitary Adenomas in Male F344/N Rats	38
Table 10	Survival and Mean Body Weights of Mice Administered Allyl Isovalerate by Gavage for 14 Days	39
Table 11	Survival and Mean Body Weights of Mice Administered Allyl Isovalerate by Gavage for 13 Weeks	40
Table 12	Numbers of Mice with Lesions in the 13-Week Study	41
Table 13	Cumulative Mean Body Weight Change (Relative to Controls) of Mice Administered Allyl Isovalerate by Gavage for 2 Years	43
Table 14	Incidences of Hematopoietic Tumors in Female B6C3F1 Mice	45
Table 15	Incidences of Male B6C3F ₁ Mice with Squamous Cell Papillomas of the Gastric Mucosa	47
Table 16	Incidences of Hyperplastic and Neoplastic Lesions in the Stomach or Gastric Mucosa of Mice Administered Allyl Isovalerate in Corn Oil	
	by Gavage	47
Table 17	Incidences of Hepatocellular Carcinomas of the Liver in Male B6C3F ₁ Mice	48
Table 18	Incidences of Lung Tumors in Male B6C3F ₁ Mice	49
Table 19	Incidences of Follicular-Cell Adenomas of the Thyroid Gland in Male B6C3F ₁ Mice	49
Table 20	Incidences of Adenomas of the Pituitary Gland in Female B6C3F1 Mice	50
Table 21	Incidences of Leukemia in F344/N Rats and Lymphoma in B6C3F1 Mice	53

FIGURES

Figure 1	Metabolism of Allyl Isovalerate	17
Figure 2	Growth Curves for Rats Administered Allyl Isovalerate In Corn Oil by Gavage	33
Figure 3	Survival Curves for Rats Administered Allyl Isovalerate in Corn Oil by Gavage	35
Figure 4	Growth Curves for Mice Administered Allyl Isovalerate in Corn Oil by Gavage	42
Figure 5	Survival Curves for Mice Administered Allyl Isovalerate in Corn Oil by Gavage	44
Figure 6	Infrared Absorption Spectrum of Allyl Isovalerate (Lot No. 770217)	140
Figure 7	Infrared Absorption Spectrum of Allyl Isovalerate (Lot No. A-634-F)	141
Figure 8	Infrared Absorption Spectrum of Allyl Isovalerate (Lot No. R011777)	142
Figure 9	Nuclear Magnetic Resonance Spectrum of Allyl Isovalerate (Lot No. 770217)	144
Figure 10	Nuclear Magnetic Resonance Spectrum of Allyl Isovalerate (Lot No. A-634-F)	146
Figure 11	Nuclear Magnetic Resonance Spectrum of Allyl Isovalerate (Lot No. RO11777)	147

APPENDIXES

Appendix A	Summary of the Incidence of Neoplasms in Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Table Al	Summary of the Incidence of Neoplasms in Male Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Table A2	Summary of the Incidence of Neoplasms in Female Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Table A3	Individual Animal Tumor Pathology of Male Rats in the 2-Year Study of Allyl Isovalerate
Table A4	Individual Animal Tumor Pathology of Female Rats in the 2-Year Study of Allyl Isovalerate
Appendix B	Summary of the Incidence of Neoplasms in Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Table B1	Summary of the Incidence of Neoplasms in Male Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Table B2	Summary of the Incidence of Neoplasms in Female Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Table B3	Individual Animal Tumor Pathology of Male Mice in the 2-Year Study of Allyl Isovalerate
Table B4	Individual Animal Tumor Pathology of Female Mice in the 2-Year Study of Allyl Isovalerate
Appendix C	Summary of the Incidence of Nonneoplastic Lesions in Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Table CI	Summary of the Incidence of Nonneoplastic Lesions in Male Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Table C2	Summary of the Incidence of Nonneoplastic Lesions in Female Rats Administered Allyl Isovalerate in Corn Oil by Gavage
Appendix D	Summary of the Incidence of Nonneoplastic Lesions in Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Table D1	Summary of the Incidence of Nonneoplastic Lesions in Male Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Table D2	Summary of the Incidence of Nonneoplastic Lesions in Female Mice Administered Allyl Isovalerate in Corn Oil by Gavage
Appendix E	Analysis of Allyl Isovalerate — Midwest Research Institute 133
Appendix F	Analysis of Allyl Isovalerate/Corn Oil Mixtures for Stability of Allyl Isovalerate
Appendix G	Analysis of Allyl Isovalerate/Corn Oil Mixtures for Concentrations of Allyl Isovalerate
Table G1	Analysis of Allyl Isovalerate/Corn Oil Mixtures in the 13-Week Study ¹⁵³
Table G2	Analysis of Allyl Isovalerate/Corn Oil Mixtures in the 2-Year Study ¹⁵³
Appendix H	Historical Incidences of Tumors in F344/N Rats and B6C3F ₁ Mice \dots ¹⁵⁵
Table H1	Historical Incidence of Pancreatic Acinar-Cell Adenomas in Male F344/N Rats Receiving Corn Oil by Gavage
Table H2	Historical Incidence of Hematopoietic Tumors in Male F344/N Rats Receiving Corn Oil by Gavage156
Table H3	Historical Incidence of Hernatopoietic Turnors in Female F344/N Rats Receiving Corn Oil by Gavage

Table H4	Historical Incidence of Preputial Gland Tumors in Male F344/N Rats Receiving Corn Oil by Gavage	7
Table H5	Historical Incidence of Hematopoietic Tumors in Female B6C3F ₁ Mice Receiving Corn Oil by Gavage	8
Table H6	Historical Incidence of Hematopoietic Tumors in Male B6C3F ₁ Mice Receiving Corn Oil by Gavage	8
Table H7	Historical Incidence of Stomach Tumors in Male B6C3F ₁ Mice Receiving Corn Oil by Gavage	9
Appendix I	Historical Control Data on Hematopoietic Tumors from Southern Research Institute (SoRI)	1
Table I1	Incidences of Hematopoietic Tumors in Corn Oil Vehicle Control Rats and Mice in Two-Year Gavage Studies at Southern Research Institute (SoRI) 16.	2
Table 12	Comparison of the High-Dose Incidence Rate of Hematopoietic Tumors in the Allyl Isovalerate Study with the SoRI Historical Control Range 16	2
Table 13	Statistical Comparison of Hematopoietic Tumors in the Allyl Isovalerate Study with Concurrent and Historical Controls at SoRI 162	2
Table 14	Incidences of Hematopoietic Tumors for Vehicle Control and Dosed Groups in Five Gavage Studies at SoR1 16	3
Appendix J	Mutagenesis Results for Allyl Isovalerate in Salmonella Typhimurium 16.	5
Table J1	Results of Mutagenicity Tests of Allyl Isovalerate in Salmonella Typhimurium TA 98	6
Table J2	Results of Mutagenicity Tests of Allyl Isovalerate in Salmonella Typhimurium TA 100 16	7
Table J3	Results of Mutagenicity Tests of Allyl Isovalerate in Salmonella Typhimurium TA 1535	8
Table J4	Results of Mutagenicity Tests of Allyl Isovalerate in Salmonella Typhimurium TA 1537	9
Appendix K	Analyses of Primary Tumors in Rats and Mice 17	1
Table K1	Analysis of Primary Tumors in Male Rats 172	2
Table K2	Analysis of Primary Tumors in Female Rats 176	6
Table K3	Analysis of Primary Tumors in Male Mice 179	9
Table K4	Analysis of Primary Tumors in Female Mice	3

~

6

CARCINOGENESIS STUDIES OF ALLYL ISOVALERATE

ALLYL ISOVALERATE

CAS NO. 2835-39-4 C₈H₁₄O₂ Mol. Wt. 142.22

ABSTRACT

Carcinogenesis studies of allyl isovalerate (96% pure) were conducted by administering the test chemical in corn oil by gavage to groups of 50 male and 50 female F344/N rats and to groups of 50 male and 50 female $B6C3F_1$ mice at doses of 31 or 62 mg/kg. The doses selected were based on the chemically-induced toxic effects and depressed weight gains obtained from the 13-week studies. Doses were administered five times per week for 103 weeks. Groups of 50 rats and 50 mice of each sex received corn oil by gavage on the same dosing schedule and served as vehicle controls.

Survival and mean body weight gain of rats of each sex and male mice were not adversely affected by the administration of allyl isovalerate. The significantly lower survival (P=0.001) and the lower mean body weight gain of low-dose female mice as compared with controls are likely consequences of the high incidence of a genital tract infection in the low-dose females. This infection was probably responsible for the deaths of 11/19 control, 22/33 low-dose, and 13/25 high-dose female mice that died before the end of the study.

Squamous cell papillomas and epithelial hyperplasia of the nonglandular stomach were observed in dosed male mice in the 2-year studies (squamous cell papillomas: 0/50, 1/50, 2%, 3/48, 6%; epithelial hyperplasia: 1/50, 2%; 1/50, 2%; 7/48, 15%). The papillomas occurred with a significant positive trend (P<0.05). The incidence of high-dose male mice with squamous cell papillomas of the nonglandular stomach was also higher (P<0.01) than the historical rate for vehicle control male B6C3F₁ mice in the Bioassay Program (5/881, 0.6%). Forestomach lesions were also observed in female mice: squamous cell papillomas (1/50, 0/50, 2/50) and epithelial hyperplasia of the nonglandular stomach (0/50, 2/50, 3/50). Pancreatic acinar-cell adenomas occurred at higher incidences in the dosed male rats than in the controls (control, 1/50, 2%; low-dose, 4/50, 8%; high-dose, 2/50, 4%). Pancreatic acinar-cell tumors were not observed in female rats. Preputial gland adenomas were observed in increased incidence in low-dose male rats (0/50, 4/50, 8%; P<0.05, 1/50, 2%). Mononuclear-cell leukemias in rats and lymphomas in mice occurred with increased incidences. This consistent dose-response increase among both rats and mice indicates that allyl isovalerate adversely affects the hematopoietic system.

	Vehicle Control	31 mg/kg	62 mg/kg
Mononuclear-Cell Leukemia			
Male Rats (a)	1/50 (2%)	4/50 (8%)	7/50 (14%) (b)
Female Rats (a)	4/50 (8%)	6/50 (12%)	9/49 (18%) (c)
Lymphoma			
Male Mice	4/50 (8%)	6/50 (12%)	8/50 (16%)
Female Mice (a)	11/50 (22%)	11/50 (22%)	18/50 (36%) <i>(b)</i>

(a) Significant (P < 0.05) dose response trend by life table analysis

(b) Significant (P < 0.05) increase by life table analysis when compared with controls

(c) Includes one leukemia, NOS

.

Cholangiofibrosis, nodular regeneration, cirrhosis, focal necrosis, fatty metamorphosis, and cytoplasmic vacuolization were observed at increased incidences in the livers of high-dose male and female rats in the 2-year study. No compound-related nonneoplastic lesions were observed in the mice of either sex. Liver neoplasms were not increased in either dosed rats or mice of either sex. Significant (P<0.05) decreases in tumor incidences were observed in male mice for hepatocellular carcinomas (18/50, 6/50, 9/50), for alveolar/bronchiolar adenomas or carcinomas (13/50, 6/50, 5/49), and for follicular-cell adenomas of the thyroid gland (5/47, 0/46, 1/49).

Allyl isovalerate was not mutagenic for *Salmonella typhimurium* (tester strains TA 98, 100, 1535, and 1537) with or without metabolic activation.

Under the conditions of these studies, allyl isovalerate was carcinogenic for F344/N rats and $B6C3F_1$ mice, causing increased incidences of hematopoietic system neoplasms (mononuclear-cell leukemia in male rats and lymphoma in female mice).

CONTRIBUTORS

The carcinogenesis studies of allyl isovalerate were conducted at Southern Research Institute under a subcontract to Tracor Jitco, Inc., the prime contractor for the Carcinogenesis Testing Program. The 2-year studies (rats and mice) were begun in January 1979 and were completed in January 1981.

> Principal Contributors at Southern Research Institute 2000 Ninth Avenue South Birmingham, Alabama 35255 (Conducted studies and evaluated tissues)

Daniel R. Farnell, D.V.M., Ph.D. Pathologist (for rats)

Herschell D. Giles, D.V.M., Ph.D. Pathologist (for mice)

Ruby H. James, B.S. Chemist J. David Prejean, Ph.D. Principal Investigator

Principal Contributors at Tracor Jitco

1776 East Jefferson Street Rockville Maryland 20852 and Research Triangle Park North Carolina 27709 (Prepared preliminary summary report)

Edward T. Cremmins, M.A. Technical Editor

Carolyn E. Dean, B.S. Production Editor

Thomas P. Griffin, D.V.M. Laboratory Operations Coordinator

Abigail C. Jacobs, Ph.D. Bioscience Writer

John G. Keller, Ph.D. Director, Bioassay Program

Marion S. Levy, M.A. Technical Editor Stephen S. Olin, Ph.D. Program Associate Director Michael A. Stedham, D.V.M. Pathologist

William D. Theriault, Ph.D. Reports Manager

Joseph E. Tomaszewski, Ph.D. Chemist John W. Warner, M.S.

Statistician

Louis Wijnberg, Ph.D. Statistician

Principal Contributors at the National Toxicology Program National Institute of Environmental Health Sciences Research Triangle Park Box 12233 North Carolina 27709 and Bethesda, Maryland 20205

(Evaluated experiment, interpreted results, and reported findings)

James Huff, Ph.D. (Chemical Manager) Gary A. Boorman, D.V.M., Ph.D. Rajendra S. Chhabra, Ph.D. Michael P. Dieter, Ph.D. J. Fielding Douglas, Ph.D. Charles K. Grieshaber, Ph.D. Larry G. Hart, Ph.D. Joseph K. Haseman, Ph.D. C. W. Jameson, Ph.D. William M. Kluwe, Ph.D. R. R. Maronpot, D.V.M. E. E. McConnell, D.V.M. John A. Moore, D.V.M. Raymond W. Tennant, Ph.D.

The pathology report and selected slides were evaluated on 3 November 1981 by the NTP Pathology Working Group, which included Drs. G. Boorman (NTP), T. Brown (North Carolina State University), B. Bupta (NIEHS), P. Hildebrandt (Tracor Jitco), and R. Maronpot (NTP).

REVIEWERS

National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee

Margaret Hitchcock, Ph.D. (Chairperson) Pharmacology/Toxicology John B. Pierce Foundation Laboratory New Haven, Connecticut

Curtis Harper, Ph.D. Associate Professor of Pharmacology University of North Carolina Chapel Hill, North Carolina Alice Whittemore, Ph.D.* Biostatistics Stanford University School of Medicine Palo Alto, California

Ad Hoc Subcommittee Panel of Experts

Norman Breslow, Ph.D.* Biostatistics University of Washington Seattle, Washington

Robert M. Elashoff, Ph.D. Biostatistics University of California at Los Angeles Jonsson Comprehensive Cancer Center Los Angeles, California

Joseph Highland, Ph.D.* Toxicology Environmental Defense Fund Washington, D.C.

J. Michael Holland, Ph.D., D.V.M. Pathology Department of Biology Oak Ridge National Laboratory Oak Ridge, Tennessee

Frank Mirer, Ph.D. Toxicology International Union United Auto Workers Detroit, Michigan

*Unable to attend 22 September 1982 meeting

Robert A. Scala, Ph.D. Toxicology Exxon Corporation East Millstone, New Jersey

Bernard Schwetz, Ph.D., D.V.M. (Principal Reviewer) Toxicology Research Laboratory Dow Chemical U.S.A. Midland, Michigan

James Swenberg, Ph.D., D.V.M. (Principal Reviewer) Chief of Pathology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Stan D. Vesselinovitch, D.V.Sc. Departments of Radiology and Pathology University of Chicago Chicago, Illinois

Mary Vore, Ph.D. (Principal Reviewer) Pharmacology University of Kentucky College of Medicine Lexington, Kentucky

SUMMARY OF PEER REVIEW COMMENTS ON THE CARCINOGENESIS STUDIES OF ALLYL ISOVALERATE

On 22 September 1982 this technical report on the carcinogenesis studies of allyl isovalerate underwent peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. This public review meeting began at 9:00 a.m. in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina. The following precis represents the critiques made by the principal reviewers, as well as comments from and discussion by the Peer Review Panel, NTP staff, and attendees.

Dr. Schwetz, a principal reviewer for the report on the carcinogenesis studies of allyl isovalerate, agreed with the conclusions that allyl isovalerate was carcinogenic for F344/N rats and $B6C3F_1$ mice, causing increased incidences of hematopoietic system lesions (mononuclear-cell leukemia in male rats and lymphoma in female mice). Allyl isovalerate was not mutagenic for *Salmonella typhimurium* tester strains TA98, 100, 1535, and 1537 (with or without metabolic activation using preincubation suspension). Dr. Schwetz said the abstract should mention the significant decreases observed in male mice of hepatocellular carcinomas, alveolar/ bronchiolar adenomas or carcinomas, and follicular-cell adenomas of the thyroid. Dr. Schwetz observed that the historical control data from the testing laboratory supported the positive findings for lymphomas in female mice and for leukemia in male rats, but indicated an equivocal result for leukemias in male rats when the control range across laboratories was considered. He also stated that the genital tract infection which caused a significant number of deaths in female mice should be better defined and characterized in the results section, and the possible impact on the outcome of the study in females should be discussed.

As a second principal reviewer, Dr. Vore agreed with the conclusion which separated incidences of hematopoietic lesions in rats and mice. She mentioned the number of rats killed accidentally, the number of female mice likely to have died of infections, and the fact that the maximum tolerated dose appears not to have been attained.

As a third principal reviewer, Dr. Swenberg commented that for leukemias in male rats, the incidence in high-dose animals was within the historical control range for all laboratories and therefore probably not of biological significance. With regard to lymphomas in female mice, the findings were at best equivocal. He doubted the biological significance for squamous-cell papillomas of the mouse stomach, preputial gland tumors in rats, and pancreatic adenomas in male rats. In sum, he stated the opinion that there is little evidence of carcinogenicity with allyl isovalerate.

Dr. Huff, NTP, stated that the NTP policy was to compare dosed groups with (in order of preference) i) concurrent controls, ii) laboratory specific historical controls, and iii) historical controls across laboratories. Due to a considerable laboratory-to-laboratory variation, the NTP generally uses across laboratory historic rates only for rare tumors. The interlaboratory composite historic control tumor data were, in Dr. Huff's opinion, inappropriate for routine comparisons with individual carcinogenesis bioassays, and thus inappropriate for making interpretive evaluations. Comparing the incidences of hematopoietic lesions in dosed rats and mice with both the concurrent controls and the laboratory specific historic controls, Dr. Huff emphasized a clear dose response and a high-dose effect in two (male rats and female mice) of the four experiments and some evidence of a similar trend in the other two studies (female rats and male mice).

In further discussion, Dr. Elashoff said comparison of historical control data with concurrent controls was difficult because adjusted incidences i.e., correction for survivorship, were used for concurrent control comparisons but not for the historical controls. Dr. J. Haseman, NTP, said for the data on allyl isovalerate, there was little variability with regard to leukemias in rats in other

control groups from the same testing laboratory. [Statistical analyses utilizing historical control data that adjust for differences in survival were done subsequent to the Peer Review meeting and are shown in Appendix I, Table I3, Page 162.] Dr. Holland said the criteria for diagnosing leukemia may vary tremendously from laboratory to laboratory. Thus, he would ignore the historical control data in arriving at any decision about the merits, or lack thereof, of the findings on hematopoietic lesions. There was discussion by Dr. E. McConnell, NTP, about appropriateness of combining leukemias and lymphomas in rats for statistical purposes.

Dr. Schwetz moved that the report on the carcinogenesis studies of allyl isovalerate be accepted subject to the written and verbal revisions discussed. Dr. Vore seconded the motion. The technical report was approved by nine affirmative votes with one abstention (Dr. Holland).

I. INTRODUCTION

$$CH_3 \rightarrow CH - CH_2 - C - O - CH_2 - CH = CH_2$$

$$CH_3 \rightarrow CH_2 - CH_2 - CH = CH_2$$

ALLYL ISOVALERATE

CAS NO. 2835-39-4 C₈H₁₄O₂ Mol. Wt. 142.22

Allyl isovalerate, a synthetic fragrance and flavoring ingredient in use since the 1950s, may be found in various products at the following concentrations: soap, 30 ppm; detergent, 3 ppm; creams, 15 ppm; perfume, 50 ppm; nonalcoholic beverages, 9 ppm; ice cream, 18 ppm; candy, 22 ppm; baked goods, 15-48 ppm; and gelatins and puddings, 1 ppm (Opdyke, 1977; Fenaroli, 1971). A colorless liquid with an apple-like odor and taste, allyl isovalerate is approved by the U.S. Food and Drug Administration for use in foods (U.S. CFR, 1979). Specific production figures are not available, but U.S. production in 1980 exceeded 1,000 pounds (USITC, 1981).

An acute, oral LD_{50} value of 230 mg/kg has been reported for rats of unspecified sex and strain (Moreno, 1977).

Administered orally to rats for 10 days, allyl isovalerate caused necrosis and fibrosis of the liver at a dose of 60 mg/kg body weight/day and cell enlargement and bile duct proliferation at a dose of 150 mg/kg/day (Drake, 1975). Similar hepatic effects were observed in Osborne-Mendel rats administered the closely related chemicals allyl butyrate or allyl caproate at doses of 90 or 100 mg/kg (Hagan et al., 1967; Taylor et al., 1964).

Metabolism

Allyl isovalerate is hydrolyzed *in vivo* to allyl alcohol and isovaleric acid. Allyl alcohol is then oxidized to acrolein (Drake, 1975); isovaleric acid is converted in mice to isovaleryl-CoA (Holze and Panten, 1979). The proposed metabolic pattern of allyl isovalerate is illustrated in Figure 1. Isovaleryl-CoA is produced during the catabolism of leucine and thus is naturally present in humans, rats, and mice (Cohn et al., 1978; Holze and Panten, 1979; Goodman, 1977). Allyl alcohol is a liver toxicant in rats (Butterworth et al., 1978). High levels of isovaleric acid in the blood (found in humans with metabolic defects) can produce vomiting and lethargy which progress to coma, pancytopenia, and ketoacidosis (Cohn et al., 1978).

Acrolein reacts with glutathione to produce 2aldehydoethylglutathione, which is reduced to an alcohol and excreted as the N-acetylcysteine conjugate (mercapturic acid). Conjugation of acrolein with glutathione occurs in rat liver *in vivo* (Giles, 1979), but has not been demonstrated in other tissues.

Patel et al. (1980) demonstrated the ability of liver tissue from phenobarbital-pretreated rats to metabolize allyl alcohol to acrolein and allylic acid (2-propenoic acid). The characteristics of the oxidation of allyl alcohol to acrolein were consistent with catalysis by alcohol dehydrogenase, while those of oxidation of acrolein to allylic acid were consistent with catalysis by aldehyde dehydrogenase. Allyl alcohol and acrolein were also shown to undergo hepatic microsomal oxidation to the epoxides glycidol and glycidaldehyde (Patel et al., 1980). These epoxides were subsequently hydrolyzed to diols (glycerol, glyceraldehyde) or conjugated with glutathione. The products of the latter reaction were not isolated or identified.

The conjugation of the reactive aldehyde acrolein with glutathione occurs *in vitro* in the absence of enzyme mediation (Giles, 1979), but may be catalyzed by glutathione transferases *in vivo*. Conjugation of an allyl alcohol metabolite with glutathione would appear to be a detoxication reaction, as Hanson and Anders (1978) have reported that diethyl maleate-induced depletion of glutathione enhanced the lethal potency of allyl alcohol in rats.

Figure 1. Metabolism of Allyl Isovalerate

The major toxic effect of the metabolite allyl alcohol in rats is periportal hepatocellular necrosis, a lesion believed to be caused by acrolein, the product of allyl alcohol oxidation (Rees and Tarlow, 1967; Reid, 1972). The hepatotoxic effects of allyl alcohol regress despite continued administration, suggesting adaptation of the liver to the presence of allyl alcohol or acrolein (Butterworth et al., 1978; Lake et al., 1978). The mechanism of the developed "resistence" to allyl alcohol is not known.

Mutagenicity

Allyl isovalerate did not induce any mutagenic response in *Salmonella typhimurium* tester strains TA 98, 100, 1535, and 1537 (with or without metabolic activation). Exogenous metabolic activation was provided by 9000 x g liver supernatant (S-9) fractions from Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters (see Appendix J) (NTP, 1982). This chemical is undergoing testing in *Drosophila melanogaster* to determine sex-linked recessive lethal mutations and reciprocal heritable translocations.

Although the allyl isovalerate metabolite allyl alcohol was mutagenic without activation in Salmonella typhimurium (strain unspecified) (Eder and Neudecker, 1978; Eder et al., 1980; Ortali, 1977), the structurally similar allyl caproate was not mutagenic in S. typhimurium TA 100 and TA 98, with or without microsomal activation (Oda et al., 1978). Allyl alcohol was shown to be weakly mutagenic to S. typhimurium (TA 1535) in the presence of the 9,000 x g supernatant fraction from Aroclor 1254-treated hamster liver. and acrolein was demonstrated to be a directacting mutagen in S. typhimurium TA 98 (Lijinsky and Andrews, 1980). The mutagenicity of acrolein to S. typhimurium has been confirmed by a second laboratory (NTP 1980), but acrolein failed to induce sex-linked recessive lethal mutations in *Drosophilia melanogaster* (NTP, 1982c). In cultured Chinese hamster ovary cells, acrolein induced both chromosome aberrations and sister chromatid exchanges (NTP unpublished results). The allyl alcohol metabolites glycidol and glycidaldehyde are direct-acting mutagens in *S. typhimurium* (McCann et al., 1979). There is considerable evidence, therefore, of genotoxic effects of purported allyl isovalerate metabolites, but not of the parent ester.

Carcinogenicity

A lifetime carcinogenicity study using male Fischer 344/N rats exposed to acrolein in drinking water is currently in progress (IARC, 1981). Inhalation of the respiratory tract irritant acrolein by hamsters at 4 ppm throughout their lifetimes (5 days per week) failed to cause an increase in tumors of the respiratory tract (Personal communication, Dr. P. Nettesheim, National Institute of Environmental Health Sciences; Feron and Kruysse, 1977). No information is currently available concerning the carcinogenic effects of oral administration. A literature survey on acrolein has been published (EPA, 1980).

Glycidaldehyde was reported to cause both benign and malignant local tumors when applied dermally to female Swiss mice throughout their lifetime (IARC, 1976; Van Duuren et al., 1965, 1966, 1967a, 1967b). There is limited evidence, therefore, for the carcinogenicity of one metabolite of allyl isovalerate (glycidaldehyde); the carcinogenic potential of other metabolites (allyl alcohol and acrolein) is currently under study (IARC, 1981; personal communication, Lijinsky).

Allyl isovalerate was tested by the Bioassay Program because of its use in food and cosmetics and because this chemical had not been previously tested for long-term effects or for potential carcinogenicity.

II. MATERIALS AND METHODS

CHEMICAL ANALYSES

DOSE PREPARATION

SHORT-TERM STUDIES

Single-Dose Studies

Fourteen-Day Studies

Thirteen-Week Studies

TWO-YEAR STUDIES

Study Design

Source and Specifications of Test Animals

Animal Maintenance

Clinical Examinations and Pathology

Data Recording and Statistical Methods

II. MATERIALS AND METHODS: CHEMICAL ANALYSES

CHEMICAL ANALYSES

Food-grade allyl isovalerate was obtained from Research Organics Chemical Corporation (Belleview, NJ) in three lots. Each lot was initially analyzed for purity and identity at Midwest Research Institute (425 Volker Blvd., Kansas City, MO 64110); reanalysis of the bulk chemical and analysis of chemical/vehicle mixtures were performed at Southern Research Institute.

Lot No. 770217 was used for only the singledose studies, being unsuitable for further testing because it contained 16.2% of the free acid and 79.7% of the ester. Lot No. A-634-F was used for only the 14-day studies; titration analysis indicated 94.7% of the ester and a small amount (2.1%) of the free acid. Vapor-phase chromatography showed the presence of two notable impurities that accounted for 3.9% and 2.3% of the area of the major peak. Use of this lot was discontinued when it was learned that the chemical had become contaminated with water and had apparently partially hydrolyzed. Lot No. R011777, used for both the 13-week and 2-year studies, contained 95.6% of the ester (by titration) (Appendix E) and almost no free acid (0.37%). Vapor-phase chromatography indicated the presence of an impurity profile similar to that of Lot No. A-634-F, but with significantly fewer impurities (1.7% and 1.5% for the two major ones). No attempt was made to further characterize these impurities. Elemental analyses for carbon and hydrogen agreed with theoretical values. The infrared, ultraviolet, and nuclear magnetic resonance spectra were consistent with the structure and indicated that the levels of impurities were much lower than those found in the other two lots.

Each lot was stored at 5° C in the dark and was analyzed periodically at the bioassay laboratory during the course of the gavage experiments. Vapor-phase chromatography and infrared spectroscopy indicated that the purity of Lot No. R011777 did not change during the period of the studies.

DOSE PREPARATION

Allyl isovalerate was mixed with corn oil on a weight to volume basis to produce the desired concentration (Table 1). Rats received 5 ml/kg and mice received 10 ml/kg body weight. In the 13-week and 2-year studies, allyl isovalerate/corn oil mixtures were stored at 5°C at the bioassay laboratory for no longer than 7 days.

Allyl isovalerate in corn oil (2% w/v) was analyzed at Midwest Research Institute and was found to be stable at room temperature for 7 days (Appendix F). One set of samples from the 13-week studies and selected (blind) samples

from the 2-year studies of allyl isovalerate in corn oil were analyzed periodically at Southern Research Institute (Appendix G). Results of these analyses and of referee analyses conducted at MRI and at Raltech indicated that the samples from the 13-week studies and all but three of the mixtures analyzed from the 2-year studies were within $\pm 10\%$ of the target concentration. One sample exceeded the optimum range (0.56-0.68 percent v/v) and two were below the acceptable range; both were from the same mixture, and this preparation was not used (Appendix G, Table G2).

SHORT-TERM STUDIES

Single-Dose Studies

Male and female F344/N rats and $B6C3F_1$ mice (C57BL/6N x C3H/HeN MTV⁻) were obtained from Charles River Breeding Laboratories and held for approximately 2 weeks before the test began. Animals were approximately 6 weeks old when placed on study.

Groups of five rats and five mice of each sex were administered allyl isovalerate in corn oil by gavage at a dose of 31, 62, 125, 250, or 500 mg/kg body weight. No controls were used. All animals were observed twice daily for mortality for 14 days.

Animals were housed five per cage and received water and feed *ad libitum* during the observation period. Details of animal maintenance are presented in Table 1. Necropsies were not performed.

Fourteen-Day Studies

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories and held for approximately 2 weeks before the study began. The animals were approximately 6 weeks old when placed on study.

Groups of five males and five females of each species were administered allyl isovalerate in corn oil by gavage for 14 consecutive days at daily doses of 0, 31, 62, 125, 250, or 500 mg/kg body weight.

Animals were housed five per cage and received water and feed *ad libitum*. Details of animal maintenance are presented in Table 1. The rats and mice were observed twice daily for mortality and were weighed weekly. Necropsies were performed on all animals.

Thirteen-Week Studies

Thirteen-week studies were conducted to evaluate the cumulative toxicity of allyl isovalerate and to determine the doses to be used in the 2-year studies.

Four-week-old male and female F344/N rats and $B6C3F_1$ mice were obtained from Harlan Industries and observed for 16 days. Each species and sex was assigned to cages according to a table of random numbers. Cages were then assigned to control and dosed groups according to another table of random numbers.

Rats and mice were housed five per cage in polycarbonate cages (Table 1). Racks and filters were replaced once every 2 weeks. Cages and bedding were replaced twice per week. Water (via an automatic watering system) and feed were available *ad libitum*.

Groups of 10 rats and 10 mice of each sex were administered allyl isovalerate in corn oil by gavage at doses of 0, 15, 31, 62, 125, or 250 mg/kg body weight, five times per week for 13 weeks.

Animals were checked for mortality and signs of morbidity twice daily. Those judged moribund were killed and necropsied. Each animal was given a clinical examination weekly, including palpation for tissue masses or swelling. Body weight data were collected weekly.

At the end of the 91-day study, survivors were killed with carbon dioxide. Necropsies were performed on all animals, unless precluded by autolysis or cannibalization. The following tissues were examined microscopically in control and high-dose animals: grossly visible lesions, tissue masses, abnormal lymph nodes, skin, mandibular lymph nodes, mammary gland, salivary gland, thigh muscle, bone marrow, bone, thymus, trachea, lungs and bronchi, heart, thyroid, parathyroid, esophagus, stomach, duodenum, jejunum, ileum, colon, mesenteric lymph nodes, liver, gallbladder (mice), pancreas, spleen, kidneys, adrenals, urinary bladder, seminal vesicles/prostate/ testes or ovaries/uterus, brain, and pituitary. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin.

In addition, the liver was examined histopathologically in all groups except rats and mice of each sex administered 15 mg/kg allyl isovalerate and female rats and male and female mice administered 31 mg/kg; the stomachs from rats and mice administered 125 mg/kg were also examined histopathologically.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats and 50 mice of each sex were administered allyl isovalerate in corn oil by gavage at doses of 31 or 62 mg/kg body weight, 5 days per week for 103 weeks. Groups of 50 rats and 50 mice of each sex received corn oil only and served as vehicle controls.

Source and Specifications of Test Animals

Four-week-old rats and 5-week-old mice were obtained from the Charles River Breeding Laboratories and observed for 2 weeks. Animals were produced under strict barrier conditions through a contract with the NTP Carcinogenesis Bioassay Program. Breeding starts for the foundation colony at the production facility originated at the National Institutes of Health Repository. Animals shipped for Bioassay testing were progeny of defined microbially associated parents that were transferred from isolators to barrier-maintained rooms. Animals were then assigned by species and sex to cages according to a table of random numbers. The cages were then assigned to dosed and control groups according to another table of random numbers.

A quality control skin grafting program has been in effect since early 1968 to monitor the genetic integrity of the inbred mice used to produce the hybrid B6C3F1 test animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from Charles River Breeding Laboratories. In August 1981, inbred parental lines of mice were further tested for genetic homogeneity via isozyme and protein electrophoregrams which demonstrate phenotype expressions of known genetic loci. The C57BL/6 mice were homogeneous at all loci tested. Eightyfive percent of C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of random-bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid $B6C3F_1$ mice used in this bioassay. The influence of the potential genetic non-uniformity in the hybrid mice on the bioassay results is not known. However, the bioassay is valid, since matched concurrent controls were included in the study.

Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages (Table 1). Cages and bedding were replaced twice per week. Dosed feed, control diets, and tap water were available *ad libitum*.

The temperature in the animal rooms was 20°-24°C and the humidity was 35%-70%. Fifteen changes of room air per hour were provided. Fluorescent lighting provided illumination 12 hours per day.

Clinical Examinations and Pathology

All animals were observed twice daily for signs of morbidity or mortality. Clinical signs were recorded when animals were weighed. Body weights by cage were recorded every week for the first 12 weeks and monthly thereafter. The mean body weight of each group was calculated by dividing the total weight of all animals in the group by the number of surviving animals in the group. Moribund animals and animals that survived to the end of the bioassay were killed using carbon dioxide and necropsied.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. The following were examined microscopically: tissue masses, abnormal lymph nodes, skin, mandibular lymph nodes, mammary gland, salivary gland, thigh muscle, sciatic nerve, bone marrow, costochondral junction (rib), thymus, larynx, trachea, lungs and bronchi, heart, thyroid, parathyroid, esophagus, stomach, duodenum, jejunum, ileum, colon, mesenteric lymph nodes, liver, gallbladder (mice), pancreas, spleen, kidneys, adrenals, urinary bladder, seminal vesicles/prostate/testes or ovaries/uterus, nasal cavity, brain, pituitary, and spinal cord.

Necropsies were performed on all animals, unless precluded by autolysis or cannibalization. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

The classification of neoplastic nodules was done according to the recommendations of Squire

and Levitt (1975), and the National Academy of Sciences (1980). When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechniques were evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10 percent of the animals were evaluated by an experienced pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative slides selected by the PWG Chairperson were reviewed blindly by the PWG's members, expert in rodent pathology, who reached a consensus and compared their findings with the original diagnoses. When conflicts were found, the PWG sent the appropriate slides and their comments to the original pathologist for review. (This procedure is described, in part, by Maronpot and Boorman, in press.) The final diagnosis represents a consensus of contractor pathologists and the NTP Pathology Working Group.

Data Recording and Statistical Methods

Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, clinical observations, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Probabilities of survival were estimated by the product-limit procedure of Kaplan and Meier (1958) and are presented in this report in the form of graphs. Animals were statistically censored as of the time that they died of other than natural causes or were found to be missing; animals dying from natural causes were not statistically censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) extensions of Cox's methods for testing for a dose-related trend. All reported P values for the survival analyses were two-sided.

The incidence of neoplastic or nonneoplastic lesions has been given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators included only those animals for which that site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which necropsies were performed.

For the statistical analysis of tumor incidence data, two different methods of adjusting for intercurrent mortality were employed. Each used the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high- and low-dose groups with controls and tests for overall dose-response trends.

The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumor-bearing animals in the dosed and control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P-value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975).

The second method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "incidental"; i.e., they were merely observed at autopsy in animals dying of an unrelated cause. According to this approach, the proportions of animals found to have tumors in dosed and control groups were compared in each of five time intervals: 0-52 weeks, 53-78 weeks, 79-92 weeks, week 93 to the week before the terminal kill, and the terminal kill period. The denominators of these proportions were the number of animals on which autopsies were performed during the time interval. The individual time interval comparisons were then combined by the previously described methods to obtain a single overall result. (See Peto et al., 1980, for the computational details of both methods.)

In addition to these tests, one other set of statistical analyses was carried out and reported in the tables analyzing primary tumors: the Fisher's exact test for pairwise comparisons and Cochran-Armitage linear trend test for dose-response trends (Armitage, 1971; Gart et al., 1979). These tests were based on the overall proportion of tumorbearing animals. Reported P values for tumor analyses are one-sided. For studies in which there is little effect of compound administration on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death.

	Single-Dose Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Experimental Design		····	···	
Size of Test Groups	5 males and 5 females of each species	5 males and 5 females of each species	10 males and 10 females of each species	50 males and 50 females of each species
Doses	31, 62, 125, 250, or 500 mg/kg body weight in corn oil by gavage	0, 31, 62, 125, 250, or 500 mg/kg body weight in corn oil by gavage	0, 15, 31, 62, 125, or 250 mg/kg body weight in corn oil by gavage	0, 31, or 62 mg/kg body weight in corn oil by gavage
Duration of Dosing	Single dose	14 (consecutive) days	13 weeks (5 days/week)	103 weeks (5 days/week)
Type and Frequency of Observation	Observed twice daily for mortality and signs of morbidity	Same as single-dose study	Observed twice daily for mortality and signs of morbidity; weighed weekly	Observed twice daily for mortality and signs of morbidity; weighed weekly for first 12 weeks and monthly thereafter
Necropsy and Histologic Examination	None	Necropsies performed on all animals	Necrospies performed on all animals; following tissues examined histo- logically in control and high-dose groups: brain, pituitary, salivary glands, esophagus, mandibular lymph nodes, thymus, spleen, heart, thyroid, parathyroid, trachea, lungs, and bronchi, stomach, liver, large and small intes- tines, pancreas, mesen- teric lymph nodes, semi- nal vesicles/prostate/ testes or ovaries/uterus, mammary gland, skin, bone, bone marrow, thigh muscle, kidney, urinary bladder, adrenal glands, gall- bladder (mice), gross	Necrospies performed on all animals; following tissues examined in all groups: tissue masses, abnormal lymph nodes, skin, mandibular lymph nodes, mammary gland, salivary gland, thigh muscle, sciatic nerve, bone marrow, costochon- drial junction (rib), thymus, larynx, trachea, lungs and bronchi, heart, thyroid, parathyroid, esophagus, stomach, duodenum, jejunum, ileum, colon, mesenteric lymph nodes, liver, gall bladder (mice), pancreas, spleen, kidneys, adrenal glands, urinary bladder, seminal vesicles/prostate/testes

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS OF SHORT-TERM AND TWO-YEAR STUDIES

25

.

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS OF SHORT-TERM AND TWO-YEAR STUDIES (Continued)

	Single-Dose Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologic Examination (continued)			lesions, tissue masses, and abnormal lymph nodes; the liver of female rats and male and female mice administered 62 or 125 mg/kg and of male rats administered 31, 62, or 125 mg/kg was also examined histologi- cally; stomach examined in rats and mice adminis- tered 125 mg/kg	or ovaries/uterus, nasal cavity, brain, pituitary, and spinal cord
Animals and Animal Maint	enance			
Species	F344/N rats; B6C3F1 mice	F344/N rats; B6C3F1 mice	F344/N rats; B6C3F1 mice	F344/N rats; B6C3F1 mice
Animal Source	Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories	Harlan Industries (Indianapolis, IN)	Charles River Breeding Laboratories
Time Held Before Start of Test	2 weeks	2 weeks	l6 days	2 weeks
Age When Placed on Study	6 weeks	6 weeks	6 weeks	Rats: 46 days Mice: 50 days
Age When Killed	8 weeks	8 weeks	20 weeks	Rats: 112-114 weeks Mice: 112-114 weeks
Method of Animal Distribution	Animals assigned by species and sex to cages according to a table of random numbers. Cages were then assigned to control and dosed groups according to another table of random numbers	Sames as single-dose study	Same as single-dose study	Same as single-dose study

Allyl Isovalerate

26

	Single-Dose Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Feed	Wayne Lab-Blox [®] pel- lets, Allied Mills, Inc. (Chicago, IL)	Same as single-dose study	Same as single-dose study	Same as single-dose study
Bedding Beta-Chips® heat- treated hardwood chips, Northeastern Products Corp. (Warrensburg, NY)		Same as single-dose study or sawdust, PWI, Inc. (Louisville, KY)	Same as single-dose study	Same as single-dose study
Water	Edstrom automatic watering system, (Waterford, WI)	Same as single-dose study	Same as single-dose study	Same as single-dose study
Cages	Polycarbonate, Lab Products (Garfield, NJ)	Polycarbonate	Polycarbonate	Polycarbonate
Cage Filters	Reemay spun-bonded polyester filters, Snow Filtration (Cincinnatti, OH)	Same as single-dose study	Same as single-dose study	Same as single-dose study
Animals per Cage	Five	Five	Five	Five
Animal Room Environment	21°-23°C; 30%-60% relative humidity; room air changed 15 times per hour; 9 hours of fluorescent light per day	Same as single-dose study	Same as single-dose study	20°-24°C; 35%-70% relative humidity; room air changed 15 times per hour; 12 hours of fluores- cent light per day
Other Chemical or Test in Same Room	None	None	None	None
Chemical/Vehicle				
Preparation	Allyl isovalerate was mixed with Mazola® corn oil	Same as single-dose study	Same as single-dose study	Same as single-dose study
Maximum Storage Time	_	3 days	l week	l week
Storage Conditions		21°-23°C	5°C	5°C in amber bottles

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS OF SHORT-TERM AND TWO-YEAR STUDIES (Continued)

Allyl Isovalerate

III. RESULTS

RATS

SHORT-TERM STUDIES

Single-Dose Studies

Fourteen-Day Studies

Thirteen-Week Studies

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Survival

Pathology and Statistical Analyses of Results

MICE

SHORT-TERM STUDIES

Single-Dose Studies Fourteen-Day Studies

Thirteen-Week Studies

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Survival

Pathology and Statistical Analyses of Results

SHORT-TERM STUDIES

Single-Dose Studies

One male and two females receiving 500 mg/kg died. Deaths occurred on day 2 (one male and one female) and day 3 (one female). Decreased activity and ruffled fur were observed in all animals that received 500 mg/kg; these effects were considered to be compound related.

Fourteen-Day Studies

All rats that received 500 mg/kg were dead by the afternoon of day 2 (Table 2). Two males and two females administered 250 mg/kg also died.

Mean body weights relative to controls were depressed by 23% in male rats administered 250 mg/kg and by 13% in female rats that received 250 mg/kg. Other groups had comparable final body weights.

Inactivity, labored breathing, diarrhea, and ruffled fur were seen in male and female rats administered 250 or 500 mg/kg; these effects were considered to be compound related. At necropsy, grossly visible dark red areas were observed on the stomach wall of 3/5 males and 3/5 females that received 500 mg/kg.

TABLE 2. SURVIVAL AND MEAN BODY WEIGHTS OF RATS ADMINISTERED ALLYLISOVALERATE BY GAVAGE FOR 14 DAYS

		Mean Body Weight (grams)			Body Weight Relative to
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	Controls (c) (percent)
Males					
0	5/5	119.2 ± 6.6	170.6 ± 9.3	$+ 51.4 \pm 3.7$	
31	5/5	113.6 ± 5.1	185.2 ± 11.3	$+71.6 \pm 6.8$	+ 8.6
62	5/5	120.2 ± 7.6	171.0 ± 8.4	$+50.8 \pm 1.4$	- 0.2
125	5/5	114.2 ± 3.5	161.6 ± 5.9	+ 47.4 ± 4.6	- 5.3
250	3/5	105.0 ± 3.6	131.3 ± 2.7	$+26.3 \pm 6.2$	-23.0
500	0/5	(d)	(d)	(d)	
Females					
0	5/5	96.6 ± 4.1	129.4 ± 4.3	$+ 32.8 \pm 1.1$	
31	5/5	102.2 ± 1.6	133.0 ± 2.5	$+30.8 \pm 1.9$	+ 2.8
62	5/5	93.4 ± 4.0	119.2 ± 5.0	$+25.8 \pm 1.2$	- 7.9
125	5/5	97.4 ± 2.9	125.2 ± 5.1	$+27.8 \pm 2.8$	- 3.2
250	3/5	98.3 ± 1.7	112.0 ± 5.5	$+ 13.7 \pm 6.6$	-13.4
500	0/5	(d)	(d)	(d)	

(a) Number surviving/number initially in the group. All calculations are based on those animals surviving to the end of the study.

(b) Mean weight change of the survivors of the group \pm standard error of the mean

(c) Weight of the dosed group relative to that of the controls \blacksquare

Weight (Dosed Group) - Weight (Control Group)

- × 100

Weight (Control Group)

(d) No data are presented due to the 100% mortality.

Thirteen-Week Studies

All 10 males and 4/10 females that received 250 mg/kg died (Table 3). Mean body weight

gains relative to controls were depressed 14% in male rats that received 125 mg/kg and 16% in female rats that received 250 mg/kg. Final body weights were comparable between other groups.

TABLE 3. SURVIVAL AND MEAN BODY WEIGHTS OF RATS ADMINISTERED ALLYL ISOVALERATE BY GAVAGE FOR 13 WEEKS

		Me	Body Weight Relative to		
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	Controls (c) (percent)
Males			· · · · · · · · · · · · · · · · · · ·	internet and an and	
0	10/10	109.7 ± 3.0	304.1 ± 8.8	+194.4 ± 8.1	
15	10/10	107.8 ± 3.2	300.7 ± 7.3	$+192.9 \pm 6.2$	- 1.1
31	10/10	106.0 ± 3.4	298.7 ± 7.5	$+192.7 \pm 6.5$	- 1.8
62	10/10	106.7 ± 3.0	282.9 ± 3.5	$+176.2 \pm 3.4$	- 7.0
125	10/10	109.3 ± 3.9	261.8 ± 6.9	$+152.5 \pm 5.0$	-13.9
250	0/10 <i>(d)</i>	(e)	(e)	<i>(e)</i>	
Females					
0	10/10	91.4 ± 2.3	174.7 ± 3.9	$+83.3 \pm 3.5$	
15	10/10	91.6 ± 3.1	178.4 ± 5.0	$+86.8 \pm 2.6$	+ 2.1
31	10/10	90.7 ± 2.5	169.8 ± 3.9	$+79.1 \pm 2.6$	- 2.8
62	10/10	93.5 ± 3.0	174.8 ± 3.4	$+81.3 \pm 3.1$	0.0
125	10/10	89.3 ± 3.1	167.8 ± 7.3	$+78.5 \pm 4.4$	- 3.9
250	6/10 <i>(f)</i>	87.8 ± 2.1	146.5 ± 7.5	$+58.7 \pm 6.6$	-16.1

(a) Number surviving/number initially in the group. All calculations are based on those animals surviving to the end of the study.

(b) Mean weight change of the survivors of the group \pm standard error of the mean

(c) Weight of the dosed group relative to that of the controls

Weight (Dosed Group) – Weight (Control Group) Weight (Control Group)

× 100

(d) Deaths occurred during weeks 6-13.

(e) No data are presented due to the 100% mortality.

(f) Deaths occurred during weeks 6, 9, 11, and 12.

Male and female rats administered 250 mg/kg were inactive after dosing and the fur in the pelvic area was yellow. These effects were related to administration of allyl isovalerate. The following dose-related effects were observed in male and female rats at necropsy: thickening of the intestinal wall, redness of the mucosal surfaces of the intestines and urinary bladder, and enlargement of the internal lymph nodes and adrenal glands; however, no lesions were identified histopathologically at these sites. Histopathologic examination revealed the following compound-related liver lesions in rats administered 250 mg/kg: multifocal coagulative necrosis (7/10 males and 5/9 females), cholangiofibrosis (6/10 males and 1/9 females), bile duct hyperplasia (7/10 males and 8/9 females), and nodular hyperplasia (2/10 males and 7/9 females). Liver lesions were observed in other dosed groups (particularly in males and females receiving 125 mg/kg) and are presented in Table 4.

Because of the depression in mean body weight gain and because of the liver lesions observed in the 13-week studies, doses of 31 and 62 mg/kg were set for rats on the 2-year study.

	Dose (mg/kg)									
	<u>.</u>	Males				Females				
	0	31	62	125	250	0	62	125	250	
Number of animals examined	10	10	10	10	10	10	10	10	9	
Diagnosis										
Coagulative necrosis (multi-focal)	0	0	0	0	7	0	0	0	5	
Cholangiofibrosis	0	0	0	0	6	0	0	0	1	
Bile duct hyperplasia	0	0	0	3	7	0	0	4	8	
Nodular hyperplasia	0	0	0	0	2	0	0	0	7	
Cytoplasmic vacuolation	6	9	7	9	0	0	0	1	1	
Basophilic cytoplasmic change	0	0	1	8	0	0	0	7	0	

TABLE 4. NUMBERS OF F344/N RATS WITH LIVER LESIONS IN THE 13-WEEK STUDY

TWO-YEAR STUDIES

Body Weights and Clinical Signs

There were no remarkable effects of allyl isovalerate on body weights. Throughout the second year of the study, mean body weights of low-dose male rats were higher than those for the controls (Figure 2 and Table 5). Mean body weight gains for high-dose males were lower than those for the controls until week 93. After week 70, mean body weights of low- and high-dose female rats were higher than those of the controls. No other compound-related clinical signs were observed.

Figure 2. Growth Curves for Rats Administered Allyl Isovalerate in Corn Oil by Gavage

Week	Cumulativ	ve Mean Body Weig (grams)	Weight Change Relative to Controls (percent) (a)			
No.	Control	Low Dose	High Dose	Low Dose	High Dose	
Males		<u></u>		<u></u>	<u></u>	
0	154 <i>(b)</i>	151 (b)	153 (b)			
1	37	38	33	+3	-11	
22	221	233	203	+5	- 8	
41	278	291	253	+5	- 9	
59	307	326	286	+6	- 7	
80	321	342	309	+7	- 4	
101	289	313	302	+8	+ 4	
Final Body						
Weights	443	464	455	+5 (c)	+ 3 (c)	
Females						
0	119 <i>(b</i>)	115 (b)	117 <i>(b)</i>			
1	21	23	22	+10	+ 5	
22	87	92	94	+ 6	+ 8	
41	115	124	122	+ 8	+ 6	
59	141	155	155	+10	+10	
80	172	193	196	+12	+14	
101	176	208	212	+18	+20	
Final Body						
Weights	295	323	329	+ 9 (c)	+12 (c)	

TABLE 5. CUMULATIVE MEAN BODY WEIGHT CHANGE (RELATIVE TO CONTROLS) OF RATS ADMINISTERED ALLYL ISOVALERATE BY GAVAGE FOR 2 YEARS

(a) Weight change of the dosed group relative to that of the controls
 Weight Change (Dosed Group) - Weight Change (Control Group)

Weight Change (Control Group)

(b) Initial Weight

(c) Final body weight relative to controls (percent)

Survival

Estimates of the probabilities of survival of male and female rats administered allyl isovalerate by gavage at doses of 0, 31, or 62 mg/kg body weight are shown by the Kaplan and Meier curves in Figure 3. No significant differences in survival were observed between any groups of male rats or of female rats.

