NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 300

TOXICOLOGY AND CARCINOGENESIS STUDIES OF

3-CHLORO-2-METHYLPROPENE

(Technical grade containing 5% dimethylvinyl chloride)

(CAS NO. 563-47-3)

IN F344/N RATS AND B6C3F₁ MICE

(GAVAGE STUDIES)

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF

(Technical grade containing 5% dimethylvinyl chloride)

3-CHLORO-2-METHYLPROPENE

(CAS NO. 563-47-3)

IN F344/N RATS AND B6C3F₁ MICE

(GAVAGE STUDIES)

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

June 1986

NTP TR 300

NIH Publication No. 86-2556

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Public Health Service
National Institutes of Health

NOTE TO THE READER

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for testing in the NTP Carcinogenesis Program are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential. Negative results, in which the test animals do not have a greater incidence of cancer than control animals, do not necessarily mean that a test chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a test chemical is carcinogenic for animals under the conditions of the test and indicate that exposure to the chemical has the potential for hazard to humans. The determination of the risk to humans from chemicals found to be carcinogenic in animals requires a wider analysis which extends beyond the purview of this study.

Five categories of interpretative conclusions were adopted for use in June 1983 in the Technical Reports series to specifically emphasize consistency and the concept of actual evidence of carcinogenicity. For each definitive study result (male rats, female rats, male mice, female mice), one of the following quintet will be selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of malignant neoplasms, studies that exhibit a substantially increased incidence of benign neoplasms, or studies that exhibit an increased incidence of a combination of malignant and benign neoplasms where each increases with dose.
- Some Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of benign neoplasms, studies that exhibit marginal increases in neoplasms of several organs/tissues, or studies that exhibit a slight increase in uncommon malignant or benign neoplasms.
- Equivocal Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing a chemically related marginal increase of neoplasms.
- No Evidence of Carcinogenicity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenicity demonstrates that because of major qualitative or quantitative limitations, the studies cannot be interpreted as valid for showing either the presence or absence of a carcinogenic effect.

Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the earlier induction by chemicals of neoplasms that are commonly observed, or the induction by chemicals of more neoplasms than are generally found. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

This study was initiated by the National Cancer Institute's Carcinogenesis Bioassay Program, now part of the National Institute of Environmental Health Sciences, National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for peer review.

Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

	PAGE
ABST	`RACT ,
CONT	TRIBUTORS
PEER	R REVIEW PANEL
SUM	MARY OF PEER REVIEW COMMENTS
I.	INTRODUCTION
п.	MATERIALS AND METHODS
•	PROCUREMENT AND CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE20
	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
	SINGLE-ADMINISTRATION STUDIES
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	STUDY DESIGN
	SOURCE AND SPECIFICATIONS OF ANIMALS
	ANIMAL MAINTENANCE
	CLINICAL EXAMINATIONS AND PATHOLOGY
	STATISTICAL METHODS
TTT	
m.	RESULTS
	RATS30
	SINGLE-ADMINISTRATION STUDIES
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES33
	BODY WEIGHTS AND CLINICAL SIGNS33
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
	MICE43
	SINGLE-ADMINISTRATION STUDIES43
	FOURTEEN-DAY STUDIES44
	THIRTEEN-WEEK STUDIES45
	TWO-YEAR STUDIES46
	BODY WEIGHTS AND CLINICAL SIGNS46
	SURVIVAL49
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS49

CONTENTS (Continued)

	PAGE
IV. DISCUSSION AND CONCLUSIONS	55
V. REFERENCES	61
TABLES	
TABLES	
TABLE 1 IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF	,
3-CHLORO-2-METHYLPROPENE	20
TABLE 2 PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE	
STUDIES OF 3-CHLORO-2-METHYLPROPENE	21
TABLE 3 RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAV.	AGE
STUDIES OF 3-CHLORO-2-METHYLPROPENE	21
TABLE 4 EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GA	LVAGE
STUDIES OF 3-CHLORO-2-METHYLPROPENE	23
TABLE 5 SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF RATS IN THE SIN	GLE-
ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPE	NE30
TABLE 6 SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-	DAY
GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE	31
TABLE 7 SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-V	VEEK
GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE	32
TABLE 8 NUMBERS OF RATS WITH LIVER LESIONS IN THE THIRTEEN-WEEK C	FAVAGE
STUDIES OF 3-CHLORO-2-METHYLPROPENE	33
TABLE 9 MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR	
GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE	34
TABLE 10 SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF	
3-CHLORO-2-METHYLPROPENE	
TABLE 11 ANALYSIS OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR O	
STUDIES OF 3-CHLORO-2-METHYLPROPENE	
TABLE 12 INCIDENCES OF URINARY TRACT LESIONS IN RATS IN THE TWO-YEAR	
GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE	
TABLE 13 ANALYSIS OF TESTICULAR TUMORS IN MALE RATS IN THE TWO-YEAR	
GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE	
TABLE 14 ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN FEMALE RATS IN TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE	

TABLES (Continued)

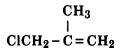
TABLE 15	ANALYSIS OF ADRENAL GLAND TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE41
TABLE 16	ANALYSIS OF THYROID GLAND TUMORS IN RATS IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE42
TABLE 17	SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF MICE IN THE SINGLE-
	ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE43
TABLE 18	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE44
TABLE 19	SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE45
TABLE 20	NUMBERS OF MICE WITH LIVER AND KIDNEY LESIONS IN THE THIRTEEN-
	WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE46
TABLE 21	MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE47
TABLE 22	SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF
	3-CHLORO-2-METHYLPROPENE
TABLE 23	ANALYSIS OF FORESTOMACH LESIONS IN MICE IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE 24	ANALYSIS OF CIRCULATORY SYSTEM TUMORS IN FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE 25	ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE
	STUDY OF 3-CHLORO-2-METHYLPROPENE53
TABLE 26	NUMBERS OF RATS AND MICE WITH FORESTOMACH LESIONS IN THE
	TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