In male rats, 34/50 (68%) of the controls, 30/50 (60%) of the low-dose, and 28/50 (56%) of the high-dose group lived to the end of the study at 105-107 weeks. In female rats, 38/50 (76%) of the controls, 36/50 (72%) of the low-dose, and

29/50 (58%) of the high-dose group lived to the end of the study at 105-107 weeks. The survival data include one male and one female control animal that died during the termination period of the study. For the statistical evaluation of tumor incidence, these animals have been pooled with those killed at the end of the study.

100

Three control males, four low-dose males, four high-dose males, one low-dose female, and two high-dose females were accidentally killed. These 14 animals were censored from the statistical analysis of survival; they are included in the curve depicting the probability of survival (Figure 3) only until the time of death.

Figure 3. Survival Curves for Rats Administered Allyl Isovalerate in Corn Oil by Gavage

Pathology and Statistical Analyses of Results

Histopathologic findings on neoplasms in rats are summarized in Appendix A, Tables A1 and A2; Appendix Tables A3 and A4 give the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C, Tables C1 and C2. Historical incidences of tumors in control animals are listed in Appendix H. Appendix K, Tables K1 and K2, contain the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II, (Data Recording and Statistical Methods) and Appendix K (footnotes).

Hematopoietic System: A significant positive trend was observed in the incidence of male rats with mononuclear-cell leukemia (referred to as monocytic leukemia in Appendix A), and the results of the pairwise comparison between the control and high-dose groups were statistically significant. A statistically significant trend was observed in the incidence of female rats with leukemia. Additionally, two other high-dose male rats and one control and one high-dose female rat had lymphomas.

	Vehicle Control	31 mg/kg	62 mg/kg
Males			
Leukemia			
Overall Incidence	1/50 (2%)	4/50 (8%)	7/50 (14%)
Adjusted Incidence	2.8%	10.9%	22.0%
Terminal Incidence	0/34 (0%)	0/30 (0%)	4/28 (14%)
Life Table Test	P=0.015	P=0.183	P=0.022
Incidental Tumor Test	P=0.023	P=0.482	P=0.044
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.021	P=0.181	P=0.030
Females			
Leukemia			
Overall Incidence	4/50 (8%)	6/50 (12%)	9/49 (18%)
Adjusted Incidence	9.9%	15.1%	22.8%
Terminal Incidence	3/38 (8%)	4/36 (11%)	2/29 (7%)
Life Table Test	P=0.050	P=0.354	P=0.075
Incidental Tumor Test	P=0.173	P=0.474	P=0.265
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.082	P=0 370	P=0.109

TABLE 6. INCIDENCES OF HEMATOPOIETIC TUMORS IN F344/N RATS

Preputial Gland: The incidences of low-dose male rats with adenomas alone or with adenomas or carcinomas combined were significantly higher than those in the controls. However, results of comparisons between the control and the highdose groups were not statistically significant.

	Vehicle	31	62
	Control	mg/kg	mg/kg
Adenoma			
Overall Incidence	0/50 (0%)	4/50 (8%)	1/50 (2%)
Adjusted Incidence	0.0%	13.3%	3.6%
Terminal Incidence	0/34 (0%)	4/30 (13%)	1/28 (4%)
Life Table Test	P=0.322	P=0.048	P=0.461
Incidental Tumor Test	P=0.322	P=0.048	P=0.461
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.390	P=0.059	P=0.500
Adenoma or Carcinoma			
Overall Incidence	0/50 (0%)	5/50 (10%)	2/50 (4%)
Adjusted Incidence	0.0%	16.7%	7.1%
Terminal Incidence	0/34 (0%)	5/30 (17%)	2/28 (7%)
Life Table Test	P=0.175	P=0.023	P=0.196
Incidental Tumor Test	P=0.175	P=0.023	P=0.196
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.238	P=0.028	P=0.247

TABLE 7. INCIDENCES OF PREPUTIAL GLAND TUMORS IN MALE F344/N RATS

Pancreas: Acinar-cell adenomas were observed in 1/50(2%) control males, 4/50(8%) low-dose males, and 2/50(4%) high-dose males. These incidences were not statistically significant. Atrophy of the pancreas was increased slightly in the 62 mg/kg male rats (Appendix C, Table C1).

Liver: Several nonneoplastic lesions were observed in dosed male and female rats at incidences higher than those seen in the controls (Table 8). Enlarged hepatocytes around portal triads were observed in the low-dose animals. The cytomegalic changes in the affected hepatocytes included enlarged nuclei, increased cytoplasm, and slightly increased numbers of eosinophils in adjacent tissues. The composition of the lesion varied from only a few cells around portal triads to altered cells that extended midway to the central vein. Mild periportal fibrosis was observed in the livers of low-dose male and female rats. Yellow/green-staining granular pigment accumulated in the fibrous tissue in the periportal areas and was occasionally observed in cells lining the sinusoids. Extensive periportal fibrosis, with fibrous bands connecting portal areas, was observed in livers of some high-dose male and female rats. A few lymphocytes occasionally accumulated in this periportal area. Narrow rims of cytomegalic hepatocytes encircled the fibrous areas.

The occurrences of liver neoplasms were not different between groups.

TABLE 8.	INCIDENCES OF F344/N RATS WITH NEOPLASTIC AND NONNEOP	LASTIC LESIONS IN
	THE LIVER IN THE 2-YEAR STUDY	

		Males		Females			
	Control	Low Dose	High Dose	Control	Low Dose	High Dose	
No. of animals examined	50	50	50	50	50	49	
Cholangiofibrosis	0	1	5	0	0	4	
Cirrhosis	0	2	5	0	0	8	
Focal Necrosis	1	2	7	0	2	4	
Fatty Metamorphosis	3	2	8	0	3	5	
Nodular Regeneration	0	5	8	1	3	8	
Cytoplasmic Vacuolization	15	9	22	3	2	18	
Pigmentation	0	0	1	0	1	. 2	
Neoplastic Nodule	1	1	2	1	1	0	
Hepatocellular Carcinoma	0	1	1	0	0	0	

Eye: Retinopathy and cataracts were observed in increased incidences in high-dose males and low-dose females.

These findings were not considered to be related to the administration of allyl isovalerate because high incidences of retinopathy and cataracts in male and female rats at this laboratory have been previously correlated with the proximity of the animals to fluorescent light. In this study, the groups with high incidences of retinopathy and cataracts were housed in the uppermost racks—those closest to the fluorescent lights (Chignell et al., 1981; Greenman et al., 1982).

	Males			Females		
	Control	Low Dose	High Dose	Control	Low Dose	High Dose
Retinopathy Cataracts	1/50 (2%) 1/50 (2%)	0/50 (0%) 0/50 (0%)	21/50 (42%) 21/50 (42%)	4/50 (8%) 1/50 (2%)	21/50 (42%) 19/50 (38%)	2/49 (4%) 2/49 (4%)

INCIDENCES OF RETINOPATHY AND CATARACTS IN F344/N RATS

Pituitary: The incidences of low-dose male rats with adenomas were significantly lower than the incidence in the controls, and a statistically significant negative trend was observed. The inciden-

ces of dosed female rats with this tumor were not statistically significant in comparison with controls (13/44; 17/49; 13/48).

•

TABLE 9. INCIDENCES OF PITUITARY ADENOMAS IN MALE F344/N RATS

	Vehicle Control	31 mg/kg	62 mg/kg
Overall Incidence	14/49 (29%)	5/46 (11%)	9/49 (18%)
Adjusted Incidence	37.5%	15.3%	24.8%
Terminal Incidence	11/34 (32%)	4/28 (14%)	3/27 (11%)
Life Table Test	P=0.231N	P=0.037N	P=0.315N
Incidental Tumor Test	P=0.041N	P=0.032N	P=0.048N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.125N	P=0.028N	P=0.170N

Thyroid: Low-dose male rats had a significantly (P<0.05) lower incidence of C-cell carcinomas than did the controls (control, 6/50; lowdose, 0/47; high-dose, 3/47). The results of the trend tests and the comparison of control versus high-dose incidences were not significant. The combined incidence of low-dose male rats with either C-cell adenomas or carcinomas was not significant (control, 10/50; low-dose, 7/47; highdose, 5/47). These tumors were not seen in female rats in statistically significant proportions (control, 4/48; low-dose, 8/50; high-dose, 5/46).

SHORT-TERM STUDIES

Single-Dose Studies

Two males and one female administered 500 mg/kg died. Deaths occurred on day 2 (one male and one female) and day 3 (one male). Slight inactivity, ruffled fur, and yellowish feces were observed in mice that received 500 mg/kg; these effects were considered to be related to administration of allyl isovalerate.

Fourteen-Day Studies

All male and female mice that received 500 mg/kg were dead by the afternoon of day 2 (Table 10). Inactivity and ruffled fur were seen in mice administered 250 or 500 mg/kg, and these effects were considered to be compound related. Male mice that received 250 mg/kg gained no weight. Body weight differences at the end of the study were comparable among groups.

TABLE 10.	SURVIVAL AND MEAN BODY WEIGHTS OF MICE ADMINISTERED AL	LYL
	ISOVALERATE BY GAVAGE FOR 14 DAYS	

		Me	Body Weight Relative to		
Dose Survival (mg/kg) (a)	Initial	Final	Change (b)	Controls <i>(c)</i> (percent)	
Males					
0	5/5	23.4 ± 0.7	25.4 ± 1.0	$+2.0 \pm 0.4$	
31	5/5	25.2 ± 0.6	26.8 ± 0.9	$+1.6 \pm 0.4$	+5.5
62	5/5	25.8 ± 0.7	27.2 ± 0.6	$+1.4 \pm 0.4$	+7.1
125	5/5	23.4 ± 1.3	24.8 ± 1.3	$+1.4 \pm 0.2$	-2.4
250	5/5	25.2 ± 0.5	25.2 ± 0.5	0.0 ± 0.3	-0.8
500	0/5	(d)	(d)	(d)	
Females					
0	5/5	18.4 ± 0.2	20.8 ± 0.6	$+2.4 \pm 0.5$	
31	5/5	18.2 ± 0.2	20.4 ± 0.2	$+2.2 \pm 0.2$	-1.9
62	5/5	19.2 ± 0.2	19.6 ± 0.2	$+0.4 \pm 0.4$	-5.8
125	5/5	19.0 ± 0.3	20.6 ± 0.5	$+1.6 \pm 0.2$	-1.0
250	5/5	18.4 ± 0.4	20.2 ± 0.2	$+1.8 \pm 0.2$	-2.9
500	0/5	(<i>d</i>)	(d)	(d)	

(a) Number surviving/number initially in the group.

(b) Mean weight change of the group \pm standard error of the mean.

(c) Weight of the dosed group relative to that of the controls =

Weight (Dosed Group) - Weight (Control Group)

Weight (Control Group) (d) No data are presented due to the 100% mortality. × 100

Thirteen-Week Studies

Five of 10 males and 6/10 females that received 250 mg/kg died (Table 11). All but one of these deaths (a female) were considered to be compound related. The deaths occurring in other groups were caused by gavage error. Final body weights among control and dosed groups were comparable; for male rats, the 125 and 250 mg/kg groups weighed 10% less than controls.

Male and female mice administered 125 or 250 mg/kg were apparently less active after dosing. The following compound-related effects (Table 12) were observed at necropsy or during histopathologic examination in animals that received 250 mg/kg: "thickening" of the wall of the urinary bladder (2/10 males, 2/10 females), "thick-ening" of the mucosa of the stomach (6/10 males, 2/10 females), ulcerative inflammation of the

stomach (2/10 males, 3/10 females), coagulative necrosis of the liver (3/10 males, 2/10 females), and cytoplasmic vacuolization of the liver (2/10 males). The following lesions were observed in mice that received 125 mg/kg: "thickening" of the stomach wall (3/10 males, 2/10 females), "thickening" of the urinary bladder wall (3/10 males, 1/10 females), and "thickening" of the wall of the small intestine (3/10 females).

No compound-related histopathologic effects on the liver, stomach, or bladder were seen in mice from other groups.

As a result of the weight gain depression and the gross or histologic toxic effects observed at necropsy in mice administered 125 mg/kg or higher, doses of 31 and 62 mg/kg were selected for mice on the 2-year study.

		Me	Weight Relative to		
Dose Survival (mg/kg) <i>(a)</i>	Initial	Final	Change (b)	Controls (c) (percent)	
Males					
0	10/10	24.9 ± 0.8	37.3 ± 1.2	$+12.4 \pm 0.6$	
15	10/10	24.6 ± 0.4	36.0 ± 1.0	$+11.4 \pm 1.0$	- 3.5
31	10/10	24.3 ± 0.5	35.5 ± 0.7	$+11.2 \pm 0.7$	- 4.8
62	9/10(d)	24.4 ± 0.8	35.3 ± 1.2	$+10.9 \pm 0.5$	- 5.4
125	10/10	22.7 ± 0.3	33.8 ± 0.8	$+11.1 \pm 0.7$	- 9.4
250	5/10 <i>(e)</i>	24.2 ± 0.7	33.8 ± 1.4	$+ 9.6 \pm 0.9$	- 9.4
Females					
0	10/10	18.1 ± 0.4	26.5 ± 0.6	8.4 ± 0.3	
15	8/10(d)	18.3 ± 0.4	26.5 ± 0.5	8.2 ± 0.6	0.0
31	9/10 (d)	18.2 ± 0.5	26.6 ± 1.0	8.4 ± 0.7	+ 0.4
62	10/10	18.4 ± 0.4	25.0 ± 0.6	6.6 ± 0.3	- 5.7
125	7/10 (d)	18.9 ± 0.8	25.4 ± 0.9	6.5 ± 0.8	- 4.2
250	4/10 (f)	18.0 ± 0.7	27.8 ± 1.0	9.8 ± 0.5	+ 4.9

TABLE 11. SURVIVAL AND MEAN BODY WEIGHTS OF MICE ADMINISTERED ALLYL ISOVALERATE BY GAVAGE FOR 13 WEEKS

(a) Number surviving/number initially in the group. All calculations are based on those animals surviving to the end of the study.

× 100

(b) Mean weight change of the survivors of the group \pm standard error of the mean.

(c) Weight of the dosed group relative to that of the controls \square

Weight (Dosed Group) – Weight (Control Group)

Weight (Control Group)

(d) Deaths were the result of gavage error.

(f) Five deaths occurred during week 1; a death during week 13 was the result of gavage error.

⁽e) Two deaths occurred during week 1 and three deaths occurred during week 11.

	Dose (mg/kg)							
	<u> </u>	N	lales			Fe	males	
Lesion	0	62	125	250	0	62	125	250
Numbers of animals examined	10	10	10	10	10	10	10	10
Diagnosis		·····	·······					
Coagulative necrosis in the liver	0	0	0	3	0	0	0	2
Cytoplasmic vacuolization in the liver	0	0	0	2	0	0	0	0
Thickened urinary bladder wall	0	0	3	2	0	0	1	2
Thickened stomach mucosa	0	0	3	6	0	0	2	2
Ulcerative inflammation of stomach	0	0	0	2	0	0	0	3

TABLE 12. NUMBERS OF MICE WITH LESIONS IN THE 13-WEEK STUDY

TWO-YEAR STUDIES

Body Weights and Clinical Signs

After week 20, mean body weights of dosed male mice were higher than those of the controls (Figure 4 and Table 13). After week 30, mean body weights of low-dose female mice were lower than those of controls; and after week 70, mean body weights of high-dose females were slightly lower than the control values. No other compound-related clinical signs were observed. Except for the low-dose females, with final body weights 16% lower than those of controls, the dosed and control groups had comparable body weights.

Figure 4. Growth Curves for Mice Administered Allyl Isovalerate in Corn Oil by Gavage

Allyl Isovalerate

Wook	Cumulati	ve Mean Body Weig (grams)	Weight Change Relative to Controls (<i>b</i>) (Percent)		
No.	Control	Low Dose	High Dose	Low Dose	High Dose
Males	<u> </u>				
0	24 <i>(b</i>)	24 <i>(b)</i>	24 <i>(b)</i>		
1	2	2	2	0	0
22	16	18	18	+13	+13
41	21	22	23	+ 5	+10
59	24	26	26	+ 8	+ 8
80	23	25	26	+ 9	+13
101	19	19	21	0	+11
Final Body					
Weights	43	43	45	0 (c)	+ 5 (c)
Females					
0	19 <i>(b)</i>	18 <i>(b)</i>	18 <i>(b)</i>		
1	2	3	2	+50	0
22	13	13	13	0	0
41	18	16	19	-11	+ 6
59	23	19	24	-17	+ 4
80	28	22	27	-21	- 4
101	25	19	23	-24	- 8
Final Body					
Weights	44	37	41	-16(c)	- 7 (c)

TABLE 13. CUMULATIVE MEAN BODY WEIGHT CHANGE (RELATIVE TO CONTROLS) OF MICE ADMINISTERED ALLYL ISOVALERATE BY GAVAGE FOR 2 YEARS

(a) Weight change of the dosed group relative to that of the controls =

Weight Change (Dosed Group) – Weight Change (Control Group) × 100

Weight Change (Control Group)

(b) Initial weight

(c) Final body weight relative to controls (percent)

Survival

Estimates of the probabilities of survival of male and female mice administered allyl isovalerate at doses of 0, 31, and 62 mg/kg body weight are shown by the Kaplan and Meier curves in Figure 5. Overall survival of low-dose female mice was significantly lower (P=0.001) than that of the controls; this difference became apparent after about week 90. No other significant differences in survival were observed between any groups of either sex. Two control males, two low-dose males, six high-dose males, one lowdose female, and one high-dose female were accidentally killed. These 12 animals were censored from the statistical analysis of survival; they are included in the curve depicting probability of survival (Figure 5) only until the time of death.

In male mice, 29/50 (58%) of the controls, 31/50 (62%) of the low-dose, and 31/50 (62%) of the high-dose group lived to the termination period of the study at 105-107 weeks. In female mice, 32/50(64%) of the controls, 17/50(34%) of the low-dose, and 24/50 (48%) of the high-dose group lived to the termination period of the study at 105-107 weeks. The survival data include one control and one low-dose female that died during the termination period of the study. For statistical evaluation of tumor incidences, these animals have been pooled with those killed at the end of the study. The probable cause of death of many female mice was a suppurative lesion of the ovaries/uterus which often spread to other areas in the abdominal cavity.

Figure 5. Survival Curves for Mice Administered Allyl Isovalerate in Corn Oil by Gavage

Allyl Isovalerate

Pathology and Statistical Analyses of Results

Histopathologic findings on neoplasms in mice are summarized in Appendix B, Tables B1 and B2; Appendix Tables B3 and B4 give the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D, Tables D1 and D2. Historical incidences of tumors in control animals are listed in Appendix H. Appendix K, Tables K3 and K4, contain the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Data Recording and Statistical Methods) and Appendix K (footnotes).

Hematopoietic System: A statistically significant positive trend was seen in the incidences of female mice with malignant lymphomas (all types), and the incidence in the high-dose group was significantly greater than that in the controls. A significant positive trend was also observed in the incidence of females with malignant histiocytic lymphomas (Table 14). Though not statistically significant, these malignant lymphomas were observed in increasing proportions of male mice (control, 4/50; low-dose, 6/50; high-dose, 8/50).

TABLE 14. INCIDENCES OF HEMATOPOIETIC TUMORS IN B6C3F1 MICE

	Vehicle Control	31 mg/kg	62 mg/kg
Males			
Malignant Lymphoma, Lymphocytic Type	e		
Overall Incidence	1/50 (2%)	2/50 (4%)	1/50 (2%)
Adjusted Incidence	2.7%	5.7%	2.6%
Terminal Incidence	0/29 (0%)	1/31 (3%)	0/31 (0%)
Life Table Test	P=0.617	P=0.499	P=0.751
Incidental Tumor Test	P=0.518	P=0.444	P=0.692
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.622	P=0.500	P=0.753N
Malignant Lymphoma, Histiocytic Type			
Overall Incidence	0/50 (0%)	2/50 (4%)	1/50 (2%)
Adjusted Incidence	0.0%	6.3%	2.7%
Terminal Incidence	0/29 (0%)	1/31 (3%)	0/31 (0%)
Life Table Test	P=0.373	P=0.251	P=0.500
Incidental Tumor Test	P=0.303	P=0.202	P=0.433
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.361	P=0.247	P=0.500
Malignant Lymphoma, Mixed Type			
Overall Incidence	3/50 (6%)	2/50 (4%)	6/50 (12%)
Adjusted Incidence	10.0%	6.2%	17.2%
Terminal Incidence	2/29 (7%)	1/31 (3%)	4/31 (13%)
Life Table Test	P=0.192	P=0.473N	P=0.272
Incidental Tumor Test	P=0.130	P=0.556N	P=0.193
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.169	P=0.500N	P=0.243
Lymphoma, All Malignant			
Overall Incidence	4/50 (8%)	6/50 (12%)	8/50 (16%)
Adjusted Incidence	12.4%	17.3%	21.5%
Terminal Incidence	2/29 (7%)	3/31 (10%)	4/31 (13%)
Life Table Test	P=0.167	P=0.397	P=0.204
Incidental Tumor Test	P=0.077	P=0.283	P=0.105
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.141	P=0.370	P=0.178

	Vehicle Control	31 mg/kg	62 mg/kg
Females			
Malignant Lymphoma, Lymphocytic Type			
Overall Incidence	5/50 (10%)	5/50 (10%)	4/50 (8%)
Adjusted Incidence	12.3%	21.9%	12.6%
Terminal Incidence	2/32 (6%)	3/17 (18%)	2/24 (8%)
Life Table Test	P=0.515N	P=0.422	P=0.557N
Incidental Tumor Test	P=0.432	P=0.422	P=0.447
Cochran-Armitage Trend.			
Fisher Exact Tests	P=0.432N	P=0.630N	P=0.500N
Malignant Lymphoma, Histiocytic Type			
Overall Incidence	0/50 (0%)	1/50 (2%)	4/50 (8%)
Adjusted Incidence	0.0%	5.9%	12.8%
Terminal Incidence	0/32 (0%)	1/17 (6%)	0/24 (0%)
Life Table Test	P=0.024	P=0.374	P=0.052
Incidental Tumor Test	P=0.058	P=0.374	P=0.336
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.026	P=0.500	P=0.059
Malignant Lymphoma, Mixed Type			
Overall Incidence	6/50 (12%)	5/50 (10%)	10/50 (20%)
Adjusted Incidence	18.8%	23.1%	37.8%
Terminal Incidence	6/32 (19%)	2/17 (12%)	8/24 (33%)
Life Table Test	P=0.064	P=0.368	P=0.073
Incidental Tumor Test	P=0.136	P=0.573N	P=0.133
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.157	P=0.500N	P=0.207
Lymphoma, All Malignant			
Overall Incidence	11/50 (22%)	11/50 (22%)	18/50 (36%)
Adjusted Incidence	29 .8%	4 6. 5 %	54.7%
Terminal Incidence	8/32 (25%)	6/17 (35%)	10/24 (42%)
Life Table Test	P=0.026	P=0.172	P=0.034
Incidental Tumor Test	P=0.037	P=0.360	P=0.052
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.071	P=0.595	P=0.093

TABLE 14. INCIDENCES OF HEMATOPOIETIC TUMORS IN B6C3F1 MICE (Continued)

Stomach: A positive trend (incidental tumor test) was observed in the incidences of male mice with squamous cell papillomas of the (nonglandular) gastric mucosa (Table 15); the incidences for female mice were: control, 1/50; low-dose, 0/50; high-dose, 2/50. Pairwise comparisons between the control and dosed groups were not significant. Grossly, the papillomas were cauliflower-like masses 2-3 mm in diameter or thin stalks attached to the mucosa of the nonglandular portion of the stomach. Histopathologic examinations of the papillomas showed the lesions as papillary growths composed of thin, fibrous cones covered by hyperplastic squamous epithelium.

TABLE 15.	INCIDENCES OF MALE B6C3F1	MICE WITH SQUAMOUS	CELL PAPILLOMAS OF THE
	GASTRIC MUCOSA		

	Vehicle Control	31 mg/kg	62 mg/kg
Overall Incidence	0/50 (0%)	1/50 (2%)	3/48 (6%)
Adjusted Incidence	0.0%	3.2%	9.4%
Terminal Incidence	0/29 (0%)	1/31 (3%)	2/31 (6%)
Life Table Test	P=0.068	P=0.513	P=0.137
Incidental Tumor Test	P=0.048	P=0.513	P=0.090
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.056	P=0.500	P=0.114

The incidence of high-dose mice with epithelial hyperplasia of the stomach or forestomach was higher than that of the controls (Table 16). These lesions were not visible on gross examination; histopathologically, they were characterized by focal acanthosis and hyperkeratosis of the nonglandular epithelium. These did not appear to be papillary lesions. Adenomatous hyperplasia was found in the gastric mucosa of a single low-dose mouse. Three of the four dosed male mice with squamous cell papillomas also had epithelial hyperplasia; one of the two high-dose females with papillomas also had hyperplasia.

TABLE 16.	INCIDENCES OF HYPERPLASTIC AND NEOPLASTIC LESIONS IN THE STOMACH OR
	GASTRIC MUCOSA OF MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY
	GAVAGE

	Males			Females		
	Vehicle Control	31 mg/kg	62 mg/kg	Vehicle Control	31 mg/kg	62 mg/kg
Number of stomachs evaluated	50	50	48	50	50	50
Diagnosis	** * <u>********************************</u>	<u></u>				
Epithelial hyperplasia	1	1	7	0	2	3
Squamous cell papilloma	0	1	3	1	0	2
Squamous cell carcinoma	0	0	0	0	0	0

Liver: A negative trend was observed in the incidences of male mice with hepatocellular carcinomas (Table 17). Pairwise comparisions of dosed males with controls indicated significantly decreased incidences in both the low- and highdose groups. The combined incidence of low-dose males with adenomas or carcinomas was decreased when compared with the control value. The incidences of dosed female mice with adenomas or carcinomas (combined) were: control, 3/50; low-dose, 0/50; high-dose, 1/50.

TABLE 17. INCIDENCES OF LIVER TUMORS IN MALE B6C3F1 MICE

	Vehicle	31	62
	Control	mg/kg	mg/kg
Adenoma			
Overall Incidence	7/50 (14%)	8/50 (16%)	8/50 (16%)
Adjusted Incidence	23.1%	23/2%	24.4%
Terminal Incidence	6/29 (21%)	6/31 (19%)	7/31 (23%)
Life Table Test	P=0.487	P=0.543	P=0.549
Incidental Tumor Test	P=0.406	P=0.523	P=0.489
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.445	P=0.500	P=0.500
Carcinoma			
Overall Incidence	18/50 (36%)	6/50 (12%)	9/50 (18%)
Adjusted Incidence	47.6%	16.7%	25.4%
Terminal Incidence	10/29 (34%)	3/31 (10%)	6/31 (19%)
Life Table Test	P=0.021N	P=0.006N	P=0.038N
Incidental Tumor Test	P=0.044N	P=0.013N	P=0.069N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.020N	P=0.005N	P=0.035N
Adenoma or Carcinoma			
Overall Incidence	23/50 (46%)	14/50 (28%)	15/50 (30%)
Adjusted Incidence	59 .9%	37.6%	43.3%
Terminal Incidence	14/29 (48%)	9/31 (29%)	12/31 (39%)
Life Table Test	P=0.052N	P=0.049N	P=0.066N
Incidental Tumor Test	P=0.108N	P=0.092N	P=0.117N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.058N	P=0.048N	P=0.074N

Lung: A negative trend was seen in the incidences of male mice with alveolar/bronchiolar adenomas, and the incidence in the high-dose group was significantly lower than that in the controls (Table 18).

The combined incidences of male mice with alveolar/bronchiolar adenomas or carcinomas

occurred with a negative trend, and the incidence in the high-dose group was significantly lower than that in the controls. These tumors were not observed in different proportions of female mice (control, 4/50; low-dose, 4/49; high-dose, 3/50).

	Vehicle Control	31 mg/kg	62 mg/kg
Alveolar/Bronchiolar Adenoma			
Overall Incidence	10/50 (20%)	5/50 (10%)	3/49 (6%)
Adjusted Incidence	31.6%	15.1%	9.0%
Terminal Incidence	8/29 (28%)	4/31 (13%)	2/31 (6%)
Life Table Test	P=0.018N	P=0.108N	P=0.031N
Incidental Tumor Test	P=0.030N	P=0.149N	P=0.047N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.025N	P=0.131N	P=0.039N
Alveolar/Bronchiolar Adenoma or Ca	rcinoma		
Overall Incidence	13/50 (26%)	6/50 (12%)	5/49 (10%)
Adjusted Incidence	38.1%	18.3%	14.6%
Terminal Incidence	9/29 (31%)	5/31 (16%)	3/31 (10%)
Life Table Test	P=0.017N	P=0.053N	P=0.031N
Incidental Tumor Test	P=0.034N	P=0.087N	P=0.057N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.022N	P=0.062N	P=0.037N

TABLE 18. INCIDENCES OF LUNG TUMORS IN MALE B6C3F1 MICE

Thyroid: A negative trend was observed in the incidences of male mice with follicular-cell adenomas (Table 19). The incidence for low-dose males was significantly lower than that for the

.

controls. In female mice, this tumor did not occur in significant proportions (control, 3/49; low-dose, 2/48; high-dose, 2/48).

TABLE 19. INCIDENCES	OF FOLLICULAR-CELL	ADENOMAS OF	THE THYROID	GLAND IN
MALE B6C3F	MICE			

	Vehicle Control	31 mg/kg	62 mg/kg
Overall Incidence	5/47 (11%)	0/46 (0%)	1/49 (2%)
Adjusted Incidence	16.5%	0.0%	3.2%
Terminal Incidence	4/29 (14%)	0/30 (0%)	1/31 (3%)
Life Table Test	P=0.032N	P=0.031N	P=0.090N
Incidental Tumor Test	P=0.039N	P=0.038N	P=0.105N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.034N	P=0.030N	P=0.093N

Pituitary: The incidence of low-dose female mice with adenomas was significantly lower than that of the controls; however, this decrease was not statistically different when survival differences were taken into account (Table 20). Tests for trend and comparisons of high-dose versus control females were not significant. This lesion was not observed in male mice.

TABLE 20. INCIDENCES OF ADENOMAS OF THE PITUITARY GLAND IN FEMALE B6C3F1 MICE

	Vehicle Control	31 mg/kg	62 mg/kg
Overall Incidence	11/43 (26%)	2/43 (5%)	7/44 (16%)
Adjusted Incidence	36.7%	8.5%	30.4%
Terminal Incidence	11/30 (37%)	1/16 (6%)	7/23 (30%)
Life Table Test	P=0.316N	P=0.076N	P=0.428N
Incidental Tumor Test	P=0.362N	P=0.081N	P=0.428N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.139N	P=0.007N	P=0.198N

Ovaries/Uterus: Suppurative inflammation of the ovaries, uterus, or multiple organs was found in 11/19 control, 22/33 low-dose, and 13/25high-dose females that died before the end of the study (Appendix D, Table D2). At necropsy, an enlarged uterus was observed in 23 vehicle control, 31 low-dose, and 28 high-dose females; ovarian masses with suppurative exudate were seen in 15 control, 18 low-dose, and 17 high-dose females. The etiology is not known. Although microbiologic examinations were not performed on mice in this study, *Klebsiella oxytoca* has been isolated from mice that have had similar lesions in other studies. IV. DISCUSSION AND CONCLUSIONS

The doses of allyl isovalerate administered to rats and mice in the 2-year study were 31 and 62 mg/kg body weight. The survival and mean body weight gains of animals in this study (except for low-dose female mice) were not adversely affected by administration of allyl isovalerate. The lower survival and decrease in mean body weight gain of low-dose female mice as compared with controls were not considered to be compound related, but rather were due to a genital tract infection that may have been responsible for the deaths of 11/19 control, 22/33 low-dose, and 13/25 highdose female mice that died after week 90 but before the end of the study. These survival and weight gain data suggest that higher doses might have been tolerated in the two-year study.

-The effects observed in the short-term and the two-year studies indicate that the pancreas in rats and the liver, stomach, and hematopoietic system in rats and mice were the sites primarily affected by administration of allvl isovalerate. The current studies confirm that allyl isovalerate is hepatotoxic in F344/N rats and B6C3F₁ mice, as reported by Drake (1975), who observed necrosis and fibrosis of the liver and bile duct hyperplasia in male rats (strain unspecified) administered allyl isovalerate by gavage at doses of 60 or 150 mg/kg body weight for 10 days. In the current 13-week studies, chemical-related nonneoplastic lesions were observed in livers of rats administered 125 mg/kg and of rats and mice that received 250 mg/kg. Bile duct hyperplasia and basophilic cytoplasmic changes were seen in livers of male and female rats administered 125 mg/kg; rats and mice that received 250 mg/kg doses for 13 weeks had multifocal coagulative necrosis, cholangiofibrosis, bile duct hyperplasia, nodular hyperplasia, and cytoplasmic vacuolization (Tables 4 and 12). The findings from the 13-week exposure study forecast correctly that the liver would be a target organ for allyl isovalerate in the two-year study.

Rats administered 31 or 62 mg/kg doses of allyl isovalerate for two years had cholangiofibrosis, nodular regeneration, cirrhosis, fatty metamorphosis, and cytoplasmic vacuolization (Table 8). No compound-related nonneoplastic effects were seen in mice administered 31 or 62 mg/kg for two years.

In contrast to this high frequency of nonneoplastic hepatic lesions, incidences of dosed rats and mice with neoplastic lesions of the liver in the two-year study were not significantly increased. Hepatocellular carcinomas in male and female mice, hepatocellular adenomas in female mice, and neoplastic nodules in female rats occurred at lower incidences in the high-dose groups than in the respective controls.

Reports of hepatotoxic effects in rats administered allyl alcohol-an hydrolysis product of allyl isovalerate-suggest that a similar mechanism of toxic effects may exist for allyl isovalerate. Lake et al. (1978) observed periportal necrosis and reductions in alcohol dehydrogenase and succinic dehydrogenase activities in the portal areas of the liver lobules of male Wistar rats given a single dose of allyl alcohol (30 mg/kg body weight) in corn oil by gavage. Livers of those rats that had received 10 or 28 daily consecutive doses of 30 mg/kg appeared normal, indicating that the effects on the liver may have been reversible and that the metabolism of allyl alcohol changes with time. Similarly, Carpanini et al. (1978) found no histological evidence of liver damage in male and female Wistar rats given up to 800 ppm allyl alcohol in drinking water for 15 weeks. These authors considered this lack of response "exceptional," particularly since Reid (1972) and others reported extensive periportal necrosis within 24 hours following a single intraperitoneal injection of 50 mg allyl alcohol/kg body weight to male Sprague-Dawley rats. In the present studies, nodular regeneration was not apparent in animals administered allyl isovalerate at doses of 125 or 250 mg/kg for 13 weeks; however, these effects were observed in 5/50 and 8/50 male rats that received 31 or 62 mg/kg for two years.

Cyclophosphamide-a "prodrug" used therapeutically as an antitumor and immunosuppressive agent-apparently undergoes metabolism to acrolein, especially in patients who excrete alkaline urine (Low et al., 1982). Others (Brock et al., 1979; Cox, 1979) have proposed that the clinicallyobserved urotoxic effects of cyclophosphamide are largely due to the acrolein generated in the urine from 4-hydroxycyclophosphamide. Allyl isovalerate is also converted via allyl alcohol to acrolein in rodent liver (Patel et al., 1980; Serafini-Cessi, 1972), the acrolein probably being responsible for the observed hepatotoxicity (Table 8). This mechanism of local toxicity mimics that of the urotoxic responses diagnosed in humans taking cyclophosphamide. Acrolein is highly reactive and unstable, and thus the location of toxicity probably depends on the site of the parent compound's metabolism to acrolein.

Another hydrolysis product of allyl isovalerate—isovaleric acid—produced lethargy, coma, pancytopenia, and ketoacidosis in humans with isovaleric acidemia (Cohn et al., 1978), yet these clinical effects have not been observed in rats and mice.

Neoplastic and nonneoplastic lesions were observed in acinar cells of the pancreas in male rats administered allyl isovalerate for two years (current study) at doses of 31 or 62 mg/kg body weight; similar findings were seen in another study in which male and female CFY rats received a single oral dose (50 mg/kg) of allyl alcohol (Nizze et al., 1979). In the present study, the incidences of dosed male rats with acinar-cell adenomas were higher than those found in the concurrent control group or in any other control group of the same sex and strain (Appendix H, Table H1) in the Bioassay Program (concurrent control, 1/50; laboratory control, 2/248, 0.8%historical control, 6/976, 0.6%; low-dose, 4/50; high-dose, 2/50). In the study reported by Nizze and coworkers (1979), administration of allyl alcohol was associated with acidophila, necrosis, and vacuolization of the pancreatic acinar cells.

The irritant effects of allyl isovalerate on the mucosal surfaces of the stomach or forestomach were observed in both rats and mice. Rats administered 500 mg/kg for 2 days had dark red areas on the "stomach wall" (3/5 males and 3/5 females);males and females administered 250 mg/kg for 13 weeks developed thickening of the intestinal wall and reddening of the mucosal surfaces in the intestines and urinary bladder. Histopathologic examination of tissues taken from these grossly visible lesions in rats that received 250 mg/kg for 13 weeks or 31 or 62 mg/kg for 2 years did not reveal any compound-related microscopic lesions. Similar effects were observed in mice administered 250 mg/kg for 13 weeks: thickening and ulcerative inflammation of the mucosa of the stomach and thickening of the urinary bladder

wall, but no lesions were detected histopathologically. In the two-year study, however, a significant (P<0.05) positive trend was observed in the incidences of male mice with squamous cell papillomas of the gastric mucosa (control, 0/50; lowdose, 1/50; high-dose, 3/48); the incidence of high-dose male mice with squamous cell hyperplasia was higher than that in the controls (control, 1/50; low-dose, 1/50; high-dose, 7/48). Since the incidence of high-dose males with squamous cell papillomas is significantly (P<0.01) higher than the historical rate seen in vehicle controls in the Bioassay Program (5/881, 0.57%; Appendix H, Table H7), this lesion may have been related to administration of allyl isovalerate.

Regarding other allyl compounds tested in the Program, allyl isothiocyanate (NTP, 1982a) caused transitional-cell tumors of the urinary bladder in male rats, while allyl chloride (NCI, 1978) produced squamous cell carcinomas and papillomas of the forestomach in male and female mice. Diallyl phthalate caused chronic forestomach inflammation and forestomach hyperplasia, as well as squamous cell papillomas of the forestomach in mice (NTP, 1983). Thus at least two other allyl compounds have been shown to produce proliferative lesions of the forestomach similar to those caused by allyl isovalerate. Each utilizes similar metabolic pathways: allyl alcohol to acrolein (Figure 1).

Mononuclear-cell leukemia in male rats and malignant lymphoma in female mice occurred with statistically significant positive trends, and the incidences in the high-dose groups were significantly higher than those in the controls. Further, although not statistically significant, the increased incidences of hematopoietic lesions in female rats (trend, P=0.050) and in male mice were dose-related (Table 21). Taken together,

				Life Table P Values		
	Control	31 mg/kg	62 mg/kg	Trend	Low Dose	High Dose
Rats: Male	1/50	4/50	7/50	0.015	0.183	0.022
Female	4/50	6/50	9/49	0.050	0.354	0.075
Mice: Male	4/50	6/50	8/50	0.167	0.397	0.204
Female	11/50	11/50	18/50	0.026	0.172	0.034

TABLE 21. INCIDENCES OF LEUKEMIA IN F344/N RATS AND LYMPHOMA IN B6C3F1 MICE

these toxic effects were considered to have been induced by allyl isovalerate (Historical incidences are shown in Appendix H, Tables H2, H3, H5, and H6). Appendix I (Tables I1-I4) compares concurrent and historical data on hematopoietic tumors from the five gavage studies completed to date at Southern Research Institute. These additional analyses further support the conclusion that allyl isovalerate increased the incidences of hematopoietic system lesions in male rats and female mice.

Preputial gland adenomas were observed in low-dose male rats at increased incidences. This increase was significantly (P<0.005) greater than the historical vehicle control rate in the Bioassay Program (16/999, 1.6%; see Appendix H, Table H4). However, because there was no observable dose response trend and no high-dose effect, this increase was not regarded as clearly being related to allyl isovalerate administration.

Allyl compounds can be alkylating agents and direct-acting mutagens, depending on the degree of polarity (electron deficiency, electrophilicity) introduced into the molecule by substituents on the saturated (terminal) carbon atom (Eder et al., 1980). Allyl methanesulfonate, for example, is a strong alkylating agent because of the electronegativity of the methane sulfonate group, whereas allyl isothiocyanate is a very weak alkylating agent. By this criterion (electrophilicity), allyl alcohol would be expected to be a very weak direct-acting alkylating agent. The available data suggest that allyl isovalerate, although not mutagenic, may be metabolized to the electrophile acrolein and to the epoxides glycidol and glycidaldehvde.

Studies on the carcinogenic potential of acrolein and allyl alcohol are currently in progress (IARC, 1981), and Van Duuren et al. (1965, 1966, 1967a, 1967b) have reported that glycidaldehyde is carcinogenic in mice by skin application and subcutaneous injection and in rats by subcutaneous injection (IARC, 1976). Experimentation to determine the extent, dosedependency, and species-dependency of the metabolism of allyl isovalerate to allyl alcohol, acrolein, and epoxides may therefore provide additional insight into the carcinogenic potential of this compound. Metabolism studies have been initiated in F344/N rats and in B6C3F1 mice with diallyl phthalate labelled with carbon-14 in the allyl portion to follow specifically the allyl alcohol pathway (NTP, 1982b). These results should be equally applicable to allyl isovalerate. Emphasis should also be placed on hematologic indices, since pancytopenia has been observed in infant humans with isovaleric acidemia (Cohn et al., 1978) and since chemically-induced hematopoietic lesions were diagnosed in this study. To better characterize the effects of allyl isovalerate (and in situ metabolites) on the hematologic and immunologic systems in F344/N rats and B6C3F1 mice, the NTP has initiated 14-day repeated-dose studies using gavage doses of 0, 31, 62, 125, and 250 mg/kg.

In an NTP-sponsored subchronic inhalation study of acrolein, F344/N rats were exposed to 0, 0.4, 1.4, or 4.0 ppm acrolein for 62 days (Kutzman, 1981). The only effects observed histologically were in the 4.0-ppm dose group: bronchiolar epithelial necrosis and sloughing, bronchiolar edema with macrophages, and focal pulmonary edema. Acrolein had no detectable effects on sister chromatid exchanges and cell proliferation kinetics in bone marrow cells and in peripheral blood lymphocytes. Sperm morphology and reproductive potential were also unaffected.

Conclusions: Under the conditions of these studies, allyl isovalerate was carcinogenic for F344/N rats and $B6C3F_1$ mice, causing increased incidences of hematopoietic system neoplasms (mononuclear-cell leukemia in male rats and lymphoma in female mice).

V. REFERENCES

Ames, B.N.; McCann, J.; Yamasaki, E., Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat, Res. 31:347-364; 1975.

Armitage, P., Statistical methods in medical research. New York: John Wiley & Sons, Inc.; 1971:362-365.

ASTM, Annual book of ASTM standards, Philadelphia: American Society for Testing and Materials, Part 29, Designation D1617-72, 1974: 180-182.

Berenblum, I., ed., Carcinogenicity testing: a report of the panel on carcinogenicity of the cancer research commission of UICC. Geneva: International Union Against Cancer, Vol. 2; 1969.

Brock, N.; Stekar, J.; Pohl, J.; Niemeyer, U.; Scheffler, G., Acrolein, the causative factor of urotoxic side-effects of cyclophosphamide, ifsofamide, trofosfamide, and sufosfamide. Arzneim. Forsch. 29:659-661; 1979.

Butterworth, K.; Carpanini, F.; Dunnington, D.; Grasso, P.; Pelling, D., The production of periportal necrosis by allyl alcohol in the rat. Br. J. Pharmacol. 63(2):353P-354P; 1978.

Carpanini, F.M.B.; Gaunt, I.F.; Hardy, J.; Gangolli, S.D.; Butterworth, K.R.; Lloyd, A.G., Short-term toxicity of allyl alcohol in rats. Toxicology 9:29-45; 1978.

Chignell, C.F.; Sik, R.H.; Gladen, B.C.; Feldman, D.B., The effect of different types of fluorescent lighting on reproduction and tumor development in the C_3H mouse. Photochem. and Photobiol. 34:617-621; 1981.

Cohn, R.; Yudkoff, M.; Rothman, R.; Segal, S., Isovaleric acidemia: use of glycine therapy in neonates. New Eng. J. Med. 299(18):996-999; 1978.

Cox, D.R., Regression models and life tables. J.R. Stat. Soc. B34; 187-220; 1972.

Cox, P.J., Cyclophosphamide cystitis---identification of acrolein as the causative agent. Biochem. Pharmacol. 28:2045-2049; 1979.

Drake, J., Safety evaluation of allyl esters. Int. J. Flavours Food Add. 6 (6):352; 1975.

Eder, E.; Neudecker, T., Alkylating and mutagenic effects of allyl and allylogenic compounds. Naunyn-Schmiedeberg's Arch. Pharmacol. 302:R21; 1978. Eder, E.; Neudecker, T.; Lutz, D.; Henschler, D., Mutagenic potential of allyl and allylic compounds. Structure - activity relationship as determined by alkylating and direct in vitro mutagenic properties. Biochem. Pharmacol. 29:993-998; 1980.

EPA, Ambient water quality criteria for acrolein, EPA 440/5-80-016, U.S. Environmental Protection Agency; October 1980.

Fenaroli's handbook of flavor ingredients, Cleveland: The Chemical Rubber Co., 1971:270.

Feron, V.J.; Kruysse, A., Effects of exposure to acrolein vapor in hamsters simultaneously treated with benzo(a)pyrene or diethylnitrosamine. J. Toxicol. Environ. Health 3:379-394; 1977.

Gart, J.; Chu, K.; Tarone, R., Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62(4):957; 1979.

Giles, P.M., The biosynthesis of 3-hydroxypropylmercapturic acid from cyclophosphamide. Xenobiot. 9:745-762; 1979.

Goodman, H., Site of action of insulin in promoting leucine utilization in adipose tissue. Am. J. Physiol. 223(2):E97-E103; 1977.

Greenman, D.L.; Bryant, P.; Kodell, R.L.; Sheldon, W., Influence of cage shelf level on retinal atrophy in mice. Lab. Animal Sci. 32, 4:353-356; 1982.

Hagan, E.; Hansen, W.; Fitzhugh, O.; Jenner, P.; Jones, W.; Taylor, J.; Long, E.; Nelson, A.; Brouwer, J., Food flavourings and compounds of related structure. II. Subacute and chronic toxicity. Food Cosmet. Toxicol. 5:141; 1967.

Hanson, S.K.; Anders, M.W., The effect of diethyl maleate, fasting and time of administration on allyl alcohol hepatotoxicity. Toxicol. Lett. 1:301-305; 1978.

Harris, G., ed., Dictionary of organic compounds, 4th ed., New York: Oxford University Press, Vol. 3, 1965:1974.

Hodgeman, C.D., Handbook of chemistry and physics, Cleveland: C.R.C. Publishing Company, 44th ed., 1963:1064.

Holze, S.; Panten, U., Studies on the role of α cell metabolism in the insulinotropic effect of δ ketoisocaproic acid. Biochim. Biophys. Acta 588:211-218; 1979.

IARC, IARC Monographs on the evaluation of carcinogenic risk of chemicals to man. Lyon, France: World Health Organization. Vol. 11; 175-181;1976.

Allyl Isovalerate

IARC, Information bulletin on the survey of chemicals being tested for carcinogenicity, No. 9. International Agency for Research on Cancer, Lyon, France; 1981.

Kaplan, E.L.; Meier, P., Nonparametric estimation of incomplete observations. J. Amer. Stat. Assoc. 53:457-481; 1958.

Kutzman, R.S., A subchronic inhalation study of Fischer 344 rats exposed to 0, 0.4, 1.4, or 4.0 ppm acrolein, conducted at the Brookhaven National Laboratory for the National Toxicology Program (IAG 222-YOI-ES-9-0043), Report No. BNL 30222; October 1981.

Lake, B.; Gangolli, S.; Wright, M.; Grasse, P.; Carpianini, F.; Butterworth, K., The effect of repeated administration on allyl alcohol-induced hepatotoxicity in the rat. Biochem. Soc. Transact. 6:145; 1978.

Lijinsky, W.; Andrews, A.W., Mutagenicity of vinyl compounds in *Salmonella typhimurium*. Terat. Carcin. Mutagen. 1:259-267; 1980.

Linhart, M.S.; Cooper, J.A.; Martin, R.L.; Page, N.P.; Peters, J.A., Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248; 1974.

Low, J.E.; Borch, R.F.; Skadek, N.E., Conversion of 4-hydroperoxycyclophosphamide and 4-hydroxycyclophosphamide to phosphoramide mustard and acrolein mediated by bifunctional catalysts. Cancer Res. 42:830-837; 1982.

Mantel, N.; Haenszel, W., Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748; 1959.

Maronpot, R.R.; Boorman, G.A., Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol.; in press.

McCann, J.; Choi, E.; Yamasaki, E.; Ames, B.N., Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals. Proc. Natl. Acad. Sci. 72:5135-5139; 1979.

Moreno, O., Report to RIFM. 27 January, 1977. Cited in Opdyke, D., Allyl isovalerate. Food Cosmet. Toxicol. 15(6): 611; 1977.

National Academy of Sciences. Histologic typing of liver tumors of the rat. J. Natl. Cancer 1nst. 64:179; 1980.

NCI, National Cancer Institute, Bioassay of allyl chloride for possible carcinogenicity, NCI TR 73, Department of Health, Education, and Welfare, Bethesda, Maryland, 1978. NTP, National Toxicology Program, Technical Bulletin No. 1(3):10; 1980.

NTP, National Toxicology Program, Technical Bulletin No. 6, January 1982.

NTP, National Toxicology Program, NTP Technical report on the carcinogensis bioassay of allyl isothiocyanate, NTP TR 234, National Institute of Environmental Health Sciences, National Institutes of Health, Public Health Service, Department of Health and Human Services, Research Triangle Park, North Carolina, 1982a.

NTP, National Toxicology Program, Technical Bulletin No. 8: 1-3; 1982b.

NTP, National Toxicology Program, NTP Technical report on the carcinogenesis bioassay of diallyl phthalate, NTP TR 242, National Institute of Environmental Health Sciences, National Institutes of Health, Public Health Service, Department of Health and Human Services, Research Triangle Park, North Carolina, 1983.

Nizze, H.; Lapis, K.; Kovacs, L., Allyl alcoholinduced changes in the rat exocrine pancreas. Digestion 19:359-369; 1979.

Oda, Y.; Hamano, Y.; Inoue, K.; Yamamoto, H.; Nihara, T.; Kunita, N., Mutagenicity of food flavours in bacteria (1st report). Osaka-Furitsu Koshu Eisei Kenkyu Hokoku, Shokuhin eisei hen 9:177-181; 1978.

Opdyke, D. Allyl isovalerate. Food Cosmet. Toxicol. 15(6):611; 1977.

Ortali, V.; Cardamone, G.; Salvini, P.; di Giuseppe, G.; Carere, A., Mutagenicity of several chemicals tested in two different systems: *Salmonella typhimurium* and *Streptomyces coelicolor*. Atti. Ass. Genet. Ital. 22:53-54; 1977.

Patel, J.M.; Wood, J.C.; Leibman, K.C., The biotransformation of allyl alcohol and acrolein in rat liver and lung preparations. Drug Metab. Dispos. 8:305-308; 1980.

Peto, R.; Pike, M.; Day, N.; Gray, R.; Lee, P.; Parish, S.; Peto, J.; Richard, S.; Wahrendorf, J., Guidelines for simple, sensitive, significant tests for carcinogenic effects in long-term animal experiments. International Agency for Research Against Cancer. Monographs on the long-term and short-term screening assays for carcinogens: A critical appraisal. Geneva: World Health Organization. Supplement 2; 1980:311.

Rees, K.R.; Tarlow, M.J., The hepatotoxic action of allyl formate. Biochem. J. 104:757-761; 1967.

Reid, W.D., Mechanism of allyl alcohol-induced hepatic necrosis. Experientia 28:1058-1061; 1972.

Sadtler Research Laboratories. Sadtler standard spectra. Philadelphia: Sadtler Research Laboratories; IR No. 1878.

Serafini-Cessi, F., Conversion of allyl alcohol into acrolein by rat liver. Biochem J. 182:1103-1107; 1972.

Squire, R.; Levitt, M., Report of a workshop on classification of specific hepatocellular lesions in rats. Cancer Res. 35:3214; 1975.

Tarone, R.E., Tests for trend in life table analysis. Biometrika. 62:679-682; 1975.

Taylor, J.; Jenner, P.; Jones, W., A comparison of the toxicity of some allyl, propenyl, and propyl compounds in the rat. Toxicol. Appl. Pharmacol. 6:378-387; 1964.

U.S. Code of Federal Regulations, 21:172, 515; 1979.

USITC, United States International Trade Commission, Synthetic organic chemicals - United States production and sales 1980. USTIC Publication 1183, U.S. Government Printing Office, Washington, D.C., 1981. Van Duuren, B.L.; Orris, L.; Nelson, N., Carcinogenicity of epoxides, lactones and peroxy compounds. II. J. Nat. Cancer Inst. 35:707-717; 1965.

Van Duuren, B.L.; Langseth, L.; Orris, L.; Teebor, G.; Nelson, N.; Kuschner, M., Carcinogenicity of epoxides, lactones and peroxy compounds. IV. Tumor response in epithelial and connective tissue in mice and rats. J. Natl. Cancer Inst. 37:825-834; 1966.

Van Duuren, B.L.; Langseth, L.; Goldschmidt, B.M.; Orris, L., carcinogenicity of epoxides, lactones and peroxy compounds. VI. Structure and carcinogenic activity. J. Natl. Cancer Inst. 39:1217-1228; 1967a.

Van Duuren, B.L.; Langseth, L.; Orris, L.; Baden, M.; Kuschner, M., Carcinogenicity of epoxides, lactones and peroxycompounds. V. Subcutaneous injection in rats. J. Natl. Cancer Inst. 39: 1213-1216; 1967b.

Yahagi, T.; Degawa, M.; Seino, Y.; Matsushima, T.; Nagao, M.; Sugimura, T.; Hashimoto,Y., Mutagenicity of carcinogenic azo dyes and their derivatives. Cancer Lett. 1:91-96; 1975.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

Allyl Isovalerate

TABLE A1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA BASAL-CELL TUMOR SEBACEOUS ADENOMA KERATOACANTHOMA	(50) 1 (2%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%)	(50) 2 (4%) 1 (2%) 1 (2%)
*SUBCUT TISSUE SARCOMA, NOS FIBROMA FIBROADENOMA	(50) 2 (4%) 5 (10%)	(50) 4 (8%)	(50) 1 (2%) 3 (6%) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA ADENOCA/SQUAMOUS METAPLASIA SYNOVIAL SARCOMA, METASTATIC	(50) 2 (4%) 1 (2%)	(50) 2 (4%)	(49) 1 (2%) 1 (2%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS Malig.lymphoma, histiocytic type Monocytic Leukemia	(50) 1 (2%)	(50) <u>4 (8%)</u>	(50) 2 (4%) 7 (14%)
CIRCULATORY SYSTEM			
			(

Allyl Isovalerate

.

	VEHICLE Control	LOW DOSE	HIGH DOSE
#HEART MESOTHELIOMA, MALIGNANT	(50) 1 (2%)	(49)	(50)
DIGESTIVE SYSTEM			
*TONGUE Squamous cell papilloma	(50)	(50)	(50) 1 (2%)
#LIVER BILE DUCT ADENOMA NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA PHEOCHROMOCYTOMA, INVASIVE	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 2 (4%) 1 (2%)
<pre>#PANCREAS ACINAR-CELL ADENOMA</pre>	(50) 1 (2%)	(50) 4 (8%)	(50) 2 (4%)
#STOMACH LEIOMYOSARCOMA	(50)	(50)	(50) 1 (2%)
URINARY SYSTEM None			
ENDOCRINE SYSTEM			
#PITUITARY ADENOMA, NOS ACIDOPHIL ADENOMA	(49) 14 (29%)	(46) 4 (9%) 1 (2%)	(49) 9 (18%)
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA PHEOCHROMOCYTOMA, MALIGNANT	(50) 1 (2%) 15 (30%) 1 (2%)	(50) 15 (30%)	(50) 15 (30%)
#THYROID FOLLICULAR-CELL ADENOMA FOLLICULAR-CELL CARCINOMA C-CELL ADENOMA C-CELL CARCINOMA	(50) 1 (2%) 5 (10%) 6 (12%)	(47) 1 (2%) 1 (2%) 7 (15%)	(47) 1 (2%) 3 (6%) 3 (6%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(50) 2 (4%)	(50)	(50)

	VEHICLE		
	CONTROL	LOW DUSE	HIGH DUSE
ISLET-CELL CARCINOMA	1 (2%)		
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND FIBROADENOMA	(50) 2 (4%)	(50) 1 (2%)	(50) 2 (4%)
*PREPUTIAL GLAND Carcinoma,nos	(50)	(50) 1 (2%)	(50)
SQUAMOUS CELL CARCINOMA Adenoma, nos		4 (8%)	1 (2%) 1 (2%)
#TESTIS INTERSTITIAL-CELL TUMOR	(50) 40 (80%)	(50) 44 (88%)	(50) 40 (80%)
NERVOUS SYSTEM			
#BRAIN Glioma, Nos	(50)	(50)	(50) 1 (2%)
<pre>#CEREBRAL HEMISPHERE ASTROCYTOMA</pre>	(50)	(50)	(50) 1 (2%)
SPECIAL SENSE ORGANS			
*EXTERNAL EAR Neurilemoma	(50)	(50) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM	•		
NONE			
BODY CAVITIES			
*MEDIASTINUM LIPOMA	(50)	(50)	(50) 1 (2%)
¥ABDOMINAL WALL Fibrosarcoma	(50)	(50) 1 (2%)	(50)
*MESENTERY FIBROSARCOMA, INVASIVE	(50)	(50) 1 (2%)	(50)

	VEHICLE		
LIPOSARCOMA		1 (2%)	
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
LEIOMYOSARCOMA, INVASIVE		1 (24)	1 (2%)
MESOTHELIOMA, MALIGNANT	1 (2%)		
HEAD Squamous cell carcinoma		1	
LEG			
SYNOVIAL SARCOMA		1	1
SOLE OF FODT			
SQUAMOUS CELL PAPILLOMA			1
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATHQ MORTBUND SACRETERCE	6	10	10
SCHEDULED SACRIFICE	o 3	D	٥
TERMINAL SACRIFICE	30	30	28
ACCIDENTALLY KILLED. NOS	٦	4	6
ANIMAL MISSING	5	7	7
ANIMAL MISSEXED Other Cases			
A INCLUDES AUTOLYZED ANIMALS			

	VEHICLE Control	LOW DOSE	HIGH DOSE
IUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	45	45	47
TOTAL PRIMARY TUMORS	111	102	109
TOTAL ANIMALS WITH BENIGN TUMORS	45	45	47
TOTAL BENIGN TUMORS	92	87	85
TOTAL ANIMALS WITH MALIGNANT TUMORS	17	13	2 1
Total Malignant tumors	18	14	22
TOTAL ANIMALS WITH SECONDARY TUMORS#	1	1	2 2
TOTAL SECONDARY TUMORS	1	1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors	1 1	1 1	2 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Primary or metastatic Total Uncertain Tumors			

* PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

.

TABLE A2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 49 49
INTEGUMENTARY SYSTEM			
*SKIN BASAL-CELL TUMOR KERATOACANTHOMA	(50)	(50)	(49) 1 (2%) 1 (2%)
*SUBCUT TISSUE BASAL-CELL TUMOR FIBROMA FIBROSARCOMA LIPOMA	(50) 1 (2%) 1 (2%)	(50) 3 (6%) 1 (2%)	(49)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR CARCINOMA CHONDROSARCOMA, METASTATIC	(50)	(50) 1 (2%)	(49)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS LEUKEMIA,NOS MONOCYTIC LEUKEMIA	(50) 4 (8%)	(50) 6 (12%)	(49) 1 (2%) 8 (16%)
#MESENTERIC L. NODE Malig.lymphoma, histiocytic type	(50) 1 (2%)	(50)	(49)
*MESENTERY Malig.lymphoma, Histiocytic type	(50)	(50)	(49) 1 (2%)
#THYMUS Thymoma	(41)	(43)	(39) 1 (3%)

CIRCULATORY SYSTEM

NONE

TABLE A2. FEMALE RATS:	NEOPLASMS	(CONTINUED)
------------------------	-----------	-------------

DIGESTIVE SYSTEM *TONGUE SQUAMOUS CELL PAPILLOMA #LIVER BILE DUCT ADENOMA NEOPLASTIC NODULE #STOMACH SQUAMOUS CELL PAPILLOMA #FORESTOMACH SQUAMOUS CELL PAPILLOMA #JEJUNUM MUCINOUS ADENOCARCINOMA *RECTUM FIBROSARCOMA JRINARY SYSTEM #URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA ENDOCRINE SYSTEM #PITUITARY ADENOMA, NOS ACIDOPHIL ADENOMA #ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA #THYROID	VEHICLE Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
*TONGUE SQUAMOUS CELL PAPILLOMA	(50)	(50)	(49) 1 (2%)
#LIVER BILE DUCT ADENOMA NEOPLASTIC NODULE	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(49)
#STOMACH Squamous cell papilloma	(50) 1 (2%)	(50)	(49)
#FORESTOMACH SQUAMOUS CELL PAPILLOMA	(50)	(50)	(49) 1 (2%)
#JEJUNUM Mucinous adenocarcinoma	(49)	(50)	(46) 1 (2%)
*RECTUM FIBROSARCOMA	(50)	(50) 1 (2%)	(49)
URINARY SYSTEM			
#URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA	(49) 1 (2%)	(50)	(48)
ENDOCRINE SYSTEM			
#PITUITARY ADENOMA, NOS ACIDOPHIL ADENOMA	(48) 13 (27%)	(49) 16 (33%) 1 (2%)	(48) 13 (27%)
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA	(50) 1 (2%) 5 (10%)	(50) 1 (2%) 8 (16%)	(49) 6 (12%)
#THYROID FOLLICULAR-CELL ADENOMA C~CELL ADENOMA C~CELL CARCINOMA	(48) 2 (4%) 2 (4%)	(50) 1 (2%) 7 (14%) 1 (2%)	(46) 4 (9%) 1 (2%)
#PARATHYROID Adenoma, nos	(48)	(44) 1 (2%)	(37)

	VEHICLE CONTROL	LOW DOSE	HIGH DOSE
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(49)	(50) 1 (2%)	(46)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND ADENOCARCINOMA, NOS Sarcoma, Nos Fibroadenoma	(50) 2 (4%) 17 (34%)	(50) 1 (2%) 1 (2%) 23 (46%)	(49) 11 (22%)
*PREPUTIAL GLAND Carcinoma,nos Adenoma, nos Adenosquamous carcinoma	(50)	(50) 1 (2%) 1 (2%) 1 (2%)	(49) 1 (2%) 1 (2%)
*VAGINA ENDOMETRIAL STROMAL SARCOMA, INV	(50)	(50)	(49) 1 (2%)
#UTERUS LEIOMYOMA LEIOMYOSARCOMA ENDOMETRIAL STROMAL POLYP ENDOMETRIAL STROMAL SARCOMA	(50) 1 (2%) 1 (2%) 11 (22%) 2 (4%)	(50) 8 (16%)	(48) 13 (27%) 1 (2%)
NERVOUS SYSTEM			
#BRAIN ASTROCYTOMA	(50)	(50)	(49) 1 (2%)
#CEREBELLUM MEDULLOBLASTOMA	(50)	(50)	(49) 1 (2%)
SPECIAL SENSE ORGANS			
*ZYMBAL'S GLAND	(50)	(50)	(49)

NONE

	VEHICLE Control	LOW DOSE	HIGH DOSE
BODY CAVITIES			
*PELVIS CHONDROSARCOMA	(50) 1 (2%)	(50)	(49)
*MESENTERY FIBROSARCOMA	(50)	(50)	(49) 1 (2%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS SARCOMA, NOS SARCOMA, NOS, METASTATIC ENDOMETRIAL STROMAL SARCOMA, MET OSTEOSARCOMA	(50)	(50) 1 (2%) 1 (2%) 1 (2%)	(49) 1 (2%)
LEG OSTEOSARCOMA			1
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHƏ MORIBUND SACRIFICE SCHEDULED SACRIFICE TERMINAL SACRIFICE	50 4 9 1 36	50 8 5 36	50 13 6 29
ACCIDENTALLY KILLED, NOS ANIMAL MISSING ANIMAL MISSEXED OTHER CASES		1	2
a INCLUDES AUTOLYZED ANIMALS			

~~~~~~	CONTROL	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* Total primary tumors	38 68	43 89	43 72
TOTAL ANIMALS WITH BENIGN TUMORS Total benign tumors	35 53	41 73	33 53
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	13 14	14 15	18 19
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	1	1	1 2
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or malignant Total uncertain tumors	1	1	
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			

* PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

## TABLE A3.

## INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

## **VEHICLE CONTROL**

ANIMAL NUMBER	0	0	8	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	2	2	2	0	02	
WEEKS ON		2	3	4	1	6 1	7	8	9	1	-	2	-3	4	5 1 0	1	7	-8	- 9	-1	1	2	-3		1	
INTERIMENTARY SYSTEM	ől	5	Š	5	6	6	6	61	6	6	6	6	6	6	6	6	6	6	6	6	_ŏł	7	5	Ž	ž	
SKIN SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA BASAL-CELL TUMOR SEBACEDUS ADENOMA KERATOACANTHOMA	+	٠	٠	+	٠	+	+	+	•	+	N	+	+	*	+	÷	+	+	+	+	+	+	÷	+ ×	+	
SUBCUTANEDUS TISSUE Sarcoma, nos Fibroma	+	+	+	+	+ x	+	÷	+	÷	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
RESPIRATORY SYSTEM	+-																									
LUNGS AND BRONCHI Alvedlar/bronchiolar Adenoma Alveolar/bronchiolar carcinoma	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	+ x	+	•	٠	+	٠	+	* ×	+	
TRACHEA	+	+	÷	÷	+	+	-	-	+	+	+	+	+	-	-	+	÷	+	+	+	+	-	+	-	-	
HEMATOPOIETIC SYSTEM	+							_																		
BONE MARROW	++-	+	+	<b>+</b>	.+	+	+	+	٠	+	÷	+	+	+	+	+	+	+	+	+	+	. +	+	+	+	
SPLEEN Hemangidsarcoma	+	+	+	+	+	+	*	+	+	* x	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	
LYMPH NODES	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
THYMUS	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	
CIRCULATORY SYSTEM																										
HEART MESOTHELIOMA, MALIGNANT DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	•	+	+	+	+	* x	
SALIVARY GLAND	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	ŧ	
LIVER BILE DUCT ADENOMA NEOPLASTIC NODULE Pheochromocytoma, invasive	+	+	+	•	•	•	* x	+	*	+	*	+	+	+	+	+	•	+	+	٠	+	•	+	+	+	
BILE DUCT	<u>+</u>	+	+	+	+	+	+	+	+	+	+	. +	+	+	÷	÷	÷	÷	+	+	+	+	+		+	
GALLBLADDER & COMMON BILE DUCT	N	N	N	N	N	N	Ν.	N.	N	N	N	N	N	N	<u>N</u>	N.	N	N	N	N	N	N	N	<u> </u>	N	
PANCREAS	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	٠	+	+	+	+	+	٠	+	٠	+	
ESOPHAGUS	+	+	+	+	+	+	+	+	+		÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
STOMACH	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	
SMALL INTESTINE	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
LARGE INTESTINE	+	+	+	+	+	+	+	+	+	+	+	٠	+	÷	+	+	+	+	+	÷	+	÷	+	٠	٠	
URINARY SYSTEM	+																									
KIDNEY	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	
URINARY BLADDER	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	+	٠	+	+	÷	٠	+	+	٠	+	
ENDOCRINE SYSTEM	+																									
PITUITARY Adenoma, nos	+	* x	+	+	+	+	+	+	٠	+	+	+	+	* x	+	+	+	+	*	+	+	×	•	<u>*</u>	•	
ADRENAL Cortical Adenoma Pheochromocytoma Pheochromocytoma, Malignant	+	* ×	×	+	*	+ X	*	+	* x	•	*	+ ×	* X	*	×	+	+	×	×	•	•	+	+	×	+	
THYRDID Follicular-cell carcinoma C-Cell Adenoma	+	+	+	÷	+	+	+	+	* ×	+	+	+	+	+	+	٠	+	+	+	+	+ X	+ X	+	+	+	
D-CELL CARCINUMA	+							<u>^</u>			<u>.</u>					••••	•	•	+	•	<u></u>	+	+	+		
PARAINIKUID PANCREATIC ISLETS ISLET-CELL ADENOMA	+	+	+	+	÷	÷	+	+	+	•	•	+	+	÷	+	+ ×	+	* ×	÷	+	÷	÷	+	•	+	
REPRODUCTIVE SYSTEM																									-	
MAMMARY GLAND FIBROADENDMA	+	+	+	٠	* x	+	+	+	+	+	•	+	+	+	+	+	+	+	+	٠	+	+	+	N	+	
TESTIS INTERSTITIAL-CELL TUMOR	+	* ¥	* ×	÷	÷ ×	÷	÷ ×	* ×	÷ ×	* ×	* ×	* ×	* X	* ×	* ×	* ×	* ×	* ×	* ×	* x	*	* ×	+	* ×	+ ×	
PROSTATE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
NERVOUS SYSTEM																										
BRAIN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	٠	÷	٠	+	+	٠	+	+	
ALL OTHER SYSTEMS	+	_																		_						
MULTIPLE ORGANS NOS Mesothelioma, malignant Monocytic leukemia	N	н	м	N	N	N	N	н	N	N	H	н	N	N	H	н	N	м	м	н	N X	н	н	N	н	
+: TISSUE EXAMINED MICROSCO -: REQUIRED TISSUE NOT EXAM X: TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, S: ANIMAL MIS~SEXED	PICAL INED NO MI	LY MIC CRO	ROS SCO	COP PIC	ICA EX	LLY AMI	NAT:	ION			С: А: В:	NO NE AU NO	TIS CROS TOL IMAI NEC	550 57 751 M CRO	E I 5 155 PSY	NFO O H ING PE	RMA IST RFO	TIO OLO RME	N S Gy D	UBM DUE	ITT TO	ED PR	ото	COL		
	*****					****																				
----------------------------------------------------------------------------------------------------------------	-------	---------	-------------	----------------	---------	----------	----------	--------	---------	---------	------------	---	--------	----------	------------	----------	----------	-----------	------------	-------------	----------	----------	------------	--------------	---------	----------------
ANIMAL NUMBER	5	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	1	4	4	4	6	5	
WEEKS ON	10	-7	0	9	8	0		0	0	0	1	0		1	3		1	1	1	11	-1		1		1	TISSUES
TUTCOIMENTING EVETEM	5	8	2	6	8	1	žĹ	ŝ	9	21	7	3	ő.	7	1	31	21	<u>; </u>	21	žĺ	6	ž	21	21	7	TUMURA
ENTERDORENTART STOTER						,												1								502
SQUAMOUS CELL PAPILLOMA Squamous Cell Carcingma Basa(-Cell tumor Sebacecus Adenoma Keratoacanthoma		Ţ	•	•	,	x	•	Ţ	·	•	•	·		•	•	•	×	x	•	•	Ţ	•	·	Ţ		
SUBCUTANEOUS TISSUE Sarcoma, nos Fibroma	+	÷	+ x x	+ x	+	+	•	+	*	+	+	+	+	+	+	+	+	• ×	÷	+	+	+ x	•	+	+	\$0× 2 5
RESPIRATORY SYSTEM	+																									
LUNGS AND BRONCHI Alvedlar/Bronchiclar Adenoma Alveglar/Bronchiclar Carcinoma	ŀ	+	•	•	•	•	•	•	•	+	+	+	•	*	+	+	•	+	•	+	+	×	+	+	•	50 2 1
TRACHEA	1 +	٠	+	+	٠	٠	•	-	٠	•	+	٠	٠	٠	-	+	t	-	-	٠	٠	٠	~	+	-	35
HEMATOPOIETIC SYSTEM					~																					
BONE MARROW	1-t	÷.	<u>+</u>	. <del>1</del>	+	+	<u>t</u>	+		+	<u></u>		.+	+	<u>+</u>	+	+	+	. <u>+</u>	+	. +	+	<u>+</u>	+	_+	<u> </u>
SPLEEN Hemangiosarcoma	+	+	*	*	+	+	+	+	+	+	+	•	+	+	+	•	•	•	•	+	+	•	• 	+	+	50
LYMPH NODES	++-	+	<u>+</u>	<u> </u>	+	+	+		+	+	+	+	+	+	+	+	*	*	. <u>+</u>	+	+	-+	<u>+</u>	<del>t</del>	-+	50 [
THYMDS	-	*	*	-	+	+	+	+	-	+	+	•	٠	+	+	•	+	+	*	-	~	+	٠	+	•	44
CIRCULATORY SYSTEM							-																			
HEART MESOTHELIOMA, MALIGNANT	+	+ 81	•	+ 6 [	+ 81	+	+ 7 }	+	+ 9]	+ 21	+	+	+ 0	+ 71	• 71_	• 3.[	+ 21	+ 71.	+ 71	• 71	+ 61	• 71	+ 71	+ _7 i	*  Z	50
DIGESTIVE SYSTEM																										
SALIVARY GLAND	++	+	~	+	+	+	*	+	*	+	_ <u>+</u>	+	+	+	+	*	*	+	<u>+</u>	<u>+</u>	+	*	+	+	+	- 49
LIVER BILE DUCT ADENOMA Nedplastic Nodule Pheochromocytoma, invasive	+	+	•	+	+	•	+	+	+	+	•	•	*	•	+ x	+	+	+	*	+	×	+	+	+	•	50
BILE DUCT	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	<u>+</u>	+		+	+	50
GALLBLADDER & COMMON BILE DUCT	1 N	ĸ	N	N	N	N	N	N	N	н	N	N	N	<u>N</u>	N	N	N	N	N	N	N	<u>N</u>	N	N	N	50×
PANCREAS Acinar-cell Adengma	•	+	+	+	+	•	+	+	•	+	•	+	+	+	+	+	+	+	+	+	•	•	+	•	+	50
ESOPHAGUS	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>t</u>	<u>+</u>	*	+	+	+	. <u>+</u>	+	+	50
STOMACH	++	+	+	t	+	<u>+</u>	+		+	+	+	+	+	<u>+</u>	+	+	<u>*</u>	+	<u>+</u>	+	+	+	+	<u>+</u>	4	50
SMALL INTESTINE	++-	+	+	+	+	+	+	+	+	+	+	+	+	.+	+	+	<u>+</u>	<u>+</u>	+	<u>+</u>	+	+		+	4	50
LARGE INTESTINE	+	÷	٠	+	÷	÷	*	+	+	+	÷	٠	٠	-	+ -	÷	+	+	٠	+	٠	+	÷	+	+	50
URINARY SYSTEM	-		•••••										~												1	
KIDNEY	++-	+	<u></u>	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	+	+	±	+	<u>+</u>		<u>+</u>	+	.+	50
URINARY BLADDER	+	+	٠	+	+	+	+	+	+	٠	+	٠	+	+	÷	+	+	٠	+	+	+	+	+	+	+	50
ENDOCRINE SYSTEM	1								·																-	
PITUITARY Adendma, NDS	Ļ.	•	•	+	-	+	+	* ×	+	+	+	+	*	ź		* X	• ×	*	÷.	+	ž	+	+	<u>*</u>	+	49
ADRENAL Cortical Adenoma Pheochromocytoma	•	٠	٠	+	+	+	+ X	+	+	•	+	٠	+	+	* : x :	• x	+	*	٠	*	+ X	•	٠	+	×	50   15
PHEOCHROMOCYTOMA, MALIGNANT															×					<del></del>					-+	
TMYRGID Follicular-cell carcinoma C-Cell Adenona C-Cell Carcinoma	+	*	*	•	+	+	+	+	*	*	+	+	+	+ X	* X	•	+	+	+ x	•	×	•	+	•	* X	50
PARATHYROID	+	+	-	+	+	+	+	÷	+	+	+	+	+	+	•	+	+	4	-	+	•	+	+	+	+	45
PANCREATIC ISLETS ISLET-CELL ADENOMA ISLET-CELL CARGINOMA	+	٠	+	+	٠	٠	÷	٠	+	+	٠	÷	٠	٠	•	* X	+	+	*	÷	٠	+	+	٠	+	50 2
REPRODUCTIVE SYSTEM																<u> </u>									-+	
MAMMARY GLAND FIBRDADENOMA	+	+	•	+	+	N	+	+	+	•	+	•	•	+	•	+	+	+	+ x_	+	+	•	•	+	+	50×
TESTIS Interstitial-cell tumor	+	+	ż	+	ż.	+	ż.	+	* x	÷.	ż.	•	+	<u>*</u>	*	+	+ x	+ x	* ×	, x	ż	*	*	*	ż	50 40
PROSTATE	+	٠	+	٠	+	+	٠	+	+	+	+	٠	+	+	•	+	÷	٠	+	+	٠	+	٠	+	+	50
NERVOUS SYSTEM	+																						•		-+	
BRAIN	•	+	٠	+	+	+	٠	٠	٠	٠	•	+	+	+	•	٠	+	+	+	+	٠	+	٠	+	+	50
ALL OTHER SYSTEMS	1	-																								
MULTIPLE ORGANS NOS Mesothelioma, malignant Monocytic leukemia	N	н	N	H	N	н	N	N	н	N	N	N	н	N	H I	N	N	H	н	N	N	N	H	NX	N	50×

### TABLE A3. MALE RATS: TUMOR PATHOLOGY (CONTINUED) VEHICLE CONTROL

•

A ANIMALS RECROPSIED : NO TISSUE INFORMATION SUBMITTED A ANIMALS RECROPSIED : NO TISSUE INFORMATION SUBMITTED PERDIRED TISSUE NOT EXAMINED MICROSCOPICALLY C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL AUTOLYSIS H: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION M: ANIMAL MISSING H: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION H: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION H: NECROPSY PERFORMED

### TABLE A3.

•

-

### INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

#### LOW DOSE

6/1TM5/	1 01		01		01	- 77				07	61	01		51		- 7 -	- 1	n 1						01	- <u>-</u>
NUMBER	0	0	0	0 4	0	ů é	2	0	0		1	2	1	1	1	1		i	į	Ž	2	22	2	24	25
WEEKS DN Study	1	6	ò	0	2	0	0	21	5	8	à	0	0	1	5	0	0 7	0	1	ő	0	0	1	1	5
INTEGUMENTARY SYSTEM	-5.1	_61	6	<u>_6</u> ]	41	31	6)	01	5	_6	<u>   6                                 </u>	61	61	6	51	21	-11	61	<u>.</u> 61	_61	31	61	31	-61	ᅫ
SKIN Keratgacanthoma	+	*	N	+	+	+	+	٠	N	+	+	+	+	+	+	•	•	•	+	+	+	ż.	+	+	4
SUBCUTANEOUS TISSUE FIBROMA	+	÷	н	+	+	+	+	+	N	٠	٠	+	*	+	٠	٠	٠	*	٠	٠	٠	* ×	٠	٠	+
RESPIRATORY SYSTEM	1																								1
LUNGS AND BRONCHI	+	+	٠	٠	٠	٠	+	+	٠	٠	+	٠	٠	٠	+	+	+	٠	+	+	٠	+	٠	٠	+
TRACHEA	+	+	+	-	_	+	•	-	+	-	~	+	+	-	+	+	-	•	+	_	-	+	+	+	-
HEMATOPOIETIC SYSTEM																									+
BONE MARRON	<u>L</u>	+	÷	+	<del>.</del>	+	•	+	+	+	+	+	÷	+	÷	•	+	•	+	+	•	+	+		+
SPLEEN	<u> </u>	+	+	+	+	+	÷	+	-	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+
LYMPH NODES	L±	+	+	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	_t	<u>+</u>	. <u>+</u>	+	+	+	+
THYMUS	-	٠	÷	-	-	÷	+	÷	٠	+	٠	+	+	÷	٠	~	+	+	+	+	٠	٠	+	+	-
CIRCULATORY SYSTEM	+											_					_			•••••					+
HEART	+	+	+	٠	÷	÷	٠	٠	٠	+	+	+	÷	+	٠	÷	+	÷	+	+	÷	+	+	+	+
DIGESTIVE SYSTEM								- ,																	7
SALIVARY GLAND	+-	+	*	+	+	+	+	+	*	+	*	+	+	<u>+</u>	+	*	*	+	*	*	+	+	+	+	4
LIVER NEOPLASTIC NODULE HEPATOCELLULAR CARCINOMA	Ļ	+	×	•	+	+	+ x	•	•	+	+	+	+	*	+	+	*	*	+	•	+	+	+	+	_
BILE DUCT	<u>+</u>	+	*	+	+	+	+	+	_ <u>t</u>	t	+	+	<del>.</del>	+	+	+	+	+	_ <u>t</u> _	+	+	+	÷	+	4
GALLBLADDER & COMMON BILE DUCT	N	Ν	N	N	N	N	N	N	H	N	N	н	н	N	н	N	N	N	Ν	N	N	N	N	N	N
PANCREAS ACINAR-CELL ADENOMA	4	* x	*	+	_ <u>×</u>	+	٠	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ESOPHAGUS	<u>  +</u>	+	+	÷	<u>+</u>	. <b>.</b>	+	+	÷	_ <u>+</u>	+	•	+	+	+	-	+	+	-	+	+	<u>+</u>	+	+	±
STOMACH	+	+		+	+	+	+	+	+	+	+	+	_+	÷	+	+	+	+	+	+	÷	÷	+	+	+
SMALL INTESTINE	L+	+	+	+	+	+	+	+	+	. <u>+</u>	+	+	+	+	+	+	.±	+	+	÷	+	+	+		+
LARGE INTESTINE	+	+	٠	٠	٠	٠	+	+	+	+	÷	+	÷	•	٠	+	+	+	+	٠	٠	٠	+	+	+
URINARY SYSTEM																									+
KIDHEY .	+-+-	+	+	+	+	+	+	*	+	+	+	+	+	<u>+</u>	+	. <u>+</u>	<u>+</u>	*	+	<u>+</u>	+	+	+	+	4
URINARY BLADDER	+	+	-	+	+	÷	٠	÷	-	٠	+	+	+	٠	*	٠	-	٠	٠	+	+	+	٠	٠	+
ENDOCRINE SYSTEM																~~~~									Т
PITUITARY Adenoma, nos Acidophil Adenoma	•	•	+	•	•	+	•	+	-	-	×	* ×	+	+	+	+	•	-	*	*	+	*	+	+	+
ADRENAL Pheochromocytoma	+	+	ż	*	*	ż	+	ż	+	+	+	•	+	<u>*</u>	+	+	+	+	+	ż	<u>*</u>	ž.	•	.ż.	4
THYROID Follicular-cell adendma Follicular-cell carcindma C-cell adenoma	+ ×	+	×	٠	+ x	+	+	٠	٠	+	•	+	٠	+ x	+	٠	+	+	•	+ x	+	+	+	+	+
PARATHYROID	+	•	+	+	+	+	+	-	+	•	+	÷	+	+	+	-	+	+	+	+	+	+	+	+	7
REPRODUCTIVE SYSTEM																								-	+
MAMMARY GLAND FIRROADENDMA	+	+	+	÷	+	٠	+	٠	N	+	÷	÷	•	÷	÷	٠	+	•	* ×	+	÷	٠	÷	+	•
TESTIS INTERSTITIAL-CELL TUMOR	ţ	÷	÷	÷	* *	* *	÷	÷	+	* *	÷	* *	÷	÷	+	+	* *	* *	ţ	* *	÷	÷	÷	÷	-
PROSTATE	-	+	+	+	+	÷	÷	+	÷	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
PREFUTIAL/CLITORAL GLAND Garcinoma, Nos Adenoma, Nos	н	N	N	н	H	N	N	н	N	N	N	N X	H	N	N	N	N	N	N X	N	м	н	H	Ň	H
NERVOUS SYSTEM																<b>~</b>				_					-+
BRAIN	+	+	٠	٠	+	+	٠	+	+	٠	+	•	٠	÷	٠	+	٠	+	÷	٠	÷	٠	÷	٠	+
SPECIAL SENSE ORGANS	<u> </u>		<b></b>																						+
EAR NEURILEMOMA	N	N	N	N	N	H	ż	N	ĸ	H	N	Ħ	H	+	N	N	N	N	H	N	N	H	N	N	N
BODY CAVITIES																									1
PERITONEUM FIBROSARCOMA	N	N	H	N	N	N	N	N	N	H	N	н	N	N	N	H	M 	•	н	м	H	N	н	н	M
MESENTERY FIBROSARCOMA, INVASIVE LIPOSARCOMA	н	N	H	N	N	N	н	N	H	H	н	N X	ĸ	H	H	N	H	н	н	H	H	N	н	N	H
ALL OTHER SYSTEMS																									1
MULTIPLE ORGANS NOS Sarcoma, NOS Monogytic Leukemia	H	N	N	N	×	н	N	N	N	*	н	н	H	N	н	H	N	н	н	н	N X	N	N	N	N -+
HEAD HOS Squamous celí carcinoma								<u>x</u>																	4
LEG NDS FIBROSARCOMA																		_							

+: TISSUE EXAMINED MICROSCOPICALLY -: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY X: TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION S: ANIMAL MIS-SERED

NO TISSUE INFORMATION SUBMITTED
 NECROPSY, NO NISTOLOGY DUE TO PROTOCOL
 AUTOLYSIS
 NIMAL MISSING
 NO NECROPSY PERFORMED

AN IMAL NUMBER		0	0	0	0	0	0	0	31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
WEEKS ON	-61	-7	8	-1	0	-11-	2	3	4	5	-6	7	8	1	0 1	++-	2	31	6	5	-	2	-5	- 2	- 1	TISSUES
STUDY	0	0 6	61	0   6	0   6	6	6	91 51	4	0	0	8	9	5	6	6	?	61	5	6	6	0	5	9	0   5	TUMORS
INTEGUMENTARY SYSTEM																-										
SKIN KERATDACANTHOMA	Ľ	<u> </u>	+	+	*	+	N	+	<u>+</u>	+	<u> </u>	+	+	+	*	*	+	+	+	+	+	+	+		*	50×
SUBCUTANEDUS TISSUE FIBROMA	+	+	٠	÷	٠	٠	Ħ	* ×	٠	+	÷	٠	٠	٠	+	+	٠	÷	٠	+	+	÷	٠	٠	*	50× 4
RESPIRATORY SYSTEM	1										•														-	
LUNGS AND BRONCHI Alvedlar/Bronchiolar Carcinoma	+	٠	٠	٠	+	+	٠	+	٠	+	*	+	+	+	+	٠	+	÷	٠	+	٠	+ ¥	+	+	+	50
TRACHEA	+	4	-	+	-	+	+		+	+	-	+	+	+	+	+	*	+	+	+	+	+	+		+	35
HEMATOPOIETIC SYSTEM	+													• • •											-+	
BONE MARROW	L+	+	+	+	+		+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	50
SPLEEN	L+_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	•	+	+	+	49
LYMPH NODES	+	+	+		+	<u>+</u>	<u>+</u>	+	+	+	+	+		<u>+</u>	÷	+	•	+	+	+	+	+	+		+	50
THYMUS	+	٠	٠	÷	~	-	-	*	٠	-	÷	٠	+	÷	+	٠	÷	-	-	ŧ	•	+	-	-	+	36
CIRCULATORY SYSTEM	+								***									-							+	
HEART	+	÷	+	+	+	+	+	+	٠	٠	÷	+	+	٠	*	+	•	٠	÷	٠	٠	÷	+	-	+	49
DIGESTIVE SYSTEM	1-													-,,		,								~~~~~	-	
SALIVARY GLAND	++	+	<u>+</u>		+	+	+	+	+		+	<u>+</u>		+	+	<u>.</u>	+	<u>+</u>	+.		+	t	-		+	48
LIVER NEOPLASTIC NODULE HEPATOCELLULAR CARCINGMA	+	+	+	+	+	+	•	+	•	+	+	+	+	*	+	+	+	+	*	+	+	+	+	+	+	50
BILE DUCT	L+	<u></u>	+	<u>.</u>	+	+	. <u>+</u>	+		+	+	+	+	<u>.</u>	+	+	+	+	+	+	<u>+</u>	•	+	+	+	50
GALIBLADDER & COMMON BILE DUCT	N	N	N	N	н	N	N	н	н	н	N	н	8	N	N	N	N	N	N	к	N	N	н	N	н	50×
PANCREAS ACTNAR-CELS ADENDMA	+	+	÷	٠	÷	+	٠	÷	+	+	+	+	+	+	٠	÷	+	* *	٠	٠	÷	٠	+	÷	•	50
ESOPHAGUS	+	+	+	+	+	+	+	+	•	+	+	+	+	+	•	•	+	+	+	+	+	+	-		7	45
STOMACH	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SMALL INTESTINE	1.	+	+	+	+	•	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	50
LARGE INTESTINE	+	+	+	+	+	+	+	+	+	+	+	•	+	÷	+	+	+	+	+	+	•	+	+	+	+	50 1
URINARY SYSTEM	┿──						·····																	•••••	-	
KIDHEY	<u> </u> +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	50
URINARY BLADDER	+	÷	+	٠	٠	•	÷	÷	+	+	÷	+	+	+	÷	•	+	٠	÷	+	+	÷	÷	+	+	47
ENDECRINE SYSTEM	+	-																							-+	
PITUITARY Adenoma, NCS Acidophil Adenoma	+	+	+	*	٠	* ×	+	*	+	٠	* ×	+	+	* ×	+	*	+	+	+	٠	+	+	~	+	+	46
ADRENAL Pheochromocytoma	+ X	+	+	÷ x	* *	+	+	+	+	+	+	+	+	+	+	+	+	*	+	, X	÷	+	+	+	ż	50 15
THYROID Folligular-cell Adenoma	+	٠	÷	÷	+	٠	+	-	-	+	٠	٠	٠	÷	÷	÷	٠	÷	÷	٠	+	ŧ	٠	-	•	47
FULLICULAR-CELL CARCINOMA C-CELL ADENDMA	L	X					x					•			<u>x</u>						×				_	;
PARATHYRDID	+	+	+	٠	٠	-	÷	-	•	~	÷	+	+	•	+	÷	٠	+	-	+	÷	٠	+	-	+	42
REPRODUCTIVE SYSTEM							******																		+	
MAMMARY GLAND FIBROADENOMA	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	N	+	+	+	N	+	+	50 ×
TESTIS Interstitial-cell tumur	×.	* X	* ×	*	* ×	+	* x	* ×	ż	* X	+ X	÷ X	* ×	* X	* ×	*	* X	+ X.	* ×	* x	* X	* ×	*	+ X	*	50
PRDSTATE	+	+	.+	+	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+	÷	+	+	48
PREFUTIAL/CLITORAL GLAND	N	м	H	N	N	N	Ŋ	н	н	N	Ŋ	N	H	N	N	N	Ŋ,	N	н	н	N	N	N	N	н	504
ADENCHA, NOS					x					x															1	
NERVOUS SYSTEM	1				,																				1	
BRAIN	Ľ	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	•	+	+	*	•	+	+	50
SPECIAL SENSE ORGANS																										
NEURILEMOMA	N	N	ы	м	N	N	н	Ν	н	м	Ν	н	N	М	н	N	N	н	N	N	N	N	M	N	N	504
BODY CAVITIES	<u> </u>												~~~~												+	
PERITONEUM FIBROSARCOMA	N	N	н	N	N	N	H	н	н	N	N	N	н	N	н	N	H X	н	H	н	N	H	N	N	N	50H
MESENTERY FIBROSARCOMA, INVASIVE	N	H	N	H	н	н	N	н	н	н	N	H	N	N	N	ĸ	N X	н	N	н	N	н	н	H	н	50×
LIPOSARCOMA ALL OTHER SYSTEMS																									4	
MULTIPLE ORGANS NOS	I N	ж	N	N	н	н	н	N	н	н	н	н	N	N	N	н	N	N	N	N	N	н	N	N	н	50×
SARCOMA, NOS Monocytic Leukemia	<u> </u>								x		<b>.</b>		x											x	4	4
HEAD NOS Squamõus cell carcinoma	Ļ																								4	
LEG NOS FIBROSARCOMA																_					x				Į	τ.

### TABLE A3. MALE RATS: TUMOR PATHOLOGY (CONTINUED) LOW DOSE

FIBROSARCOMA

FIBROSARCOMA * ANIMALS NECROPSIED * TISSUE EXAMINED MICROSCOPICALLY - REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY - REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY - TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION - NO NECROPSY PERFORMED - NO NECROPSY PERFORMED

### TABLE A3.

#### INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

#### HIGH DOSE

4NTM4	Th	01	0 1	01	11	61	51	03	11	01 0	1 01	01	01	51	T	61	0T	- 37	- <u>-</u>	01		- 01	01	01
NUMBER	j j	0	3	0	5	0	Ŷ.	0 8	0	1 1 0 1	1	1	1	5	1	1	1	i	2	2	2	2	2	2
WEEKS ON STUDY		0	6	2	0	0	3	1	6	1 1	8	1	1	3	3	1	0	1	7	1	1	0	0	5
INTEGUMENTARY SYSTEM	15	5	-5	41	_51_	51	5	5	51	51 5	9	5	01	51	6	61	61	لغ	9	6	61	61	<u>. i</u>	-4
SKIN	+	÷	н	+	+	N	+	+	÷	+ +	+	N	÷	+	÷	÷	÷	÷	÷	÷	+	+	+	+
SQUAMOUS CELL PAPILLOMA Basal-Cell Tumor Keratoacanthoma	$\downarrow$				×			×																
SUBCUTANEOUS TISSUE Sarcoma, nos Fibroma Fibroadenoma	·	٠	H	+	+	H	+	٠	•	• •	٠	H	+	٠	•	٠	* X	+	÷	+	÷	÷	٠	+
RESPIRATORY SYSTEM	+																							-
LUNGS AND BRONCHI Adenoca/squamdus metaplasia Syndvial sarcoma, metastatic	+	•	+	+	+	•	+	•	•	• •	÷	•	•	+	+	•	+	+	+	•	•	•	•	+
TRACHEA	+	-	+	+	+	+	÷	-	÷		+	÷	-	٠	+	-	-	÷	÷	ŧ	٠	÷	-	+
HEMATOPOIETIC SYSTEM	+																							+
BONE MARROW	+		+	+	+	+	+	+	<u>+</u>	<u>+</u> +	÷	+	+	+	.+	+	+	+	+	+	+	+	÷	+
SPLEEN	++-	<u>+</u>	+	+	+	+	<u>*</u>	+	+	+ +	+	+	+	+	t	+	+	+	+	+	+	+	+	+
LYMPH NODES	++	+	+	<del>+</del>		÷	+	+	*	+ +	+	+	<u>+</u>	<del>.</del>	. <u>+</u>	+	+	+	+	+	+	+	+	+
THYMUS	+	-	+	+	٠	+	+	+	+	+ +	+	+	٠	+	٠	+	٠	+	-	+	+	+	-	+
CIRCULATORY SYSTEM	1																******							1
HEART	+	٠	٠	٠	+	٠	+	+	+	+ +	٠	+	+	+	+	+	+	٠	+	+	٠	٠	÷	+
DIGESTIVE SYSTEM	1																							1
ORAL CAVITY Squamdus cell papilloma	N	N	м	N	N	N	N	N	H	N N	N	N X	N	N	H	н	N	N	X	М	N	N	N	N
SALIVARY GLAND	+	÷	+	+	+	÷	÷	+	-	+ +		+	+	÷	+	+	+	+	+	÷	+	+	+	+
LIVER NEOPLASTIC NODULE Hepatocellular carcinoma	+	•	+	+	•	+	+ x	•	•	+ + 	+	•	•	+	•	+	*	•	+	+	+	+	+	+
AILE DUCT	+	*		+		+	+	+	+	ŧŧ	+	+	+	+	+	+	*	+	+	+	. +	+	+	+
GALLBLADDER & COMMON BILE DUCT	LN.	N	N	N	N	н	N	N	H	<u>H N</u>	N	н	N	N	H	N	N	н	N	Ν.,	N	8	N	N
PANCREAS ACINAR-CELL ADENOMA	+	+	+	+	+	+	+ X	+	+	+ +	+	+	+	٠	* X	+	÷	+	٠	+	+	+	+	+
ESCPHAGUS	+	+	+	-	+	+	+	+	+	+ +	-	+	ŧ.	+	+	+	+	+	+	+	+	+	+	+
STOMACH	+	+	+	+	+	+	٠	÷	+	+ +	+	÷	÷	+	+	+	٠	+	÷	÷	÷	÷	÷	+
	1											4	•						<u> </u>	+			-	1
IARCE INTESTINE	†:	•		<u>-</u>	•	÷		+ +		· ·	<u>.</u>		- <u></u> -	- <u>*</u>				<u>.</u>	- <u>-</u>			<u>,</u>		-
IPTNIPY SYSTEM	<u> </u>							·			·							÷						4
KIDNEY	1.	÷	+	+	+	÷	÷		•		+	*	÷	+	*	÷	÷	+	+	•	÷	+	+	+
URINARY BLADDER	1.	+	+	+	+	+	•	+	+	• •	+	+	 +	+	÷	+	•	•	+	+		+	+	Ì
ENDOCRINE SYSTEM	+																							+
PITUITARY Ademona, NOS	-	+	+	+	+	÷	* x	+	+	• •	, x	+	+	* ×	+	+	* ×	+	÷	+	+	•	+	·
ADRENAL PHEOCHROMOCYTOMA	+	٠	٠	٠	*	÷	4 X	٩	• ;	4 X	ł	٠	+	÷ x	+	+	٠	, x	+	٠	+	٠	٠	+
THYRDID Follicular-Cell Carcinoma C-Cell Adenoma	+	٠	+	÷	•	+	•	+	-	• • ×	÷	•	+	•	÷	÷	-	+	٠	+	+	* x	+	+
C-CELL CARCINDMA	+				<u>×</u>	******			· · · · · · ·				<u></u>											+
PARATHYRUID	++		+	<u>*</u>	. <u>*</u>	*	<u>+</u>	<u>+</u>		<u> </u>	+	+	+	+	+	<u>*</u>		<u>+</u>	<u>+</u>	<u>.</u>	+	. <u>+</u>	+	-
RANCHEATIG ISLEIS ISLET-CELL ADENDMA REPRODUCTIVE SYSTEM		•	•		•	•	•	+	• •		•	+	+	*	•	+	*	•	•	•	•		+	4
MAMMARY GLAND	+	٠	+	٠	÷	N	÷	÷	+ .	+ +	÷	٠	+	•	+	+	+	٠	÷	÷	+	÷	÷	+
TESTIS	t		<u>.</u>	+	. <u></u>	<u>+</u>	t	÷	÷ :	: :	÷	+	t	+	÷		<u>.</u>	t	÷	t	÷		+	+
PRICIATE	†÷	<u>^</u>	-å	*	<u>A</u>	۵ ۱	<u>م</u>	<u>م</u>	<u>م</u> ــــــــــــــــــــــــــــــــــــ		<u>^</u>		<u>م</u>	4	گ	4		<u>^</u>	. <u>^</u>	<u>سم.</u>	<u>م</u> ۔	<u>~</u>	-	1
PRESITIAL ZOLTTERAL GLAND		<u></u>	<u></u>	- <u>*</u>	- <u>-</u>	. <u></u>	л N	л н	<u>ч</u> ,	() ( N	<u>-</u>	N	ř.		<u></u> н	 N		 N	<u>т</u>	 N	 N	- <u>-</u>	<u>т</u>	Ť
SQUAMOUS CELL CARCINOMA Adenoma, Nos		.,	"							• ••		.,	•,	x	X	-,			,,	.,		,.	.,	-
NERVOUS SYSTEM	+																							+
BRAIN GLIDMA, NOS Astrocytoma	+ ×	·	*	٠	•	•	÷	•	• •	• •	٠	÷	٠	٠	+	+	•	÷	٠	٠	٠	٠	+	*
BODY CAVITIES	1					-							*****											1
MEDIASTINUM LIPDMA	N	H	H	H X	H	H	M	N	N P	ни	H	H	N	N	N	H	н	н	н	H	N	N	N	N
ALC OTHER SYSTEMS	t					~~~~																		+
MULTIPLE ORGANS NOS LEIGMYDSARCOMA, HNVASIVE Malig.lymphoma, histiocytic type Monocytic leukemia	н	N X	N	н	N	н х	н	N _ 1	N 1	N N	н	N	H X	H	N	H	N	N X	N	H	H	н	N	N
LEG KOS Fibrosarcoma Synovial Sarcoma												Red.												1
SOLE OF POOT																		J						
JAVARIUUS CELL PAPILLUMA	· · · · · · ·	~~~~												• •				<u>.</u>				*****		

X: N: 5:

: NO TISSUE INFORMATION SUBMITTED C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL A: AUTOLYSIS M: ANIMAL MISSING B: NO NECROPSY PERFORMED

IISSUE EXAMINED MICROSCOPICALLY Required Tissue Not Examined Microscopically Tumor Incidence Necropsy. No Autolysis, no Microscopic Examination Animal Mis-Sexed

																					-		
AN IMAL NUMBER	2	0	2	2	3	0 3	3	3	3	3	3 3	0	3	4	4	2		0	0 4	0	9	4	
WEEKS ON	1	-7	1	9	0	1	2	1	-	1	<u> </u>	8	9	8	1-	1		15	6	7	8	8 0	TISSUES
INTEGUMENTARY SYSTEM	6	4	Ĕ.	6	2	ž	<u>;</u> ]	6	î	6	516	Ŀ;	6	7	3	6		1.6	Li	8	6	1 6	TUMURS
SKIN Squamous cell papilloma Basal-cell Tumor Keratocantokan	+	+	+	+	N	٠	+	+	÷	+	× *	٠	+	+	н	+ • ×	• •	•	+	+	•	• •	50% 2 1
SUBCUTANEOUS TISSUE Sarccia, Nos Fisroma Fisroma Fisrodadencma	+	+	+ * X	•	N	+	+	٠	+	+	+ +	•	+	+	N	• •	+ +	•	+	+	÷	+ + X	50× 1 3 1
RESPIRATORY SYSTEM	+																						
LUNGS AND BRONCHI Adendca/squamdus metaplasia synovial sarcoma, metastatic	+	×	+	+	+	+	+	+	+	• •	• •	+	+	+	+ ×	+ -	• •	+	+	+	+	+ +	49
TRACHEA	+	-	+	+	+	-	-	-	٠		+ +	-	4	+	ŧ	+ +	• •	+	-	-	+	- +	33
HEMATOPOIETIC SYSTEM																							
BUNE MARROW	t t		- <u>*</u> -		<u> </u>	+	<u>+</u>	. <u>+</u>	+	<u>+ ·</u>	<u>* *</u>	<del>t</del>	<u>.</u>	+	<u>*</u>	<u>+ -</u>	*				<u>_</u>	+ +	50
STLEEN (YMZH NODES	†÷	<u>*</u>	*		<u>*</u>	_ <u>*</u>	÷	÷	*	* · ·	<u>* +</u>		<u></u>	- <u>*</u>	*	* *		*			- <u>+</u>	+ + +	50
THYMUS	1-	+	+	+	+	•	-	-	+		·	<u>-</u> +	+		*	• -		•••••		 +		* *	39
CIRCULATORY SYSTEM	┼																						
HEART	+	÷	+	+	٠	÷	•	÷	+	+ -	+ +	+	+	+	÷	+ +		+	+	+	+		50
DIGESTIVE SYSTEM	<del> </del>																						
ORAL CAVITY Squamous cell papilloma	N	N	N	н	N	ĸ	н	H	N	N 1	н и ———	N	н	N	н	N N	l N	N	N	N	N	н н	50×
SALIVARY GLAND	+	•	+	٠	+	+	+	+	+ ·	+ -	• •	+	٠	+	+	+ +	-	+	٠	٠	+	+ +	48
LIVER Neoplaștic nodule Hêpatogellular carcinoma	•	•		•	+	+	+	•	+	* ·	• +	•	+	+	•	+ +	•	+	•	+	+	+ +	50 2 1
BILE DUCT	++	<u>+</u>	.*	+	<u>t</u>	+	<u>+</u>	+	+	<u>* ·</u>	<u>+ +</u>	+	+	<u>+</u>	<u>t</u>	* *	+	*	+		+	+ +	50
GALLBLADDER & COMMON BILE DUCT	N	N	N	H	N	<u>N</u>	N	<u>N</u>	N	<u>N 1</u>	NN	<u>N</u>	<u>N</u>	N	<u>N</u>	N	N	N	<u>н</u>	N	N	N N	50×
ACINAR-CELL ADENDMA	L		+	+	÷	+	+	+	+	+ •	* *	*	+	+	+	+ +	+	+	•	+	+	+ +	502
ESOPHAGUS	+	+	+		<u>+</u>	<del>.</del>	+	<u>+</u>		+ •	• •		+	+	<u>t</u>	+ •	+	+		+	<u>+</u>	+ +	46
STDMACH Leidmyðsarcoma	+	٠	+	٠	÷	+	* x	-	+	+ •	• •	٠	÷	+	+	• •	•	+	+	+	+	+ +	50
SMALL INTESTINE	+	+	+	+	+	+	+	+	+		+ +	+	+	+	+	+ +	+	+	+	+	+	+ +	49
LARGE INTESTINE	+	+	+	+	+	+	+	+	+ -	• •	+ +	+	+	+	*	<b>+</b> +	+	+	+	+	+	+ +	50
URINARY SYSTEM																							
KIDNEY	+	+	*		+	+	<u>+</u>	+	<u>+</u>	<u>+ +</u>	<u>t+</u>	+	+	+	±	tt		+	•	+	+	<u>+</u> +	50
URINARY BLADDER	+	+	٠	٠	٠	+	٠	+	+	+ +	<b>,</b> ,	+	٠	+	+	+ +	•	÷	+	٠	+	+ +	49
ENDOCRINE SYSTEM																							
PITUITARY Adenoma, nos Aderai	+	* *	• •	+	×.	+	ż.	•	<u>×</u>	• •	• •	+	+	•	+ 	· ·	+	•	+	+	+	* *	49 9 50
PHEOCHROMOCYTOMA	1×	<u>×</u>	Ť.	· · · ·							<u> </u>			×_		<u>x x</u>				x.	<u>×</u>	X	15
THYROID Follicular-cell carcinoma C-cell Adenoma C-cell carcinoma	+ ×	+	+	+	+	*	+	+	•	+ + x	• • _ ×	•	+	+	•	• •	-	+	+	+	÷	+ +	47 1 3 3
PARATHYROID	+	-	+	+	+	t	+	+	+ .	+ +	• •	+	+	+	+	+ ÷			+	+	+	- +	43
PANCREATIC ISLETS ISLET-CELL ADENDMA	÷	•	•	÷	+	+	•	÷	+ ;	* *	; •	+	+	+	+	• •	+	+	٠	+	+	+ +	50 2
REPRODUCTIVE SYSTEM	+	÷	+	÷	+	+	÷	÷	+ .	+ +	+ +	+	•	•	•	• +	+	+	+	+	÷		50#
FIGRUADENOMA TESTIS INTERSTITIAL-CELL TUMOR	ţ	÷	ţ	•	÷	ţ	÷	÷	+ ;		; ;	ţ		÷	*	; +	ţ	+ ¥		÷	÷	• •	50
PROSTATE	÷	+	+	+	+	+	+	+	* *	C + +	+ +	+	 +	+	 + ·	+ +	+	+	+	+.	+	+ +	50
PREPUTIAL/CLITORAL GLAND Squamous Cell Carcinoma Adendma, Nos	N	H	н	N	N	N	H	н	н )	4 14	I N	н	н	N	N 1	N N	N	н	N	N	N	N N	50*
NERVOUS SYSTEM		·····					· · · · ·																
BRAIN Glioma, NOS Astrocytoma	+	+	٠	٠	٠	٠	+	÷	• •	• •	• +	٠	٠	•	• •	• •	٠	٠	* ×	٠	+	• •	50 1
BODY CAVITIES						****																	
MEDIASTINUM LIPOMA	N	H	N	н	H	H	N	н	N 1	4 H	н н 	н	N	N	н 1	н и	н	н	н	N	N	н н	50× 1
ALL UINEX SYSTEMS Multiple Organs nos Leidwydsarcoma, invasive Malig Lymphoma, histidcytic type Monocytic Leukenia	N	H	н	N	н	N X	HX	N	N )	N N	і н х	N	H	N	H 1	H N	NX	н	N	N	N	н н х	50× 1 2 7
LEG NOS Fibrosarcoma Synovial sarcoma	Î														<u> </u>					x			1
SOLE OF FOOT Solumpus of a partitiona																							

### TABLE A3. MALE RATS: TUMOR PATHOLOGY (CONTINUED) HIGH DOSE

* ANIMALS NECROPSIED 1 ISSUE EXAMINED MICROSCOPICALLY 2: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY 1: TUMOR INCIDENCE 1: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION

ND TISSUE INFORMATION SUBMITTED
 C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL
 Autolysis
 Animal Missing
 NO AKCROPSY PERFORMED

Allyl Isovalerate

### TABLE A4.

### INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE 2-YEAR **STUDY OF ALLYL ISOVALERATE**

### **VEHICLE CONTROL**

AN IMAL NUMBER	0	0	0	0	01	0)	0	0	0	1	1	1	1	1	11	1	1	1	1	21	2	2	2	2	2
WEEKS ON Study		1	1	0	9	0	1	0	1	1	1	0	1	1	1	1	1	0	1	1	0 5	0	9	0	1
INTEGUMENTARY SYSTEM	-51	6	_ 6	5	6	_11	6	6	.61	6	61	6	_11		61	6	6		6	_7_	41	7	_3	_71	-7
SUBCUTANEOUS TISSUE BASAL-CELL TUMOR FIBROSARCOMA	+	+	* ×	+	+	+	+	+	+	N	+	+	+	+	+	+	٠	+	+	+	+	н	+	+	+
RESPIRATORY SYSTEM	-						_																		+
LUNGS AND BRONCHI CHONDROSARCOMA, METASTATIC	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>*</u>	+	+
TRACHEA	+	+	+	-	-	+	+	+	+	-	-	-	-	-	+	-	+	+	-	+	+	+	-	+	+
HEMATOPOIETIC SYSTEM																							_		Π
BONE MARROW	+-+	_*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<del>_</del>	+		+	-++
SPLEEN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
LYMPH NODES Malig.lymphoma, histiocytic type	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	-	+	+		+	_	+	+	+	+	+	+	-	+	-	-	+	+	+	+	+	+
CIRCULATORY SYSTEM										,															
HEAKI	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	_	+	+	+	+	+	+	+	+
SALTVARY GLAND	1.		L.				4		L			+	÷	4	4	Ŧ	,				T	4	٨	+	
JALIVART GLAND	†÷			+			<u>,</u>	<del>.</del>			. <u>*</u>	- <u>-</u> -	- <u>-</u>	+	- <u>-</u>	- <u>-</u>	+	<u>*</u>						- <u>-</u> -	∄
NÉOPLASTIC NODULE	Ļ					-									•		<u> </u>		7					· ·	4
BILE DUCT	+-+	+	+	+	+	+.	+	+	+	+	+	+	+	+	+	+	+	+	+	. <b>+</b> _	+	+	+	+	-#
GALLBLADDER & COMMON BILE DUCT	į n	N	N	Ν.	N	N	N	<u>N</u>	N	N	_N	N	N	N	N	N.	N	N	N	N	<u>N</u> .	N	N	<u>N</u>	- 14
PANCREAS	+	+	+	+	+	4	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+
ESOPHAGUS	<u> </u> +-	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	. ÷.	+	<u>+</u>	+	+
STOMACH Squamdus cell papilloma	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+
SMALL INTESTINE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
LARGE INTESTINE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+
URINARY SYSTEM																-									+
KIDNEY	+	+	+_	_+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+_	+	+
URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA	+	÷	+	٠	٠	+	+	+	+	+	÷	+ .	+	* ×	+	+	+	÷	+	+	٠	٠	+	÷	+
ENDOCRINE SYSTEM	†								_													÷			-
PITUITARY Adenoma, Nos	±	*	+	+	. *	+	<u>*</u>	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+
ADRENAL Cortical Adenoma Pheochromocytoma	+	+ X	+	+	+	+	+	+	+	+ x.	+	+	+	+	+	+	+	+	•	+	*	•	+	+	+
THYROID C-CELL ADENOMA C-CELL CARCINOMA	+	+	÷	+	+	+	+	+	+	+	+	* x	-	٠	+	+	* ×	+	+	+	+	+	+	+	+
PARATHYROID	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	÷	+	+	+	+	+	+
REPRODUCTIVE SYSTEM	├							• • • • •								• •				_					-+
MAMMARY GLAND Adenocarcinoma, nos Firpadenoma	+	÷	÷	+ ~	+	+	+ ¥	÷	* ×	+ v	+	+	+ v	+	+ v	+	+	÷	+	+	٠	н	+ *	+	+
ITERUS	+	+	+	<u>^</u>	+	•	+	+	+	- <u>^</u>	+	+	+	+	^	+	+	+	+	+	+	+	 +	+	+
LEIOMYOMA LEIDMYOSARCOMA ENDOMETRIAL STROMAL POLYP ENDOMETRIAL STROMAL SARCOMA							x							X		x		x		x	x		·		
OVARY	+	÷	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM																									+
BRAIN	+	+	+	+	+	÷	+	+	÷	÷	÷	+	+	÷	+	+	+	+	+	÷	+	+	+	+	+
BODY CAVITIES																									+
PERITONEUM CHONDROSARCOMA	N	N	N	N	N	N	N	N	N	N	N	н	N	N	H	N	N	N	N	N	N	N	H X	N	N
ALL OTHER SYSTEMS																	• • • •			·					1
MULTIPLE ORGANS NOS Monocytic Leukemia	н	NX	N	н	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

A A : ITSSUE EXAMINED MICROSCOPICALLY : NO TISSUE INFORMATION SUBMITTED -: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL X: TUMOR INCIDENCE N: RECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION S: ANIMAL MISSING S: ANIMAL MISSING B: NO NECROPSY FERRORMED

***************************************			-																							
ANIMAL NUMBER	2	227	2	200	3	3	3	3	3	3	3	5	3	3	04	4	4	4	044	4	4	4	4	4	5	TOTAL
WEEKS ON Study		1	1		1	1		1	i	?	1	1	1	1		1		1	3	1	1	1	8	0 5	1	TISSUES
INTEGUMENTARY SYSTEM	121	71	71	21	21	.71	21	71	71	01	41	_7_	7	2	71	71	71	71	31	71	21	1	-31	7	_7	
SUBCUTANEDUS TIŠSUE Basal-Cell tumor Fibrgsarčoma	•	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	÷	•	٠	٠	+	•	+	٠	٠	٠	50M 1 1
RESPIRATORY SYSTEM	<b>†</b>																									
LUNGS AND BRONCHI Chondrosarcoma, metastatic	+	+	*	*	•	*	+	+	*	+	+	*	•	•	+	+	*	+	<u>+</u>	+	+	+	•	+	+	50,
TRACHEA	+	٠	+	÷	÷	+	+	٠	-	+	٠	÷	÷	+	+	+	-		÷	+	-	•	-	+	+	34
HEMATOPDIETIC SYSTEM																										
BONE MARROW	+	+	+	+	*	±	+	+	+	+	+	<u>*</u>	+	<u>_</u> t	+	+	+	<u>*</u>	+	+	+	+	+	*	-*	50
SPLEEN	<u><u></u>+-<u>+</u></u>	+	+	. <u>+</u> _	+	*	+	+	+	*	+	*	.+	*	+	*	+	+	<u>*</u>	*	+	<u>.</u> *_	+	*	-*	50
LYMPH NODES Malig,Lymphdma, Histiocyfic fype		_ <u>*</u> _	+	+	*	÷	+	+	+	+	+	+	+	+	+	+	•	+	+	•	+	+	•	•	+	501
THYMUS	+	+	+	÷	~	٠	٠	+	+	٠	+	٠	-	٠	•	+	+	+	+	+	•	*	÷	÷	+	41
CIRCULATORY SYSTEM	1									•															-	
NEART	+	+	٠	+	+	+	+	٠	+	+	+	+	+	•	+	*	+	+	+	+	*	+	+	+	+	58
DIGESTIVE SYSTEM	[																								1	
SALIVARY GLAND	<u>i +</u>	+	<u>t</u>	+	+	+	<u>+</u>	+	. <u>+</u>		+	<u>+</u>	+	+	<u>+</u>	+	<u>+</u>	<u>+</u>	<u>+</u>	*	<u>+</u>	+	<del>t</del>	+	+	50
LIVER NEOPLASTIC NODULE	+	+	*	•	+	*	+	*	+	*	*	+		+	+	*	•	+	+	+	+	+	+	*	×.	50
BILE DUCT	L+	_ <u>t</u> _	+	t	+	+	+	+	t	t		<u>*</u>	t		+	+	+	t	+	+	+	<u>+</u>	+	+	+	50
GALLBLADDER & COMMON BILE DUCT	N	N	<u>N</u>	N	<u>N</u> _	н	N	N	N	N	N.	N	<u>N</u>	N	N	N	<u>N.</u>	N	N	<u>N</u>	N.	N	N	N		50×
PANCREAS	+	ŧ	÷	٠	٠	+	+	٠	÷	٠	+	+	+	÷	+	÷	+	÷	÷	÷	+	٠	-	٠	÷	49
ESOPHAGUS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	<u>+</u>	*	÷	<u>t</u>	+	*	+	+	+	50
STOMACH Squampus cell papilloma	+	+	+	+	+	+	+	•	•	+	+	*	+	+	•	+	•	+	+	•	+	+	+	•	+	50 ,
SMALL INTESTINE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	+	<u>+</u>	+	.t	+	+		+	+	- 49
LARGE INTESTINE	+	+	+	٠	+	÷	÷	٠	÷	÷	٠	+	*	٠	+	٠	•	+	÷	÷	÷	÷	+	٠	+	50
URINARY SYSTEM												*								~~~~~					-	
KIDNEY	+	2	+	<u>+</u>	+	t	+	+		+	+	<u>+</u>	+	+	+	*	+	*	+	<u>+</u>	+	<u>*</u>	+	+	+	50
URINARY BLADDER TRANSITIONAL-CELL PAPILLOMA	·	٠	÷	÷	+	٠	+	+	٠	٠	٠	٠	-	+	+	•	+	٠	÷	+	÷	+	+	+	+	49,
ENDOCRINE SYSTEM	1			~						~															-	
PITUITARY Adendma, Nos	±	+	×.	* *	+	<u>*</u>	* *	•	+	ż	*	ż.	+	•	* ×	+	+	-	•	+	•	+	+	+	+	48 13_
ADRENAL Cortical Adenoma	+	÷	÷	٠	٠	+	٠	٠	* ×	+	٠	٠	٠	+	•	+	٠	+	٠	•	٠	٠	٠	+	+	50 ₁
PNEDCHRÜMBGYTOMA							X											<u>×</u>			<u>×</u>					
C-CELL ADENDMA C-CELL CARCINOM?	Ľ	+	•	+	+	+ ×	•	+	•	•	*	<u> </u>	*	*	+	•		•	+	*	+ X		+	+	+	98 2 2
PARATHYROID	+	٠	+	٠	٠	٠	÷	+	÷	÷	٠	+	+	٠	÷	÷	٠	٠	÷	+	-	÷	٠	+	•	48
REPRODUCTIVE SYSTEM	1										-				~~~										-	
MAMMARY GLAND Adendcarcindma, NG5 Fibroadenoma	+	•	+ 	+	+ _X	+	+ x	+ x	+	+ .×	*	•	•	• x	• ×	+ ×	•	• ×	+	•	•	• ×	•	•	, x	50H 2 17_
UTERUS Leidhyoma Leidhyosarcoma Engometrial Stromal Polyp Engometrial Stromal Sarcoma	+	+ x	•	+	+	+ x	+	* ×	•	+	+	+	•	•	+ ×	•	+	• x	+	•	* x	+ ×	+	•	+	50 1 1 1 1 1 2
CVARY	+	+	+	+	+	•	+	+	+	+	•	+.	+	+	+	+	•	+	+	+	٠	+	+	+	+	50
NERVOUS SYSTEM								·																	-	
BRÁIN	+	+	÷	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	+	٠	+	+	+	•	٠	٠	٠	+	50
BCDY CAVITIES																										
PERITONEUM Chondrosarcoma	N	N	H	N	N	H	N	N	N	N	H	Ň	N	N	N	Ν	H	N	N	N	ж	N	H	N	M	504
ALL OTHER SYSTEMS	<u> </u>		_																						-	
MULTIPLE ORGANS NOS Monocytic Leukemia	H	N	N X	N	н	H X	н	N	N	H	ж	N	н	N	H	H	N	H	N	N	N	H	N	N	N	50#

### TABLE A4. FEMALE RATS: TUMOR PATHOLOGY (CONTINUED) VEHICLE CONTROL

ANTIALS HERROPSIED MICROSCOPICALLY : NO TISSUE ENFORMATION SUBMITTED +* TISSUE EXAMINED MICROSCOPICALLY : NO TISSUE INFORMATION SUBMITTED -* REQUIRED TISSUE ENT EXAMINED MICROSCOPICALLY C: NECROPSY, NO MISTOLOGY DUE TO PROTOCOL AUTOLYSIS N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION M: ANTIAL MISSING N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION B: NO NECROPSY PERFORMED

J

#### TABLE A4.

#### INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

#### LOW DOSE

														~~~											
AN IMAL NUMBER	0	0	0	0	0	2	0	0	0	1	1	1	11	1	1	1	1	11	1	2	2	Z	2	2	2
WEEKS ON	++	1	3	Ō	-5	1	-11	-	1	0	-ţ†	1	1	Ť	퀴	-	竹	-	-11		-	-1	0	-1	
51001	16	6	5	ź	2	6	6	6	6	7	-11	6	6	6	6	7	6	6	6	6	3	6	5	6	6
INTEGUMENTARY SYSTEM	1												Ŧ												
SUBCUTANEOUS TISSUE FIBROMA LIPOMA	1	N	+	+	+	+	+	•	+	+	N	+	*	•	*	+	•	+	+	+	+	+	N X	N	+
RESPIRATORY SYSTEM	+						_																		
LUNGS AND BRONCHI Alveolar/bronchiolar carcinoma	+	*	•	+	+	+	+	+	+	+	•	+	•	*	•	+	+	•	+	+	+	+	+	*	•
TRACHEA	+	+	٠	٠	٠	+	-	+	+	+	-	+	+	٠	٠	-	+	٠	٠	-	+	+	*	*	**
HEMATOPOLETIC SYSTEM	+																		••					******	
BONE MARROW	+*-	+	+	+	+.	+	+	+	+	<u>+</u>	•	4	+	+	+		<u>+</u>	+	+	+	+		-	+	
SPLEEN	++	+	+	+	+	+	+	÷	+	+		t	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	*
LYMPH NODES	++	+	+	+	+	+	+	÷	+	~	+	•	+	+	+	+	<u>.</u>	+	+	+	+	+	.	+	+
THYMUS	+	٠	*	+	-	٠	÷	٠	+	+	~	~	+	٠	+	٠	۴	÷	٠	+	+	+	~	+	+
CIRCULATORY SYSTEM	1												******												
HEART	+	÷	+	+	+	٠	+	+	÷	+	÷	٠	+	+	÷	÷	+	+	+	٠	+	+	÷	+	+
DIGESTIVE SYSTEM	+				.														·····						
SALIVARY GLAND	++	+	+	+	+	+	+	+	+	+	<u>+</u> .	+	+	+	+	+	<u>*</u>	+	+	+	+	+	+	+	÷
LIVER	+	÷	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	÷
NEOPLASTIC NODULE	4		X																						
BILE DUCT	<u></u>	+	+	+	+.	+	÷	+	+	+	+	+	+	+	+	+		+	+	+	+	•	+	+	+
GALLBLADDER & COMMON SILE DUCT	1 M	N	N	ы	N	N	N	N	N	N	н	N	N	N	N	м.	H	N	N	N	N	N	N	N	N
PANCREAS	+	+	+	٠	٠	+	+	÷	+	÷	÷	÷	+	÷	+	÷	+	+	+	÷	+	+	÷	+	+
ESOPHAGUS	1+	+	+	+	÷.	t	+	+	+	÷	+	+		*	+	+	+	+	+	+	+	+	+	+_	+
STOMACH	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+.	÷	+	+	+	+	+	÷	+	+
SMALL INTESTINE	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
LARGE INTESTINE	1+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	-	<u>.</u>	+	+	+	+	+	+	+	+
RECTUM FIBRUSARCOMA	+	٠	+	N	+	٠	÷	+	٠	н	N	÷	N	+	٠	+	٠	* x	٠	+	H	÷	٠	+	÷
URINARY SYSTEM	+																	_							
KIDNEY	L+	+	+	+		•	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	ŧ.	+	÷	+
URINARY BLADDER	+	÷	٠	+	÷	٠	+	÷	+	+	÷	٠	+	+	+	+	+	+	+	+	+	+	÷	+	÷
ENDOCRINE SYSTEM	+																								
PITUITARY Adenoma, nos Acidophil adenoma	+	٠	٠	* X	٠	* ×	+	* x	+	+	٠	٠	÷	÷	* ×	٠	* x	٠	+	* X	٠	÷	* ×	* ×	* x
ADRENAL CORTICAL ADENOMA Phenehromocytoma	+	• ×	+ *	٠	+	+	+	+	+	+	÷	÷	+	÷	÷	+	+	+	÷	• •	+	+	÷	•	+
THYPDTD	1.	<u></u>									•		•	•	•	 		•		<u>~</u> _		<u></u>	•	•	
FOLLICULAR-CELL ADENOMA C~CELL ADENOMA C-CELL CARGINOMA			,		×	,		x			•	×						×						×	
PARATHYRDID	+	٠	٠	+	٠	+	٠	٠	٠	+	+	-	٠	+	•	•	٠	٠	٠	+	-	٠	٠	+	٠
ADENOMA, NOS	+																								.X.
ISLET-CELL ADENDMA	1	+	۲	÷	+	•	•	•	+	+	•	•	•	•	+	•	•	•	+	•	•	+	•	•	•
REPRODUCTIVE SYSTEM	+								-																
MAMMARY GLAND	+	+	÷	٠	÷	+	٠	+	÷	+	+	٠	+	÷	+	÷	÷	+	+	+	÷	÷	÷	+	+ ;
ADENUÇARÇINUMA, NOS Sarcoma, Nos																									
FIBRDADENOMA	1	X	x			×	x	×	x					X	×	x		x	×				X		×
PREPUTIAL/CLITORAL GLAND CARCINOMA,NDS ADENOMA, NOS ADENDSGUAMOUS CARCINOMA	н	N	Η	H	H	н	N	н	N	N	н	N	H	H	N	H	N	н	H	N	N	N	N	н	H
UTERUS		+	•	•	+	+	+	+	+	+	+	+	+	+	•	+	+	+	÷	+			•	•••••	4
ENDOMETRIAL STROMAL POLYP	<u> </u>									X		·		<u>x</u>	·						x_			<u>.</u> x	1
<u>GVARY</u>	+	+	٠	٠	+	+	٠	٠	+	+	+	+	٠	+	+	+	÷	÷	٠	+	٠	٠	÷	+	+
NERVOUS SYSTEM	Γ				•••••												à			Leimen 1997			*		٦
BRAIN	+	٠	٠	+	÷	+	+	+	+	٠	+	*	+	*	÷	•	+	٠	٠	٠	٠	÷	٠	٠	+
ALL OTHER SYSTEMS	-	••••••											****												-
MULTIPLE ORGANS NOS Sarcoma, Nos Sarcoma, nos, metastatic	N	N	N	N	N	N	н	м	N	X	N	H	H	н	H	н	н	N	H	H	N	N	н	N	N
USTEUSARCOMA MONDCYTIC LEUREMIA	1					x					x			<u>x</u>		x		X							
+: TISSUE EXAMINED MICROSCOP -: REQUIRED TISSUE NOT EXAMI X: Tumor incidence N: NECROPSY, NO AUTOLYSIS, N S: ANIMAL MIS-SEXED	ICAL NED D MI	LY Mic Cro	ROS 500	CDP PIC	ICA EX	LLY AMI <i>I</i>	NAT I	ION			: : 1: :	ND NEC AU1 AN1 NO	TIS ROP OLY MAL NEC	SUE SY, SIS MI ROP	IN NO 551 SY	FOR HI NG PER	MAT STO	IDH DLOG RMED	(5L)Y [JBM DUE		PRO	ото:	COL	

.

AN IMAL NUMBER	0	0 2	2	0	03	0	0 3	3	3	0 3	0	0 3	0	0	0	0	0	0	0	0	2	0	0	0	0 5	
WEEKS ON	+ 1	-7	8	9			-2-		4	귀	- 61	-71	- 81	- 21		+	-21-	升	- 4		-\$†	-7+	- 81	- 9	-	L TOTAL
STUDY	6	2	6	0 6	0 5	6	0 6	0 6	6	0	7	6	0 6	8	6	8	3	6	0	6	6 6	8	0	0 6	6	TUMORS
INTEGUMENTARY SYSTEM																										
SUBCUTANEGUS TISSUE FIBROMA LIPOMA		+	+	•	÷	+	÷	+	* X	+	+	X	+	+	+	+	•	•	* x	+	+	•	+	+	+	50× 3
RESPIRATORY SYSTEM																										<u> </u>
LUNGS AND BRONCHI Alveolar/Bronchiolar carcinoma	Ļ	+	*	+	+	•	*	*	+	٠	+	ţ	•	+	+	+	+	+	٠	+	+	+	÷.	+	+	50
TRACHEA	+	-	-	-	+	+	+	+	+	+	+	÷	+	-	-	+	+	+	-	٠	-	-	+	+	+	37
HEMATOPOIETIC SYSTEM												.														h
BONE MARROW	+	+	+	+	•	_ <u>+</u>	+	+	+	+		+	+	+		+	+	+	+	<u>.</u>	+		+	<u>+</u>	+	49
SPLEEN	+	t	+	+	+	+	+		+	+	+	+	+	+	t	+	+	+	+_	_+	+	+	+	+	+	50
LYMPH HODES	+	÷	+	+	*	<u>.</u>	+		+	`	+	+		+		+	+	+	+	+	+	+	+	÷	+	50
THYMUS	+	٠	+	-	÷	٠	ŧ	-	+	٠	÷	٠	٠	+	÷	+	÷	+	+	+	+	٠	÷	+	-	43
CIRCULATORY SYSTEM				_												_				~~~~					_	
HEART	+	+	÷	+	÷	+	+	+	+	÷	÷	٠	+	+	+	+	÷	+	٠	+	+	+	÷	+	+	50
DIGESTIVE SYSTEM																										
SÁLIVARY GLÁND	+	+		<u>+</u>	<u>+</u>	+		+	+	+	t	+	+	+	+	+	*	+	+	+	+	+	+	+	+	50
LIVER BILE DUCT ADENDMA NEOPLASTIC NODULE	+	+	÷	٠	+	+	٠	+	+	+	٠	+	٠	٠	٠	+	•	•	+	+	+	٠	٠	* X	+	50
BILE DUCT	†	+	+	*	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	50
GALLBLADDER & COMMON BILE DUCT	N	N	N	N	N	N	N	N	N	N		N	N	N	N	N	N	N	N		N	N	ست. N	Nł	N	50×
PANCEFAS	+	+	+	+	*	*	+	*	*	+	+	•	*	*	+	+	+ +	•	+	•	*	*	+	•		50
FSORHACUS				÷.			ì				÷	1	4	÷	1	ì	ì	÷					ż	÷		50
5778440			سانيونو ه	i +	 	<u>-</u>		*	i 							*	÷	 _		*	<u> </u>				÷.	50
STOREN	f i		¹	<u> </u>		<u>_</u>	<u>.</u>			<u>T</u>	- <u>-</u>	,		- <u>T</u>		- <u>*</u>	<u>.</u>		<u> </u>	- <u>T</u>	- <u>+</u>	 2	÷	- <u></u>	1	
IADE INTESTINE	t.		<u>T</u>		<u> </u>	- <u>-</u>	<u> </u>		<u>*</u>				<u> </u>	T		<u> </u>	- <u>I</u>			- <u>-</u>		_ <u>*</u>	Ť	- <u>-</u> -	-	
PECTUM	1	Ň		<u>`</u>		- <u>-</u>	, ,		÷	•	- <u>-</u>		÷	 N							*	 N	<u></u>	 Ni	Ť	5.0 #
FIBROSARCOMA	1			.,	•		•		Ċ		и	•		1.	•		-	,	,	•			•	л	ĺ	î
URINARY SYSTEM	1							···									_								_	
KIDNEY	+-+-		+	+	+	+	+	+	+	÷	+	+	÷	+	+	+	+	+	<u>+</u>			+	+	+	+	50
URINARY BLADDER	+	+	+	+	+	٠	٠	٠	+	+	+	+	+	+	+	٠	٠	٠	+	+	+	٠	+	÷	+	50
ENDOCRINE SYSTEM																										
PITUJTARY Adenoma, nos Acidophil Adenoma	×	×	×	*	• ×	+	+	+	+	+	+	+	*	+	+	*	*	*	+	+	+	+	*	+	-	49 16 1
ADRENAL	+	+	÷	÷	+	+	+	+	+	٠	٠	÷	+	+	+	+	÷	÷	+	٠	÷	÷	+	•	+	50
PHEDCHRDMOCYTOMA	x				<u>×</u>		x									_		X						×		8
THYROID	+	÷	٠	+	٠	+	٠	÷	٠	٠	÷	+	+	+	+	+	÷	+	٠	+	+	+	+	÷	+	50
FOLLICULAR-CELL ADENOMA C-CELL ADENOMA C-CELL ADENOMA			x		x													x						x		7
PARATHYRCID ADENDMA, NOS	+	-	-	٠	÷	+	+	+	+	•	-	+	+	+	+	•	÷	+	+	•	+	+	+	÷	+	64
PANCREATIC ISLETS	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	ţ	÷	+	+	+	+	+	+	50
PERPANIETTVE SYSTEM																										<u> </u>
MAMMADY ELAND	1.							T																		
ADENDCARCINGMA, NOS SARCDMA, NOS FIBROADENDMA	×	Ť	r	,	x	7	7	Ŧ	x	•	*	, Y	×	Ť	Y	·	7		x	· ·	Ť	X	Ŧ	×	x	1
PREPUTIAL/CLITORAL GLAND CARCINOMA.NOS ADENOMA,NOS ADENOSQUAMOUS CARGINOMA	N	N	H	N	N	H	N	N	N	N	ĸ	н Х	N	ĸ	N	N	N	н	N	N	N X	N	н	N	н	50*
UTERUS ENDOMETRIAL STROMAL POLYP	+	+	* ×	+	+	٠	+	+	+	+	•	+	+	* X	+	+	+	t	•	*	+	ż	•	+	+	50 8
DVARY	+	٠	÷	+	+	+	÷	+	٠	٠	٠	+	٠	+	+	+	•	+	٠	٠	٠	+	+	٠	+	50
NERVOUS SYSTEM					~														,							
BRAIN		÷	٠	+	٠	÷	÷	÷	٠	÷	÷	+	+	+	٠	•	•	٠	+	+	+	٠	٠	÷	•	50
ALL DTHER SYSTEMS	+																					_			-	
MULTIPLE ORGANS NOS Sarcoma, NOS Sarcoma, NOS, metastatic Osteosarcoma Monocytic Leukemia	ĸ	N	N	N	N	N	N	R	n	N	N	н	N	N Y	ĸ	H	N	N	N	N	N	н Х	N	N	N	50×

TABLE A4. FEMALE RATS: TUMOR PATHOLOGY (CONTINUED) LOW DOSE

ANIMALS RECROSSIED
 ANIMALS RECROSSIED
 ANIMALS RECROSSIED
 ANIMALS RECROSSIED
 ANIMALS RECROSSIED
 ANIMALS
 ANIMAL

TABLE A4.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE 2-YEAR **STUDY OF ALLYL ISOVALERATE**

HIGH DOSE

ANIMAL	10	0	1	0	0	0			10	0	0	0	0	0	0	0	0	0	0	G	0	0	0	0	Ē
WEEKS ON		2		3	4	5 1				0	1	2	3	4	4	6	7	8	9	2	2	2	23	24	L
STUDY	05	05		5	6	6		0	9	0	89	7	0 6	0	0	0	6	0	0	0	0	8	84	0 6	Ľ
INTEGUMENTARY SYSTEM	Ι.																								
BASAL-CELL TUMOR KERATOACANTHOMA	+	+		+	+	+ ·	• •	• •	N	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	
RESPIRATORY SYSTEM	+										-														
LUNGS AND BRONCHI	+	+		+	+	+ +	+ +	+	+	+	÷	+	+.	+	.+	+	+	+	+	+	+	+	+	+	
TRACHEA	+	+		+	+	- +	• •	-	+	+	-	-	-	+	+	+	-	-	-	+	+	-	÷	+	
HEMATOPOIETIC SYSTEM	1			_																					
BONE MARROW	++	+		<u>+</u>	+ ·	+ +	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	
SPLEEN	++	+		t.	+ ·	+ +	<u> </u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
LYMPH NODES	++	+	-	+	+ ·	+ +	·+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
THYMUS	+	×		+	+ ·	+ -	• +	• +	+	+	-	-	+	+	+	+	+	+	-	+	+	+	+	+	•
CIRCULATORY SYSTEM	+													-										_	
HEART	+	+		÷	+ -	• •	• +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	١
DIGESTIVE SYSTEM	1				_																				_
DRAL CAVITY Squamdus cell papilloma	N	N	1	٩	N I	N N	I N	N	N	N	N	Ν	N	H	Ν	N	N	N	N	N	N	N	N	N	٢
SALIVARY GLAND	+	+		+	+	+ +	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+		+	-
LIVER	+	+		+	<u>+</u> -	+_+		+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	_ 1
BILE DUCT	+	+		+	+ •	+_+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	4
GALLBLADDER & COMMON BILE DUCT	N	N	•	N	N F	4 N	н і	' N	N	н	N	N	N	N	N	N	N	N	N	N	N	N	N	N	,
PANCREAS	L.	+		<u>.</u>	+ +	<u>+</u>	+	+	+	+	-	+	÷	+_	+	+	-	+	+	+	+	+	+	+	
ESOPHAGUS	<u>_+</u>	+	. 1		+ •	+ +	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	_
STOMACH	+	+	+	+ -	+ +	+	÷	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SQUAROUS CELL PAPILLUMA	<u> </u>					<u> </u>																			
MUCINOUS ADENOCARCINOMA	Ļ				· ·			+	_		-	+	+	+	+	+	+	+	*	+	+	•	+	+	+
LARGE INTESTINE	+	+	+	•	+ +	• •	+	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY SYSTEM										•												•			
KIDNEY	++-	+	+	·	+ +	+	+	+	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
URINARY BLADDER	+	+	*	• •	+ +	+ +	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM																									
PITUITARY ADENOMA, NOS	+	* X	+	• •	+ +	• + ×	+	+	+	+	+	+	*	-	* X	+	+	* x	+	+	+	* x	+	* x	+
ADRENAL	+	+	+		+ +	•	+	+	+	+	+	+	÷	÷	÷	÷	÷	+	+	+	+	+	+	+	+
THEOCHROMUCTIUMA	+		X					<u> </u>		<u>x</u>														<u>×</u>	
C-CELL ADENOMA	1	+	•		+ +	• •	+	x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
C-CELL CARCINDHA	1.												_												_
REPRODUCTIVE SYSTEM	<u> </u>							·····			_			_	•	<i>*</i>	Ť								
MANMARY GLAND	١.	+	+			+	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
FIBRDADENOMA	 					×	X			<u>×</u>					×			×						X	
PREPUTIAL/CLITORAL GLAND CARCINOMA,NOS ADENOMA, NOS	N	н	N	;	х н х	i N	N	м	N	м	н	N	н	N	ĸ	N	N	H	N	N	N	н	н	N	H
VAGINA Endometrial stromal sarcoma, inva	N	N	N	•	N N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	H	N	H	N	H	N
UTERUS Endometrial Stromal Polyp Endometrial Stromal Carcoma	+	* ×	+		* * *	• +	+	* ×	+	+	-	+	٠	+	÷	* ×	•	÷	* ×	+	* ×	+	+	+	+
DVARY		-									-	+	+	+	•	+			 •	+	•	+	•	+	
NERVOUS SYSTEM	Ļ	7			•			+		*		<u></u>										<u></u>	<u></u>	<i>.</i>	_
BRAIN		÷	÷			÷	•		·		÷	+	÷	+	+ -	÷ .			÷	+	+	+	÷	+	+
ASTROCYTOMA MEDULLOBLASTOMA			ŕ	,	x														-		•				
SPECIAL SENSE ORGANS																							• •		
ZYMBAL'S GLAND Adenosquamdus carcinoma	N	Ν	N	۲	N N	н	н	N	N	N	N	N	N	N	N I	н и	1	ч 1	H	H	N	* ×	N	H	N
BODY CAVITIES																									
MESENTERY FIDROSARCOMA MALIG.LYMPHOMA, HISTIOCYTIC TYPE	н	N	н	٢	N	N	н	N	N	м	N	N	н	н	N I	N I	4	ч 1	N	H	N	H	N	H	N
ALL OTHER SYSTEMS																									_
MULTIPLE ORGANS NOS ENDOMETRIAL STROMAL SARCOMA, META LEUKEMIA,NOS MONOCYTTO LEUKEMIA	н	N	н	۲	I N	н ~	N	н	××	ĸ	N	N Y	н	ĸ	N I	н і	• 1	N 1	ĸ	N	N	N	N	H	N
LEG NOS						X					<u> </u>	^	-	<u>^</u>									· ^	-	
DSTEOSARCOMA	<u> </u>																								
 TISSUE EXAMINED MICROSCOPI REQUIRED TISSUE HOT EXAMIN TUMOR INCIDENCE NECROPSY, NO AUTOLYSIS, NO ANIMAL MIS-SEXED 	CALI HED T	LY Mic Cro	R D S C	SCO OPI	PIC C E	ALLI XAMI	r Enat	ION				ND NEC AUT ANI NO	TIS ROP DLY MAL NEC	SUE SY, SIS MI ROP	INI ND SSIP SY P	FORM HIS YG PERF	IAT: STOI	(DN . DG1 1ED	SU r Di	BMI UE	TTE TO	PRO	0100	:0L	

ANIMAL NUMBER	1 91	0	0	2	Q /	Q	Q	0	8	0	01	QT.	ę		0	0	0	0	0	0	0	2	0	0		
WEEKS DN	- él	7	8	- 9 1	ě.	-1	2	3	4	5	6	Ž	8	- 2	- 8		2	3	4	-	-	7	8		- 0	TOTAL TISSUES
STUDY	0	6	0 6	6	8	5	6	6	8	8]	61	?	3	8	2	6	6	3	6	6	9	6	8	6	3	TUMORS
INTEGUMENTARY SYSTEM				4																			Ŧ			404
BASAL-CELL TUMOR Keratoacanthoma		Ŧ			,	n	,								Î		,	•				•		×		1
RESPIRATORY SYSTEM																										
LUNGS AND BRONCHI	+	+	<u>+</u>	+	+	<u>+</u>	+	+	+	+	·+	+		+	<u> </u>	_ <u>+</u>	<u>+</u>		<u>+</u>	<u>+</u>		- <u>+</u>	_ <u>+</u>	+	+	- 49
TRACHEA	+	*	+	+		•	•	+	+	_		-	+	-	A			+	+	+		-	+	_	-	- 32
BONE MARROW	_	+	+	÷	+	+	+	÷	+	+	+	+	+	÷	۵	+	+	÷	÷	+	+	•	÷	+	+	47
SPLEEN	+	*	+	+	+	+	+	+	+	÷	+	+	ŧ	+	A	+	+	+	+	÷	+	+	+	+	+	49
LYMPH NODES	+_	+	+	+	<u>.</u>	+	. <u>+</u>	<u>+</u>	+	+	+	+	+	+	. A	+	+		<u>+</u>	+	+	+	+	+	+	49
THYMUS	+	٠	ŧ	+	+	•	÷	÷	+	÷	÷	+	-	٠	A	٠	÷	-	*	÷	-	÷	-	٠	-	39,
CIRCULATORY SYSTEM															*****											
HEART	+	+	÷	•	÷	٠	+	+	÷	÷	+	÷	÷	÷	A	÷	٠	÷	•	*	٠	÷	÷	٠	•	49
DIGESTIVE SYSTEM																										
ORAL CAVITY Squamous Cell Papilioma	н	N	N	H	N	н	N	N	N	N	N	н	N	м	A	Ν	N	N	н	N	H	н	н	N	N	49# 1
SALIVARY GLAND	+	+			+	+	+	<u>+</u>	+	+ .	+		+	+	Å	+	+	+	+	+	+	*	+	. t	+	- 46
LIVER	+	+	+	+	<u>+</u>	+	+	+	<u>+</u>	+	+	+	+	. t	<u>A</u>	+	+	+	+	+	+	+	+	+	+	49
BILE DUCT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_A	*		.	+	+	*	+	+	+	*	- 49
GALLBLADDER & COMMON BILE DUCT	И	N	N	N	N	N	н.	<u>N</u>	N	<u>N</u>	<u>N</u>	. N	N	N.,	A	N	<u>N</u>	N	N	N	N	N	N	N	N	49*
PANCREAS .	+	. <u>.</u> .	<u>+</u>			<u>+</u>	<u>+</u>	<u>+</u>	+	+	+	-	+	*			<u>+</u>	<u>+</u>	+	+	<u>+</u>	+	+	+	+	46
ЕРОРНАВИЗ БТОМАСН	+	* •	- <u>*</u> -		*	- <u>+</u>	<u></u>	. <u>+</u> +	*	•	•	+	+	- <u>*</u>	A	- <u>*</u>	+	÷	* +	*	+ +		÷	. <u>*</u>	+	<u>47</u> 60
SQUAMOUS CELL PAPILLOMA	<u> </u>																							<u> </u>		
SMALL INTESTINE Mucindus Adenocarcinoma	•	+	*	•	+	٠	<u>+</u>	+	+	•	+	-	•	•	A	*	•	-	*	*	*	+	+	•	+	46
LARGE INTESTINE	+	٠	٠	÷	*	٠	+	÷	+	÷	٠	~	٠	٠	A	+	ŧ	+	+	٠	٠	÷	٠	+	+	45
URINARY SYSTEM	<u> </u>																								1	
KIDNEY .	+		+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	Α	*	+	<u>.</u>	+	+	+	+	+	+	+	49
URINARY BLADDER	*	*	+	+	+	*	+	+	*	•	*	*	+	+	A	÷	+	+	+	+	*	+	•	+	+	48
ENDUCRINE STOLEN PITHITAPY							4		÷				÷		٨	÷			1	÷				÷		
ADENOMA, NOS					×.	×				-	+		×.					•	+			<u>×</u>	<u>×</u>	×	-	- 13
PHEDCHROMOCYTOMA		×					×.										-					<u>×</u>				
C-CELL ADENOMA C-CELL CARGINOMA				ž			×	Ť									×			×.	·					
PARATHYROID	+	+	٠	٠	٠	٠	٠	÷	ŧ	-	•	•	-	-	A	٠	٠	-	-	÷	+	ŧ	٠	٠	+	37
REPRODUCTIVE SYSTEM																									1	
MAMMARY GLAND Fibrgadenoma	×	+	×.	+	+	+	+	*	+	+	*	•	*	+	A	×.	ż	+	+	+	+	+	*	+	+	49× 11
PREPUTIAL/CLITORAL GLAND Garcinoma, NOS Adenoma, NOS	N	ĸ	н	н	N	н х	N	N .	N	H	N	N	N	M	A	N	H	N	N	н	Ħ	н	ĸ	H	н	49×
VAGINA Endometrial Stromal Sarcoma, inva	N	N	N	N	N	N	N	H	N	H	N	N	N	N	A	H	H	N	N	N	H	N	N	N	н	49N 1
UTERUS Endometrial Stromal Polyp Endometrial Stromal Saroma	+	+	٠	*	٠	٠	٠	* X	* X	٠	* x	٠	+	٠	4	* x	*	+	٠	*	٠	÷	٠	٠	+	48
OVARY	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	-	+	+	+	+	+	÷	+	47
NERVOUS SYSTEM																									-+	
BRAIN Astrocytoma Medullobiastoma	+	+	•	÷	÷	+	٠	÷	+	* ×	+	٠	+	+	A	+	٠	÷	٠	+	*	+	÷	÷	+	49 1
SPECTAL SENSE ORGANS																									-+	
ZYMBAL'S GLAND Adenosguamous carcingma	н	н	N	N	H	N	N	H	N	н	н	H	н	H	*	H	N	H	н	N	H	N	н	H	N	49× 1
BODY CAVITIES						N											2	N			н			N.	Ţ	6.0
MESENTERT Fibrosarcoma Malig.lymphoma, histiocytic type	N	N	N,	н	м	N	м	N	N	ĸ	R	H	N	X	A	M	N	n	N	M	n		n	N	×	1
ALL OTHER SYSTEMS																										
MULTIPLE ORGANS NOS Endometrial stromal sarcoma, meta Leukemia,nos Monocytic leukemia	N X	N	н	N	N	N X	н		H X	H	н	N	N	N	A	н	N	N X	N	N	N	N	н	N	H	498 1 1 8
LEG NOS DSTEDSARCOMA	x							_							A											1
 ANIMALS NECROPSIED TISSUE EXAMINED MICROSCOPI TEROURED TISSUE NOT EXAMIN TUMOR INCIDENCE NECROPSY, NO AUTOLYSIS, NO 	CALL ED MI MICF	Y I C R R 0 5	05CI COP1	0916 1C 8	ALI	.Y 1INA	TIO	N		С: А: И: В:	H Z A H	O T ECR UTO NIM C N	155 075 LY5 AL ECR	UE IS MIS DPS	INF NQ SIN Y P	ORM HIS O Erf(ATII TOLI DRMI	DN SY	DUI	1111	ED Pr	10TC	COL			

TABLE A4. FEMALE RATS: TUMOR PATHOLOGY (CONTINUED) HIGH DOSE

Allyl Isovalerate

.

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

TABLE B1.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50 50
INTEGUMENTARY SYSTEM			
*SKIN BASAL-CELL TUMOR FIBROMA	(50) 2 (4%) 3 (6%)	(50) 1 (2%) 1 (2%)	(50)
*SUBCUT TISSUE SARCOMA, NOS FIBROSARCOMA	(50) 1 (2%) 2 (4%)	(50) 2 (4%)	(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG HEPATOCELLULAR CARCINOMA, METAST ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA MESOTHELIOMA, METASTATIC	(50) 3 (6%) 10 (20%) 3 (6%)	(50) 2 (4%) 5 (10%) 1 (2%) 1 (2%)	(49) 3 (6%) 3 (6%) 2 (4%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE	(50) 1 (2%) 3 (6%)	(50) 2 (4%) 2 (4%) 2 (4%)	(50) 1 (2%) 6 (12%)
#MESENTERIC L. NODE MALIG.LYMPHOMA, HISTIOCYTIC TYPE	(50)	(50)	(49) 1 (2%)
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS HEMANGIOSARCOMA	(50)	(50)	(50)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	VEHICLE Control	LOW DOSE	HIGH DOSE
#SPLEEN HEMANGIOMA HEMANGIOSARCOMA	(50) 1 (2%)	(50)	(50) 1 (2%)
DIGESTIVE SYSTEM			
#LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA	(50) 7 (14%) 18 (36%)	(50) 8 (16%) 6 (12%)	(50) 8 (16%) 9 (18%)
#GASTRIC MUCOSA Squamous cell papilloma	(50)	(50) 1 (2%)	(48) 3 (6%)
#JEJUNUM Adenocarcinoma, nos	(50)	(49) 1 (2%)	(48) 2 (4%)
#COLON Adenocarcinoma, nos	(50)	(50) 1 (2%)	(49)
URINARY SYSTEM			
ENDOCRINE SYSTEM			
#ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA PHEOCHROMOCYTOMA, MALIGNANT	(49) 1 (2%) 4 (8%) 1 (2%)	(46) 2 (4%) 1 (2%)	(48) 1 (2%) 2 (4%)
#THYROID Follicular-cell Adenoma	(47) 5 (11%)	(46)	(49) 1 (2%)
REPRODUCTIVE SYSTEM			
#TESTIS INTERSTITIAL-CELL TUMOR	(49)	(50) 1 (2%)	(50)
NERVOUS SYSTEM			
NONE			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

•

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	VEHICLE		
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND ADENOMA, NOS	(50) 4 (8%)	(50) 4 (8%)	(50) 2 (4%)
*EAR SARCOMA, NOS	(50)	(50)	(50) 1 (2%)
MUSCULOSKELETAL SYSTEM			
NONE			
BODY CAVITIES			
*MEDIASTINUM Alveolar/bronchiolar ca, invasiv	(50) 1 (2%)	(50)	(50)
*MESENTERY MESOTHELIOMA, MALIGNANT	(50)	(50) 1 (2%)	(50)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
PHEOCHROMOCYTOMA, METASTATIC SARCOMA, NOS NEURILEMOMA	1 (2%) 1 (2%) 1 (2%)	1 (2%)	1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
MORIBUND SACRIFICE	8	7	2
TERMINAL SACRIFICE	3 26	31	31
ACCIDENTALLY KILLED, NOS ANIMAL MISSING ANIMAL MISSEXED OTHER CASES	2	2	6
a INCLUDES AUTOLYZED ANIMALS			

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

•

TABLE B1. MALE MICE: NEOPLASMS (CONTINUED)

	VEHICLE Control	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS*	36	33	34
Total Primary tumors	68	44	46
TOTAL ANIMALS WITH BENIGN TUMORS	25	17	19
Total benign tumors	37	24	21
TOTAL ANIMALS WITH MALIGNANT TUMORS	24	20	23
Total malignant tumors	31	20	25
TOTAL ANIMALS WITH SECONDARY TUMORS#	4	3	3
TOTAL SECONDARY TUMORS	5	3	
TOTAL ANIMALS WITH TUMDRS UNCERTAIN- Benign or Malignant Total Uncertain Tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			
* PRIMARY TUMORS: ALL TUMORS EXCEPT SEC	ONDARY TUMO	DRS	DJACENT ORGAN
# SECONDARY TUMORS: METASTATIC TUMORS O	R TUMORS IN	Ivasive into an Ai	

TABLE B2.

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SUBCUT TISSUE SARCOMA, NOS FIBROSARCOMA	(50) 1 (2%) 1 (2%)	(50)	(50) 1 (2%)
RESPIRATORY SYSTEM			
#LUNG ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA OSTEOSARCOMA, METASTATIC	(50) 2 (4%) 2 (4%) 1 (2%)	(49) 4 (8%)	(50) 2 (4%) 1 (2%)
HEMATOPOIETIC SYSTEM			
<pre>*MULTIPLE ORGANS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE</pre>	(50) 4 (8%) 6 (12%)	(50) 5 (10%) 1 (2%) 5 (10%)	(50) 4.(8%) 4.(8%) 8.(16%)
#SPLEEN Malignant Lymphoma, mixed type	(50)	(50)	(50) 2 (4%)
#LUNG MALIG.LYMPHOMA, LYMPHOCYTIC TYPE	(50) 1 (2%)	(49)	(50)
CIRCULATORY SYSTEM			
*MULTIPLE DRGANS Hemangidsarcoma	(50)	(50)	(50) 1 (2%)
#SPLEEN HEMANGIOSARCOMA	(50)	(50) 1 (2%)	(50) <u>1 (2%)</u>

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

	VEHICLE Control	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
#LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA	(50) 2 (4%) 1 (2%)	(50)	(50) 1 (2%)
#GASTRIC MUCOSA Squamous cell papilloma Adenoma, nos	(50) 1 (2%) 1 (2%)	(50)	(50) 2 (4%)
URINARY SYSTEM			
NONE			
ENDOCRINE SYSTEM			
#PITUITARY Adenoma, NOS	(43) 11 (26%)	(43) 2 (5%)	(44) 7 (16%)
#ADRENAL Cortical Adenoma Pheochromocytoma	(50) 1 (2%)	(46	(47) 2 (4%) 1 (2%)
#THYROID FOLLICULAR-CELL ADENOMA FOLLICULAR-CELŁ CARCINOMA	(49) 3 (6%) 1 (2%)	(48 2 (4%)	(48) 2 (4%)
#PANCREATIC ISLETS ISLET-CELL ADENOMA	(47)	(47) 1 (2%)	(48)
REPRODUCTIVE SYSTEM			
*MAMMARY GLÀND Adenoma, nos Adenocarcinoma, nos	(50) 1 (2%) 2 (4%)	(50) 3 (6%)	(50) 2 (4%)
#UTERUS ENDOMETRIAL STROMAL POLYP ENDOMETRIAL STROMAL SARCOMA	(50) 1 (2%) 1 (2%)	(50) 1 (2%)	(50) 1 (2%)

NONE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

	VEHICLE		
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND Adenoma, Nos	(50) 1 (2%)	(50) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM			
*BONE OSTEOSARCOMA	(50) 1 (2%)	(50)	(50)
*FEMUR OSTEOSARCOMA	(50)	(50) 1 (2%)	(50)
BODY CAVITIES			
*MESENTERY NEURILEMOMA	(50) 1 (2%)	(50)	(50)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS Sarcoma, nos Endometrial Stromal Sarcoma, met	(50) 1 (2%)	(50) 1 (2%)	(50)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY NATURAL DEATHA MORIBUND SACRIFICE	50 15 4	50 27 6	50 20 5
TERMINAL SACRIFICE	31	16	24
ACCIDENTALLY KILLED, NOS ANIMAL MISSING ANIMAL MISSEXED OTHER CASES		1	1
a includes autolyzed animals			

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

TABLE B2. FEMALE MICE: NEOPLASMS (CONTINUED)

	VEHICLE Control	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS* TOTAL PRIMARY TUMORS	31 46	20 28	30 42
TOTAL ANIMALS WITH BENIGN TUMORS Total benign tumors	18 25	9 1 1	15 18
TOTAL ANIMALS WITH MALIGNANT TUMORS TOTAL MALIGNANT TUMORS	20 21	16 17	24 24
TOTAL ANIMALS WITH SECONDARY TUMORS# TOTAL SECONDARY TUMORS	2 2		
TOTAL ANIMALS WITH TUMORS UNCERTAIN- Benign or Malignant Total Uncertain Tumors			
TOTAL ANIMALS WITH TUMORS UNCERTAIN- PRIMARY OR METASTATIC TOTAL UNCERTAIN TUMORS			

SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B3.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE 2-YEAR **STUDY OF ALLYL ISOVALERATE**

VEHICLE CONTROL

ANIMAL NUMBER	0	0 0 2	003	0	0 0 5	0	0 0 7	0	0	0 1 0	0	1	0	0	01 11 51	0	0	0	0	2	2	22	2	2	2
WEEKS ON Study	0	0	0	0 7	0	0	03	1	8	0	0	0		1	1	0	0	8	1	1	9	9	- 21	0	0
INTEGUMENTARY SYSTEM	-51	5	_5!	1	6	3	3	-61		6	91	4	6	31	61	61	6	1	6	6	اف	ŝ	اف	<u>.</u> 61	
SKIN BASAL-CELL TUMOR FIBROMA	+	•	+	٠	+ X	+	+	٠	+	+	+	+	•	+	+	+	+	*	+	+	٠	٠	÷	• x	+
SUBCUTANEOUS TISSUE Sárcoma, nos Fibrosarcoma	+	÷	+	+	+	+	+	* x	+	÷	+	+ ×	+	+	+	+	٠	+	+	÷	+	+	+	+	+
RESPIRATORY SYSTEM	<u> </u>																								
LUNGS AND BRONCHI HEPATOCELLULAR CARCINOMA, METASTA Alveolar/BRONCHIDLAR ADENOMA Alveolar/BRONCHIOLAR CARCINOMA	+	+ x	+	+	+	+	+	+	+	+ x	* ×	+	+	+	+ ×	•	+ X	* × ×	+	+	* X	×	+	* X	+ ×
TRACHEA	+	÷	+	÷	+	٠	+	+	÷	•	+	٠	+	+	+	+	÷	÷	÷	÷	÷	+	٠	÷	+
HEMATOPDIETIC SYSTEM	<u> </u>					••••••																			
BONE MARROW	1.	+	+	+	+		+	+	+	+	_t_	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPLEEN Hemangiosarcoma	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	•	•
LYMPH HODES	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	<u>.</u>	+	<u>+</u>	_t	+		+	<u>+</u>	+	+
THYMUS	+	٠	-	٠	+	٠	٠	٠	+	-	+	-	٠	٠	-	+	+	٠	+	٠	٠	٠	+	-	+
CIRCULATORY SYSTEM	[
HEART	+	٠	.*	+	٠	+	+	+	÷	÷	÷	+	+	÷	+	+	ŧ	٠	÷	٠	ŧ	٠	+	٠	+
DIGESTIVE SYSTEM																									
SALIVARY GLAND	+ +	<u>+</u>	+	+	+	+	+	+	+	* <u> </u>	<u>t</u>	+	t	+	+	+	+	*	+	+	+	+	<u>+</u>	+	+
LIVER Hepatocellular Adenoma Hepatocellular carcinoma	* ×	+	+	٠	+	•	+	* ×	٠	* x	+ X	+	+ x	+	+	*	+	+ X	+	+	+ X	• x	* X X	*	* X
BILE DUCT	+	÷	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+
GALLBLADDER & COMMON BILE DUCT	+	+	÷	+	+	÷	+	N	+	N	+	N	+	+	N	+	+	+	+	+	+	N	N	+	+
PANCREAS	+	+	÷	+	+	4	+	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷
ESOPHAGUS	+	÷	+	+	+_	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
STOMACH	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	4	+	+	+	+	+	+	+
SMALL INTESTINE	+	+	+	+	<u>+</u>	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	*
LARGE INTESTINE	+	+	+	+	*	÷	÷	+	÷	+	+	+	÷	+	+	+	+	+	+	+	÷	+	+	+	+
URINARY SYSTEM																•••••									
KIDNEY	+	+	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+
URINARY BLADDER	÷	٠	+	٠	+	+	+	+	+	٠	٠	+	+	+	+	÷	+	+	÷	+	÷	+	÷	+	÷
ENDOCRINE SYSTEM																									
PITUITARY	÷.	+	+	+	+	+	+	+	+	+	+		-	+	+	+	-	±	+	<u>+</u>	+	<u>+</u>		+	<u>.</u>
ADRENAL Gortical Adenuma Pheochromocytoma Pheochromocytoma, Malignant	+ X	+	•	+	+	+	•	•	+	•	-	+	+	+	•	•	+	+	+	+	+	+	•	+ x	+
THYROID Follicular-cell Adenoma	* x	+	* x	•	+	+	-	+	+	+	•	+	+	+	+	+	+	+	+	+	+	•	+	+	+
PARATHYRCID	÷	٠	+	÷	+	+	-	+	-	-	ŧ	٠	+	-	+	-	+	•	+	٠	٠	-	+	+	+
REPRODUCTIVE SYSTEM																									
MAMMARY GLAND	<u>H</u>	<u>N</u>	N	N	N	N	N	N	H	N	N	N	N	<u>N</u>	<u>N</u>	<u>N</u>	N	<u>+</u>	N	N	<u>N</u>	N	<u>N</u>	<u>N</u>	H
TESTIS	+	*	+	+	+	+	+	*	<u>.</u> *	*	+	. <u>+</u>	+	+	<u>*</u>	+	+	.t	+	. <u>+</u>	+	*	<u>+</u>	+	<u>+</u>
PROSTATE	+	+	*	+	+	+	*	+	*	+	*	+	+	+	•	*	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM																									
BRAIN	+	<u> </u>	<u>.</u>	÷	+	+	+	+	*	<u>+</u>	*	<u> </u>	+	*	+	*	+	<u> </u>	<u>+</u>	÷	*	<u>.</u>	÷	*	_
HARDERIAN GLAND	N	N	ж	N	N	N	N	N	н	N	H	N	N	N	N	N	H	N	N	N	N	N	N	N	N X
BODY CAUTTIES		<u></u>						<u> </u>																	_
MEDIASTINUM Alveolar/bronchiglar ca, invasive	N	H	N	N	N	N	N	N	N	N	н Х	H	N	N	H	M	N	N	N	ĸ	N	N	H	N	N
ALL OTHER SYSTEMS																									
MULTIPLE CROANS NOS PHEDCHROMOCYTOMA, METASTATIC SARCOMA, NOS NEURILEMOMA MALIGALYMPHOMA, LYMPHOCYTIC TYPE MALIGANAT LYMPHOMA, MIXED TYPE	N	N	N	H	N	н	N	N	н х	H	H	H	N	N	N	N	H	N	H	N	н	N	M	N	H
 TISSUE EXAMINED MICROSCOPI REGUIRED TISSUE NOT EXAMIN TUMOR INCIDENCE NECROPSY, NO AUTOLYSIS, NO SIANIMAL MIS-SEXED 	CALI ED N MIC	NIC:	R050 600	00P3	CAL EX/	LY MIN	NAT 1	ON				ND NEC AUT ANI NO	TIS ROP DLY MAL NEC	5UE 57, 515 M1 R0P	IN NO SSI	FOR HI PER	MAT STO FOR	IDH	y I	UE	11 19	PRC) T O C	:0L	

									***			air 160 AA	-	10. Dec . Der .										***		
ANIMAL NUMBER	2	2	2	21	3	3	3	03	3	3	0	3	3	03	04	9	04	04	04	4	4	04	64	040	050	TOTAL
WEEKS ON	0	7	1	0	1		1	0	-	1	- Ĉ	1	1	ð	0	Ì		1	-	0	1	1	0	-1	1	TISSUES
TNTECHMENTARY SYSTEM	å	õ	6	ź	6	7	71	ž	žİ.	7	ž	ž	ž	4	41	41	<u>j</u>	<u>;</u>]	21	ź	6	ž	6	ž	ż	
SKIN BASAL-CELL TUMOR	+	٠	÷	٠	÷	+	* ×	+	÷	÷	÷	+	÷	+	+	+	÷	٠	٠	٠	+	+	٠	* X	+	50× 2
FIBROMA -									<u>x</u>																_	3
SUBCUTANECUS TISSUE Sarcoma, nos Fibrosarcoma	+ x	•	•	•	•	+	+	+	+	÷	+	+	+	+	•	•	•	+	+	•	+	+	+	•	+	50¥ 1 2
RESPIRATORY SYSTEM	<u> </u>																									
LUNGS AND BRONCHI HEPATOCELLULAR CARCINGMA, METASTA Alveolar/Bronchiolar adenoma Alveolar/Bronchiolar carcingma	+ x	•	•	+	٠	+	* x	+	•	•	+	*	+	+	+	+	* ×	•	•	+	+	+	+	•	+ ×	50 3 10 3
TRACHEA	÷	٠	+	+	٠	٠	+	٠	+	+	+	+	٠	٠	+	+	+	+	+	+	٠	÷	+	+	÷	50
HEMATOPOIETIC SYSTEM	<u> </u>	-									****															
BONE MARROW	<u>+</u>	+	±	. t	•		*	+	+	+	+	+	+	+	+	÷	+	-	+		٠	+	+		+	48
SPLEEN	+	÷	+	+	÷	+	+	ţ	٠	+	+	٠	÷	٠	+	÷	+	÷	•	÷	+	+	+	+	+	50
HEMANGIDSARCUMA	1					•		 	 -	•	•			•	+	+	•	•	*	+	+	+	+	*	+	50
TRYMUS	T.	•	<u>-</u>			+	+	-	•		•	•	í +	+	-	+	+	+	+	+	-	+	+	+	-	39
CIECULATORY SYSTEM	<u> </u>					· · · ·																				
WEART		4	+	÷	÷	•			•	÷	÷	•	•	÷	÷	÷	+	÷	÷	+	÷	+	÷	+	+	50
NTARATI	Ļ			· · ·							·							-							_	
CHINNER CINE				1	ĩ					1							•			÷		÷	÷	+	4	50
SALIVART GLAND	<u>+</u>		<u>+</u> -		- <u>*</u> -		T	÷			- <u>-</u>		<u>-</u> -			- <u>-</u> -		- <u>*</u>	<u> </u>	<u>-</u>		<u> </u>	- <u>+</u>		-	
HEPATOGELLULAR ADENOMA	Ľ	*	•	+	•		ţ		x	+	•	,	Ĵ	Ĵ	Ĵ	*	x	Ţ		•	Ĵ		ž	Ţ	Ĵ	7
HEPATOCELLULAR CARCINOMA	X					x	x	x					x	×	x						А					10
BILE DUCT	+	<u>+</u>	*		+	*	+	t	+	*		+	<u>+</u>	+	- <u>+</u>	<u>_</u>	+	<u> </u>	+	+	<u>+</u>	.	+	<u>+</u>	-+	50
GALLBLADDER & COMMON BILE DUCT	<u>N</u>	<u>†</u>	+	*	N	+	N	+	<u>N</u>	+	+	+	+	t	+	<u>N</u>	<u>N</u>	+	+	_ <u>+</u>	<u></u>	_N	+	*		50×
PANCREAS	+	+	+	+	<u>+</u>	+	<u>+</u>	+			+	+	.	+	_ <u>+</u>		+	.	+			+	+		-+	49
ESUPHAGUS .	<u> </u>		*			<u>t</u>	<u>+</u>		*		<u>+</u>		<u>_</u>	*	<u>+</u>	<u>+</u>	÷	+	+	_ <u>+</u>		<u>+</u>	_ <u>+</u>	-+	+	50
STOMACH .	+		*			+	*	÷		+		+	*	- <u>+</u>	+	+	+	+	*	t	_ <u>+</u>	-+	*	+	+	50
SMALL INTESTINE	+				*	*	<u>*</u>	<u> </u>	*		*			*		+	÷	*		<u>*</u>	<u>*</u>	+	+	*	+	50
LARGE INTESTINE	<u> </u>	+	+	+	•		+	+	+	*	+	+	*	+	+	+	+	+	•	*	+	+	*	+	+	50
URINART STSTEM																										
RIDNEY	÷	-*	+		<u> </u>		+	+		*	<u>+</u>	+	+	+	*	*	- <u>+</u>	- <u>+</u>	+	+	+	<u>.</u>	+	<u></u>	+	50
URINARY BLADDER	Lt_	+	+	+	+	+	*	<u> </u>	+	+	+	+	+	+	+	*	+	+	*	+	+	+	*	*	•	50
ENDUCRINE SYSTEM																										
PITUITARY	++			+	•	+	<u>+</u>	+	+	4	+	+	+	+	*	~	+	+			<u>+</u>		<u>t</u> _	+	+	41
ADRENAL Cortical adenoma Pheochromocytoma Pheochromocytoma, malighant	•	+	+	+	+	+	+	+	+ X_	+	*	+	+	+	+	+	+	•	+	+	* ×	×	+	+	+ ×	49 1 4
THYROID Follicular-cell Adenomá	+	+	+	•	+	* ×	+	* ×	+	+	*	+	+	*	+	-	+	+	-	•	+	+	+	+	* ×	47 5
PARATHYROID	+	+	+	÷	-	÷	÷	-	-	+	-	+	+	+	-	-	+	+	~	+	+	+	+	+	+	37
REPRODUCTIVE SYSTEM	+										······															
MAMMARY GLAND	H.	<u>N</u> .	N	<u>N</u> .	м	<u>N</u>	N	N	к	N	t	. н	N	N	н	N	N	N	N	N	<u>N</u>	<u>.</u>	N	N	N	50×
TESTIS	++	+	+	+	+	+		+	+	+	÷	+	+	+	+	+	+	+	+	+	<u> </u>		+	+	+	49
PROSTATE	+	+-	+	÷	+	+	+	÷	÷	+	+	÷	+	+	+	+ .	÷	+	+.	÷	-	+.	÷	+	+	49
NERVOUS SYSTEM	+										·····															
BRAIN	+	÷	÷	÷	÷	÷	÷	+	+	+	٠	+	٠	٠	÷	÷	+	+	÷	+	+	+	+	÷	+	50
SPECIAL SENSE ORGANS	<u> </u>																					<u> </u>				
HARDERIAN SLAND Adendma, NDS	N	N	H X	N	N	N	N	Η	N	N	H	N	N	N	N	H	N	N	N	ĸ	N	H	н	N	N	50× 4
BODY CAVITIES						·····							•													
MEDIASTINUM Alveolar/bronchiolar ca, invasive	н	N	N	N	ĸ	N	N	н	N	N	N	N	N	N	N	N	N	N	N	N	H	N	N	N	И	50× 1
ALL OTHER SYSTEMS																										
MULTIPLE ORGANS NOS PHEOCHROMOCYTOMA, METASTATIC Sarcoma nos Reurilemma Malig.lymphoma, lymphocytic type Malig.lymphoma, Miyed type	N	N X	N	N X	N	N	N X	н	хX	N	N	N	н	N	N	ĸ	N	N	N	N X	н	н	N	N	N	50×

TABLE B3. MALE MICE: TUMOR PATHOLOGY (CONTINUED) VEHICLE CONTROL

ALIMANAL LITERDUND, UNDER
 ALMALS NECROSCIPICALLY
 ALTASSUE EXAMINED MICROSCOPICALLY
 TISSUE EXAMINED MICROSCOPICALLY
 C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL
 ALTOLYSIS
 Nº NECROPSY, HO AUTOLYSIS, NO MICROSCOPIC EXAMINATION
 Nº NECROPSY, HO AUTOLYSIS, NO MICROSCOPIC EXAMINATION
 Nº NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION
 Nº NECROPSY PERFORMED

.

TABLE B3.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE 2-YEAR **STUDY OF ALLYL ISOVALERATE**

ANIMAL 0 0 0 0 0 0 1 5 5 WEEKS O 2 0 2 INTEGUMENTARY SYSTEP SKIN BASAL-CELL TUMOR FIBROMA SUBCUTANEOUS TISSUE SARCOMA, NOS + RESPIRATORY SYSTEM LUNGS AND DRONCHI HEPATOCELLULAR CARCINOMA, METASTA Alveolar/brochiolar adenoma Alveolar/brochiolar carcinoma Mesothelioma, metastatic x x x x TRACHEA HEMATOPOIETIC SYSTEM BONE MARROW ÷ + 4 SPLEEN + * * ÷ ÷ LYMPH NODES THYMUS CIRCULATORY SYSTEM HEART DIGESTIVE SYSTEM SALIVARY GLAND . . . **.** . . LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINDMA ţ + + * * * * * * + + ALLE DUCT GALLBLADDER & COMMON BILE DUCT + + + + + + + + + N + N + + + PANCREAS ESOPHAGUS + + + + STOMACH Squamous cell papilloma ADENDCARCINOMA, NOS LARGE INTESTINE ADENOCARCINOMA, NOS * * * * * * * * * * * * * * * * * * URINARY SYSTEM KIDNEY URINARY BLADDER ENDOCRINE SYSTEM PITUITARY ADRENAL Preochromocytoma Preochromocytoma, malignant * X THYROID + + + + + + + + + + + + + + + + + PARATNYROID REPRODUCTIVE SYSTEM MAMMARY GLAND N <u>N N N N N N N N N N</u> N N N N TESTIS INTERSTITIAL-CELL TUMOR PROSTATE NERVOUS SYSTEM BRAIN SPECIAL SENSE ORGANS NARDERIAN GLAND ADENOMA, NOS BODY CAVITIES MESENTERY MESOTHELIGMA, MALIGNANT н ALL OTHER SYSTEMS MULTIPLE ORGANS NOS HEMANGIDSARCOMA HEURILEMMA MALIGLYMPHOMA, LYMPHOCYTIC TYPE MALIGLYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE +: TISSUE EXAMINED MICROSCOPICALLY -: REGUIRED TISSUE NOT EXAMINED MICROSCOPICALLY X: TUNOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION S: ANIMAL MIS-SEXED ND TISSUE INFORMATION SUBMITTED Necropsy, No Histology due to Protucol Autolysis Sing Animal Missing No Necropsy Performed

LOW DOSE

: 4: M: B:

ALTMA			- 67			<u>61</u>	01		61	61	01	61	61	- 61	- 77	h í	01	<u>n</u>	<u></u>		- 1	01	01	01	6	
NUMBER	2	27	28	29	3	3	32	33	3	3	ž 6	37	3	39	4	4	42	4 3	44	4	4 6	4	4 8	4 9	Š	TOTAL
WEEKS ON STUDY	0	è	0	2	9	0	1	9	0	9	1	0	0	0	0	9	0	0	2	0	0	0	6	0	0 7	TISSUES
INTEGUMENTARY SYSTEM	-61	6	_5(2	01	5)	5		31	9	61	6	5	_6.	61	-11-	<u>.</u>	61	4 [61	61	6	3	61	_5	
SKIN BASAL~CELL TUMOR FIBROMA	+	+	+	N	٠	+	+	+	N	+	٠	+	÷	+	•	+	+	•	+	÷	+	+	٠	+ x	+	50×
SUBCUTANEOUS TISSUE Sarcoma, nos	+	+	+	N	+	+	+	+	N	+	÷×	÷	+	+	+	+	÷	+	+	÷	+	+	+	÷	+	50× 2
RESPIRATORY SYSTEM	ł																									
LUNGS AND BRONCHI Hepatocellular Carcinoma, metasta Alvedlar/Bronchidlar Adenoma Alvedlar/Bronchidlar Carcinoma Mesothelioma, Metastatic	•	+	+	*	×	+ X	+	•	+	+	•	•	+	•	•	+	+	+	×	+	* ×	+'	+ 	•	+	50 2 5 1
TRACHEA	+	٠	٠	٠	÷	÷	٠	٠	٠	+	٠	٠	+	٠	÷	٠	٠	+	+	٠	÷	٠	-	٠	-	48
REMATOPOIETIC SYSTEM												•														
BONE MARROW	+	+		+.	<u>+</u>	t		t	+	<u>+</u>	.	.*	t	+	+	+	+	+	+	+	+	ŧ	÷	4	-	49
SPLEEN .	+	+	+	+	+	+	+	+	+	+	+	4	+	+	+	+		t	+	+	<u>+</u>	+	+	+	+	50
LYMPH HODES	+	+	+	+	+	+		+	. +	÷	÷	+	+	+	+	÷	*	+	+	÷	+	+	+	÷	+	50
TNYMUS	•	+	-	٠	-	+	÷	-	+	٠	+	٠	-	٠	٠	+	+	÷	÷	-	٠	+	+	÷	-	41
CIRCULATORY SYSTEM																										
HEART	+	+	+	÷	÷	+	+	+	+	+	+	+	+	+	÷	٠	+	٠	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM																										
SALIVARY GLAND	+	+	_+	+	+	+	+	÷	+	+	+	+	+	+	+	+	. <u>+</u>	+	+	+	<u>t</u>	+	+	+	+	<u> </u>
LIVËR Hepatocellular Adenoma Hepatocellular carcindma	+	*	٠	٠	t X	+	÷	* x	+	+	+	+	+	+	+	+	+ ×	+	+ X	* X	+	•	+	+	* ×	50 8 5
BILE OUCT	+	+	+	<u>+</u>	_±_		.	+	+	+		+	+	+	t	+	+	. <u>+</u>	t	.	<u>+</u>	÷	+	÷	+	50
GALLBLADDER & COMMON BILE DUCT	+	+	+	+	+	+	+	. +.	+	+	t	÷	+	+	4	N	+	<u>+</u>	+	+	+	+	+	+	_+	50×
PANCREAS	<u>+</u>	*	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	<u>+</u>		+.	+	+	+	+	_+	
ESOPHAGUS .	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	+	÷	+	+	-	÷	-	48
STOMACH Squamous gelt papilloma	•	÷	+	*	+	+	+	+	+	+	•	+	•	•	+	•	+	+	*	+	•	٠	•	+	+	50 1
SMALL INTESTINE Adenocarcinomá, nos	+	•	+	+	+	+	•	+	+	+	+	+	+	+	+	+	+	+	•	* ×	•	+	+	+	+	49
LARGE INTESTINE Adenocarcinoma, nos	+	٠	٠	+.	+	+	ŧ	+	+	٠	٠	٠	٠	٠	٠	٠	+	٠	+	÷	•	+	+	+	+	50 1
URINARY SYSTEM																	~~~~~		•••••						-	
KIDNEY	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	<u>+</u>	+	+	+	+	+	+		+	50
URINARY BLADDER	+	+	÷	+	+	+	+	+	÷	+	+	÷	+	÷	+	+	+	+	+	+	+	+	٠	+	+	50
ENDOCRINE SYSTEM																									-	+
PITUITARY .	+	+	+	+	-	+	÷	~	t		.*	-	4	+	+	-	<u>+</u>	+	-	+	+	-	+	+	~	40
ADRENAL Pheochromocytoma Pheochromocytoma, malignant	+	÷	٠	٠	+	+	+	٠	+	+	-	+	+	+	+	+	+	+	+	-	+	٠	+	+	+	46
THYROID	+	+	+	+	+	+	+	+	÷	+	4	+	+	+	-	+	+	+	+	+	+	÷	-	+	-	46
PARATHYROID	-	-	~	÷	÷	+	÷	+	+	-	÷	+	-	+	~	-	+	+	-	-	-	-	-	-	-	20
REPRODUCTIVE SYSTEM								•••••																	-	
MAMMARY GLAHD	8	N	N	N	N	н	N	н	+	н.	Ν	N	.н.	N	N	N	N	N	N	N	N	Ν.	Ν	N	+	50×
TESTIB INTERSTITIAL-CELL TUMOR	+	÷	+	+	+	* X	+	٠	+	+	+	÷	+	÷	÷	•	+	+	+	+	÷	+	÷	÷	+	50
PROSTATE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	÷	+	*	+	50
NERVOUS SYSTEM	ļ																								-Ì	
BRAIN	+	÷	+	+	+	÷	÷	÷	+	+	+	+	٠	+	÷	÷	+	÷	÷	÷	÷	÷	÷	+	+	50
SPECIAL SENSE ORGANS																										
HARDERIAN GLAHD Adenoma, Nos	N	H	H	H	H	н	N	N	N	N	н	ĸ	H	H	н	N	H	н	н	ĸ	ĸ	N	N	ĸ	N	50 M
BODY CAVITIES																	.									+
MESENTERY MESOTNELIOMA, MALIGNANT	N	N	N	N	H	H	N	н	N	H	N	H	N	N	N	N	N	N	N	N	H	H	жX	N	н	50¥
ALL OTHER SYSTEMS																									-	
MULTIPLE ORGANS NCS Hemangiosarcoma Neurilemoma Malig.Lymphoma, Lymphocytic type Malig.Lymphoma, Histidcytic type Malig.Lymphoma, Histidcytic type	H	N X	N X	N	N	H X	н	N	N	N X	N	н	N	N	H	н	M	M X	н	н	N	N	N	H	N X	50H 1 2 2

TABLE B3. MALE MICE: TUMOR PATHOLOGY (CONTINUED) LOW DOSE

TALLUMANT LIFERENT # ANIMALS NECROPSIES INCOMENTATION SUBJITIED +: NISSUE EXAMINED MICROSCOPICALLY -: NO TISSUE INFORMATION SUBJITIED -: NO NECROPSY PERFORMED

TABLE B3.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE 2-YEAR **STUDY OF ALLYL ISOVALERATE**

HIGH DOSE

ANIMAL NUMBER	0	0	0	0	0	0	0	0	0	1	01	010	0	0	1	0	0	1	0	2	2	022	0	0 2 4	2
WEEKS ON STUDY		1		1	1	1	1	07	-1	Ğ		1	0	2	ő		1	8	-	ğ		1	1	1	
INTEGUMENTARY SYSTEM	Š	Š	8	<u>š</u> l	5	أق	5	3	Š	i	5	5	2	2	ó	5	أق	š	ě.	_íl	6	ĭ	6	6 l	-6
SUBCUTANEOUS TISSUE SARCOMA, NOS FIBROSARCOMA	+	٠	٠	+	÷	٠	٠	٠	÷	٠	+	٠	+	+	÷	÷	٠	٠	+	+	÷	÷	٠	٠	+
RESPIRATORY SYSTEM									_																+
LUNGS AND BRONCHI HEPATOCELLULAR CARCINOMA, METASTA Alveolar/Bronchiolar Adenoma Alveolar/Bronchiolar Carcinoma	+	+	•	+	×	•	+	+	+	*	+	•	+	+	* ×	÷	•	+	+	+ ×	+ ×	+	+	+	+
TRACHEA	+	+	+	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	+	+	+	+	÷	÷	÷	+	÷	+	+
HEMATOPOIETIC SYSTEM		•					_																		-
BONE MARROW	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	-	+	+	+	+	+	+	+	+	+	+
SPLEEN HEMANGIOMA	۰	+	+	+	+	* ×	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
LYMPH NODES Malig.lymphoma, Histidcytic type _	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	* ×	+	+	+	+	+
THYMUS	+	+	+	+	+	÷	+	+	+	+	+	+	٠	+	-	-	-	+	-	÷	+	+	-	+	-
CIRCULATORY SYSTEM																									+
HEART	+	+	+	+	÷	÷	+	+	+	+	+	+	÷	÷	+	+	+	+	ŧ	+	+	+	+	÷	+
DIGESTIVE SYSTEM																									┥
SALIVARY GLAND	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	÷	+ -	+	+	+	÷	+	+
LIVER HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCTNOMA	+	+	+	٠	÷×	٠	+	÷×	+	+	* ×	+	٠	+	+	٠	٠	٠	+	+	+	+	+	÷	*
BILE DUCT					<u>^</u>			- <u>^</u>	<u>^</u>	<u>^</u>		÷			<u>^</u>										1
GALLBLADDER & COMMON BILE DUCT	•	+	N	+	+	N	•	+	÷	N	+	+	+	N	+	+	N	N	•	+	+	+	+	+	+
PANCREAS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ESOPHAGUS	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
STOMACH Squamous cell papilloma	+	+	+	+	+	+	+	+	+	+	+	÷	٠	+	+	÷	* ×	+	+	+	* ×	* .	+	+	+
SMALL INTESTINE Adenocarcinoma, Nos	+	+	+	÷	÷	+	+	+	÷	÷	* ×	+	+	+	+	÷	÷	+	+	+	+	+	+	+	÷
LARGE INTESTINE	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	÷	+	+	+	+	÷	+	+	+
URINARY SYSTEM																									+
KIDNEY	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	÷	+	÷	+
URINARY BLADDER	+	+	+	÷	÷	÷	÷	+	+	+	+	÷	+	÷	÷	÷	÷	+	÷	÷	+	+	÷	+	+
ENDOCRINE SYSTEM																									+
PITUITARY	+	+	+	+	+	+	-	-	÷	-	+	+	+	+	-	+	+	+	+	-	+ .	+	+	÷	-
ADRENAL CORTICAL ADENOMA PHEOCHROMOCYTOMA	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+
THYROID Follicular-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	+	+	+	*	+	+
PARATHYRDID	-	-	-	-	+	٠	+	+	٠	+	-	÷	-	+	+	-	-	+	÷	÷	+	-	+	+	-
REPRODUCTIVE SYSTEM																									+
MAMMARY GLAND	N	N	N	N	N	N	N	N	N	N	N	N	+	N	N	N	N	N	N	N	N	N	Ν.	Ν.	N
TESTIS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
PROSTATE	+	+	+	•	+	٠	÷	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+
NERVOUS SYSTEM																									Τ
BRAIN	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+
SPECIAL SENSE ORGANS																									1
HARDERIAN GLAND Adenoma, Nos	N	N	N	ĸ	N	H	N	N	N	H	N	н	N	N	ĸ	N	H	H	N X	N	N	N	N	H	н
EAR Sarcoma, NOS	н	N	H	N	N	H	N	N	N	N	H	N	H	H	N	N	N	N	N	H	H	N	H	H	н
ALL OTHER SYSTEMS											*****														1
MULTIPLE DRGANS NOS Sarcoma, Nos Malig.lymphoma, lymphocytic type Malignant_lymphoma, mixed type	N	N	N	H	N	N	H	н	N	H	н	N	N	H	н	N	н х	N	N	N	н	H X	N	N	H

+: TISSUE EXAMINED MICROSCOPICALLY : NO TISSUE INFORMATION SUBMITTED -: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY C: NECROPSY, NO HISTOLOGY DUE TO FROTOCOL X: INCORPY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION A: AUTOLYSIS N: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION M: ANIMAL MISSING S: ANIMAL MISSEXED B: NO NECROPSY PERFORMED

						***														~~~						
ANIMAL NUMBER	2	2	2	2	3	3	3	3	3	3	3	3	3	3	4	4	4	4	4	4	4	4	4	8	5	
WEEKS ON			1	1	01		-1	하	-	8	-	1	1	1			1	1		퀽	1	1	0	0	8	TISSUES
TUTEATMENTARY EVEYEM	6	6	6	3	3	6	5	41	ö	ġ	ů.	6	6	š l	6	ál	6	6	ŝ	61	6	šl	ő	3	3	TUNUKS
SUBCUTANEOUS TISSUE SARCOMA, NOS FIBROSARCOMA	+	÷	÷	+	٠	÷	٠	•	٠	÷	٠	٠	÷	٠	* x	•	+	÷	•	٠	٠	÷	٠	* x	÷	50M
RESPIRATORY SYSTEM																									+	
LUNGS AND BRONCHI Hepatocellular carcinoma, metasta Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+	٠	٠	٠	+	٠	÷	+	+	+	٠	٠	+ X	+	+	+	+	+	-	• x	+	+	+	+ ×	÷	49 3 2
TRACHEA	+	+	٠	+	+	÷	÷	*	٠	÷	÷	÷	٠	,	÷	+	+	÷	-	+	÷	÷	+	+	+	49
HEMATOPOIETIC SYSTEM																									-	
BONE MARROW	+	+	+	+	+	+	+	+	+	+	+	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	49
SPLEEN HEMANGIOMA	•	•	•	+	•	•	+	+	•	+	•	•	•	+	+	+	+	+	+	*	+	•	÷	•	+	50
LYMPH NODES Malig.lymphoma, histiocytic type,	•	•	+	+	•	+	+	•	+	+	+	*	+	•	+	•	•	•	*	*	+	*	+	+	+	49
THYMUS	+	-	٠	٠	٠	+	٠	-	٠	٠	+	-	٠	٠	+	•	٠	÷	-	*	+	٠	-	-	+	37
CIRCULATORY SYSTEM																									1	
HEART	+	٠	٠	+	+	٠	٠	٠	٠	٠	٠	٠	٠	+	٠	•	+	+	-	+	٠	+	٠	٠	+	49
DIGESTIVE SYSTEM																									1	
SALIVARY GLAND		+	+	+	+	+	+	+	+	<u>+</u>	+	+	.	+	+	+	+	+	*	+	+.	+	. t	+	+	49
LIVER Hepatocellular Adenoma Hepatocellular carcinoma	·	×	•	•	+	×	+	•	•	*	*	+ ×	+	+ x	+	+	•	• 	•	+	•	×	+	*	+	50 8 9
BILE DUCT	+	÷	+	+	+	٠	٠	٠	+	÷	+	+	÷	•	٠	÷	+	•	•	٠	+	÷	+ .	+	+	50
GALLBLADOER & COMMON BILE DUCT	+.	+	+	<u>N</u>	+	+	+	+	н	N	+	N	+	. <u>+</u>	+	+	N	N	+	<u>N</u>	+	+	+	+	N	50×
PANGREAS	+	+	+	+	*	+	+	+	-	+	÷	+	+	+	+	+	<u>*</u>	+	<u>+</u>	+	+	+	-	+	+	48
E50PHAGUS	+	+	*	+	+	+	+	+	.	+	+	*	+	+	+	•	+	+	-	+	+	+	. <u>t</u>	+	+	49
STOMACH Squamous cell papilloma	+	•	+	•	+	•	+	•	+	•	•	•	•	•	+	•	•	+	•	+	٠	•	-	+	-	48
SMALL IHTESTINE Adendcarcinoma, nos	+	+	+	*	•	+	•	+	•	+	•	+	•	٠	+	•	+	•	+	+	•	+	-	+	-	48_2
LARGE INTESTINE	÷	+	÷	٠	٠	+	÷	+	÷	٠	+	÷	÷	+	٠	٠	+	٠	•	•	+	+	-	+	+	49
URINARY SYSTEM																									1	
KIDNEY .	+	+	+	*	+	*	+	.t	+	+	+	+	4	+	.+	.+	+	+	+	+	٠	+	+	*	+	50
URINARY BLADDER	+	+	٠	+	+	٠	٠	÷	+	+	÷	٠	٠	+	٠	+	+	٠	+	+	٠	+	+	+	+	50
ENDOCRINE SYSTEM																									T	
PITUITARY	+		+	+	*		. <u>t</u>	. +	+	-	+	+	+	+	+	+	+	+	+	. <u>t</u>	+	±		<u>_</u>	+	
ADRENAL Cortical Adenoma Pheochromocytoma	•	+	+	•	•	•	×	*	+ x	+	+	•	•	-	*	+	+	* x	+	+	•	+	-	+	•	48 1 2
THYROID Follicular-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	~	+	•	+	+	+	+	49
PARATHYRDID	÷	-	~	-	÷	-	÷	+	÷	+	+	÷	٠	+	٠	÷	÷	-	-	+	÷	+	+	+	+	34
REPRODUCTIVE SYSTEM																				·····					+	
MAMMARY GLAND	N.	<u>N</u>	<u>.</u>	<u>N</u>	H_	Ν	N	N	N	N	N	N	N	N	N	N	N	N	N.	N	N	<u>N</u>	N	N	N	50×
TESTIS	٠		+	+	+	+	+	+	+	±	<u>+</u>	+	*	+	+	+	•	+	+	•	+	+	+	+	÷	50
PROSTATE	÷	٠	٠	÷	٠	+	+	+	+	÷	+	+	٠	+	+	+	+	+	+	+	÷	٠	+	+	+	50
NERVOUS SYSTEM																									1	
BRAIN	+	+	+	+	•.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	•	50
SPECIAL SENSE DRGANS																										
HARDERIAN GLAND Adenoma, Hos	H	H	H	H	H 	N 	н <u>Х</u>	N 	N	N 	N 	н 	N 	N 	H	H 	N 	H 	N 	N 	N 	H 	N	N	N	2
SARCOMA, HOS	N	M	M	M	м	н	н	M	M	н	n	M	N	x	A	н	ri .	M	11	rl .	1	"		"	"	1
ALL OTHER SYSTEMS Multiple organs hos	N	н	н	N	N	N	н	н	H	N	N	N	N	N	N	N	N	H	N	H	н	N	H	н	N	50#
SARCOMA, NOS Malig.lymphoma, lymphocytic type Malignant lymphoma, mixed type			x													x	×		x		x		x			

TABLE B3. MALE MICE: TUMOR PATHOLOGY (CONTINUED) HIGH DOSE

* ANMALS WECROPSIED * INTALS WECROPSIED +: TISSUE EXAMINED MICROSCOPICALLY -: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY .: TUMOR INCIDENCE N: MECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION

: NO TISSUE INFORMATION SUBMITTED C: Hecropsy, no histology due to protocol A: Autolysis M: Animal Missing B: No hecropsy performed

TABLE B4.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

VEHICLE CONTROL

ANIMAL NUMBER	0	0	ő	Ö	0	0	0	0	0	1	1	1		1	1					2	2	2	2	2
WEEKS ON	0	1	0	-1	1	0	Ó	1		-	1	6	1	1				17		0	9	1	C	1
	61	6	5	6	6	ž	5	6	é	61	6	8	6	7	ž	7 7		i ž	Ĺž	3	l ź	7	1	4
	1	÷	+	+			÷	÷	+	÷	÷	÷									+	+	+	
SARCOMA, NOS FIBROSARCOMA					·																		×	
RESPIRATORY SYSTEM	+																							
LUNGS AND BRONCHI Alveolar/Bronchiolar Adenoma Alveolar/Bronchiolar Carcinoma Osteosaproma. Metastatic	+	+	+	+	•	+	+	+	٠	٠	٠	+ ¥	+	•	•	• •	•	, .	•	• +	+	٠	٠	+
MALIG.LYMPHCMA, LYMPHOCYTIC TYPE			X																					
TRACHEA	+	٠	+	+	٠	+	٠	+	٠	+	+	+	+	-	•	+ +	1	• •	+	• •	+	+	٠	+
HEMATOPOIETIC SYSTEM	1-																							
BONE MARROW	++	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>.</u>	<u>+ +</u>		<u>. +</u>		+	+	+	+	+
SPLEEN	++	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u> :	<u>t</u>	<u>+</u> t		<u> </u>		+	+	+	+	+
LYMPH NODES	++	+	+	+	+	+	-	+	.+.	+	+	+	+	+	ł	+ +	-	• •	+	• •	+	+	+	+
THYMUS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	- +	1	• •	-	• •	+	+	+	-
CIRCULATORY SYSTEM																								
HEART	+	*	+	+	+	+	+	+	+	+	+	+	+	+ ·	۲.	+ +	1	· +	+	• +	+	+	+	+
DIGESTIVE SYSTEM																								
SALIVARY GLAND	+	+	+	+	+	-	-	+	+	+	+	+	+	<u>+ ·</u>	•	+ +		<u>.</u>		+	+	+	-÷-	+
LIVER Hepatocellular adenoma Hepatocellular carcinoma	Ļ	+	*	+	+	•	+	+	+	+	+	+	*	+ ·	-	+ +	_	· +	+	+	+	•	+	+
BILE DUCT	+	+	+	+	+	٠	+	+	+	+	٠	+	+	+ ·	•	+ +	+	• +	+	+	+	+	+	+
GALLBLADDER & COMMON BILE DUCT	++	÷	+	+	ŧ	N	N	ŧ	÷	N	+	. <u>+</u>	±	+		+ +	+	+	+	÷	+	+	+	+
PANCREAS	+	+	+	+	+	+	+	+	+	+	+	+	÷	+ ·		+ +	+	+	+	_	+	+	†	
ESOPHAGUS	+	+	+	+	+	-	+	+	+	+	+	+	+		•	+ +	+	+	+	t		+	+	+
STOMACH Squamous Cell Papilloma Adenoma, Nos	+	+	+	+	+	+	+	+	+	+	+	+	•	• •	• •	+ +	+	+	+	+	+	+	+	+
SMALL INTESTINE	+	+	+	+	+	+	+	+	+	+	+.		+	<u>+ ·</u>		+ +	•	• •	+	÷	+	+	+	+
LARGE INTESTINE	+	+	+	+	+	+	+	+	+	+	+	-	+	• •	• •	+ +	+	•	+	+	+	+	+	+
URINARY SYSTEM	+																							-
KIDNEY	+	+	+	.	+	+	+	÷	+	+	+	+	+	<u>+</u>	<u> </u>	++	+	• +	+	+	+	+	+	+
URINARY BLADDER	+	+	+	٠	÷	+	÷	+	+	+	+	+	+	• •	•	+ +	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM	<u>†</u>																		_					
PITUITARY ADENDNA, NOS	-	÷ ×	+	٠	*	٠	٠	+	+	+	+ x	+	+	• ;		+ ÷	÷	· +	÷	+	+	+	+	-
ADRENAL CORTICAL ADENOMA	+	+	+	+	+	÷	÷	+	+	+	+	÷	+	+ •	• •	+ +	+	+	+	+	÷	+	+	٠
THYRDID Follicular-cell adenoma	÷	٠	÷	÷×	+	+	+	+	٠	+	* X	٠	٠			+ +	+	+	* x	+	÷	+	+	÷
FOLLICULAR+CELL CARCINUMA	+																							
PARATHYROID	Ļ-	+	+	+	+	+	+	+	+	÷	-	*	•								-	-		•
REPRODUCTIVE STSTEM																								
MAMMARY GLAND Adenoma, nos Adenocarcinoma, nos	Ľ	+	+	N	*	N	N	+	N	+		+	*	• •		• •	+			•	•	•		×
UTERUS Endometrial stromal polyp Endometrial stromal sarcoma	+	+	+	+	+	+	+	•	+	+	+	•	+	+ ·	•	• +	+	· +	+	+	+	+	+	+
OVARY	+	+	+	+	+	+	+	+	+	-	+	+	+	+ •		+ +	+	+	+	+	+	+	+	+
NERVOUS SYSTEM	\vdash																							
BRAIN	+	+	+	+	+	٠	+	٠	+	+	+	+	+	+ -	•	+ +	•	• +	+	+	+	+	+	÷
SPECIAL SENSE ORGANS	1																							
HARDERIAN GLAND Adenoma, NOS	н	N	N	×	N	N	н	H	N	N	H	н	N	N	•	N N	•	I N	N	. N	N	н	N	H
MUSCULOSKELETAL SYSTEM	T			_		_																		
BONE OSTEOSARCOMA	N	N	H	H	N	N	N	N	N	H	H	NX	N	N I	+ 1	и и	٢	I N	N	. H	N	N	н	N
BODY CAVITIES	1																							
MESENTERY NEURILEMOMA	N	H	N	Ν	N	N	N	NX	N	н	N	N	H	н	4	N N	ŀ	IN	N	. н	N	N	н	N
ALL OTHER SYSTEMS	+																		_					
MULTIPLE ORGANS NOS ENDOMETRIAL STROMAL SARCOMA, META MALIG.LYAPHOMA, LYMPHOCYTIC TYPE Malighaut Jumbuoma Matchen Door	N X	N	N	N	N X	N X	N	H V	н	N Y	N	N	N	н I :	ĸ	н н -	•	i H X	۲	i N	H	H	N	N
MALIGNANI LIMPHUMA, MIXED LYPE	****							<u> </u>		<u>^</u>		NO		\$115	TN		AT7			MTT	TED			_
 +: IISSUE EXAMINED MILKUSCOP -: REQUIRED TISSUE NOT EXAMI X: TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, N S: ANIMAL MIS-SEXED 	NED O MI	MÍC CRO	ROS SCO	COP PIC	ICA EX	LLY AMI	NAT	ION		i i		NEC AUT ANI NO	ROP OLY MAL NEC	SIS MI ROP	NO SSI SY	HIS	TOL	ÖĞY IED	DU	E, t	0 Pr	1010	COL	

,

ANIMAL NUMBER	2	027	2	2	0	0	3	3	03	0	3	3	3	3	2	0	4	0	0	04	0	0	2	0 4	8	TOTAL
WEEKS ON	1	1	帅	1	0		9	1	Č		et.	1	1	Č,	9	i	0		1	1	0	ġ	1	1	1	TISSUES
TETEQUMENTARY SYSTEM	7	7	7	ž	9	ž	9	žÌ	õ	ž	7	ži	7	<u>,</u>	<u>il</u>	žĹ	6	ž	7	21	61	<u>é Ì</u>	5	7	Ž	
SUBCUTANEDUS TISSUE Sarcoma, Nos Fibrosarcoma	+	+	٠	+	٠	+	÷	٠	٠	÷	٠	٠	+	+	N	÷	+	* X	÷	+	+	÷	+	+	÷	50× 1 1
RESPIRATORY SYSTEM																										
LUNGS AND BRONCHI ALVEOLAR/BRONCHIOLAR ADENOMA ALVEOLAR/BRONCHIOLAR CARCINOMA OSTEOSARCOMA, METASTATIC MALIA.LYMPHOMAL, LYMPHOMCYTIC TYPE	+ X	٠	٠	٠	×	•	+	×	•	٠	٠	٠	٠	+	٠	+ X	•	٠	+	٠	•	٠	•	٠	+	50 2 2 1
TRACHEA	•	+	+	•	+	÷	÷	÷	+	+	•	•	+	÷	+	+	+	÷	+	+	+	+	+	+	+	49
HEMATOPOIETIC SYSTEM	-																								-	
BONE MARROW	+		+	+	+	+	+	+	+	÷	+	+	<u>+</u>	+	+	÷	+		+	+	÷	+	+	÷	+	50
SPLEEN .	+	.+	<u>+</u>	+	+	+	+	+	+	÷	+	+	*		. <u>+</u>	÷	+	•	+	ŧ.,		+	+	*	.*	<u> </u>
LYMPH NODES .	+	÷	4	+	<u>+</u>	t	*	+	+	<u>.</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	<u>+</u>	49
THYMUS	+	٠	+	-	+	٠	٠	+	٠	٠	÷	+	÷	٠	+	+	+	٠	+	+	÷	+	+	+	+	46
CIRCULATORY SYSTEM																										
HEART	+	÷	+	+	+	*	+	*	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM																										
SALIVARY GLAND	<u>├</u> +		+	+		+	*	*	+	*	<u>+</u>	<u>+</u>	<u></u>	*	.	+		+	+	+	+	+	•	*	+	
LIVER Hepatocellular Adenoma Hepatocellular Carcinuma	+	+	+	+	+	+ 	•	×	+	•	+	+	•	+	÷	+	+	+	*	+	+	•	•	+	+	50 2 1
BILE DUCT	+	÷	+	+	÷	٠	+	+	÷	÷	٠	÷	٠	÷	÷	٠	÷	÷	٠	٠	٠	+	+	٠	+	50
GALLBLADDER & COMMON BILE DUCT	+	÷	÷	. <u>+</u>	+	+	+	+	н	<u></u>	+	+	+	N	N	+	+	+	+	+	+	+		+	+	50×
PANCREAS .	+	+	+	+		<u>+</u>			+	+		+	+	<u>_</u> t	+	+	+	+	<u>+</u>	+	+	+	<u>+</u>	+	+	47
ESCPHÁGUS .	+	+	+	<u>t</u>	t_	+	+	+	+	*		+	+	+		+	+	<u>+</u>	+	+	+	+	+	. <u>+</u>	*	48
STOMACH Squamdus cell papilloma Adenoma, nos	+ x	•	+	×	+	+	+	+	•	•	+	•	•	*	+	+	+	+	+	+	+	+	•	+	+	50
SMALL INTESTINE	+	÷	*	+	+	+	+	+	+	+	+	+	+	+	+	t	+	+	+	+	+	ŧ	+	+	+	49
LARGE INTESTINE	+	÷	+	÷	+	+	+	+	٠	+	-	٠	+	+	-	٠	+	+	÷	+	٠	٠	+	٠	+	47
URINARY SYSTEM																									1	
KIDNEY .	• •	+	+	÷	+	÷	*	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	50
URINARY BLADDER ENDOCRINE SYSTEM	+	+	+	+	-	+	•	+	+	•	•	+	+	+	•	+	•	+	+	+	+	+	•	+	+	49
PITUITARY	:	-	٠	•	÷	+	٠	t	+	•	+	÷	+	+	÷	÷	-	+	÷	÷	-	÷	٠	٠	+	43
ADRENAL CORTICAL ADEMONA	+	÷	+	+	+	•	+	+	+	+	+	÷	+	+	+	+	÷	+	÷	÷	+	+	+	÷	÷	50
THYROID Follicular-cell Adenoma	+	+	+	+	+	+	+	÷	+	+	+	•	+	+	+	÷	٠	•	÷	+	•	+	÷	÷	+	49
FOLLICULAR-CELL CARCINOMA								Ă																		
PARATNYROID		+	+	+	÷	+	+	•	+	-	•	+	+	-		•	+	+	+	•	+	•	+	*	-	
MAMMARY GLAND ADENOMA, NOS ADENGARCINIMA, NGS	+	٠	÷	÷	٠	+	+	+ ¥	٠	٠	÷	÷	٠	٠	N	٠	÷	÷	٠	÷	٠	٠	٠	* ×	·	504 1 2
UTERDS ENDOMETRIAL STROMAL POLYP	•	+	+	•	÷	•	÷	+	+	4	•	÷	+	+	+	ż	÷	•	÷	+	٠	+	+	+	+	50
DVIRY	+		•		•	•	•	+	+	+	+	•	+	÷	+	+	+	+	•	+	+	+	•	•	_	
NERVOUS SYSTEM	ŀ				· · · · · ·				·								·						•			+
BRAIN	+	+	+	÷	÷	+	÷	+	÷	+	÷	+	+	÷	÷	÷	+	+	÷	+	•	•	٠	٠	+[50
SPECIAL SENSE ORGANS																										
HARDERIAN GLAND Adencma, Nos	H	н	N	N	N	N	N	H	н	н	Η	N	H	H	H	N	N	H	N	N	Ń	N	N	N	N	504
MUSCULOSKELETAL SYSTEM														-											-+	
BONE USTEOBARCOMA	N	N	H	N	N	H	N	N	H	н	N	N	н	N	H	N	N	N	N	н	N	N	N	N	N	50× 1
BODY CAVITIES																										
NEURILEMOMA	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	н	N	N	N	N	н	N	50 1
ALL OTHER SYSTEMS																										+
MULTIPLE DRGANS HOS Endometrial stromal sarcoma, meta Malig.lymphoma, lymphocytic type Mattonaut.umbubmut myter type	N	N	N	N	N	N	N	H	N	N	N	H	N	H	N	H	N	N	N N	м	N	N	H Y	N	N	50# 1 4
 ANIMALS NEGROPSIES 	CALL EO M MIC	Y I C R R O S	DSC COP	0 P I I	CALI	.Y 11H2		3N		с: 4; В;	N N A A N	IO T IECR IUTO INIM ID N	ISS CP5 LY5 AL ECR	UE Y, IS MIS OP5	INF HD SIN Y P	G G ERF(ATIC Tol(DA S Day ED	UB! DUI	NITI E TO	TED D PI	1010			نم.	<u> </u>

TABLE B4. FEMALE MICE: TUMOR PATHOLOGY (CONTINUED) VEHICLE CONTROL

.

TABLE B4.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

LOW DOSE

A 1/7 Nº 6 (1 11									61				01		77									
NUMBER	0	0	0	04	0	8	0	0	00	1	1	1	1	1	1	1	1	1	1	2	2	2	23	2	200
WEEKS ON STUDY	0 8	0 8	1	0	0	0 8	0	0	1	0 7	0	-	1	0	6	0	7	0 4	0	0	0	0 9	0	0	1
RESPIRATORY SYSTEM	- 9!	0	6	6	_1	4	6 [3	61	6	21	_11	6	51	01	6	51	0	6	6	6	_71	61	01	_2
LUNGS AND BRONCHI Alveolar/bronchiolar Adenoma	+	+	* ×	+	+	+	+	+	+	+	+	•	+	+	+	* ×	+	-	+	+	+	+	+	+	X
TRACHEA	+	+	+	÷	+	+	+	÷	+	+	+	÷	+	+	+	÷	+	-	÷	+	+	+	+	÷	÷
HEMATOPOIETIC SYSTEM	+																								
BONE MARROW	+	+	+	+	+	+	÷	+	+	÷	+	+	*	+	+	+	+	+	+	+	+	+	+,	+	+
SPLEEN Hemangiosarcoma	+	+	÷	•	•	+	÷	÷	+	•	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+
LYMPH NDDES	++	+	+	+	t.	+	+	+	, + .	+	+	÷	+	+		+	+.	+	+	.	+	+	+	+	+
THYMUS	+	-	+	÷	٠	-	+	-	٠	+	+	+	-	-	-	÷	٠	٠	٠	+	÷	٠	+	+	٠
CIRCULATORY SYSTEM	+		••••••																						
HEART	•	+	+	+	٠	+	٠	٠	÷	٠	*	٠	٠	+	٠	+	+	-	٠	+	+	٠	+	+	٠
DIGESTIVE SYSTEM	1																								
SALIVARY GLAND	++-	~	t	. +	†	*	+	+	†	+	+	+	+	+	+	+	-	+.	+	+	. +	+	+	+	
LIVER	++	+	+		<u>+</u>	<u> </u>	÷	<u>+</u>	+	+	+	+	*	+	t	t	+	+	+	+	+	+	t	+	
BILE DUCT	++	+	t.	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	÷	<u>+</u>
GALLBLADDER & COMMON BILE DUCT	++-	+	÷	+	÷	+	N	÷	+	+	+	+	+	+	+	+	+	N	+	÷	÷	+	+	+	÷
PANCREAS	++	t	+	+	+	÷	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	<u>+</u>
ESOPHAGUS	++	+	+	+	+	+	+	+	+	+	+	+	.	+	+	+	+	-	+	+	+	÷	+	+	<u>_</u> *
STCMACH	+-+-	+	<u>_</u> *	÷	+	+	+	+	+	+	÷	+	+	÷		+	+	+	+	+	+	+	+	4	+
5MALL INTESTINE	+	+	+	٠	+	+	+	÷	+	•	÷	٠	٠	+	+	÷	+	+	+	+	+	+	+	÷	÷
LARGE INTESTINE	+	+	٠	• •	+	٠	٠	٠	٠	+	+	٠	٠	+	٠	+	÷	٠	٠	٠	+	+	٠	+	÷
URINARY SYSTEM	+																								
KIDNEY	+	+	+	÷	+	+	+	*	+	+	+	<u>+</u>	÷	+	<u>+</u>	+	+	+	t.u	+	+	•	+	+	
URINARY BLADDER	+	+	٠	+	٠	٠	+	٠	٠	٠	+	+	+	+	٠	*	٠	٠	÷	٠	+	٠	٠	+	÷
ENDOCRINE SYSTEM																									
PITUITARY Adendma, Nos	ļ.	+	+	•	+	-	•	+	+	+	+	+	•	+	-	•	-	+	+	*	+	+	+	•	*
ADRENAL	++	+	+	, †	+	+	+	+	t		+		.	+	+	+	+	+	.	+	+	+		٠	+
THYRDID Follicular-cell Adenoma	+	•	+	+	+	+	+	+	+	+	•	÷	+	•	+	<u>*</u>	+	-	+	•	+	+	•	+	•
PARATHYROID	+	*	<u>+</u>	+		+			+	+	+		+			<u> </u>	+		t		-	+	<u>.</u>		+
PANCREATIC ISLETS ISLET~CELL ADENOMA	+	٠	+	+	+	٠	+	+	٠	-	+	+	+	+	+	٠	+	٠	+	٠	+	+	٠	+	+
REPRODUCTIVE SYSTEM	+																								
MAMMARY GLAND Adenocarcinoma, NOS	+	N	+	+	+	+	+	+	+	•	+	N	* x	+	+	H	*	+	+	+	+	+	* ×	N	+
UTERUS Endometrial stromal polyp	+-	•	•	*	•	•	+	+	+	+	+	+	*	•	+	+	+	•	+	+	+	+	+	+	•
DVARY	L•	+	*	+	•	+	*	•	+	+	+	+	+	+	+	+	*	+	+	+	+	*	+	+	•
RERVOUS SYSTEM	T																								
BRAIN	1 •	٠	*	+	+	+	٠	+	+	•	*	+	÷	*	*	÷	*	•	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS	1																								
HARDERIAN GLAND Adendma, Nos	н	N	H	H	N	н	H	N	н	н	N	N X	<u>н</u>	н	н	н	н	И	к 	N	н		н	н	N
MUSCULOSKELETAL SYSTEM						,																			
BDNE OSTEDSARCOMA	N	H	N	н	н	N	N	н	N	H	Η	H	N	ы	N	H	N	N	H	N	N	H	N	H	NX
ALL OTHER SYSTEMS	+																								
MULTIPLE ORGANS NDS	N	н	N	н	N	N	N	N	N	N	H	N	N	N	N	N	N	N	N	N	N	H	N	N	ж
SARCUMA, NUS Malig.lymphoma, lymphocytic type Malig.lymphoma, Histiocytic type Malignani.lymphoma, Mixed type	×		x				×		x			x		x			x							×	
+: TISSUE ÉXAMINED MICROSCOP -: REQUIRED TISSUE NOT EXAMI X: TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, N S: ANIMAL MIS-SEXED	ICAL NED 0 MI	LY Mic cro	R05 500	COP IPIC	ICA EX	LLY	NAT	(DN			с: А: М: В:	NO NE AU AN	TIS CROP TOLN IMAL NEC	51 51 51 80	E IH NO SSI SSI	FOR HI NG PER	2 MA 5 TI	TID CLD RME	N SI GY I	JBM DUE	ITT TO	ED PR	070	COL	

AN IMAL NUMBER	2	2	2	2	3	3	3	3	3	31	3	3	3	3	4	4	4	4	4	4	4	4	4	4	5	
WEEKS ON		-	1	-2	-	-0	1		1	07	ł	ģ	- Î	- Ž	1	ġ	Č,	1			ᡲ	ģ	히	-	07	TISSUES
PESPIPATORY SYSTEM	i	6	6	2	1	ģ	6	6	é	8	ó	ó	3	4	6	4	i	3	ŏ	6	اف	8	<u>il</u>	ŏ	<u>.</u>	
UNGS AND BRONCHT	1.	+	+	÷	+	÷	+	÷	+	+	+	+	+	÷	+	÷	+	÷	÷	÷	+	÷	+	+	+	49
ALVEOLAR/BRONCHIOLAR ADENOMA	+											X											-			
TRACHEA	+	+	*	+	-*	+	+	+	+	+	*	+	+	+	+	+	+	+	+	-	+	+	+	+	+	48
HEMATOPOIETIC SYSTEM																										.
BONE MARROW	+-+-	+	*	+	- <u>+</u> -		*	- <u>+</u>	+	<u>+</u>	- <u>+</u>	<u>.</u>	<u>+</u>	+	<u>+</u>	*	+	<u>+</u>	*	<u>+</u>	<u>+</u>	+	+	*	*	- 50
SPLEEN HEMANGIOSARCOMA	Ļ		+	+	÷	*	+	+	*	+	<u> </u>	+		*	+	*	+	*	+	<u> </u>	<u> </u>	+	+	+	+	
LYMPH NODES	<u>+</u>	+	+	+	+	+	+	+	+	+	+_	+	+	+	ŧ	+	+	+	<u>+</u>	+	+	+	+	+	+	50
THYMUS	+	٠	+	+	+	-	+	-	-	+	+	+	+	+	+	-	+	-	+	+	+	٠	+	+	+	39
CIRCULATORY SYSTEM	\top							-								_										
HEART	+	+	+	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	٠	+	+	٠	٠	+	+	+	49
DIGESTIVE SYSTEM	1							-																		
SALIVARY GLAND	+-+	+	+	+	+	+	+.	. <u>+</u>	+	+	+	+	+	+	+	-	+	+	+	+	_ <u>+</u>	<u> </u>	+	+	+	46
LIVER	++	+	+	+	+	+	+	<u>t</u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-++	50
BILE DUCT	++	+	t	ŧ	+	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	+	+	+	+	+	+	50
GALLBLADDER & COMMON BILE DUCT	+	<u>N</u> .	+	N	+	+	+	+	+	<u>N</u> _	+	<u>N</u>	+	+	+	N	+	+	+	+	+	+	N	+	+	50×
PANCREAS	+		+	+	+	+	+	.+	+	+	+	-	<u>+</u>	+	+	*	+	+	+	+	*	+	+	+	+	47
ESOPHAGUS	++-	+	+	.	+	+	+	+	+	+	+	<u>.</u>	+	+	+	+	<u>+</u>	+	+	- <u>+</u>	+	+	+	+	+	- 49
STOMACH	++-	+	+	+	+	+	+	+	+	+	_ <u>t</u>	+	+	<u>+</u>	+	+	+	+	<u>+</u>	+	+	+	+	+	+	50
SMALL INTESTINE	+	+	+	+	+	+	+	+	+	+	+	-	+	+	*	-	+	+	+	*	+	*	-	+	+	46
LARGE INTESTINE	+	+	+	+	*	+	+	+	+	+	*	-	+	+	+	-	+	+	+	+	+	+	+	+	+	48
URINARY SYSTEM																										
KIDNEY	++	+	+	+	÷	+	+.	. <u>+</u>	+		+	*	+	+		<u>+</u>	+	. <u>+</u>	+	+	<u>+</u>	+	*	<u>+</u>	+	50
URINARY BLADDER	<u> </u>	+	+		+	*	+	*	+	*	+	•	*	<u> </u>	+	+	•	•	÷ —	*	÷	+	•	*	*	50
ENDOCRINE SYSTEM	Ι.																									
ADENOMA, NOS	Ļ					-	•		x	<u> </u>	-		_	-	•	<u> </u>	-		<u> </u>		_	ž.	•	-	-	43 ₂
ADRENAL	<u>++</u> -	+	+	+	+	+	+	+	+	+	+	+	+		-	+	+	+	+	+	+	+	+	+	+	46
THYROID Follicular-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	•	+	+	+	+	+	-	+	+	+	+	+	*	+	48 2
PARATHYROID	L+	+	+	+	+	+	-	_		+	+	+	+	+	+	-	+	-	+	+	-		-		-	31
PANCREATIC ISLETS	+	-	+	+	+	+	÷	÷	ż	+	+	-	+	+	٠	+	+	+	+	٠	+	+	+	٠	+	47
REPRODUCTIVE SYSTEM	+																									
MAMMARY GLAND	+	+	+	÷	+	+	÷	+	+	+	÷	÷	+	÷	+	+	÷	N	÷	+	+	÷	÷	÷	+	50×
ADENDCARCINOMA, NOS	–									_	<u> </u>													<u>X</u>	+	3
UTERUS ENDOMETRIAL STROMAL POLYP	<u>↓</u> ±	+	+	+	<u> </u>	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	*	+	50
OVARY	+	+	+	+	+	+	+	٠	+	٠	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NERVOUS SYSTEM	\square								-		-								_			_				
BRAIN	+	+	+	+	+	٠	٠	+	+	+	+	٠	+	+	+	+	+	٠	+	+	+	+	٠	٠	٠	50
SPECIAL SENSE ORGANS	<u> </u>																		_			_			1	
HARDERIAN GLAND Adenoma, Nos	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	50× 1
MUSCULOSKELETAL SYSTEM	+																								+	
BONE	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	H	н	50×
ALL OTHER SYSTEMS							_																		_	'
MULTIPLE DRGANS NOS SARCOMA, NOS MALIG.LYMPHOMA, LYMPHOCYTIC TYPE MALIG.LYMPHOMA, HISTIOCYTIC TYPE MALIGNANT LYMPHOMA, MIXED TYPE	N	н	N X	N	N	м	N _X_	N	N	к	н	N	м	N	N	N	N	N X	N	N	H	N X	N	N	N	50 H 1 5 1 5
* ANIMALS NECROPSIED +: TISSUE EXAMINED MICROSCOPI -: REQUIRED TISSUE NOT EXAMIN ': TUMOR INCIDENCE N: NECROPSY, NO AUTOLYSIS, NO	CALL IED M I MIC	ICR ROS	105C 100P	0 P I 1 C	CAL	LY MIN	ATI	DN		C A M		IC T IECR UTC HIM	ISS OPS DLYS MAL RECR	UE Y, IS MIS OPS	INF HO SIN Y P	ORM HIS G ERF	ATII TOLI ORMI	ON S Ogy Ed	DU	4111 6 TC	1E0 3 P\$	ROTI	0C01	L		

TABLE B4. FEMALE MICE: TUMOR PATHOLOGY (CONTINUED) LOW DOSE

.

TABLE B4.

INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE 2-YEAR STUDY OF ALLYL ISOVALERATE

ANIMAL Number	0	200	0	0	004	0	0	0	0	1	1	11	1	1	1	1	1	1	1	2	2	22	2	2	2
WEEKS CH STUDY			2	Ĩ	ů 9	1	1	1	1	1 C	-0	1	ġ.	0	1	0	0	1	9	1	8	0	Ì	01	3
INTEGUMENTARY SYSTEM	4	5	<u>ē</u> l	51	.i	5	5	6	61	6	8	6	41	<u>ġ i</u>	61	ē		41	3	6	2	61	61	91	4
SUBCUTANEOUS TISSUE Sarcoma, Nos	+	÷	H	÷	٠	÷	+	٠	÷	+	÷	+	* x	٠	÷	÷	÷	÷	٠	÷	+	٠	٠	+	+
RESPIRATORY SYSTEM	+			_																					+
LUNGS AND BRONCHI Alveolar/Bronchiolar Adenoma Alveolar/Brohchiolar Carcindma	•	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	*	+	*	+	+	+	+	+	+	+
TRACHEA	-	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+
HEMATOPDIETIC SYSTEM	+																								+
BONE MARROW	+	+	<u>+</u>	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	+	+	+	+	+
SPLEEN Henangiosarcoma Malignant Lymphoma, Mixed Type	+	+	•	+	٠	+	+	+	•	•	ž	•	•	+	•	•	+	+	÷	+	•	+	+	+	•
LYMPH NODES	+	+	+	4	÷	÷	ŧ.	+	+	+	+	+	*	+	+	+	÷	÷	+	+	+	÷	*	+	+
THYMUS	-	÷	÷	+	÷	÷	٠	÷	÷	+	÷	+	÷	÷	+	+	÷	-	÷	÷	٠	+	٠	+	+
CIRCULATORY SYSTEM	1																				•				+
HEART	+	٠	+	+	÷	٠	٠	٠	٠	٠	٠	٠	+	÷	÷	+	٠	٠	٠	+	٠	+	٠	٠	•
DIGESTIVE SYSTEM	1													,											+
SALIVARY GLAND	+	+	+	+	+	+	+	+	+	+		+	-	+	+	+		+	÷	+	. +	+	+	+	+
LIVER Hepatocellular Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	•	+	+	*	+	*	+
BILE DUCT	+	.+	*	÷	+	*	+	+	+	+	+	+	+	+	÷	+	÷	÷	+	+	+	+	+	+	•
GALLBLADDER & COMMON BILE DUCT	+	+	+	÷	÷	+	+	+	+	+	+	٠	+	N	٠	٠	+	N	٠	N	H	N	+	+	+
PANCREAS	L.	<u>+</u>	+	÷	+	<u>+</u>		+	+	+	+	+		.t.	+	÷	+	<u>+</u>	+	+	±	+	<u>+</u>	+	*
ESOPHAGUS	<u> </u>	<u>.</u>	+	+	÷	+	+	÷	+	+	+	+	+	+	+	+	+	<u>, +</u>	+	+	+	+	+	+	4
STOMACH Squamous Cell Papilloma	+	<u>.</u>	+	÷	+	+	* X	+	+	•	+	+	*	+	+	+	+	+	•	+	+	+	•	+	╧
SMALL INTESTINE	<u>+</u>	+	+	÷	+	+	+	+	+	+	+	+	+		+	÷	÷	. <u>+</u>	+	+	-	-	+	+	-
LARGE INTESTINE	+	+	٠	÷	+	÷	÷	+	÷	٠	+	÷	٠	+	÷	÷	+	٠	ŧ	٠	-	÷	÷	÷	+
URINARY SYSTEM					_																				+
KIDNEY	+	<u>+</u>	+	÷	÷	÷	+	+	+	+	+	+	+		+	+		÷	+	+	+	+	+	+	+
URINARY BLADDER	•	٠	+	+	+	٠	+	+	٠	+	+	+	٠	+	÷	+	+	٠	٠	٠	٠	-	٠	÷	•
ENDOCRINE SYSTEM	1																								+
PITUITARY Adenoma, nos	+	×	+	+	+	+	<u>*</u>	•	+	+	*	*	+	+	-	+	+	•	+	*	-	-	* *	-	-
ADRENAL Cortical Adenoma Pheochromocytoma	+	+	+	•	+	+ x	+	•	+	+	*	+	+	+	•	+	+	+	-	+	-	+	+	+	+
THYROID Follicular-cell Adenoma	-	+	+	•	+	+	٠	•	*	•	+	+	+	+	+	+	+	+	+	+	•	٠	+	+	•
PARATHYROID	-	+	+	+	-	÷	+	÷	+	+	•	+	-	-	+	÷	-	-	÷	+	٠	÷	+	+	-
REPRODUCTIVE SYSTEM	+																								+
MAMMARY GLAND Adenocarcinoma, NG5	+		N	н	+	+	+	•	* ×	+	•	+	+	+	+	*	•	+	+	•	+	+	+	+	4
UTERUS Endometrial Stromal Polyp	+	+	+	+	+	+	+	+	ż	+	•	•	+	+	•	+	٠	٠	•	• 	٠	٠	•	•	•
OVARY	+	*	٠	+	÷	÷	-	÷	٠	٠	÷	-	ŧ	÷	٠	÷	÷	+	÷	٠	+	÷	٠	+	+
NERVOUS SYSTEM																						·~			+
BRAIN	++	÷	+	٠	+	٠	٠	٠	٠	٠	÷	+	٠	÷	+	÷	٠	+	+	٠	+	٠	٠	٠	٠ļ
ALL OTHER SYSTEMS																									1
MULTIPLE ORGANS NOS Hemangiosarcoma Malig.lymphoma. Lymphocytic type Malig.lymphoma, histiocytic type Malig.hant Lymphoma. Mixed type	N	N X	N	H	N	N	N	,N	н	N X	N	HX	N	H	H	N X	H	N X	N X	N X	H	N	N X	H	N

HIGH DOSE

: NO TISSUE INFORMATION SUBMITTED C: NECROPSY, NO HISTOLOGY DUE TO PROTOCOL A AUTOLYSIS M: ANIMAL MISSING S: NO NECROPSY PERFORMED

+: TISSUE EXAMINED MICROSCOPICALLY -: REQUIRED TISSUE NOT EXAMINED MICROSCOPICALLY :: Tumar Incidence H: Necropsy, NG Autolysis, NO Microscopic examination

ANIMAL Number	26	27	28	2	3	3	31	3	34	35	3	37	5	3	4	4	42	4 3	044	45	4	4	4	4	5	TOTAL
WEEKS ON STUDY	0	2	3	9	0	0	1	0	9	1	1	8	8	8	1	1	9	0	0	0	1	0	1	9	0	TISSUES
INTEQUMENTARY SYSTEM	+-21	-11	<u></u>	<u>ē</u>	6	-21	6.	61	31	<u>u</u>	51	نغ		71	31	61	71	61	61	61	51	ـغـ	61	-51	- 4	
SUBCUTANEOUS TISSUE Sarcoma, Hos	+	+	+.	+	+	٠	+	٠	+	+	+	+	+	+	+	•	٠	•	÷	+	+	+	+	+	٠	50# 1
RESPIRATORY SYSTEM	T																									
LUNGS AND BRONCHI Alvedlar/Bronchidlar Adenoma Alvedlar/Bronchidlar carcinoma	Ļ	*	+	+	+	+	+	+	+	+	+	+	+	•	•	+	•	+	+	+	+	+	•	•	+	50 2 1
TRACNEA	+	٠	÷	٠	+	+	+	+	٠	+	÷	٠	+	+	+	٠	٠	+	•	÷	٠	٠	٠	٠	+	49
HEMATOPOIETIC SYSTEM	1																									
BONE MARROW	++	+	+	+	_ <u>t</u>	+	*	. t	+	+	÷	+	+	+	+	+	+	+	<u>+</u>	+	+	+	+	+	+	50
SPLEEN Hemangiosárcoma Malignant Lymphoma, mixed type	ŀ	+	+	+	+	+	+	+	•	+	+	+	+	+	+	+	•	•	+	* x	•	+	+	+	•	50 1 2
LYMPH HODES	+	+	+	+	+	+	+	+	+	+	+	+	<u>+</u>	+	+	+	<u>+</u>	+	+	<u>+</u>	+	+	•	*	+	50
THYMUS	+	+	÷	÷	÷	+	٠	ŧ	+	÷	٠	٠	+	+	+	•	÷	÷	-	÷	÷	+	+	÷	+	47
CIRCULATORY SYSTEM	1																								-	
HEART	+	+	٠	+	+	+	+	+	+	٠	+	+	+	+	ŧ	+	÷	÷	+	٠	+	٠	+	٠	+	50
DIGESTIVE SYSTEM	\square																									
SALIVARY GLAND	┢╍╩	٠	t	+	+	+	*	÷	+	*	+		. <u>+</u>	+	+	+	+	+	*	<u>+</u>	. <u>+</u>	t	+	+	-+	
LIVER Hepatocellular Adendma	+	*	+	+	<u> </u>	+	+	+	+	+	+	+	*	•	*	+	+	+	+	*	+	<u> </u>	•	•	+	50
BILE DUCT	++-	+	+	+	+	<u>_+</u>	÷	+	+	+	+	+	<u>.</u>	+	<u>+</u>	+	+	+	<u>+</u>	+	+	. <u>+</u>	. <u>+</u>	+	+	50
GALLBLADDER & COMMON BILE DUCT	+	٠	٠	+	٠	н	+	٠	+	٠	÷	N	н	÷	+	+	+	+	ŧ	٠	÷	÷	+	ŧ	+	50 M
PANCREAS .	+	+	÷		+		•	+	+	<u>+</u>	+	. <u>+</u>	+	+	+	<u>+</u>	+	+	+	+	+	<u>+</u>	*	+	+	- 48
ESCPHAGUS	+	<u>+</u>	*	+	+	*	<u>+</u>	<u>+</u>	*	+	*	+	+	<u>+</u>	+	*	*	<u>+</u>	+	*	*	+	*	*	+	49
STOMACH Squamdus cell Papilloma	+	+	ż	+	+	*	*	*	+	+	•	+	•	+	*	+	*	÷	+	*	+	<u> </u>	+	*	+	50 2
SMALL INTESTINE	++	+	t	٠	+	+	. <u>*</u>	<u>+</u>	+	. <u>+</u>	<u>+</u>	+	*		+	<u>+</u>	<u>*</u>	<u>+</u>	<u>+</u>	±	÷	*	+		-*+	- 45
LARGE INTESTINE	+	٠	٠	+	٠	+	+	+	+	+	÷	٠	٠	•	+	٠	+	+	+	+	÷	•	٠	•	+	47
URINARY SYSTEM	1										_														1	
KIDNEY .	++	*	+	*	<u>+</u>	+	<u>+</u>	+	*	+	*	+	+	<u>+</u>	<u>+</u>	+	+ .	ŧ_	+	*	*	÷	*	+	+	- 50
URINARY BLADDER	-	٠	+	+	+	+	÷	+	+	+	*	+	+	+	+	+	•	+	•	.+	•	+	*	+	+	48
ENDOCRINE SYSTEM	1																								T	
PITUITARY Adengma, Nos	j +	•	ż.	+	×	-	+	+	+	+	+	+	•	+	+	+	+	ż	+	+	+	ż_	*	+	+	447
ADRENAL Cortical Adenoma Pheochromocytoma	+	•	•	+	•	+	+	*	+	+	•	-	+	•	+	•	+	+	* 	•	+	+	•	+	+	47 2
THYRÖID Follicular-cell Adenoma	ŀ	-	+	*	+	•	•	+	+	+	+	+	+	+	+	+	+	•	+	+	+	*	+	•	*	48 2
PARATHYRDID	+	-	+	-	+	+	٠	+	-	-	٠	÷	+	÷	÷	+	+	+	٠	٠	٠	٠	+	•	+	38
REPRODUCTIVE SYSTEM	1																								1	
MARMARY GLAND Adendcarcinoma, nos	+	+	*	+	*	N	•	+	•	•	+	<u>.</u>	+	•	+	+	+	+	+	•	•	<u>.</u>	+	+	+	50× 2
UTERUS Endometrial stromal polyp	+	•	+	+	•	*	•	+	+	*	*	+	+	+	•	+	•	+	•	+	*	<u>*</u>	•	+	+	50
OVARY	•	٠	÷	٠	+	+	÷	÷	÷	4	٠	٠	٠	4	÷	+	•	+	+	•	٠	+	+	÷	+	48
NERVOUS SYSTEM	—		••••••																						-1	
BRAIN	+	+	+	٠	٠	+	٠	+	÷	+	٠	٠	+	+	+	÷	٠	÷	+	+	÷	+	+	+	+	50
ALL OTHER SYSTEMS	Τ			-																					1	
MULTIPLE ORGANS NOB Hemangiosarcoma Malig.Lymphoma, Lymphocytic type Malig.Lymphoma, Histigcytic type	н	н	H	N	N	н	N	H	H	N	N	N X	N	H	N X	N	м	N	N	N	N	N	N	N X	н	50% 1 4
MALIGNANT LYMPHOMA, MIXED TYPE	L			X		Χ_				_	X							X				<u>×</u>	Ă.,			

TABLE B4. FEMALE MICE: TUMOR PATHOLOGY (CONTINUED) HIGH DOSE

ANIMALS MECROPSIED :: NO TISSUE INFORMATION SUBNITTED A ANIMALS MECROPSIED MICROSCOPICALLY : NO TISSUE INFORMATION SUBNITTED A ROUTRED TISSUE ENTITED MICROSCOPICALLY D: NECROPSY, NO MISTOLOGY DUE TO PROTOCOL A UTOLYSIS H: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION M: ANIMAL MISSING H: NECROPSY, NO AUTOLYSIS, NO MICROSCOPIC EXAMINATION B: NO NECROPSY PERFORMED

Allyl Isovalerate

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

TABLE C1.

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN EPIDERMAL INCLUSION CYST ULCER, NOS INFLAMMATION, CHRONIC FOCAL	(50)	(50) 1 (2%)	(50) 1 (2%) 1 (2%)
*SUBCUT TISSUE CYST, NOS EDEMA, NOS ULCER, NOS INFLAMMATION, FOCAL GRANULATION, TISSUE	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
*NOSE INFLAMMATION, SUPPURATIVE Hyperkeratosis Acanthosis	(50) 1 (2%)	(50) 1 (2%) 1 (2%)	(50)
#LUNG ASPIRATION, FOREIGN BODY CONGESTION, NOS EDEMA, NOS EDEMA, INTERSTITIAL HEMORPHAGE	(50) 3 (6%) 2 (4%)	(50) 6 (12%) 5 (10%) 1 (2%)	(49) 3 (6%) 3 (6%) 2 (4%) 1 (2%)
PNEUMONIA, ASPIRATION INFLAMMATION, SUPPURATIVE PNEUMONIA, CHRONIC MURINE INFLAMMATION, CHRONIC SUPPURATIV ABSCESS, CHRONIC THELAMMATION FOCAL CRANUL CMATCH	1 (2%) 1 (2%)	1 (2%)	1 (2%) 1 (2%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	2 (4%)	2 (4%)	1 (2%)

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED
	VEHICLE Control	LOW OOSE	HIGH DOSE
HISTIDCYTOSIS		u nan ann ann ann ann ann ann ann ann an	2 (4%)
#LUNG/ALVEOLI HYPERPLASIA, ADENOMATOUS	(50) 1 (2%)	(50) 1 (2%) 5 (10%)	(49)
HISTICCTUSIS	5 (6%)	5 (10%)	5 (64)
HEMATOPOIETIC SYSTEM			
#BONE MARROW Atrophy, Exhaustion Myel Ofterposts	(50)	(50) 1 (2%) 1 (2%)	(50)
HYPERPLASIA, HEMATOPOIETIC Hypoplasia, hematopoietic		1 (24)	1 (2%) 1 (2%)
#SPLEEN	(50)	(49)	(50)
FIBROSIS FIBROSIS, FOCAL DEGENERATION, CYSTIC	1 (2%)	1 (24)	1 (2%) 1 (2%)
INFARCT, NOS METAMORPHOSIS FATTY ATROPHY, NOS		1 (2%)	1 (2%) 1 (2%) 1 (2%)
HEMATOPOIESIS	3 (6%)	1 (2%)	3 (6%)
#MANDIBULAR L. NODE Hyperplasia, nos	(50) 1 (2%)	(50)	(50)
#MESENTERIC L. NODE Hyperplasia, nos Angiectasis	(50)	(50)	(50) 1 (2%) 1 (2%)
#LUNG Leukocytosis, nos	(50) 1 (2%)	(50)	(49) 4 (8%)
#LIVER Leukocytosis, nos	(50)	(50)	(50) 5 (10%)
*MESENTERY MASTOCYTOSIS	(50) 1 (2%)	(50)	(50)
<pre>#THYMUS HYPERPLASIA, LYMPHOID</pre>	(44)	(36) 1 (3%)	(39)
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS Embolus, foreign body	(50) 1 (2%)	(50)	(50) 1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

.

.

	VEHICLE Control	LOW DOSE	HIGH DOSE
PERIARTERITIS			1 (2%)
#LUNG Thrombosis, nos	(50)	(50) 1 (2%)	(49)
#MYOCARDIUM Inflammation, focal	(50) 1 (2%)	(49)	(50)
INFLAMMATION, CHRONIC FOCAL FIBROSIS, FOCAL	6 (12%)	1 (2%) 8 (16%)	1 (2%) 2 (4%)
*CORONARY ARTERY PERIARTERITIS	(50) 1 (2%)	(50)	(50)
*MESENTERIC ARTERY Hypertrophy, nos	(50)	(50) 1 (2%)	(50)
#LIVER EMBOLUS, FOREIGN BODY	(50) 1 (2%)	(50) 2 (4%)	(50)
#ADRENAL Thrombosis, nos	(50) 1 (2%)	(50)	(50) 1 (2%)
DIGESTIVE SYSTEM			
#PAROTID GLAND Inflammation, nos	(49)	(48)	(48) 1 (2%)
#LIVER	(50)	(50)	(50)
DEFORMITY, NOS Congestion, nos Petecuta	2 (4%) 1 (2%)	2 (4%)	2 (4%) 2 (4%) 1 (2%)
INFLAMMATION, NECROTIZING	1 (2%)		
INFLAMMATION, FOCAL GRANULOMATOU		1 (2%)	5 (10%)
CIRRHOSIS, NOS		2 (4%)	5 (10%)
DEGENERATION, CYSTIC		2 (4%)	
NECROSIS, FOCAL		2 (4%)	7 (14%)
METAMORPHOSIS FATTY	1 (2%)	2 (4%)	8 (16%)
PIGMENTATION, NOS	45 (70%)	0 (18%)	1(27)
CYTUPLASMIC VACUULIZATION BACODULIIC CYTO CUANCE	15 (30%)	7 (104) 1 (2%)	22 (444)
ENCAL CELLULAR CHANGE	1/ (374)		2 (4%)
REGENERATION, NOS		1 (2%)	2 (4%)
NODULAR REGENERATION		5 (10%)	8 (16%)

	VEHICLE Control	LOW DOSE	HIGH DOSE
#PORTAL TRACT FIBROSIS	(50)	(50) 1 (2%)	(50)
#LIVER/CENTRILOBULAR CONGESTION, NOS NECROSIS, NOS NECROSIS, FOCAL METAMORPHOSIS FATTY	(50) 1 (2%) 1 (2%) 1 (2%) 2 (4%)	(50) 1 (2%) 4 (8%)	(50) 2 (4%)
AIRUPHT, NUS	1 (2%)	1 (2%)	1 (2%)
<pre>#BILE DUCT Hyperplasia, NOS Hyperplasia, Focal</pre>	(50) 46 (92%)	(50) 32 (64%) 1 (2%)	(50) 45 (90%)
#PANCREAS CYSTIC DUCTS FIBROSIS, FOCAL DEGENERATION, CYSTIC ATROPHY, NOS	(50) 1 (2%)	(50) '1 (2%)	(50) 2 (4%) 2 (4%)
ATROPHY, FOCAL	6 (12%)	5 (10%)	9 (18%)
#PANCREATIC ACINUS Atrophy, focal Hyperplasia, focal	(50)	(50)	(50) 2 (4%) 1 (2%)
#ESOPHAGUS INFLAMMATION, CHRONIC	(50)	(46)	(46)
#STOMACH Hyperplasia, epithelial	(50)	(50) 2 (4%)	(50) 2 (4%)
#GASTRIC MUCOSA INFLAMMATION, NDS Ulcer, NOS Ulcer, Perforated	(50) 1 (2%)	(50) 1 (2%)	(50) 2 (4%) 4 (8%)
#GASTRIC SUBMUCOSA EDEMA, NOS	(50)	(50)	(50) 1 (2%)
#SMALL INTESTINE DIVERTICULUM	(50)	(50)	(49) 1 (2%)
#COLON DIVERTICULUM	(50) 1 (2%)	(50)	(50)

	VEHICLE Control	LOW DOSE	HIGH DOSE
INFLAMMATION, HEMORRHAGIC PARASITISM		1 (2%)	1 (2%)
URINARY SYSTEM			
#KIDNEY HYDRONEPHROSIS CYST, NOS INFLAMMATION, SUPPURATIVE NEPHROPATHY NEPHROSIS, NOS METAMORPHOSIS FATTY	(50) 35 (70%)	(50) 1 (2%) 2 (4%) 42 (84%)	(50) 1 (2%) 1 (2%) 1 (2%) 40 (80%) 1 (2%)
#KIDNEY/PELVIS Hyperplasia, epithelial	(50)	(50)	(50) 1 (2%)
#URINARY BLADDER HEMORRHAGE INFLAMMATION, HEMORRHAGIC HYPERPLASIA, EPITHELIAL	(50)	(47) 1 (2%)	(49) 1 (2%) 1 (2%)
ENDOCRINE SYSTEM			
<pre>#PITUITARY EMBRYONAL DUCT CYST MULTILOCULAR CYST DEGENERATION, CYSTIC CYTOPLASMIC VACUOLIZATION HYPERPLASIA, NOS HYPERPLASIA, FOCAL ANGIECTASIS</pre>	(49) 1 (2%) 2 (4%) 4 (8%) 1 (2%)	(46) 1 (2%) 1 (2%) 1 (2%) 3 (7%) 1 (2%)	(49) 1 (2%) 8 (16%) 2 (4%)
#ADRENAL METAMORPHOSIS FATTY ANGIECTASIS	(50)	(50) 1 (2%)	(50) 1 (2%)
#ADRENAL CORTEX CONGESTION, NOS CYTOPLASMIC VACUDLIZATION FOCAL CELLULAR CHANGE	(50)	(50) 4 (8%)	(50) 1 (2%) 5 (10%) 1 (2%)
#ADRENAL MEDULLA FIBROSIS, FOCAL	(50) 1 (2%)	(50)	(50)

	VEHICLE Control	LOW DOSE	HIGH DOSE
FOCAL CELLULAR CHANGE		1 (2%)	1 (2%)
HYPERPLASIA, FOCAL	2 (4%)	3 (6%)	1 (2%)
#THYROID CYSTIC FOLLICLES DEGENERATION, CYSTIC	(50) 2 (4%) 1 (2%)	(47) 2 (4%)	(47) 1 (2%) 1 (2%)
HYPERPLASIA, CYSTIC HYPERPLASIA, C-CELL	6 (12%)	1 (2%)	2 (4%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND	(50)	(50)	(50)
CYSTIC DISEASE	36 (72%)	25 (50%)	30 (60%)
*PREPUTIAL GLAND	(50)	(50)	(50)
INFLAMMATION, SUPPURATIVE	1 (2%) 2 (4%	2 (4%)	1 (2%)
INFLAMMATION, CHRONIC Hyperplasia, epithelial		1 (2%)	1 (2%)
#PROSTATE	(50)	(48)	(50)
INFLAMMATION, FUCAL INFLAMMATION, SUPPURATIVE	25 (50%)	12 (25%)	1 (2%) 18 (36%)
HYPERPLASIA, EPITHELIAL	1 (2%)		1 (2%)
*SEMINAL VESICLE INFLAMMATION, SUPPURATIVE HYPERPLASIA, EPITHELIAL	(50)	(50) 2 (4%) 1 (2%)	(50)
#TESTIS	(50)	(50)	(50)
ATROPHY, NOS Hyperplasia, interstitial cell	2 (4%)	3 (6%) 1 (2%)	7 (14%) 3 (6%)
*EPIDIDYMIS INFLAMMATION, CHRONIC SUPPURATIV	(50)	(50)	(50) 1 (2%)
NERVOUS SYSTEM			
#BRAIN HEMORRHAGE	(50)	(50)	(50)

	VEHICLE Control	LOW DOSE	HIGH DOSE
GLIOSIS			1 (2%)
<pre>#PONS NECROSIS, NOS ATROPHY, PRESSURE</pre>	(50) 1 (2%) 1 (2%)	(50)	(50)
SPECIAL SENSE ORGANS			
*EYE RETINOPATHY CATARACT	(50) 1 (2%) 1 (2%)	(50)	(50) 21 (42%) 21 (42%)
*EXTERNAL EAR ULCER, PERFORATED	(50)	(50) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM			
*MUSCLE OF LEG HEMORRHAGE	(50)	(50)	(50) 1 (2%)
BODY CAVITIES			
*THORACIC CAVITY Foreign Body, Nos	(50)	(50)	(50) 1 (2%)
*MEDIASTINUM Inflammation, suppurative	(50) 1 (2%)	(50)	(50)
*PERITONEUM Inflammation, focal	(50) 1 (2%)	(50)	(50)
*PLEURA LIPOGRANULOMA	(50) 1 (2%)	(50)	(50)
*EPICARDIUM Edema, Nos	(50) 1 (2%)	(50)	(50)
*MESENTERY FOREIGN BODY, NOS HEMORRHAGE STEATITIS GRANULATION, TISSUE	(50)	(50)	(50) 1 (2%) 1 (2%) 1 (2%) 2 (4%)

	VEHICLE Control	LOW DOSE	HIGH DOSE
NECROSIS, FAT Hyperplasia, mesothelial	5 (10%)	12 (24%)	4 (8%) 1 (2%)
LL OTHER SYSTEMS			
*MULTIPLE ORGANS HEMORRHAGE	(50) 1 (2%)	(50)	(50)
LEG HEMORRHAGE INFLAMMATION, SUPPURATIVE			1 1
SOLE OF FOOT ULCER, CHRONIC CALLUS			1 3
OMENTUM Necrosis, fat	2		
PECIAL MORPHOLOGY SUMMARY			
NONE			
NUMBER OF ANIMALS WITH TISSUE ↓ NUMBER OF ANIMALS NECROPSIED	EXAMINED MICROSCOP	[CALLY	

TABLE C2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS ADMINISTERED
ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 49 49
INTEGUMENTARY SYSTEM			
*SKIN ULCER, CHRONIC POLYPOID HYPERPLASIA	(50)	(50) 1 (2%)	(49) 1 (2%)
*SUBCUT TISSUE Abscess, Nos	(50)	(50) 1 (2%)	(49)
RESPIRATORY SYSTEM			
#LUNG CONGESTION, NOS EDEMA, NOS PNEUMONIA, ASPIRATION HYPERPLASIA, ALVEOLAR EPITHELIUM	(50) 2 (4%) 1 (2%)	(50) 1 (2%) 2 (4%) 1 (2%)	(49) 7 (14%) 4 (8%) 1 (2%) 2 (4%)
#LUNG/ALVEOLI Hyperplasia, adenomatous Histiocytosis	(50) 1 (2%) 2 (4%)	(50)	(49) 3 (6%)
#ALVEOLAR EPITHELIUM HYPERPLASIA, ADENOMATOUS	(50)	(50) 1 (2%)	(49)
HEMATOPOIETIC SYSTEM			
#BONE MARROW Myelofibrosis	(50)	(49)	(47) 2 (4%)
#SPLEEN Etbrosts, Focal	(50)	(50)	(49) 1 (2%)
HEMATOPOIESIS	2 (4%)	5 (10%)	5 (10%)
#MANDIBULAR L. NODE INFLAMMATION, NOS	(50)	(50)	(49) 1 (2%)

NUMBER OF ANIMALS WITH TISSUE EXAMINED MICROSCOPICALLY * NUMBER OF ANIMALS NECROPSIED

.

	VEHICLE Control	LOW DOSE	HIGH DOSE
HYPERPLASIA, NOS	2 (4%)		
#MEDIASTINAL L.NODE HEMOSIDEROSIS ANGIECTASIS	(50)	(50) 1 (2%) 1 (2%)	(49)
#MESENTERIC L. NODE Hyperplasia, Nos	(50)	(50)	(49) 1 (2%)
#LUNG LEUKOCYTOSIS, NOS HYPERPLASIA, LYMPHOID	(50) 2 (4%)	(50) 1 (2%)	(49) 1 (2%) 1 (2%)
#LIVER LEUKOCYTOSIS, NOS HEMATOPOIESIS	(50) 1 (2%) 1 (2%)	(50) 3 (6%)	(49) 1 (2%)
#ADRENAL HEMATOPOIESIS	(50)	(50) 1 (2%)	(49)
CIRCULATORY SYSTEM			
#MYDCARDIUM INFLAMMATION, FOCAL INFLAMMATION, CHRONIC FOCAL FIBROSIS, FOCAL	(50) 2 (4%) 1 (2%)	(50) 1 (2%) 4 (8%)	(49)
#SALIVARY GLAND FIBROSIS	(50)	(50) 1 (2%)	(46)
#LIVER DEFORMITY, NOS CONGESTION, NOS CHOLANGIOFIBROSIS CIRRHOSIS, NOS NECROSIS, FOCAL METAMORPHOSIS FAITY	(50) 7 (14%) 1 (2%)	(50) 1 (2%) 2 (4%) 2 (4%)	(49) 1 (2%) 1 (2%) 4 (8%) 8 (16%) 4 (8%) 3 (6%)
PIGMENTATION, NOS CYTOPLASMIC VACUOLIZATION BASOPHILIC CYTO CHANGE FOCAL CFLIULAR CHANGE	3 (6%) 32 (64%)	1 (2%) 2 (4%) 24 (48%) 1 (2%)	2 (4%) 18 (37%) 18 (37%)

	VEHICLE Control	LOW DOSE	HIGH DOSE
NODULAR REGENERATION	1 (2%)	3 (6%)	8 (16%)
#LIVER/CENTRILOBULAR CONGESTION, NOS NECROSIS, NOS METAMORPHOSIS FATTY ATROPHY, NOS	(50)	(50) 1 (2%)	(49) 2 (4%) 1 (2%) 2 (4%) 3 (6%)
BILE DUCT	(50)	(50)	(49)
DILATATION, NOS Hyperplasia, nos Hyperplasia, focal	39 (78%) 3 (6%)	36 (72%)	1 (2%) 44 (90%)
#PANCREAS	(49)	(50)	(46)
ATROPHY, NOS ATROPHY, FOCAL	8 (16%)	1 (2%) 11 (22%)	3 (7%)
PANCREATIC ACINUS Atrophy, focal	(49)	(50)	(46) 1 (2%)
\$STOMACH HYPERPLASIA, EPITHELIAL	(50) 1 (2%)	(50) 1 (2%)	(49)
GASTRIC FUNDAL GLAND DILATATION, NOS	(50)	(50) 1 (2%)	(49)
#FORESTOMACH INFLAMMATION, CHRONIC FOCAL HYPERPLASIA, EPITHELIAL	(50) 1 (2%) 1 (2%)	(50)	(49)
#SMALL INTESTINE Inflammation, nos	(49)	(50)	(46) 1 (2%)
#COLONIC SUBMUCOSA INFLAMMATION, NOS	(50) 1 (2%)	(49)	(45)
RINARY SYSTEM			
#KIDNEY NEPHROSIS, NOS	(50) 6 (12%)	(50) 13 (26%)	(49) 7 (14%)
#KIDNEY/TUBULE PISMENTATION, NOS	(50) <u> </u>	(50)	(49)

***************************************	VENICIE	···· = · ··· ··· ··· ····	·
	CONTROL	LOW DOSE	HIGH DOSE
CYTOPLASMIC VACUOLIZATION	1 (2%)		
ENDOCRINE SYSTEM			
#PITUITARY Focal cellular change	(48)	(49)	(48) 1 (2%)
HYPERPLASIA, NOS Hyperplasia, focal Angiectasis	8 (17%) 4 (8%)	1 (2%) 5 (10%) 5 (10%)	2 (4%) 6 (13%)
#ADRENAL CYTOPLASMIC VACUOLIZATION	(50)	(50)	(49) 1 (2%)
#ADRENAL CORTEX ACCESSORY STRUCTURE	(50) 1 (2%)	(50) 1 (2%)	(49)
DEGENERATION, CYSTIC Cytoplasmic vacuolization Angiectasis	1 (2%) 3 (6%)	5 (10%)	8 (16%) 1 (2%)
#ADRENAL MEDULLA CYTOLOGIC ALTERATION, NOS	(50)	(50) 1 (2%)	(49)
HYPERPLASIA, FOCAL	3 (6%)		2 (4%)
#THYROID ULTIMOBRANCHIAL CYST	(48) 1 (2%)	(50) 1 (2%)	(46)
DEGENERATION, CYSTIC HYPERPLASIA, C-CELL	5 (10%)	5 (10%)	1 (2%) 1 (2%) 4 (9%)
#PARATHYROID Hyperplasia, focal	(48)	(44)	(37) 1 (3%)
REPRODUCTIVE SYSTEM			
	(50)	(50)	(49)
HYPERPLASIA, CYSTIC Cystic disease	1 (2%) 41 (82%)	1 (2%) 44 (88%)	1 (2%) 35 (71%)
*PREPUTIAL GLAND INFLAMMATION, SUPPURATIVE HYPERPLASIA, CYSTIC	(50) 1 (2%)	(50) 2 (4%) 2 (4%)	(49) 2 (4%)
*CLITORAL GLAND CYSTIC DUCTS	(50) 1 (2%)	(50)	(49)

	VEHICLE		
*VAGINA INFLAMMATION, SUPPURATIVE	(50)	(50) 2 (4%)	(49)
#UTERUS	(50)	(50)	(48)
HEMATUMETRA Inflammation, suppurative Adenomyosis	3 (6%)	1 (2%) 3 (6%) 1 (2%)	1 (2%)
#UTERUS/ENDOMETRIUM CYST, NOS HYPERPLASIA, CYSTIC	(50) 2 (4%) 2 (4%)	(50) 5 (10%)	(48) 4 (8%)
#ENDOMETRIAL GLAND Cyst, Nos	(50)	(50) 1 (2%)	(48)
#FALLOPIAN TUBE DILATATION, NOS HYPERPLASIA, EPITHELIAL	(50)	(50) 1 (2%) 1 (2%)	(48)
#OVARY CYST, NOS Follicular cyst, nos Metamorphosis fatty	(50) 3 (6%) 6 (12%)	(50) 4 (8%) 1 (2%)	(47) 1 (2%) 7 (15%) 1 (2%)
NERVOUS SYSTEM			
#BRAIN Hydrocephalus, nos Hemorrhage	(50)	(50)	(49) 1 (2%) 1 (2%)
<pre>#BRAIN/THALAMUS ATROPHY, PRESSURE</pre>	(50)	(50) 3 (6%)	(49)
#HYPOTHALAMUS ATROPHY, PRESSURE	(50) 1 (2%)	(50) 1 (2%)	(49) 1 (2%)
#MIDBRAIN ATROPHY, PRESSURE	(50) 2 (4%)	(50)	(49)
SPECIAL SENSE ORGANS			
*EYE HEMORRHAGE	(50)	(50)	(49)

	VEHICLE Control	LOW DOSE	HIGH DOSE
RETINOPATHY Cataract	4 (8%) 1 (2%)	21 (42%) 19 (38%)	2 (4%) 2 (4%)
*HARDERIAN GLAND Ectopia	(50)	(50)	(49) 2 (4%)
*EAR Inflammation, acute	(50)	(50) 1 (2%)	(49)
*ZYMBAL'S GLAND INFLAMMATION, SUPPURATIVE HYPERPLASIA, NOS	(50)	(50) 1 (2%) 1 (2%)	(49)
MUSCULOSKELETAL SYSTEM			
*FEMUR ENOSTOSIS	(50) 1 (2%)	(50)	(49)
BODY CAVITIES		a sala dab sala. Mar kar uni, sab sala man mar mar mar mar mar mar ana	
*MEDIASTINUM LIPOGRANULOMA	(50) 1 (2%)	(50)	(49)
*PERITONEUM Inflammation, suppurative	(50)	(50)	(49) 1 (2%)
*PLEURA Abscess, nos Lipogranuloma	(50) 1 (2%) 1 (2%)	(50)	(49)
<pre>*MESENTERY STEATITIS</pre>	(50)	(50)	(49) 1 (2%)
INFLAMMATION, CHRONIC GRANULATION, TISSUE NECROSIS, FAT	1 (2%) 5 (10%)	4 (8%)	1 (2%) 3 (6%)
ALL OTHER SYSTEMS			
SOLE OF FOOT ULCER, CHRONIC EROSION CALLUS	6	1 1 4	3

	VEHICLE Control	LOW DOSE	HIGH DOSE
OMENTUM Necrosis, fat	2	2	2
SPECIAL MORPHOLOGY SUMMARY			
AUTOLYSIS/NO NECROPSY			1
# NUMBER OF ANIMALS WITH TISSUE E * NUMBER OF ANIMALS NECROPSIED	EXAMINED MICROSCOPIC	CALLY	

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

** · · · ·

Allyl Isovalerate

TABLE D1.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE		
	CONTROL	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY	50	50	50
ANIMALS NECKOPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50	50	50
INTEGUMENTARY SYSTEM			
*SKIN ULCER, NOS INFLAMMATION, ACUTE FOCAL	(50) 1 (2%)	(50) 1 (2%)	(50)
INFLAMMATION, ACUTE/CHRONIC	2 (4%)	3 (6%)	1 (2%)
INFLAMMATION, CHRONIC FOCAL	5 (10%)	5 (0%)	1 (2%)
FIBROSIS, FOCAL Hyperplasia, Nos	(24)	2 (4%)	1 (2%) 1 (2%)
METAPLASIA, USSEUUS	1 (2%)	_	
*SUBCUT TISSUE INFLAMMATION, ACUTE/CH ron ic	(50) 1 (2%)	(50)	(50)
INFLAMMATION, CHRONIC			1 (2%)
RESPIRATORY SYSTEM			
#LUNG	(50)	(50)	(49)
CONGESTION, NOS	1 (2%)	1 (24)	2 (4%)
PNEUMONIA, LIPID	4 (8%) 3 (6%)	1 (2%)	1 (2%)
PNEUMONIA, ASPIRATION INFLAMMATION, SUPPURATIVE	1 (2%) 1 (2%)	2 (4%)	
BRONCHOPNEUMONIA, ACUTE	1 (2%)	8 (16%)	7 (14%)
GRANULOMA, FOREIGN BODY	1 (2%)	4 (2%)	
CHOLESTEROL DEPOSIT Hyperplasia, adenomatous		1 (2%) 1 (2%)	1 (2%)
HYPERPLASIA, ALVEOLAR EPITHELIUM Histiocytosis	1 (2%)	1 (2%)	3 (6%)

	VEHICLE	<u> </u>	
	CONTROL	LOW DOSE	HIGH DOSE
HEMATOPOIETIC SYSTEM			
#SPLEEN NECROSIS, NOS HEMATOPOIESIS	(50) 3 (6%)	(50) 1 (2%) 2 (4%)	(50) 1 (2%) 2 (4%)
#MESENTERIC L. NODE	(50)	(50)	(49)
ANGIECTASIS Hyperplasia, lymphoid	1 (2%) 1 (2%)	1 (2%)	2 (4%)
#RENAL LYMPH NODE Hyperplasia, lymphoid	(50)	(50) 1 (2%)	(49)
#LIVER LEUKOCYTOSIS, NOS	(50) 1 (2%)	(50)	(50)
#THYMUS CYST, NOS	(39)	(41) 3 (7%)	(37)
INFLAMMATION, ACUTE SUPPURATIVE	1 (3%)		
CIRCULATORY SYSTEM			
*MULTIPLE ORGANS PERIVASCULITIS	(50) 1 (2%)	(50)	(50)
#HEART	(50)	(50)	(49)
INFLAMMATION, CHRONIC FOCAL Degeneration, nos	1 (2%) 1 (2%)		
DIGESTIVE SYSTEM			
#SALIVARY GLAND LYMPHOCYTIC INFLAMMATORY INFILTR FIBROSIS	(50) 1 (2%) 1 (2%)	(50)	(49)
#LIVER	(50)	(50)	(50)
FIBROSIS, FOCAL NECROSIS, NOS	4 (8%)		1 (2%)
NECROSIS, FOCAL		1 (2%)	1 (2%)

	VEHICLE Control	LOW DOSE	HIGH DOSE
NECROSIS, ZONAL FOCAL CELLULAR CHANGE CYTOLOGIC ALTERATION, NOS ANGIECTASIS	1 (2%) 1 (2%)	2 (4%)	1 (2%) 1 (2%) 2 (4%)
#PANCREAS NECROSIS, FOCAL ATROPHY, NOS	(49) 1 (2%)	(48)	(48) 1 (2%)
#ESOPHAGUS Foreign body, nos granuloma, foreign body	(50)	(48)	(49) 1 (2%) 1 (2%)
#ESOPHAGEAL MUSCULARI INFLAMMATION, SUPPURATIVE	(50)	(48) 1 (2%)	(49)
#STOMACH CYST, NOS INFLAMMATION, ACUTE SUPPURATIVE HYPERPLASIA, EPITHELIAL	(50) 2 (4%) 1 (2%)	(50) 2 (4%) 1 (2%)	(48) 1 (2%) 1 (2%) 7 (15%)
#GASTRIC MUCOSA INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC FOCAL HYPERPLASIA, ADENOMATOUS	(50) 1 (2%)	(50) 1 (2%)	(48) 2 (4%) 2 (4%)
#JEJUNUM ULCER, NOS INFLAMMATION, ACUTE SUPPURATIVE	(50)	(49) 1 (2%)	(48)
URINARY SYSTEM			
#KIDNEY LYMPHOCYTIC INFLAMMATORY INFILTR SCAR NEPHROPATHY INFARCT, NOS	(50) 7 (14%) 1 (2%) 1 (2%)	(50) 2 (4%) 3 (6%)	(50) 5 (10%) 1 (2%)
#KIDNEY/PELVIS LYMPHOCYTIC INFLAMMATORY INFILTR	(50) 2 (4%)	(50) 1 (2%)	(50)
ENDOCRINE SYSTEM			
#ADRENAL CORTEX CYST, NOS	(49)	(46)	(48)

	VEHICLE Control	LOW DOSE	HIGH DOSE
#ADRENAL MEDULLA Hyperplasia, focal	(49) 1 (2%)	(46)	(48) 1 (2%)
#THYROID CYSTIC FOLLICLES DEGENERATION, CYSTIC HYPERPLASIA, FOLLICULAR-CELL	(47) 5 (11%) 3 (6%) 5 (11%)	(46) 1 (2%) 7 (15%)	(49) 3 (6%) 2 (4%) 3 (6%)
#PANCREATIC ISLETS Hyperplasia, Nos	(49)	(48)	(48) 2 (4%)
REPRODUCTIVE SYSTEM			
*PREPUTIAL GLAND CYST, NOS CYSTIC DUCTS INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC HYPERPLASIA, NOS	(50) 4 (8%) 1 (2%) 1 (2%)	(50) 1 (2%) 5 (10%) 2 (4%) 2 (4%)	(50) 5 (10%) 1 (2%) 1 (2%)
#TESTIS NECROSIS, NOS	(49)	(50)	(50) 1 (2%)
*EPIDIDYMIS CYST, NOS	(50)	(50) 1 (2%)	(50)
NERVOUS SYSTEM None			
SPECIAL SENSE ORGANS			
*EYE CATARACT PHTHISIS BULBI	(50)	(50) 1 (2%) 1 (2%)	(50)
MUSCULOSKELETAL SYSTEM			

NONE

	VEHICLE Control	LOW DOSE	HIGH DOSE
BODY CAVITIES			
*MEDIASTINUM Foreign Body, Nos Inflammation, acute Inflammation, acute suppurative	(50) 2 (4%)	(50) 3 (6%) 3 (6%)	(50) 2 (4%) 2 (4%)
INFLAMMATION, ACUTE∕CHRONIC GRANULOMA, FOREIGN BODY	1 (2%)	1 (2%)	1 (2%)
*ABDOMINAL CAVITY Inflammation, suppurative	(50)	(50)	(50) 1 (2%)
*PLEURA INFLAMMATION, ACUTE SUPPURATIVE	(50) 1 (2%)	(50)	(50)
*MESENTERY INFLAMMATION, ACUTE SUPPURATIVE NECROSIS, FAT CALCIFICATION, FOCAL ANGIECTASIS	(50) 1 (2%) 1 (2%) 1 (2%)	(50) 4 (8%)	(50) 4 (8%) 1 (2%)
ALL DTHER SYSTEMS			
*MULTIPLE ORGANS INFLAMMATION, SUPPURATIVE	(50)	(50) 1 (2%)	(50)
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED	4	7	6
<pre># NUMBER OF ANIMALS WITH TISSUE EXAM] * NUMBER OF ANIMALS NECROPSIED</pre>	INED MICROSCOPI	CALLY	

TABLE D2.

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE ADMINISTERED ALLYL ISOVALERATE IN CORN OIL BY GAVAGE

	VEHICLE Control	LOW DOSE	HIGH DOSE
ANIMALS INITIALLY IN STUDY ANIMALS NECROPSIED ANIMALS EXAMINED HISTOPATHOLOGICALLY	50 50 50	50 50 50	50 50 50
INTEGUMENTARY SYSTEM			
*SKIN Inflammation, suppurative	(50)	(50) 1 (2%)	(50)
*SUBCUT TISSUE Abscess, nos Inflammation, chronic focal	(50)	(50)	(50) 1 (2%) 1 (2%)
RESPIRATORY SYSTEM			
#TRACHEA INFLAMMATION, ACUTE SUPPURATIVE	(49) 1 (2%)	(48)	(49)
#LUNG BRONCHOPNEUMONIA, FOCAL LYMPHOCYTIC INFLAMMATORY INFILTR PNEUMONIA, LIPID BRONCHOPNEUMONIA, ACUTE INFLAMMATION, ACUTE SUPPURATIVE BRONCHOPNEUMONIA, CHRONIC CHOLESTEROL DEPOSIT HYPERPLASIA, ADENOMATOUS	(50) 1 (2%) 3 (6%) 1 (2%)	(49) 2 (4%) 1 (2%) 1 (2%) 1 (2%) 1 (2%)	(50) 1 (2%) 3 (6%) 1 (2%) 1 (2%) 2 (4%)
HEMATOPOIETIC SYSTEM			
*MULTIPLE ORGANS HEMATOPOIESIS	(50)	(50)	(50) 1 (2%)
#SPLEEN NECROSIS, NOS HEMATOPOIESIS	(50) 1 (2%) 12 (24%)	(50) 19 (38%)	(50) 12 (24%)
#MEDIASTINAL L.NODE Abscess, NOS	(49) 1 (2%)	(50)	(50)

	VEHICLE	LOW DOSE	HIGH DOSE
HYPERPLASIA, NOS			1 (2%)
#LUMBAR LYMPH NODE Hyperplasia, nos	(49)	(50) 1 (2%)	(50) 1 (2%)
#MESENTERIC L. NODE HYPERPLASIA, NOS ANGIECTASIS HYPERPLASIA, LYMPHOID	(49) 2 (4%) 1 (2%)	(50) 1 (2%)	(50) 2 (4%)
#RENAL LYMPH NODE Hyperplasia, nos	(49) 1 (2%)	(50) 1 (2%)	(50) 2 (4%)
#ILIAC LYMPH NODE Hyperplasia, nos	(49) 1 (2%)	(50)	(50) 1 (2%)
#LUNG HYPERPLASIA, LYMPHOID	(50) 1 (2%)	(49)	(50)
#LIVER LEUKOCYTOSIS, NOS HEMATOPOIESIS	(50) 8 (16%)	(50) 17 (34%) 1 (2%)	(50) 10 (20%)
#THYMUS INFLAMMATION, SUPPURATIVE NECROSIS, NOS	(46)	(39) 1 (3%) 1 (3%)	(47)
CIRCULATORY SYSTEM			
#MESENTERIC L. NODE Perivasculitis	(49)	(50) 1 (2%)	(50)
#HEART LYMPHOCYTIC INFLAMMATORY INFILTR	(50)	(49) 1 (2%)	(50)
#SALIVARY GLAND PERIARTERITIS	(48)	(46)	(47) 1 (2%)
#LIVER Thrombosis, nos	(50)	(50)	(50) 1 (2%)
<pre>#PITUITARY THROMBOSIS, NOS</pre>	(43)	(43)	(44) 1 (2%)
#THYROID PERIVASCULITIS	(49)	(48)	(48)

	VEHICLE		
	CONTROL	LOW DOSE	HIGH DOSE
DIGESTIVE SYSTEM			
#LIVER DEGENERATION, NOS NECROSIS, NOS NECROSIS, FOCAL FOCAL CELLULAR CHANGE CYTOLOGIC ALTERATION, NOS ANGIECTASIS	(50) 1 (2%) 2 (4%) 1 (2%)	(50) 2 (4%) 1 (2%) 1 (2%) 1 (2%)	(50) 4 (8%) 1 (2%) 2 (4%) 2 (4%)
#PANCREAS CYSTIC DUCTS ATROPHY, NOS ATROPHY, FOCAL	(47) 1 (2%) 1 (2%) 1 (2%)	(47)	(48) 1 (2%)
#ESOPHAGUS Inflammation, focal	(48)	(49) 1 (2%)	(49)
#STOMACH CYST, NOS INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, CHRONIC FOCAL HYPERPLASIA, EPITHELIAL	(50) 1 (2%) 1 (2%)	(50) 2 (4%)	(50) 1 (2%) 1 (2%) 3 (6%)
#GASTRIC MUCOSA INFLAMMATION, ACUTE FOCAL INFLAMMATION, ACUTE SUPPURATIVE	(50) 1 (2%) 1 (2%)	(50) 2 (4%)	(50) .
#GASTRIC FUNDAL GLAND DILATATION, NOS	(50)	(50)	(50) 1 (2%)
#FORESIOMACH Hyperplasia, epithelial	(50) 1 (2%)	(50) 1 (2%)	(50)
URINARY SYSTEM			
#KIDNEY LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, CHRONIC FOCAL NEPHROPATHY GLOMERULOSCLEROSIS, NOS NECROSIS, MEDULLARY	(50) 11 (22%) 1 (2%) 1 (2%) 2 (4%) 1 (2%)	(50) 1 (2%)	(50)

	VEHICLE Control	LOW DOSE	HIGH DOSE
#KIDNEY/GLOMERULUS AMYLOIDOSIS	(50) 1 (2%)	(50)	(50)
<pre>#KIDNEY/PELVIS LYMPHOCYTIC INFLAMMATORY INFILTR</pre>	(50)	(50) 3 (6%)	(50) 1 (2%)
#URINARY BLADDER Lymphocytic inflammatory infiltr	(49) 1 (2%)	(50) 1 (2%)	(48)
ENDOCRINE SYSTEM			
#PITUITARY Cyst, Nos Hyperplasia, Nos	(43) 2 (5%)	(43)	(44) 1 (2%) 2 (5%)
HYPERPLASIA, FOCAL Angiectasis	2 (5%) 8 (19%)	1 (2%) 1 (2%)	6 (14%)
#ADRENAL CORTEX CYST, NOS	(50) 2 (4%)	(46)	(47)
#ADRENAL MEDULLA CYST, NOS HYPERPLASIA, NOS HYPERPLASIA, FOCAL	(50) 1 (2%) 1 (2%) 2 (4%)	(46)	(47)
#THYROID CYSTIC FOLLICLES DEGENERATION, CYSTIC HYPERPLASIA, FOLLICULAR-CELL	(49) 3 (6%) 6 (12%) 5 (10%)	(48) 1 (2%) 1 (2%) 1 (2%)	(48) 3 (6%) 6 (13%)
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND CYSTIC DUCTS	(50) 13 (26%)	(50) 2 (4%)	(50) 9 (18%)
*PREPUTIAL GLAND CYSTIC DUCTS	(50)	(50)	(50) 1 (2%)
*CLITORAL GLAND Cystic ducts	(50)	(50) 1 (2%)	(50)
*VAGINA POLYPOID HYPERPLASIA	(50)	(50)	(50)

	VEHICLE		
	GUNINUL		
#UTERUS HEMORRHAGE	(50)	(50) 1 (2%)	(50)
HEMATOMA, NOS Inflammation, acute suppurative amyloidosis	4 (8%) 1 (2%)	7 (14%)	1 (2%) 9 (18%)
#UTERUS/ENDOMETRIUM	(50)	(50)	(50)
HYDROMEIRA Hyperplasia, Cystic	42 (84%)	38 (76%)	1 (2%) 38 (76%)
#UTERUS/MYOMETRIUM FIBROSIS	(50) 1 (2%)	(50)	(50)
#OVARY	(49)	(50)	(48)
HEMATOMA, NOS TNELAMMATION ACUTE SUBBUDATIVE	5 (10%)	1 (2%)	4 (0%) 5 (10%)
NERVOUS SYSTEM			
#BRAIN/MENINGES INFLAMMATION, CHRONIC	(50) 1 (2%)	(50)	(50)
#BRAIN HEMORRHAGE	(50)	(50)	(50)
SPECIAL SENSE ORGANS			
NONE			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
MUSCULOSKELETAL SYSTEM			
*SKELETAL MUSCLE Inflammation, acute suppurative Inflammation, chronic suppurativ	(50)	(50)	(50) 1 (2%) 1 (2%)
*MUSCLE HIP/THIGH INFLAMMATION, ACUTE SUPPURATIVE	(50)	(50)	(50) 1 (2%)
BODY CAVITIES			
*MEDIASTINUM INFLAMMATION, ACUTE	(50)	(50)	(50) <u>1 (2%)</u>

	VEHICLE Control	LOW DOSE	HIGH DOSE
INFLAMMATION, ACUTE SUPPURATIVE	1 (2%)	1 (2%)	1 (2%)
*PERITONEUM INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, CHRONIC	(50) 1 (2%)	(50) 2 (4%) 1 (2%)	(50) 1 (2%)
*PLEURA INFLAMMATION, ACUTE SUPPURATIVE	(50)	(50)	(50) 1 (2%)
*EPICARDIUM INFLAMMATION, ACUTE SUPPURATIVE INFLAMMATION, PYOGRANULOMATOUS	(50) 1 (2%) 1 (2%)	(50)	(50)
*MESENTERY NECROSIS, FAT	(50) 3 (6%)	(50) 1 (2%)	(50) 2 (4%)
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, ACUTE INFLAMMATION, ACUTE SUPPURATIVE NECROSIS, FAT	(50) 1 (2%) 7 (14%) 1 (2%)	(50) 1 (2%) 14 (28%)	(50) 10 (20%)
TAIL Inflammation, acute suppurative			1
SPECIAL MORPHOLOGY SUMMARY			
NO LESION REPORTED	1	2	2
# NUMBER OF ANIMALS WITH TISSUE EXAMI * NUMBER OF ANIMALS NECROPSIED	NED MICROSCOPI	CALLY	

APPENDIX E

ANALYSIS OF ALLYL ISOVALERATE MIDWEST RESEARCH INSTITUTE

APPENDIX E

A. ELEMENTAL ANALYSIS

Element	С	Н
Theory	67.57	9.92
l. Lot 770217: Determined	65.78 65.92	9.89 10.00
2. Lot A-634-F: Determined	67.52 67.75	9.86 9.80
3. Lot RO11777: Determined	67.61 67.74	9.94 9.87

B. WATER ANALYSIS

(Karl Fisher)

- 1. Lot 770217: $0.10 \pm 0.03 \ (\delta)\%$
- 2. Lot A-634-F: $0.118 \pm 0.003 (\delta)\%$
- 3. Lot RO11777: $0.044 \pm 0.001 (\delta)\%$

C. ESTER VALUE (ASTM, 1974)

Potassium hydroxide hydrolysis and sulfuric acid back-titration

- 1. Lot 770217: 79.7 \pm 0.2 (δ)%
- 2. Lot A-634-F: 94.7 \pm 0.7 (δ)%
- 3. Lot RO11777: 95.6 \pm 0.3 (δ)%

D. TITRATION FOR FREE ACIDITY

(with 0.1 N sodium hydroxide)

1. Lot 770217: 16.2 \pm 0.1 (δ)% acidity (assumed to be iso-valeric acid)

- 2. Lot A-634-F: 2.14 ± 0.1 (δ)%
- 3. Lot RO11777: 0.37 ± 0.01 (δ)%

E. BOILING POINT (Lot A-634-F)

 $n_{\rm D}^{20}$: 1.4134 ± 0.0001 (δ)

Determined

Determined

Literature Values

162.5°C (Harris, 1965) 155°C (Hodgeman et al., 1963)

b.p.: 152.3 ± 1.1 (δ)°C at 729 torr (visual, micro boiling point). 153.6° to 157.2°C (DuPont 900 DTA)

F. INDEX OF REFRACTION (Lot A-634-F)

Literature Values n_D^{21} : 1.4162 (Fenaroli, 1971)

This literature value is suspect because the boiling point reported in the same reference is 89° to 90° C, which is greatly different from other literature or measured values.

Allyl Isovalerate

G. DENSITY (Lot A-634-F)

Determined d_{22}^{24} : 0.8820 ± 0.0003 (δ) g/ml

Literature Value No literature value found

H. VAPOR-PHASE CHROMATOGRAPHY

1. Lot 770217

Instrument: Tracor MT-220 Detector: Flame ionization Inlet temperature: 150°C Detector temperature: 200°C Carrier gas: Nitrogen Carrier flow rate: 70 cc/min

a. System 1

Column: GP20% SP2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.7 M x 4 mm I.D., glass

Oven temperature program: 50°C, 5 min; 50° to 170°C at 10°/min.

Sample Injected: 6.5 μ l 50% in diethyl ether, and 1% and 0.5% in diethyl ether to check for over-loading and quantitate major peak.

Results: major peak and 21 impurities. Five impurities had peaks which were 0.68%, 1.2%, 0.37%, 0.73%, and 0.58% of the area of the major peak. The area of the remaining 16 impurities totals < 1.0% of the major peak.

	Retention	Relative to	Area (Percent
Peak	Time (min)	Allyl Isovalerate	of Allyl Isovalerate)
1	0.2	0.02	0.001
2	0.3	0.03	0.0002
3	0.4	0.04	0.0002
4	2.5	0.24	0.68
5	3.0	0.30	1.2
6	3,5	0.34	0.37
7	4.3	0.42	0.003
8	5.3	0.51	0.03
9	6.3	0.61	0.01
10	8.4	0.82	0.08
11	9.0	0.87	0.73
12	10.3	1.00	100
13	10.9	1.06	0.58
14	11.3	1.10	0.03
15	11.5	1.12	0.04
16	11.9	1.16	0.09
17	12.4	1.20	0.01
18	12.6	1.22	0.22
19	13.5	1.31	0.0001
20	13.8	1.34	0.001
21	14.4	1.40	0.009
22	14.9	1.45	0.004

b. System 2

Column: 3% SP2250 on 80/100 Supelcoport, 1.8 m x 4 mm I.D. glass Oven Temperature Program: 50°C, 5 min; 50° to 250°C at 10°/min.

Sample injected: 7.9 μ l of 1.0% allyl isovalerate in diethyl ether, 0.5% in diethyl ether to check for overloading.

Results: Major peak and 4 impurities. The impurities had areas of 0.70%, 0.12%, 0.30%, and 0.17% of the major peak.

Peak	Retention Time (min)	Relative to Allyl Isovalerate	Area (Percent of Allyl Isovalerate)
1	9.0	0.89	0.70
2	9.6	0.95	0.12
3	10.1	1.00	100
4	11.3	1.12	0.30
5	12.5	1.24	0.17

2. Lot A-634-F

Instrument: Varian 2400

Detector: Flame ionization

Inlet temperature: 150°C

Detector temperature: 200°C

Carrier gas: Nitrogen

Carrier flow rate: 40 cc/min

a. System 1

Column: GP 20% SP2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.7 m x 4 mm I.D., glass

- Oven temperature program: 50°C, 5 min; 50° to 170°C at 10°/min.
- Sample Injected: 4.0 μ l in diethyl ether 50% (v/v), and 1% and 0.5% in diethyl ether to check for over-loading and quantitate major peak.
- Results: Major peak and nine impurities. Three impurities had areas which were 0.9%, 3.9%, and 2.3% of the major peak. The remaining six impurities totaled less than 0.8% of the major peak area. Peak No. 1 (see listings below) was enhanced by addition of allyl alcohol and determined to be present at a level of $0.6 \pm 0.1\%$ v/v by standard addition.

Peak	Retention Time (min)	Relative to Allyl Isovalerate	Area (Percent of Allyl Isovalerate)
1	3.2	0.21	0.9
2	8.0	0.54	3.9
3	11.6	0.77	0.03
4	12.8	0.86	0.1
5	13.4	0.89	0.3
6	13.6	0.91	2.3
7	15.0	1.00	100.0
8	16.2	1.08	0.1
9	17.6	1.17	0.002
10	18.8	1.25	0.009

b. System 2

Column: 3% SP2250 on 80/100 Supelcoport, 1.8 m x 4 mm I.D., glass

Oven Temperature Program: 50°C, 5 min; 50° to 170°C at 10°/min.

Sample Injected: 4.0 μ l in diethyl ether 50% (v/v), and 1% and 0.5% in diethyl ether to check for over-loading and quantitate major peak.

Results: Major peak and eight impurities. Three impurities had peak areas which were 0.9%, 3.0%, and 1.1% of the area of the major peak. The remaining five impurities totaled less than 0.5% of the major peak area.

Peak	Retention Time (min)	Relative to Allyl Isovalerate	Area (Percent of Allyl Isovalerate)
1	1.4	0.16	0.9
2	2.1	0.24	0.02
3	2.5	0.28	3.0
4	6.4	0.72	0.09
5	6.6	0.74	1.1
6	8.1	0.91	0.1
7	8.3	0.93	0.07
8	8.9	1.00	100.0
9	10.6	1.19	0.2

3. Lot RO11777

Instrument: Varian 3700

Detector: Flame ionization

Carrier gas: Nitrogen

Carrier flow rate: 70 ml/min

a. System 1

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.8 m x 4 mm I.D., glass

- Oven Temperature Program: 50° to 170°C at 10°/min; 5 min initial hold
- Inlet Temperature: 200°C
- Detector Temperature: 250°C
- Sample Injected: 3.5 μ l neat liquid to detect impurities, and a 1% and 0.5% solution in diethyl ether to quantitate major peak and to check for overloading.
- Results: Major peak preceded by eight impurity peaks and followed by three impurity peaks. Four overlapping peaks of 1.5% and one peak of 1.7% of the major peak area. The other six impurities had areas totaling 0.32% of the major peak area.

Peak	Retention Time (min)	Relative to Allyl Isovalerate	Area (Percent of Allyl Isovalerate)
1	5.8	0.47	1.7
2	8.4	0.68	0.03
3	10.3	0.84	0.10
4	10.6	0.86	0.01
5	11.1	0.90	
6 (shoulder)	11.3	0.92)	1.6
7 (shoulder)	11.5	0.94 }	1.5
8 (shoulder)	11.8	0.96	
9	12.3	1.00	100.00
10	13.3	1.08	0.16
11	13.8	1.12	0.01
12	16.2	1.32	0.01

b. System 2

Column: 3% OV-17 on 80/100 Supelcoport, 1.8 m x 4 mm I.D., glass* Oven Temperature Program: 50° to 250°C at 10°/min; 5 min initial hold

Inlet Temperature: 200°C

Detector Temperature: 250°C

Sample Injected: Neat liquid $(3.5 \ \mu 1)$ to detect impurities, diluted to 1% and 0.5% in diethyl ether to check for overloading and to quantitate the major peak.

^{*}Comparable to SP 2250 column used in System 2 for the other two lots.

Peak	Retention Time (min)	Relative to Allyl Isovalerate	Area (Percent of Allyl Isovalerate)
1	1.5	0.22	1.5
2	2.0	0.30	0.01
3	4.2	0.63	0.83
4	6.0	0.90	0.05
5	6.7	1.00	100.00
6	8.6	1.28	0.12
7	9.8	1.46	0.01
8	11.2	1.67	0.02
9	16.3	2.43	0.01

Results: Major peak preceded by four impurity peaks and followed by four impurity peaks. Two impurities had areas of 1.5% and 0.83% of the major peak area. The other six impurities totaled 0.22% of the major peak.

J. SPECTRAL DATA

- 1. Infrared
 - a. Lot 770217

Instrument: Perkin-Elmer Model 137 Infracord Cell: Liquid between silver chloride plates Results: See Figure 6.

 b. Lots A-634-F and RO11777
 Instrument: Beckman IR 12
 Cell: Thin film between silver chloride plates
 Results: See Figures 7 and 8.

2. Ultraviolet/Visible

a. Lot 770217

Instrument: Cary 118

λ max (nm)	ε	
273	$7.23 \pm 0.02 (\delta)$	
269	$7.09 \pm 0.03 (\delta)$	
261	$6.92 \pm 0.03 (\delta)$	
255	$6.91 \pm 0.04 (\delta)$	
248.5	7.24 ± 0.04 (δ)	
No absorbance between 350 and 800 nm (visible range) at a concentration of $1\% v/v$.		
Solvent: Methand	ol	

Peaks at 2370, 1620, 1590, 1540, and 1520 cm⁻¹ in sample spectrum and not in literature spectrum (Sadtler Standard Spectra). In other respects the sample spectrum is consistent with the literature spectrum.

The sample spectra are consistent with the literature spectrum (Sadtler Standard Spectra).

No literature values found

140

Allyl Isovalerate

Figure 7. Infrared Absorption Spectrum of Ally) Isovalerate (Lot No. A-634-F)

Allyl Isovalerate

Figure 8. Infrared Absorption Spectrum of Allyl Isovalerate (Lot No. RO 11777)

142
b. Lot A-634-F Instrument: Cary 118 $\lambda \max(nm)$ ε 280 $1.90 \pm 0.02 \ (\delta)$ No absorbance between 350 and 800 nm (visible range) at a concentration of 1% v/v. Solvent: Methanol c. Lot RO11777 Instrument: Cary 118 Solvent: 95% ethanol A 1% (vol/vol) solution exhibited a steady increase in absorbance from 249 nm to 215 nm with no λ max. A 1% (vol/vol) solution had no absorbance between 350 and 800 nm (visible region). 3. Nuclear Magnetic Resonance a. Lot 770217 Instrument: Varian HA-100 Solvent: Neat, tetramethylsilane added

Assignments: (see Figure 9).

No literature spectrum found. Spectrum consistent with structure but indicates two impurity peaks.

C	hemical Shift (δ)	Coupling Constant	Integration Ratio
(a) m,	0.93 ppm	$J_{ab} = 6.75 \text{ Hz}$	5.99
(b) m,	2.10 ppm		3.40
(c) dt,	4.45 ppm	$J_{ed} = 1.5 Hz$	1.66
	$J_{cf} = 5.5 Hz$		
(d) m,	5.05 ppm	$J_{de} = 1.5 Hz$	
•	J _{df} = 9.0 Hz	1.80	1.80
(e) m,	5.18 ppm	J _{ef} □ 16.5 Hz	
(f) m,	5.60 -	v i <i>i</i>	
	6.05 ppm		1.08
(g) m,	7.20 ppm*		0.07
(h) m,	10.97 ppm*		0.22

*Peaks g and h are impurities

Figure 9. Nuclear Magnetic Resonance Spectrum of Ally! Isovalerate (Lot No. 770217)

14

b. Lot A-634-F

Instrument: Varian HA-100 Solvent: Neat with internal tetramethylsilane added Assignments: (see Figure 10). Spectrum consistent with structure, with some impurity peaks present

Ch	emical Shift (δ)	Coupling Constant	Integration Ratio
(a) d,	0.92 ppm	$J_{ab} = 6 \text{ Hz}$	5.85 (a+g)
(b) m,	2.10 ppm		3.02 (b+h)
(c) d,	4.46 ppm	$J_{cf} = 3 Hz$	2.10
(d) d,	5.06 ppm	$J_{df} = 10 Hz$	2 10
(e) d,	5.18 ppm	J _{ef} = 16 Hz J	2.10
(f) m,	5.82 ppm		0.92
(g) m,	1.15 -		
	1.29 ppm*		
(h) m,	1.88 -		
	2.06 ppm*		

*Peaks g and h are impurities

c. Lot ROI1777

Instrument: Varian EM-360A Solvent: CDC1₃ with internal tetramethylsilane Assignments: (see Figure 11).

Ch	emical Shift (δ)	Coupling Constant	Integration Ratio
(a) d,	0.95 ppm	$J_{ab} = 6 \text{ Hz}$	5.90
(b) m, (c) d.	1.95-2.35 ppm 2.20 ppm	$J_{bc} = 2 Hz$	2.98
(d) m,	4.54 ppm	$J_{dg} = 5 Hz$	2.07
(e) d, (f) m,	5.17 ppm 5.22 ppm	$J_{eg}^{-z} = 10 \text{ Hz}$ $J_{fg} = 18 \text{ Hz}$	2.01
(g) m,	5.60-6.28 ppm	*5 /	1.04
(h) m,	1.18*		0.19

*Peak h is an impurity. The proton designations for Lot R011777 are not the same as those for the other two lots.

Figure 10. Nuclear Magnetic Resonance Spectrum of Allyl Isovalerate (Lot No. A-634-F)

146

•

Figure 11. Nuclear Magnetic Resonance Spectrum of Allyl Isovalerate (Lot No. RO 11777)

147

APPENDIX F

ANALYSIS OF ALLYL ISOVALERATE/CORN OIL MIXTURES FOR STABILITY OF ALLYL ISOVALERATE

Allyl Isovalerate

A. SAMPLE PREPARATION AND STORAGE

Solutions of allyl isovalerate in corn oil (2% weight/volume) were prepared in duplicate and stored for 0, 2, 3, and 7 days, respectively. A typical sample was prepared as follows: 2 ml of corn oil was transferred into an 8.5-ml septum vial and the vial was sealed (Microsep F-138 gas chromatography septa with Teflon® film facing, from Canton Bio-Medical Products, Inc.; aluminum crimp seals from Wheaton Scientific Company, Inc.) and weighed. Approximately 40 mg of allyl isovalerate was then injected, and the vial was reweighed to determine the exact amount of allyl isovalerate added. The sample was agitated on a vortex mixer for 30 seconds and then stored at room temperature (25° C) for the appropriate time period. No attempt was made to protect these samples from light.

B. EXTRACTION AND ANALYSIS

At the end of each storage time segment, the appropriate samples were extracted with 2 ml of methanol, which was injected into the vials with a 2-ml syringe. The two-phase mixtures were agitated on the vortex mixer (1 minute) and placed in an ultrasonic vibratory bath for 2 minutes. Aliquots for analysis were removed directly from the top (methanol) layer of each sample by microliter syringe and analyzed by the vapor-phase chromatographic system described below.

Instrument: Bendix 2500 with a Hewlett-Packard model 3380A automatic integrator Column: 3% OV-17 on 80/100 Supelcoport, 1.8 m x 4 mm ID, glass Detection: Flame ionization

Temperatures: Inlet, 195°C Oven, 75°C, isothermal

Detector, 285°C

Carrier gas: Nitrogen, flow rate, 30 cc/min

Retention time of nominal component: 2.3 min

C. RESULTS

Storage Time (Days)	Average Percent Chemical Found in Chemical/Vehicle Mixtures (a, b)
0	2.00 ± 0.03 (c)
2	1.96 ± 0.03
3	1.97 ± 0.03
7	1.93 ± 0.03

(a) Corrected for a spike recovery of $65.5 \pm 0.6\%$.

(b) Original concentration of allyl isovalerate in corn oil at time of sample preparation, 2.00%, with a variation among samples of 0.03%.

(c) The error figures in the table were calculated from individual experimental error values by standard error propagation methods.

APPENDIX G

ANALYSIS OF ALLYL ISOVALERATE/CORN OIL MIXTURES FOR CONCENTRATIONS OF ALLYL ISOVALERATE

Allyl Isovalerate

.

A. METHOD USED DURING THE 13-WEEK STUDY AND DURING THE FIRST MONTH OF THE 2-YEAR STUDY

Samples were received as corn oil gavages mixtures. Aliquots of these mixtures (0.5ml) were dissolved in 10.0 ml of chloroform and analyzed directly vapor-phase chromatography. GC conditions were as follows:

Column: 3% OV-1 on 80/100 Supelcoport, 1.8 m x 4 mm, glass

Detection: Flame ionization

Temperatures: Inlet, 130°C

Oven, 50° C

Detector, 220°C

Retention Time: 4.2 min

Injection Size: 2 μ l

There was no correction for work-up loss, since samples were injected with no extraction or work-up procedure. The gavage samples were compared with reference standards of allyl isovalerate prepared volume/volume in corn oil, dissolved in chloroform in the same manner as the gavage samples, and analyzed under the same conditions.

B. METHOD USED DURING MOST OF THE 2-YEAR STUDY

Samples were received as corn oil gavage mixtures. The samples were extracted 1:1 with methanol (5 ml of methanol with 5 ml of sample made up in corn oil). Analysis of the extracts was by vapor-phase chromatography under the following conditions:

Column: 3% OV-1 on 80/100 Supelcoport, 1.8 m x 4 mm, glass

Detection: Flame ionization

Temperatures: Inlet, 130°C

Oven, 50°C

Detector, 220°C

Retention Time: 4.08 min

Injection Size: $2 \mu l$

The gavage samples were compared with reference standards of allyl isovalerate prepared volume/volume in corn oil, then extracted with methanol in the same manner as sample. There was no correction applied to the samples, since samples and reference standards were treated in the same manner.

To improve the extraction efficiency, the extraction procedure was changed on April 16, 1979 such that 2.0 ml of the mix was extracted with 8.0 ml of methanol.

C. RESULTS

See Tables G1 and G2.

Date Mixed 4/21/78	Target Concentration (Percent, v/v)	Measured Concentration (Percent, v/v)
4/21/78	5.00	5.23
, .	2.50	2.58
	1.24	1.25
	0.62	0.63
	0.30	0.30
	2.50	2.57
	1.25	1.32
	0.62	0.64
	0.31	0.32
	0.15	0.16

TABLE G1. ANALYSIS OF ALLYL ISOVALERATE/CORN OIL MIXTURES IN THE 13-WEEK STUDY

TABLE G2. ANALYSIS OF ALLYL ISOVALERATE/CORN OIL MIXTURES IN THE 2-YEAR STUDY

	Lisert	Concentration (a) of Allyl Isovalerate or Target Concentration of (Percent v/v)			
Date Mixed	During Week of:	0.3 (0.27-0.33)	0.62 (0.56-0.68)	1.24 (1.11-1.47)	
1/10/79	1/10/79			1.27	
1/23/79	1/28/79		0.75		
2/19/79	2/20/79			1.20	
				1.35 <i>(b)</i>	
3/20/79	3/20/79		0.58		
4/16/79	4/16/79			1.34	
5/14/79	5/14/79		0.59		
6/11/79	6/11/79			1.31	
7/9/79	7/10/79		0.68		
8/06/79	8/06/79			1.28	
				1.38(c)	
9/03/79	9/03/79		0.68		
10/02/79	10/03/79			1.24	
10/29/79	10/29/79		0.68		
11/26/79	11/26/79			1.30	
12/17/79	12/18/79		0.64		
1/21/80	1/22/80		0.46(d)	1.26	
.,,	1, 22, 30		0.49(h)		
1/22/80	1/23/80		0.66		
2/18/80	2/18/80	0 30	0.66		
3/10/80	3/10/80	0.50	0.68	1.35	
4/14/80	4/14/80	0 33	0.63	1.00	
5/12/80	5/13/80	0.00	0.67	1.32	
6/09/80	6/09/80	0 34	0.65		
7/07/80	7/07/80	0.5	0.68	1 36	
1,01,00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.63 (b)	1150	
8/04/80	8/04/80	0.31	0.61		
9/01/80	9/01/80	0.51	0.65	1 30	
9/29/80	9/30/80	0 32	0.66	1100	
10/27/80	10/28/80	0.52	0.65	1 30	
11/24/80	11/24/80	0.31	0.68	1.50	
12/08/80	12/08/80	0.51	0.67	1 20	
12/08/80	12/00/00		0.07	1.27	
Mean $(\%, y/y)$ (e)	····	0.32	0.66	1.29	
Standard deviation		0.015	0.037	0.043	
Coefficient of			0.027	0.2.2	
variation (%)		46	5.6	3.3	
Range ($\%$, v/v)		0.30-0.34	0.58-0.75	1.20-1.36	
Number of samples		6	20	14	

(a) The data presented are the average of the results of duplicate analyses.

(b) Referee analysis by Midwest Research Institute

(c) Referee analysis by Raltech

(d) Mixture was not used.

(e) The results designated (b), (c), and (d) are not included in the calculations.

Allyl Isovalerate

154

.

APPENDIX H

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F1 MICE

Laboratory	Incidence	(Percent)
Battelle	0/100	(0.0%)
Gulf South	2/286	(0.7%)
Hazleton	0/49	(0.0%)
Litton	1/125	(0.8%)
Mason	1/121	(0.8%)
Papanicolaou	0/47	(0.0%)
Southern	2/248	(0.8%)
Total	6/976	(0.6%)
Overall Historical Range		
High	1/47	(2.1%)
Low	0/50	(0.0%)

TABLE H1. HISTORICAL INCIDENCE OF PANCREATIC ACINAR-CELL ADENOMAS IN MALEF344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of November 30, 1981 for studies of at least 104 weeks. The range is presented for groups of 35 or more animals. No acinar-cell carcinomas have been observed in male rats receiving corn oil by gavage.

Laboratory	Leuk	emia	Lymp	homa	Lymphoma or Leukemia	
Battelle	14/100	(14.0%)	4/100	(4.0%)	18/100	(18.0%)
Gulf South	29/294	(9.9%)	4/294	(1.4%)	31/ 294	(10.5%)
Hazleton	$12/50^{3}$	(24.0%)	2/50	(4.0%)	14/50	(28.0%)
Litton	13/130	(10.0%)	0/130	(0.0%)	13/130	(10.0%)
Mason	13/125	(10.4%)	2/125	(1.6%)	15/125	(12.0%)
Papanicolaou	5/50	(10.0%)	1/50	(2.0%)	6/ 50	(12.0%)
Southern	10/250	(4.0%)	1/250	(0.4%)	11/250	(4.4%)
Total	96/999	(9.6%)	14/999	(1.4%)	108/999	(10.8%)
Overall Historical Range						
High	12/50	(24.0%)	4/50	(8.0%)	14/50	(28.0%)
Low	1/50	(2.0%)	0/50	(0.0%)	1/50	(2.0%)

TABLE H2. HISTORICAL INCIDENCE OF HEMATOPOIETIC TUMORS IN MALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of November 30, 1981, for studies of at least 104 weeks. The range is presented for groups of 35 or more animals.

Laboratory	Leuk	emia	Lymp	homa	Lymp or Leu	homa Ikemia
Battelle	18/100	(18.0%)	3/100	(3.0%)	21/100	(21%)
Gulf South	30/295	(10.2%)	6/295	(2.0%)	36/295	(12.2%)
Hazleton	2/50	(4.0%)	1/50	(2.0%)	3/50	(6.0%)
Litton	28/130	(21.5%)	2/130	(1.5%)	30/130	(23.1%)
Mason	14/124	(11.3%)	1/124	(0.8%)	15/124	(12.1%)
Papanicolaou	14/50	(28.0%)	0/50	(0.0%)	14/50	(28.0%)
Southern	26/250	(10.4%)	2/250	(0.8%)	28/250	(11.2%)
Total	132/999	(13.2%)	15/999	(1.5%)	147/999	(14.7%)
Overall Historical Range						
High	21/50		3/49		22/50	
Low	1/49		0/50		2/50	

TABLE H3. HISTORICAL INCIDENCE OF HEMATOPOIETIC TUMORS IN FEMALE F344/N RATS RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of November 30, 1981 for studies of at least 104 weeks. The ange is presented for groups of 35 or more animals.

TABLE H4.	HISTORICAL INCIDENCE	OF PREPUTIAL GL	LAND TUMORS IN	MALE F344/N RATS
	RECEIVING CORN OIL BY	GAVAGE (a, b)		

Laboratory	Adenoma		Carcinoma		Adenocarcinoma	
Battelle	0/100	(0.0%)	0/100	(0.0%)	0/100	(0.0%)
Gulf South	0/294	(0.0%)	6/294	(2.0%)	0/294	(0.0%)
Hazleton	0/50	(0.0%)	7/50	(14.0%)	0/50	(0.0%)
Litton	8/130	(6.2%)	0/130	(0.0%)	0/130	(0.0%)
Mason	0/125	(0.0%)	3/125	(2.4%)	0/125	(0.0%)
Papanicolaou	4/50	(8.0%)	0/50	(0.0%)	1/50	(2.0%)
Southern	4/250	(1.6%)	1/250	(0.4%)	4/250	(1.6%)
Total	16/999	(1.6%)	17/999	(1.7%)	5/999	(0.5%)
Overall Historical Range						
High	7/50	(14.0%)	7/50	(14.0%)	4/50	(8.0%)
Low	0/50	(0.0%)	0/50	(0.0%)	0/50	(0.0%)

(a) Data as of November 30, 1981 for studies of at least 104 weeks. The range is presented for groups of 35 or more animals.

(b) The only tissues observed microscopically were those in which a tumor was observed grossly.

Laboratory	Leuk	cemia	Lymp	boma	Lymp or Lei	ohoma Ikemia
Battelle	3/99	(3.0%)	20/99	(20.2%)	23/99	(23.2%)
Gulf South	19/341	(5.6%)	61/341	(17.9%)	80/341	(23.5%)
Litton	5/119	(4.2%)	30/119	(25.2%)	34/119	(28.6%)
Mason	0/150	(0.0%)	46/150	(30.7%)	46/150	(30.7%)
Papanicolaou	0/48	(0.0%)	7/48	(14.6%)	7/48	(14.6%)
Southern	1/250	(0.4%)	38/250	(15.2%)	39/250	(15.6%)
Total	28/1007	(2.8%)	202/1007	(20.1%)	229/1007	(22.7%)
Overall Historical Range						
High	9/49	(18.2%)	17/49	(34.7%)	20/49	(40.8%)
Low	0/50	(0.0%)	2/48	(4.2%)	5/50	(10.0%)

TABLE H5. HISTORICAL INCIDENCE OF HEMATOPOIETIC TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of November 30, 1981, for studies of at least 104 weeks. The range is presented for groups of 35 or more animals.

TABLE H6.	HISTORICAL INCIDENCE OF HEMATOPOIETIC TUMORS IN MALE B6C3F1 MICE
	RECEIVING CORN OIL BY GAVAGE (a)

Laboratory	Lymp	homa	Lymph Leuk	ioma or semia	
Battelle	13/100	(13.0%)	13/100	(13.0%)	
Gulf South	20/241	(8.3%)	28/241	(11.6%)	
Litton	18/120	(15.0%)	19/120	(15.8%)	
Mason	21/150	(14.0%)	21/150	(14.0%)	
Papanicolaou	11/50	(22.0%)	11/50	(22.0%)	
Southern	28/249	(11.2%)	28/249	(11.2%)	
Total	111/910	(12.2%)	120/910	(13.2%)	
Overall Historical Range					
High	9/49	(18.2%)	15/48	(31.3%)	
Low	0/50	(0.0%)	2/48	(4.2%)	

(a) Data as of November 30, 1981, for studies of at least 104 weeks. The range is presented for groups of 35 or more animals.

Laboratory	Incidence (Percent)	Lesion
Battelle	0/100 (0.0%)	анал (1999) - Сондон Санан, Санан Алари, Сондон Санан Санан Санан (Санан Санан Санан Санан Санан Санан Санан С
Gulf South	1/224 (0.5%)	Stomach, NOS; Papilloma, NOS
Litton	1/117 (0.9%)	Forestomach Papilloma, NOS
Mason	0/146 (0.0%)	
Papanicolaou	1/48 (2.0%)	Stomach, NOS; Squamous cell Carcinoma
Southern	1/246 (0.4%)	Stomach, NOS; Squamous cell Papilloma
Total	5/881 (0.6%)	

TABLE H7. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE B6C3F1 MICE RECEIVING CORN OIL BY GAVAGE (a)

(a) Data as of November 30, 1981, for studies of at least 104 weeks.

APPENDIX I

HISTORICAL CONTROL DATA ON HEMATOPOIETIC TUMORS FROM SOUTHERN RESEARCH INSTITUTE (SoRI)

Allyl Isovalerate

TABLE I1. INCIDENCES OF HEMATOPOIETIC TUMORS IN CORN OIL VEHICLE CONTROL RATS AND MICE IN TWO-YEAR GAVAGE STUDIES AT SOUTHERN RESEARCH INSTITUTE (SoRI)

	All Le	eukemia	All Lymphoma			
Chemical	Male Rats	Female Rats	Male Mice	Female Mice		
Allyl Isovalerate	1/50 (2%)	4/50 (8%)	4/50 (8%)	11/50 (22%)		
Allyl Isothiocyanate	2/50 (4%)	7/50 (14%)	3/50 (6%)	5/50 (10%)		
Benzyl Acetate	5/50 (10%)	2/50 (4%)	5/50 (10%)	5/50 (10%)		
Geranyl Acetate	1/50 (2%)	8/50 (16%)	7/50 (14%)	6/50 (12%)		
Ethyl Acrylate	1/50 (2%)	5/50 (10%)	9/49 (18%)	11/50 (22%)		
Total	10/250 (4%)	26/250 (10%)	28/249 (11%)	38/250 (15%)		
SD	3.5%	4.8%	5.0%	6.3%		

TABLE 12. COMPARISON OF THE HIGH-DOSE INCIDENCE RATE OF HEMATOPOIETIC TUMORS IN THE ALLYL ISOVALERATE STUDY WITH THE SORI HISTORICAL CONTROL RANGE

Lesion/ Species	SoR1 Historical Control Range	Allyl Isovalerate High-Dose Rate	Comment
All Leukemia			
Male Rats	2%-10%	14%	Outside Range
Female Rats	4%-16%	18%	Outside Range
All Lymphoma			
Male Mice	6%-18%	16%	Within Range
Female Mice	10%-22%	36%	Outside Range

TABLE I3. STATISTICAL COMPARISON OF HEMATOPOIETIC TUMORS IN THE ALLYL ISOVALERATE STUDY WITH CONCURRENT AND HISTORICAL CONTROLS AT SoRI

						Li	ife Tab	e P Values			
Lesion/Species	Cont	Allyl Isovalerate		vs Historical Controls			vs Concurrent Controls				
	Historical (a)	Concurrent	Low- Dose	High- Dose	Trend	Low- Dose	High- Dose	Trend	Low- Dose	High- Dose	
All Leukemia											
Male Rats	9/200	1/50	4/50	7/50	.002	.188	.004	.015	.183	.022	
Female Rats	22/200	4/50	6/50	9/49	.067	.517	.067	.050	.354	.075	
All Lymphoma											
Male Mice	24/199	4/50	6/50	8/50	.295	.590N	.310	.167	.397	.204	
Female Mice	27/210	11/50	11/50	18/50	.002	.060	.004	.026	.172	.034	

(a) Excluding allyl isovalerate

			Female				
Lesion/ Species	Chemical	Vehicle Control	Low- Dose	High- Dose	Vehicle Control	Low- Dose	High- Dose
All Leukemia/Rat							
	Allyl Isovalerate	1/50	4/50	7/50	4/50	6/50	9/49
	Allyl Isothiocyanate	2/50	6/50	8/50	7/50	9/50	12/50
	Benzyl Acetate	5/50	5/50	6/50	2/50	3/50	1/50
	Geranyl Acetate	1/50	1/50	2/50	8/50	7/50	7/50
	Ethyl Acrylate	1/50	6/50	1/50	5/50	8/50	7/50
All Lymphoma/Mice							
	Allyl Isovalerate	4/50	6/50	8/50	11/50	11/50	18/50
	Allyl Isothiocyanate	3/50	2/50	0/50	5/50	4/50	4/49
	Benzyl Acetate	5/50	7/49	3/50	5/50	6/50	7/50
	Geranyl Acetate	7/50	2/50	1/50	6/50	6/50	3/50
	Ethyl Acrylate	9/49	4/49	5/50	11/50	13/50	13/50

TABLE 14. INCIDENCES OF HEMATOPOIETIC TUMORS FOR VEHICLE CONTROL AND DOSED GROUPS IN FIVE GAVAGE STUDIES AT SORI

Allyl Isovalerate

•

,

APPENDIX J

MUTAGENESIS RESULTS FOR ALLYL ISOVALERATE IN SALMONELLA TYPHIMURIUM

A. METHODS FOR SALMONELLA/MICROSOME MUTAGENICITY TEST SYSTEM

Allyl isovalerate was tested and evaluated blindly in each of 4 tester strains of Salmonella typhimurium, using a preincubation modification (Yahagi et al., 1975) of the Salmonella assay (Ames et al., 1975). Strains of TA 98 and TA 1537 are more sensitive to chemicals that express frameshift mutagenic activity; strains TA 100 and TA 1535 are more sensitive to chemicals that cause base-pair substitutions. Allyl isovalerate was dissolved in dimethyl sulfoxide and then added to the suspension culture. The mixture was then incubated with the tester strains in suspension culture (20 min. at 37° C) prior to the addition of soft agar and plating for detection of induced mutants. Exogenous metabolic activation was provided by liver S-9 preparations from Arochlor-1254 induced rats and hamsters. Coded chemicals were tested at 5 doses (μ g/ plate), in triplicate (A,B, and C), in each strain and were retested at least two weeks later.

B. RESULTS

See Tables J1-J4.

TABLE J1. RESULTS OF MUTAGENICITY TESTS OF ALLYL ISOVALETATE IN SALMONELLATYPHIMURIUM TA 98

			Nur	nber of Reverta	nts per Plate (a)				
Dose		Ir	uitial Tes	t	Dose		F	letest (l)
(µg/plate)	Α	В	С	Mean ± SE	(µg/plate)	Α	В	С	Mean ± SE
0.0 (c)	13	18	10	14 ± 2.3	0.0	11	10	9	10 ± 0.6
100.0	16	11	12	13 ± 1.5	10.0	17	16	17	17 ± 0.3
333.0	5	2	1	3 ± 1.2	33.0	14	12	17	14 ± 1.5
1,000.0	2	1	0(d)	1 ± 0.5	100.0	19	12	17	16 ± 2.1
3,333.0	0	0	0	0 ± 0.0	333.0	9	15	19	14 ± 2.9
10,000.0	0	0	0	0 ± 0.0	1,000.0	11	10	10	10 ± 0.3
B. Preincubation	1 with A	rochlor-i	1254 Indi	uced Sprague-Da	awley Rat Liver	S-9 Pr	eparatio	n	
0.0 <i>(c)</i>	20	20	16	19 ± 0.9	0.0 (c)	19	12	19	17 ± 2.3
100.0	10	14	12	12 ± 2.1	3.3	15	21	28	21 ± 3.8
333.0	7	10	8	8 ± 0.9	10.0	23	18	12	18 ± 3.2
1,000.0	0	0	0	0 ± 0.0	33.0	13	12	14	13 ± 0.6
3,333.0	0	0	0	0 ± 0.0	100.0	16	18	17	17 ± 0.6
10,000.0	0	1	0	0 ± 0.0	333.0	10	14	12	12 ± 1.2
C. Preincubation	n with A	rochior-:	1254 Ind	uced Syrian Har	nster Liver S-9 l	Prepara	tion		
0.0(c)	9	21	20	17 ± 3.8	0.0 (c)	21	26	12	20 ± 4.1
100.0	9	7	5	7 ± 1.2	3.3	16	12	11	13 ± 1.5
333.0	7	5	11	8 ± 1.8	10.0	16	8	12	12 ± 2.3
1,000.0	0	0	0	0 ± 0.0	33.0	9	12	10	10 ± 0.9
3,333.0	1	0	0	0 ± 0.3	100.0	3	8	0	4 ± 2.3
10,000,0	Ω	0	0	0 + 0.0	333.0	5	8	4	6 + 1.2

(a) Measured in triplicate

(b) Retest was 2 weeks after initial test

(c) DMSO solvent control

		Nur	nber of Revertar	nts per Plate (a)					
	lı	nitial Test	t	Dose		Retest (b)			
A	B	C	Mean ± SE	(µg/plate)	A	В	С	Mean ± SE	
<u> </u>									
42	92	90	75 ± 16.3	0.0(c)	59	67	83	70 ± 7.1	
68	80	46	65 ± 10.0	10.0	68	73	79	73 ± 3.2	
0 (d)	10	0 (d)	10	33.0	65	91	65	74 ± 8.7	
8	1	3	6 ± 2.5	100.0	79	65	70	71 ± 4.1	
7 (d)	10	3 (d)		333.0	80	89	77	82 ± 3.6	
0	0	0	0 ± 0.0	0.000,1	70	87	60	72 ± 7.9	
with Aro	chlor-	1254 Indu	uced Sprague-Da	awley Rat Liver	S-9 Pr	eparatio	n		
121	72	97	97 ± 14,1	0.0	61	82	88	77 ± 8.2	
44	58	45	49 ± 4.5	3.3	87	61	78	75 ± 7.6	
27	22	27	25 ± 1.7	10.0	64	64	62	63 ± 0.7	
5	3	0	3 ± 1.5	33.0	64	70	77	70 ± 3.8	
0	0	0	0 ± 0.0	100.0	47	47	39	44 ± 2.7	
0	0	0	0± 0.0	333.0	17	34	36	29 ± 6.0	
with Aro	chlor-	1254 Indi	uced Syrian Har	nster Liver S-9 1	Prepara	ation			
87	79	86	84 ± 2.4	0.0(c)	69	78	72	73 ± 2.6	
73	49	58	60 ± 7.0	3.3	56	61	77	65 ± 6.3	
49	25	27	34 ± 7.7	10.0	50	56	42	49 ± 4.1	
2	0	3	2 ± 0.9	33.0	39	41	62	47 ± 7.4	
0	0	Ō	0 ± 0.0	100.0	26	42	40	36 ± 5.0	
0	Ō	Ō	0 ± 0.0	333.0	17	29	19	22 ± 3.7	
	A 42 68 0 (d) 8 7 (d) 0 with Aro 121 44 27 5 0 0 with Aro 87 73 49 2 0 0 0	A B 42 92 68 80 0 (d) 10 8 1 7 (d) 10 0 0 with Arochlor- 121 72 44 58 27 22 5 3 0 0 0 0 with Arochlor- 87 79 73 49 49 25 2 0 0 0	Initial Test A B C 42 92 90 68 80 46 0 (d) 10 0 8 1 3 7 7 (d) 10 3 (d) 0 0 0 0 0 with Arochlor-1254 Indu 121 72 97 44 58 45 27 22 27 5 3 0 0 0 0 0 0 0 0 0 0 with Arochlor-1254 Indu 87 79 86 73 49 58 49 25 27 2 0 3 0 0 0 0 0 <	A B C Mean \pm SE 42 92 90 75 \pm 16.3 68 80 46 65 \pm 10.0 0 0/d) 10 0/d) 8 1 3 6 \pm 2.5 7 (d) 10 3(d) 0 0 0 \pm 0.0 with Arochlor-1254 Induced Sprague-Day 121 72 97 97 \pm 14.1 44 58 45 49 \pm 4.5 27 22 27 25 \pm 1.7 5 3 0 3 \pm 1.5 0 0 0 0 \pm 0.0 with Arochlor-1254 Induced Syrian Har 87 79 86 84 \pm 2.4 73 49 79 86 84 \pm 2.4 73 49 58 60 \pm 7.0 49 25 27 34 \pm 7.7 2 2 3 2 \pm 0.9 0 0 0	Number of Revertants per Plate (a) Initial Test Dose A B C Mean \pm SE (µg/plate) 42 92 90 75 \pm 16.3 0.0 (c) 68 80 46 65 \pm 10.0 10.0 0 (d) 10 0 (d) 10 33.0 8 1 3 6 \pm 2.5 100.0 7 (d) 10 3 (d) 333.0 0 0 0 1,000.0 with Arochlor-1254 Induced Sprague-Dawley Rat Liver 121 72 97 97 \pm 14.1 0.0 44 58 45 49 \pm 4.5 3.3 27 22 27 25 \pm 1.7 10.0 5 3 0 3 \pm 1.5 33.0 0 0 0 0 \pm 0.0 100.0 5 3 0 3 \pm 1.5 33.0 0 0 0 0 \pm 0.0 100.0 6 84 \pm 2.	Number of Revertants per Plate (a) Initial Test Dose A B C Mean \pm SE (µg/plate) A 42 92 90 75 \pm 16.3 0.0 (c) 59 68 80 46 65 \pm 10.0 10.0 68 0 (a) 10 0 (a) 10 33.0 65 8 1 3 6 \pm 2.5 100.0 79 7 (a) 10 3 (a) 333.0 80 0 0 0 1,000.0 70 with Arochlor-1254 Induced Sprague-Dawley Rat Liver S-9 Pr 121 72 97 97 \pm 14.1 0.0 61 44 58 45 49 \pm 4.5 3.3 87 27 22 27 25 \pm 1.7 10.0 64 0 0 0 \pm 0.0 100.0 47 0 0 of 97 97 \pm 14.1 0.0 64 64 64 64	Number of Revertants per Plate (<i>a</i>) Initial Test Dose F A B C Mean \pm SE (µg/plate) A B 42 92 90 75 \pm 16.3 0.0 (<i>c</i>) 59 67 68 80 46 65 \pm 10.0 10.0 68 73 0 (<i>d</i>) 10 0 (<i>d</i>) 10 33.0 65 91 8 1 3 6 \pm 2.5 100.0 79 65 7 (<i>d</i>) 10 3 (<i>d</i>) 333.0 80 89 0 0 0 \pm 0.0 1,000.0 70 87 with Arochlor-1254 Induced Sprague-Dawley Rat Liver S-9 Preparation 121 72 97 97 \pm 14.1 0.0 61 82 44 58 45 49 \pm 4.5 3.3 87 61 27 22 27 25 \pm 1.7 10.0 64 64 5 <t< td=""><td>Number of Reventants per Plate (a) Retest (a) A B C Mean \pm SE Dose (µg/plate) Retest (b) 42 92 90 75 \pm 16.3 0.0 (c) 59 67 83 68 80 46 65 \pm 10.0 10.0 68 73 79 0 (d) 10 0 (d) 10 33.0 65 91 65 8 1 3 6 \pm 2.5 100.0 79 65 70 0 0 0 0 \pm 0.0 1,000.0 70 87 60 with Arochlor-1254 Induced Sprague-Dawley Rat Liver S-9 Preparation 121 72 97 97 \pm 14.1 0.0 61 82 88 44 58 45 49 \pm 4.5 3.3 87 61 78 27 22 27 25 \pm 1.7 10.0 64 64 62 5 3 0 3 \pm 1.5</td></t<>	Number of Reventants per Plate (a) Retest (a) A B C Mean \pm SE Dose (µg/plate) Retest (b) 42 92 90 75 \pm 16.3 0.0 (c) 59 67 83 68 80 46 65 \pm 10.0 10.0 68 73 79 0 (d) 10 0 (d) 10 33.0 65 91 65 8 1 3 6 \pm 2.5 100.0 79 65 70 0 0 0 0 \pm 0.0 1,000.0 70 87 60 with Arochlor-1254 Induced Sprague-Dawley Rat Liver S-9 Preparation 121 72 97 97 \pm 14.1 0.0 61 82 88 44 58 45 49 \pm 4.5 3.3 87 61 78 27 22 27 25 \pm 1.7 10.0 64 64 62 5 3 0 3 \pm 1.5	

TABLE J2. RESULTS OF MUTAGENICITY TESTS OF ALLYL ISOVALERATE IN SALMONELLA TYPHIMURIUM TA 100

(a) Measured in triplicate

(b) Retest was 2 weeks after initial test

(c) DMSO solvent control

(d) Chemical was toxic

Dose		In	Nu itial Te	mber of Reverta	nts per Plate (a) Dose	Retest (b)			
(µg/plate)	A	B	С	Mean ± SE	(µg/plate)	A	В	С	Mean ± SE
A. No Activation						·			
0.0	3	2	4	3 ± 0.6	0.0	5	4	2	4 ± 0.9
100.0	5	2	3	3 ± 0.9	3.3	1	2	2	2 ± 0.3
333.0	1	2	1	1 ± 0.3	10.0	1	1	3	2 ± 0.7
1,000.0	0	0	0	0 ± 0.0	33.0	0	3	3	2 ± 1.0
3,333.0	0	0	0	0 ± 0.0	100.0	5	4	6	5 ± 0.6
10,000.0	0	0	0	0 ± 0.0	333.0	1	3	1	2 ± 0.7
B. Preincubation	with Ar	ochlor-1	254 Inc	luced Sprague-D	awley Rat Liver	S-9 Pro	eparatio	n	
0.0 (c)	5	6	6	5 ± 0.3	0.0 (c)	4	8	3	5 ± 1.5
100.0	2	1	2	2 ± 0.6	3.3	3	6	3	4 ± 1.0
333.0	0	1	2	1 ± 0.6	10.0	3	4	7	5 ± 1.2
1,000.0	0	0	0	0 ± 0.0	33.0	7	6	3	5 ± 1.2
3,333.0	0	0	0	0 ± 0.0	100.0	6	2	4	4 ± 1.2
10,000.0	0	0	0	0 ± 0.0	333.0	2	8	5	5 ± 1.7
C. Preincubation	with Ar	ochlor-1	254 Inc	luced Syrian Har	nster Liver S-9 P	repara	tion		
0.0(c)	3	3	10	5 ± 2.3	0.0 (c)	3	3	2	3 ± 0.3
100.0	2	4	2	3 ± 0.7	10.0	4	5	5	5 ± 0.3
333.0	2	2	1	2 ± 0.3	33.0	7	4	6	6 ± 0.9
1,000.0	3	0	0	1 ± 1.0	100.0	1	3	4	3 ± 0.9
3,333.0	1	0	0	0 ± 0.0	333.0	2	3	3	3 ± 0.3
10,000.0	0	0	0	0 ± 0.0	1,000.0	1	0	1	1 ± 0.3

TABLE J3. RESULTS OF MUTAGENICITY TESTS OF ALLYL ISOVALERATE IN SALMONELLATYPHIMURIUM TA 1535

(a) Measured in triplicate

(b) Retest was 2 weeks after initial test

(c) DMSO solvent control

Dose		Init	Nur ial Test	nber of Reverta	nts per Plate <i>(a)</i> Dose	Retest (b)			
(µg/plate)	A	B	С	Mean ± SE	(µg/plate)	A	B	С	Mean ± SE
A. No Activation									
0.0 (c)	1	0	2	1 ± 0.6	0.0(c)	2	5	3	3 ± 0.9
100.0	2	2	4	3 ± 0.7	10.0	1	2	4	2 ± 0.9
333.0	1	(d)	1	1 ± 0.0	33.0	5	7	2	5 ± 1.5
1,000.0	5	0 (e)	1	3 ± 0.0	100.0	9	7	2	6 ± 2.1
3,333.0	1	0	5	2 ± 1.5	333.0	8	9	5	7 ± 1.2
0.000.0	0 <i>(e)</i>	0 (e)	0 (e)	0 ± 0.0	1,000.0	7	5	8	7 ± 0.9
B. Preincubation	with Aro	chlor-12	54 Indu	iced Sprague-D	awley Rat Liver	S-9 Pre	eparatio	n	
0.0 (c)	4	1	3	3 ± 0.9	0.0 (c)	5	4	3	4 ± 0.6
100.0	5	10	3	6 ± 2.1	10.0	4	3	5	4 ± 0.6
333.0	0	2	3	2 ± 0.9	33.0	4	4	3	4 ± 0.3
1,000.0	1	0	0	0 ± 0.3	100.0	4	4	5	4 ± 0.3
3,333.0	0	0	0	0 ± 0.0	333.0	6	2	4	4 ± 1.2
0.000,01	0	1	0	0 ± 0.3	1,000.0	1	2	3	2 ± 0.6
C. Preincubation	with Aro	chlor-12	54 Ind	uced Syrian Har	nster Liver S-9 P	repara	tion		
0.0 (c)	4	3	2	3 ± 0.6	0.0(c)	5	7	5	6 ± 0.7
100.0	1	1	2	1 ± 0.3	10.0	3	6	4	4 ± 0.9
333.0	0	3	1	1 ± 0.9	33.0	4	0	2	2 ± 1.2
1,000.0	1	1	0	1 ± 0.3	100.0	1	3 -	2	2 ± 0.6
3,333.0	1	2	1	1 ± 0.3	333.0	8	4	4	5 ± 1.3
10,000.0	0	0	0	0.0 ± 0.0	0.000,1	1	1	1	1 ± 0.0

TABLE J4. RESULTS OF MUTAGENICITY TESTS OF ALLYL ISOVALERATE IN-SALMONELLATYPHIMURIUM TA 1537

•

(a) Measured in triplicate

(b) Retest was 2 weeks after initial test

(c) DMSO solvent control

(d) Plate was contaminated

(e) Chemical was toxic

Allyl Isovalerate

APPENDIX K

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE.

	Vehicle Control	31 mg/kg	62 mg/kg
	untere en la company esta company a comp		
Subcutaneous Tissue: Fibroma			
Cumor Rates	E/E0 (1007)	A (50 (PO)	2/60/(00)
Overall (a)	5/50 (10%)	4/30(8%)	3/30 (0%)
Adjusted (b)	13.2%	12.4%	10.7%
Terminal (C)	3/34 (9%)	5/30 (10%)	5/28 (11%)
Statistical Tests (a)	Bud 27(NI	D-0 CCINI	D=0.446N
Life l'able	P=0.376N	P=0.551N	P=0.445N
Incidental lumor lest	P=0.280N	P=0.529N	P=0.349N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.290N	P=0.500N	P=0.357N
Lung: Alveolar/Bronchiolar Adenoms	a or Carcinoma		
Tumor Rates			
Overall (a)	3/50 (6%)	2/50 (4%)	0/49 (0%)
Adjusted (b)	8.8%	6.0%	0.0%
Terminal (c)	3/34 (9%)	1/30 (3%)	0/27 (0%)
Statistical Tests (d)			
Life Table	P=0.115N	P=0.540N	P=0.164N
Incidental Tumor Test	P=0.092N	P=0.475N	P=0,164N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.084N	P=0.500N	P=0.125N
Hematopoietic System: Mononuclear	Cell Leukemia		
Tumor Rates			
Overall(a)	1/50 (2%)	4/50 (8%)	7/50 (14%
Adjusted (h)	28%	10.9%	22.0%
Terminal (c)	0/34(0%)	0/30 (0%)	4/28 (14%
Statistical Tests (d)		0/00/0707	, <u> </u>
Life Table	P=0.015	P=0.183	P=0.022
Incidental Tumor Test	P=0.023	P=0.482	P=0.044
Cochran-Armitage Trend	1 0,010		
Fisher Exact Tests	P=0.021	P=0 181	P=0.030
Tisher Exact (ests	1-0.021	1-0.101	1 -0.050
Hematopoietic System: Lymphoma or	r Leukemia (e)		
Tumor Rates	1.150 (301)	A (60 (907)	0/60 (1907
Overall (a)	1/50 (2%)	4/50 (8%)	9/30 (18%)
Adjusted (b)	2.8%	10.9%	20.0% 4/39/(140)
Terminal (C)	0/34 (0%)	0/30 (0%)	4/28 (14%)
Statistical fests (a)	B-0.004	D-0 192	P-0.007
Lite Table	r-v.uu4 D-0 002	1 -0.103 D-0 493	E-0.007
Cashara Amitaca Trand	F-0.000	F-V.484	F-0.020
Countan-Armitage Trend,	D-0 004	D-0 101	D- 0 000
Fisher Exact Tests	P=0.005	P-0.181	F-0.006
Liver: Neoplastic Nodule or Hepatoce	llular Carcinoma		
Tumor Rates			
Overall (a)	1/50 (2%)	2/50 (4%)	3/50 (6%)
Adjusted (b)	2.9%	6.7%	10.7%
Terminal (c)	1/34 (3%)	2/30 (7%)	3/28 (11%
Statistical Tests (d)			
Life Table	P=0.166	P=0.456	P=0.237
Incidental Tumor Test	P=0.166	P=0.456	P=0.237
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.222	P=0.500	P=0.309

TABLE K1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS

	Vehicle Control	31 mg/kg	62 mg/kg
Pancreas: Acinar-Cell Adenoma			
Tumor Rates			
Overall (a)	1/50 (2%)	4/50 (8%)	2/50 (4%)
Adjusted (b)	2.9%	12.2%	7.1%
Terminal (c)	1/34 (3%)	3/30 (10%)	2/28 (7%)
Statistical Tests (d)			
Life Table	P=0.342	P=0.152	P=0.432
Incidental Tumor Test	P=0.352	P=0.183	P=0.432
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.406	P=0.181	P=0.500
Pituitary: All Adenomas			
Tumor Rates			
Overall (a)	14/49 (29%)	5/46 (11%)	9/49 (18%)
Adjusted (b)	37.5%	15.3%	24.8%
Terminal (c)	11/34 (32%)	4/28 (14%)	3/27 (11%)
Statistical Tests (d)			
Life Table	P=0.231N	P=0.037N	P=0.315N
Incidental Tumor Test	P=0.041N	P=0.032N	P=0.048N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.125N	P=0.028N	P=0.170N
Adrenal: Pheochromocytoma			
Tumor Rates			
Overall (a)	15/50 (30%)	15/50 (30%)	15/50 (30%)
Adjusted (b)	41.5%	44.8 %	47.9%
Terminal (c)	13/34 (38%)	12/30 (40%)	12/28 (43%)
Statistical Tests (d)			
Life Table	P=0.317	P=0.451	P=0.357
Incidental Tumor Test	P=0.454	P=0.567N	P=0.512
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.543	P=0.586N	P=0.586N
Thyroid: C-Cell Adenoma			
Tumor Rates			
Overall (a)	5/50 (10%)	7/47 (15%)	3/47 (6%)
Adjusted (b)	13.8%	22.0%	10.7%
Terminal (c)	3/34 (9%)	6/30 (20%)	3/27 (11%)
Statistical Tests (d)			
Life Table	P=0.429N	P=0.316	P=0.472N
Incidental Tumor Test	P=0.383N	P=0.393	P=0.395N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.346N	P=0.336	P=0.393N
Thyroid: C-Cell Carcinoma			
Tumor Rates			
Overall (a)	6/50 (12%)	0/47 (0%)	3/47 (6%)
Adjusted (b)	17.1%	0.0%	10.7%
Terminal (c)	5/34 (15%)	0/30 (0%)	3/27 (11%)
Statistical Tests (d)			а.
Life Table	P=0.207N	P=0.024N	P=0.342N
Incidental Tumor Test	P=0.218N	P=0.020N	P=0.316N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.166N	P=0.016N	P=0.275N

TABLE K1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS (Continued)

	Vehicle Control	31 mg/kg	62 mg/kg
Thyroid: C-Cell Adenoma or Carcin	oma		
Tumor Rates			
Overall (a)	10/50 (20%)	7/47 (15%)	5/47 (11%)
Adjusted (b)	27.7%	22.0%	17.9%
Terminal (c)	8/34 (24%)	6/30 (20%)	5/27 (19%)
Statistical Tests (d)			
Life Table	P=0.195N	P=0.384N	P=0.247N
Incidental Tumor Test	P=0.165N	P=0.312N	P=0.200N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.127N	P=0.348N	P=0.160N
Pancreatic Islets: Islet-Cell Adenoma	or Carcinoma		
Tumor Rates			
Overall (a)	3/50 (6%)	0/50 (0%)	2/50 (4%)
Adjusted (b)	8.4%	0.0%	7.1%
Terminal (c)	2/34 (6%)	0/30 (0%)	2/28 (7%)
Statistical Tests (d)	, (-///		
Life Table	P=0.453N	P=0.136N	P=0.578N
Incidental Tumor Test	P=0.413N	P=0.089N	P=0.521N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.390N	P=0.121N	P=0.500N
Preputial Gland: Adenoma			
Tumor Rates			
Overall (a)	0/50 (0%)	4/50 (8%)	1/50 (2%)
Adjusted (b)	0.0%	13 3%	3.6%
Terminal (c)	0/34 (0%)	4/30 (13%)	1/28 (4%)
Statistical Tests (d)	0,01 (0,0)	4/00 (10/0)	1/20 (1/0)
Life Table	P=0 322	P=0.048	P=0 461
Incidental Tumor Test	P=0.322	P=0.048	P=0.461
Cochran-Armitage Trend.	. 0.522	. 0.010	
Fisher Exact Tests	P=0.390	P=0.059	P=0.500
Preputial Gland: Adenoma of Carcil	noma		
Overall (a)	0/50 (007)	5/50 (1007)	2/50 (40%)
A divisted (b)	0/30 (0%)	J/ J0 (10%)	2/30 (4%) 7 10%
Terminal (a)	0/34 (00%)	5/30 (170%)	7.170
Statistical Texts (d)	0/34 (0%)	5/50 (17%)	. 2/20 (1%)
Life Table	P=0 175	P=0.023	P=0 196
Incidental Tumor Test	P=0.175	P=0.023	P=0.196
Cochran-Armitage Trend	1-0:175	1-0.025	1-0.190
Fisher Exact Tests	P=0 238	P=0.028	P=0 247
	1 0.250	1 0.020	1 0.217
Festis: Interstitial-Cell Tumor			
Tumor Rates	40 (60 (90%)	44 (50 (900))	40 / 50 / 900
Overall (a)	40/50 (80%)	44/50 (88%)	40/50 (80%
Aujusted (D)	100.0%		92.9%
Terminal (C)	34/34 (100%)	JU/ JU (100%)	25/28 (89%
Statistical Lesis (a)	D-0 101	D-0.060	D-0 146
Luc ladie	P=0.121	P=0.000	P=0.140
Coobron Armitage Treed	r=0.419/N	r+0.142	P=0.530N
Fisher Exact Tests	D-0 552	D-0 207	D-0 500
FISHER EXACT TESTS	F-0.333	F-0.20/	r-0.398

TABLE K1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS (Continued)

Allyl Isovalerate

TABLE K1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS (Continued)

(a) Number of tumor bearing animals/number of animals examined at the site.

.

- (b) Kaplan-Meier estimated lifetime tumor incidence after adjusting for intercurrent mortality.
- (c) Observed tumor incidence at terminal kill.
- (d) Beneath the control incidence are the P-values associated with the trend test. Beneath the dosed group incidence are the P-values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as non-fatal. The Cochran-Armitage and Fisher's exact tests compare directly the overall incidence rates. A negative trend or significantly lower incidence is indicated by (N).
- (e) Two additional male rats had lymphomas.

	Vehicle Control	31 mg/kg	62 mg/kg
Subcutaneous Tissue: Fibroma			
Tumor Rates			
Overall (a)	0/50 (0%)	3/50 (6%)	0/49 (0%)
Adjusted (b)	0.0%	7.9%	0.0%
Terminal (c)	0/38(0%)	2/36 (6%)	0/29(0%)
Statistical Tests (d)		_//	
Life Table	P=0.568	P=0.114	(e)
Incidental Tumor Test	P=0.637N	P=0.117	(e)
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.634	P=0.121	(e)
Hematopoietic System: Mononuclear	Cell Leukemia		
Tumor Rates			
Overall (a)	4/50 (8%)	6/50 (12%)	8/49 (16%)
Adjusted (b)	9.9%	15.1%	20.8%
Terminal (c)	3/38 (8%)	4/36 (11%)	2/29 (7%)
Statistical Tests (d)		, , , , , , ,	, , , , , , , , , , , , , , , , , , , ,
Life Table	P=0.081	P=0.354	P=0.118
Incidental Tumor Test	P=0.241	P=0.474	P=0.343
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.132	P=0.370	P=0.168
Hematopoietic System: Leukemia			
Tumor Rates			
Overall (a)	4/50 (8%)	6/50 (12%)	9/49 (18%)
Adjusted (b)	9.9%	15.1%	22.8%
Terminal (c)	3/38 (8%)	4/36 (11%)	2/29 (7%)
Statistical Tests (d)		, - (, o,	-7 (,0,
Life Table	P=0.050	P=0.354	P=0.075
Incidental Tumor Test	P=0.173	P=0.474	P=0.265
Cochran-Armitage Trend.			
Fisher Exact Tests	P=0.082	P=0.370	P=0.109
Hematonoietic System: I ymnhoma ou	· Laukamia		
Tumor Rates	LURUMA		
Overall (a)	5/50 (10%)	6/50 (12%)	10/49 (20%)
Adjusted (b)	12.5%	15.1%	24.8%
Terminal (c)	4/38 (11%)	4/36 (11%)	2/29 (7%)
Statistical Tests (d)			
Life Table	P=0.055	P=0.478	P=0.081
Incidental Tumor Test	P=0.190	P=0.600	P=0.288
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.090	P=0.500	P=0.122
Pituitary: All Adenomas			
Fumor Rates			
Overall (a)	13/48 (27%)	17/49 (35%)	13/48 (27%)
Adjusted (b)	32.7%	41.8%	35.5%
Terminal (c)	10/36 (28%)	12/35 (34%)	6/28 (21%)
Statistical Tests (d)			
Life Table	P=0.297	P=0.244	P=0.350
Incidental Tumor Test	P=0.495N	P=0.241	P=0.513N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.544	P=0.277	P=0.591

TABLE K2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS

	Vehicle Control	31 mg/kg	62 mg/kg
Adrenal: Pheochromocytoma			
Tumor Rates			
Overall (a)	5/50 (10%)	8/50 (16%)	6/49 (12%)
Adjusted (b)	13.2%	22.2%	20.7%
Terminal (c)	5/38 (13%)	8/36 (22%)	6/29 (21%)
Statistical Tests (d)			
Life Table	P=0.248	P=0.238	P=0.313
Incidental Tumor Test	P=0.248	P=0.238	P=0.313
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.425	P=0.277	P=0.486
Thyroid: C-Cell Adenoma			
Tumor Rates			
Overall (a)	2/48 (4%)	7/50 (14%)	4/46 (9%)
Adjusted (b)	5.4%	18.8%	14.3%
Terminal (c)	2/37 (5%)	6/36 (17%)	4/28 (14%)
Statistical Tests (d)			
Life Table	P=0.165	P=0.076	P=0.216
Incidental Tumor Test	P=0.196	P=0.080	P=0.216
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.273	P=0.090	P=0.318
Thyroid: C-Cell Adenoma or Carcinoma	I		
Tumor Rates			
Overall (a)	4/48 (8%)	8/50 (16%)	5/46 (11%)
Adjusted (b)	10.8%	21.5%	17.9%
Terminal (c)	4/37 (11%)	7/36 (19%)	5/28 (18%)
Statistical Tests (d)	D 0 055	D 0 1/5	B 4 445
	P=0.255	P=0.165	P=0.327
Incidental Tumor Test	P=0.290	P=0.172	P=0.327
Cochran-Armitage I rend,	D-0.407	D 0 100	D-0 472
Fisher Exact Tests	P=0.407	P=0.199	P=0.473
Mammary Gland: Fibroadenoma			
lumor Rates			11 (10 (00~)
Overall (b)	17/50 (34%)	23/50 (46%)	11/49 (22%)
Adjusted (b)	40.1%	57.1%	33.3%
$\begin{array}{c} \text{Terminal} (u) \\ \text{Statistical Tests} (a) \end{array}$	13/38 (34%)	19/30 (33%)	7/29 (24%)
Life Table	D-0 202N	D-0 122	P-0 276N
Incidental Tumor Test	P-0.393N	P=0.125	P=0.370N
Cochran-Armitage Trend		1-0.125	1-0.1751
Fisher Fract Tests	P=0 137N	P=0 154	P=0 146N
	1-0.15/14	1-0.104	1-0.14010
Preputial Gland: Adenoma, Adenosquar	nous Carcinoma, or Carcii	noma	
Overall(a)	0/50 (00%)	3/50 (60%)	2/10 (10%)
Adjusted (b)	0,00 (0%)	8 30%	2/ 77 (7%) 6 20%
Terminal (c)	0/38 (0%)	3/36 (8%)	1/29 (30%)
Statistical Tests (d)	0/20 (0/0)	5/ 55 (670)	• [2] (5/0)
Life Table	P=0.140	P=0.111	P=0.189
Incidental Tumor Test	P=0.175	P=0.111	P=0.262
Cochran-Armitage Trend,		-	
Fisher Exact Tests	P=0.196	P=0.121	P=0.242

TABLE K2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS (Continued)

	Vehicle Control	31 mg/kg	62 mg/kg
Uterus: Endometrial Stromal Polyp			
Tumor Rates			
Overall (a)	11/50 (22%)	8/50 (16%)	13/48 (27%)
Adjusted (b)	27.3%	18.5%	43.1%
Terminal (c)	9/38 (24%)	4/36 (11%)	12/29 (41%)
Statistical Tests (d)			
Life Table	P=0.168	P=0.339N	P=0.157
Incidental Tumor Test	P=0.307	P=0.168N	P=0.227
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.318	P=0.306N	P=0.363
Uterus: Endometrial Stromal Polyp or	r Sarcoma		
Tumor Rates			
Overall (a)	12/50 (24%)	8/50 (16%)	14/48 (29%)
Adjusted (b)	28.8%	18.5%	44.6%
Terminal (c)	9/38 (24%)	4/36 (11%)	12/29 (41%)
Statistical Tests (d)			
Life Table	P=0.173	P=0.261N	P=0.165
Incidental Tumor Test	P=0.330	P=0.128N	P=0.255
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.319	P=0.227N	P=0.363

TABLE K2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS (Continued)

(a) Number of tumor bearing animals/number of animals examined at the site.

(b) Kaplan-Meier estimated lifetime tumor incidence after adjusting for intercurrent mortality.

(c) Observed tumor incidence at terminal kill.

(e) The configuration of tumor incidence precludes use of this statistic.

⁽d) Beneath the control incidence are the P-values associated with the trend test. Beneath the dosed group incidence are the P-values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as non-fatal. The Cochran-Armitage and Fisher's exact tests compare directly the overall incidence rates. A negative trend or significantly lower incidence is indicated by (N).
TABLE K3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE

	Vehicle Control	31 mg/kg	62 mg/kg
Skin: Fibroma	· · · · · · · · · · · · · · · · · · ·	<u></u>	
Tumor Rates			
Overall (a)	3/50 (6%)	1/50 (2%)	0/50 (0%)
Adjusted (b)	10.3%	3.2%	0.0%
Terminal (c)	3/29 (10%)	1/31 (3%)	0/31 (0%)
Statistical Tests (d)	5.0.000	D • • • • • • •	
Lite Table	P=0.052N	P=0.280N	P=0.109N
Incidental Tumor Test	P=0.052N	P=0.280N	P=0.109N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.060N	P=0.309N	P=0.121N
Subcutaneous Tissue: All Sarcomas			
Overall (a)	3/50 (6%)	2/50 (4%)	2/50 (4%)
Adjusted (h)	8 1%	6.0%	6.0%
Terminal (c)	1/29 (3%)	1/31 (3%)	1/31 (3%)
Statistical Tests (d)	1/2/(3/0)	1/51 (570)	1/51 (570)
Life Table	P=0.400N	P=0.489N	P=0 494N
Incidental Tumor Test	P=0 508N	P=0.573N	P=0.614N
Cochran-Armitage Trend	1 0.50011	1 0.5751	1-0.01410
Fisher Exact Tests	P=0.406N	P=0.500N	P=0.500N
Lung: Alveolar/Bronchiolar Adenoma			
Tumor Rates			
Overall (a)	10/50 (20%)	5/50 (10%)	3/49 (6%)
Adjusted (b)	31.6%	15.1%	9.0%
Terminal (c)	8/29 (28%)	4/31 (13%)	2/31 (6%)
Statistical Tests (d)			
Life Table	P=0.018N	P=0.108N	P=0.031N
Incidental Tumor Test	P=0.030N	P=0.149N	P=0.047N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.025N	P=0.131N	P=0.039N
Lung: Alveolar/Bronchiolar Carcinoma	l		
Tumor Rates	• / • • · / · · · ·		
Overall (a)	3/50 (6%)	1/50 (2%)	2/49 (4%)
Adjusted (b)	8.2%	3.2%	6.0%
Statistical Tests (d)	1/29 (3%)	1/31 (3%)	1/31 (3%)
Life Table	D-0.201N	D-0 200N	D-0 402N
Incidental Tumor Test	P-0.405N	F~0.300N	P-0.492N P-0.624N
Coobson Armitege Trend	P=0.4951N	P-0.392IN	P=0.024 N
Eicher Event Teste	D-0 407N	D-0 200N	D-0 510N
Pisher Exact Tests	F-0.40/N	F~0.5091N	F-0.510N
Lung: Alveolar/Bronchiolar Adenoma	or Carcinoma		
Overall (a)	13/50 (260%)	6/50 (120%)	5/10 (1002)
\mathbf{A} diusted (b)	38 1%	18 30%	14 60%
Terminal (c)	9/29 (31%)	5/31 (16%)	3/31 (10%
Statistical Tests (d)	···· (31/0)	5/51 (10/0)	5/51 (1070
Life Table	P=0.017N	P=0.053N	P=0.031N
Incidental Tumor Test	P=0.034N	P=0.087N	P=0.057N
Cochran-Armitage Trend		- 0.00711	. 0.00711
Fisher Exact Tests	P=0.022N	P=0.062N	P=0.037N
Lonor LAdor Long	1 0.02211	1 -0.00214	1 -0.00711

	Vehicle Control	31 mg/kg	62 mg/kg
Hematopoietic System: Malignant Ly	mphoma, Lymphocytic Type	e	
Tumor Rates			1 (50 (30))
Overall (a)	1/50 (4%)	2/50 (4%)	1/50 (2%)
Adjusted (b)	2.7%	5.7%	2.6%
Terminal (c)	0/29 (0%)	1/31 (3%)	0/31 (0%)
Statistical Tests (d)		D 4 4 9 4	
Life Table	P=0.617	P=0.499	P=0.751
Incidental Tumor Test	P=0.518	P=0.444	P=0.692
Cochran-Armitage Trend,	P • • • •		
Fisher Exact Tests	P=0.622	P=0.500	P=0.753N
Hematopoietic System: Malignant Lyn	mphoma, Histiocytic Type		
Tumor Rates	0/50 (00)	2/50 /401	1 (50 (307)
Overall (a)	0/50 (0%)	2/50 (4%)	1/50 (2%)
Adjusted (b)		6.3%	2.1%
Terminal (c)	0/29 (0%)	1/31 (3%)	0/31 (0%)
Statistical Tests (d)	D	D 4 454	D 0 400
Life lable	P=0.373	P=0.251	P=0.500
Incidental Tumor Test	P=0.303	P=0.202	P=0.433
Cochran-Armitage I rend,	D 0 2/1	D 0 247	D 0 500
FISHER EXACT Tests	P=0.361	P=0.247	P=0.500
Hematopoietic System: Malignant Ly	mphoma, Mixed Type		
Quarall (a)	2 (50 (607)	2 (50 (407)	6150 (1007)
Overall(a)	3/30 (6%)	2/30 (4%)	0/30 (12%)
Adjusted (b)	10.0%	0.2%	17.2%
Terminal (c)	2/29 (1%)	1/31 (3%)	4/31 (13%)
Statistical Tests (d)	B 0 100	D 0 (70)	D 0 070
	P=0.192	P=0.4/3N	P=0.2/2
Incidental Tumor Test	P=0.130	P=0.556N	P=0.193
Cochran-Armitage Trend,	D =0.140	D-0 6001	D-0.242
Fisher Exact Tests	P=0.169	P=0.500N	P=0.243
Hematopoietic System: Lymphoma, A	Il Malignant		
Queroll (g)	4/50 (807)	6/50 (120%)	8/50 (1607)
$\Delta divised (b)$	4750 (8%)	17 30%	3/ 50 (10%) 21 5 0%
Terminal (a)	12.4% 2/20 (707)	$\frac{17.5\%}{2.121}$	$\frac{21.370}{4/21}$
Statistical Tests (d)	2/29 (1%)	5/51 (10%)	4/51 (15%)
f_{a}	D-0 167	D-0 307	P-0 204
Incidental Tumor Test	P=0.107	P=0.397	P=0.204
Cochran Armitage Trend	F-0.077	F -0.265	F-0.105
Fisher Exact Tests	P=0 141	P=0.370	P=0.178
	1 0.141	1 0.570	1 0.170
Liver: Hepatocellular Adenoma			
Overall (a)	7/50(14%)	8/50 (16%)	8/50 (16%)
Adjusted (b)	23 10%	23.20%	24 40%
Terminal (c)	6/29 (210%)	6/31 (190%)	7/31 (2302)
Statistical Tests (d)	0/2/(21/0)	0/01 (1970)	(2570)
Life Table	P=0 497	P=0 543	P=0 540
Incidental Tumor Test	P=0.407	P=0.545	D=0.049
Cochran-Armitage Trend	1 -0.400	1-0.525	1 -0.407
Fisher Exact Tests	P=0 445	P=0 500	P=0 500
I ISHCI LACU I CSIS	1 -V.44	1-0.500	-0.500

TABLE K3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE (Continued)

Allyl Isovalerate

Vehicle 31 62 Control mg/kg mg/kg Liver: Hepatocellular Carcinoma **Tumor** Rates Overall (a) 18/50 (36%) 6/50 (12%) 9/50 (18%) Adjusted (b) 47.6% 16.7% 25.4% Terminal (c) 10/29 (34%) 3/31 (10%) 6/31 (19%) Statistical Tests (d) Life Table P=0.021N P=0.006N P=0.038N Incidental Tumor Test P=0.044N P=0.013N P=0.069N Cochran-Armitage Trend, Fisher Exact Tests P=0.020N P=0.035N P=0.005N Liver: Hepatocellular Adenoma or Carcinoma **Tumor** Rates Overall (a) 23/50 (46%) 14/50 (28%) 15/50 (30%) Adjusted (b) 59.9% 37.6% 43.3% Terminal (c) 14/29 (48%) 9/31 (29%) 12/31 (39%) Statistical Tests (d) Life Table P=0.052N P=0.049N P=0.066N Incidental Tumor Test P=0.108N P=0.092N P=0.117N Cochran-Armitage Trend, Fisher Exact Tests P=0.058N P=0.048N P=0.074N Gastric Mucosa: Squamous Cell Papilloma Tumor Rates Overall (a) 0/50 (0%) 3/48 (6%) 1/50 (2%) Adjusted (b) 0.0% 3.2% 9.4% Terminal (c) 0/29 (0%) 2/31 (6%) 1/31 (3%) Statistical Tests (d) Life Table P=0.068 P=0.513 P=0.137 Incidental Tumor Test P=0.048 P=0.513 P=0.090 Cochran-Armitage Trend, Fisher Exact Tests P=0.056 P=0.500 P=0.114 Adrenal: Pheochromocytoma Tumor Rates Overall (a) 4/49 (8%) 2/46 (4%) 2/48 (4%) Adjusted (b) 13.8% 7.4% 6.3% Terminal (c) 4/29 (14%) 2/27 (7%) 1/30(3%)Statistical Tests (d) Life Table P=0.238N P=0.368N P=0.317N Incidental Tumor Test P=0.263N P=0.368N P=0.354N Cochran-Armitage Trend, Fisher Exact Tests P=0.262N P=0.369N P=0.349N Adrenal: Pheochromocytoma or Pheochromocytoma, Malignant Tumor Rates Overall (a) 5/49 (10%) 3/46 (7%) 2/48 (4%) Adjusted (b) 17.2% 11.1% 6.3% Terminal (c) 5/29 (17%) 3/27 (11%) 1/30 (3%) Statistical Tests (d) Life Table P=0.146N P=0.393N P=0.199N Incidental Tumor Test P=0.163N P=0.393N P=0.227N Cochran-Armitage Trend. Fisher Exact Tests P=0.167N P=0.393N P=0.226N

TABLE K3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE (Continued)

	Vehicle Control	31 mg/kg	62 mg/kg
Thyroid: Follicular-Cell Adenoma	and an an and the contract of t		
Tumor Rates			
Overall (a)	5/47 (11%)	0/46 (0%)	1/49 (2%)
Adjusted (b)	16.5%	0.0%	3.2%
Terminal (c)	4/29 (14%)	0/30 (0%)	1/31 (3%)
Statistical Tests (d)	, ,		
Life Table	P=0.032N	P=0.031N	P=0.090N
Incidental Tumor Test	P=0.039N	P=0.038N	P=0.105N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.034N	P=0.030N	P=0.093N
Harderian Gland: Adenoma			
Tumor Rates			
Overall (a)	4/50 (8%)	4/50 (8%)	2/50 (4%)
Adjusted (b)	13.8%	11.4%	6.5%
Terminal (c)	4/29 (14%)	2/31 (6%)	2/31 (6%)
Statistical Tests (d)			
Life Table	P=0.251N	P=0.613N	P=0.304N
Incidental Tumor Test	P=0.284N	P=0.597	P=0.304N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.274N	P=0.643	P=0.339N

TABLE K3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE (Continued)

(a) Number of tumor bearing animals/number of animals examined at the site.

(b) Kaplan-Meier estimated lifetime tumor incidence after adjusting for intercurrent mortality.

(c) Observed tumor incidence at terminal kill.

(d) Beneath the control incidence are the P-values associated with the trend test. Beneath the dosed group incidence are the P-values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as non-fatal. The Cochran-Armitage and Fisher's exact tests compare directly the overall incidence rates. A negative trend or a significantly lower incidence is indicated by (N).

TABLE K4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE

	Vehicle Control	31 mg/kg	62 mg/kg
Lung: Alveolar/Bronchiolar Adenoma	· · · · · · · · · · · · · · · · · · ·		
Tumor Rates			
Overall (a)	2/50 (4%)	4/49 (8%)	2/50 (4%)
Adjusted (b)	5.8%	18.6%	6.1%
Terminal (c)	1/32 (3%)	2/17 (12%)	0/24 (0%)
Statistical Tests (d)			
Life Table	P=0.519	P=0.176	P=0.664
Incidental Tumor Test	P=0.438N	P=0.358	P=0.494N
Cochran-Armitage Trend.			
Fisher Exact Tests	P=0.588	P=0.329	P=0.691
Lung: Alveolar/Bronchiolar Adenoma	or Carcinoma		
Tumor Rates			
Overall (a)	4/50 (8%)	4/49 (8%)	3/50 (6%)
Adjusted (b)	11.9%	18.6%	10.0%
Terminal (c)	3/32 (9%)	2/17 (12%)	1/24 (4%)
Statistical Tests (d)			
Life Table	P=0.530N	P=0.381	P=0.590N
Incidental Tumor Test	P=0.348N	P=0.590	P=0.404N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.424N	P=0.631	P=0.500N
Hematopoietic System: Malignant Ly	mphoma, Lymphocytic Type	9	
Tumor Rates			
Overall (a)	5/50 (10%)	5/50 (10%)	4/50 (8%)
Adjusted (b)	12.3%	21.9%	12.6%
Terminal (c)	2/32 (6%)	3/17 (18%)	2/24 (8%)
Statistical Tests (d)			
Life Table	P=0.515N	P=0.422	P=0.557N
Incidental Tumor Test	P=0.432	P=0.422	P=0.447
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.432N	P=0.630N	P=0.500N
Hematopoietic System: Malignant Ly	mphoma, Histiocytic Type		
Tumor Rates			
Overall (a)	0/50 (0%)	1/50 (2%)	4/50 (8%)
Adjusted (b)	0.0%	5.9%	12.8%
Terminal (c)	0/32 (0%)	1/17 (6%)	0/24 (0%)
Statistical Tests (d)		D 0 0 0	D 0 000
Life l'able	P=0.024	P=0.374	P=0.052
Incidental Tumor Test	P=0.058	P=0.374	P=0.336
Cochran-Armitage I rend,			D 4 4 4
Fisher Exact Tests	P=0.026	P=0.500	P=0.059
Hematopoietic System: Malignant Ly	mphoma, Mixed Type		
Tumor Rates	(150 (1007))	E (50 (1007)	10/50 (2007)
Overall (a)	6/50 (12%)	3/30 (10%)	10/30 (20%)
Aujustea (<i>D</i>) Terminal (<i>c</i>)	10.0% 6/20 (100%)	23.1% 2/17 (120%)	31.0% 8/31 (2207)
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	0/32 (19%)	2/17 (12%)	0/24 (<i>33%</i>)
Jianshuar ross (a) Lifa Tabla	D-0 044	D-0 260	D-0 073
Life Table Incidental Tumor Test	P-0.004	F-0.300 D-0 572NI	P-0.0/3
Coobron Armitage Trend	r-0.130	r-0.3/31N	r-0.133
Fisher Exact Tests	D-0 157	D-0 500NI	D-0 207
L'ISHCE L'AGUE I CSUS	1-0.137	I -0.0001	1 -0.207

	Vehicle Control	31 mg/kg	62 mg/kg
Hematopoietic System: Lymphoma, A	ll Malignant		
Tumor Rates			
Overali (a)	11/50 (22%)	11/50 (22%)	18/50 (36%)
Adjusted (b)	29.8%	46.5%	54.7%
Terminal (c)	8/32 (25%)	6/17 (35%)	10/24 (42%)
Statistical Tests (d)			
Life Table	P=0.026	P=0.172	P=0.034
Incidental Tumor Test	P=0.037	P=0.360	P=0.052
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.071	P=0.595	P=0.093
Liver: Hepatocellular Adenoma or Ca	rcinoma		
Querell (a)	2/50 (607)	0 (50 (007)	1/50 (207)
A divised (b)	3/50 (6%)	0/50 (0%)	1/50 (2%)
Adjusted (b)	9.4%	0.0%	2.2%
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	3/32 (9%)	0/1/(0%)	0/24 (0%)
Statistical resis (a)	D-0 229N	D-0 251N	D-0 274N
Incidental Tumon Test	P=0.236W	P=0.251N	P=0.374N
Cochron Armitege Trend	F-0.2101	F-0.231N	r-0.329N
Fisher Exact Tests	P=0.176N	P=0.121N	P=0.309N
	1-0,1701	1-0.1211	1-0.5071
Pituitary: Adenoma			
Tumor Rates			
Overall (a)	11/43 (26%)	2/43 (5%)	7/44 (16%)
Adjusted (b)	36.7%	8.5%	30.4%
$\mathbf{I} \text{ erminal } (c)$	11/30 (37%)	1/16 (6%)	7/23 (30%)
Statistical lests (a)	D-0.21(N)	\mathbf{D}_{-0} (7(N)	D-0 439N
Life Table	P=0.310N	P=0.0/0N	P=0.428 N
Cashuan Amaita at Trand	P-0.302N	P-0.081N	P=0.420N
Cochran-Armitage Trend,	D =0.120N	D-0.007N	D-0 109N
Fisher Exact Tests	P=0,139N	P=0.00/N	P=0.198N
Thyroid: Follicular-Cell Adenoma			
Queroll (g)	3 (40 (607))	2/18 (10%)	2/18 (10%)
$\Delta divised (h)$	5/49 (0%) 0 70%	2/48 (4%) 0 50%	2/40 (4%) 8 30%
Terminal (c)	3/31(100)	1/17 (6%)	2/24 (8%)
Statistical Tests (d)	5/51 (10/0)	1/1/(0/0)	2/24 (070)
Life Table	P≈0.523N	P=0.633	P=0.617N
Incidental Tumor Test	P=0.461N	P=0.606N	P=0.617N
Cochran-Armitage Trend.			
Fisher Exact Tests	P≈0.415N	P=0.510N	P=0.510N
Thursda Falliquiar Call Adapama an	Carainama		
Tumor Bates	Carcinoma		
Overall (a)	A (AQ (80%)	2/48 (10%)	2/48 (40%)
Adjusted (b)	12.9%	2/48 (470) 0 50 %	8 30%
Terminal (c)	Δ/31 (130%)	1/17 (6%)	2/24 (80%)
Statistical Tests (d)		1/1/(070)	2,27 (070)
Life Table	P=0 371N	P=0.600N	P=0.459N
Incidental Tumor Test	P=0.313N	P=0.470N	P=0.459N
Cochran-Armitage Trend.			
Fisher Exact Tests	P=0.260N	P=0.349N	P=0.349N

TABLE K4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE (Continued)

	Vehicle Control	31 mg/kg	62 mg/kg
Mammary Gland: Adenocarcinoma		<u> </u>	······································
Tumor Rates			
Overall (a)	2/50 (4%)	3/50 (6%)	2/50 (4%)
Adjusted (b)	6.1%	15.2%	8.3%
Terminal (c)	1/32 (3%)	2/17 (12%)	2/24 (8%)
Statistical Tests (d)	, (, , ,	, , , , , , , , , , , , , , , , , , ,	,
Life Table	P=0.467	P=0.261	P=0.592
Incidental Tumor Test	P=0.581N	P=0.577	P=0.672N
Cochran-Armitage Trend,			
Fisher Exact Tests	P=0.594	P=0.500	P=0.691

TABLE K4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE (Continued)

(a) Number of tumor bearing animals/number of animals examined at the site.

(b) Kaplan-Meier estimated lifetime tumor incidence after adjusting for intercurrent mortality.

(c) Observed tumor incidence at terminal kill.

⁽d) Beneath the control incidence are the P-values associated with the trend test. Beneath the dosed group incidence are the P-values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as non-fatal. The Cochran-Armitage and Fisher's exact tests compare directly the overall incidence rates. A negative trend or a significantly lower incidence is indicated by (N).