PAGE

FIGURES

		PAGE
FIGURE	1	GROWTH CURVES FOR RATS ADMINISTERED 3-CHLORO-2-METHYLPROPENE
		IN CORN OIL BY GAVAGE FOR TWO YEARS35
FIGURE	2	KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED 3-CHLORO-2-
		METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS37
FIGURE	3	GROWTH CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE
		IN CORN OIL BY GAVAGE FOR TWO YEARS48
FIGURE	4	KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED 3-CHLORO-2-
		METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS50
FIGURE	5	INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE
		(LOT NO. 110967)
FIGURE	6	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-
		METHYLPROPENE (LOT NO. 110967)
FIGURE	7	INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE
		(LOT NO. P091781)164
FIGURE	8	NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-
		METHYLPROPENE (LOT NO. P091781)
		APPENDIXES
APPEND	ıτv	A SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR
AFFEND	/1A .	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABI	nr A	
TADE	JE F	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABI	10° /	
IADI	JE F	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABI	TE 4	
IADI	JE P	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABI	ing A	
11101		TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
APPEND	TY 1	B SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR
-11 - 1110		GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABI	E F	
		TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

APPENDIXES (Continued)


	PAGE
TABLE B2	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE B3	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE92
TABLE B4	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE
	TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE98
APPENDIX C	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN
	THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE105
TABLE C1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE . 106
TABLE C2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE , 112
APPENDIX D	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN
	THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE119
TABLE D1	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE . 120
TABLE D2	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE
	MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE . 125
APPENDIX E	ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE E1	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E2	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
TABLE E4	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR
	GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE
APPENDIX F	•
	ADMINISTERED CORN OIL BY GAVAGE145
TABLE F1	HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS
	ADMINISTERED CORN OIL BY GAVAGE

APPENDIXES (Continued)

	PAGE
TABLE F2	HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE146
TABLE F3	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE
	F344/N RATS ADMINISTERED CORN OIL BY GAVAGE147
TABLE F4	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN
	FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE148
TABLE F5	HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE149
TABLE F6	HISTORICAL INCIDENCE OF RENAL TUMORS IN MALE F344/N RATS
	ADMINISTERED CORN OIL BY GAVAGE149
TABLE F7	HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN MALE
	F344/N RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F8	HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE F344/N
	RATS ADMINISTERED CORN OIL BY GAVAGE
TABLE F9	HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE B6C3F ₁ MICE
	ADMINISTERED CORN OIL BY GAVAGE
TABLE F10	HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE B6C3F1
	MICE ADMINISTERED CORN OIL BY GAVAGE
TABLE F11	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE
	B6C3F ₁ MICE ADMINISTERED CORN OIL BY GAVAGE152
TABLE F12	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN
	FEMALE B6C3F ₁ MICE ADMINISTERED CORN OIL BY GAVAGE
APPENDIX G	CHEMICAL CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE155
APPENDIX H	PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES
APPENDIX I	METHODS OF ANALYSIS OF DOSE MIXTURES
APPENDIX J	RESULTS OF ANALYSIS OF DOSE MIXTURES
TABLE J1	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE J2	RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE
	STUDIES OF 3-CHLORO-2-METHYLPROPENE
TABLE J3	RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR
	GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

APPENDIXES (Continued)

	PAGE
APPENDIX K	SENTINEL ANIMAL PROGRAM
TABLE K1	MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE
	TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE183
APPENDIX L	GENETIC TOXICOLOGY OF 3-CHLORO-2-METHYLPROPENE185
TABLE L1	MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN SALMONELLA
	TYPHIMURIUM186
TABLE L2	MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN L5178Y/TK+/-
	MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9187
TABLE L3	INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER
	OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE188
TABLE L4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER
	OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE188
APPENDIX M	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS
	IN NIH 07 RAT AND MOUSE RATION189
TABLE M1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION190
TABLE M2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION190
TABLE M3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION191
TABLE M4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION192
APPENDIX N	DATA AUDIT SUMMARY195

3-CHLORO-2-METHYLPROPENE

CAS No. 563-47-3

C₄H₇Cl Molecular weight: 90.55

Synonyms:

2-Methallyl chloride Methyl allyl chloride

Methyl allyl chloride β-methallyl chloride γ-chloroisobutylene

Isobutenyl chloride

3-Chloro-2-methyl-1-propene 2-Methyl-2-propenyl chloride

ABSTRACT

Toxicology and carcinogenesis studies of technical-grade 3-chloro-2-methylpropene (containing 5% dimethylvinyl chloride), a widely used insecticide and chemical intermediate, were performed on F344/N rats and B6C3F₁ mice. In the 13-week studies, 50%-100% mortality occurred in groups of male and female rats receiving 400 mg/kg, male rats receiving 300 mg/kg, and male and female mice receiving 500-1,250 mg/kg. Inflammation and necrosis of the liver were seen in rats and mice, and necrosis of cortical tubules of the kidney was seen in mice. Based on these observations, groups of 50 male and 50 female rats were administered 3-chloro-2-methylpropene in corn oil by gavage at doses of 0, 75, or 150 mg/kg body weight, 5 days per week for 103 weeks, and groups of 50 male and 50 female mice received 3-chloro-2-methylpropene at 0, 100, or 200 mg/kg on the same schedule.

In the 2-year studies, the mean body weight of high dose male rats was consistently 10%-15% lower than that of the vehicle control group, and late in the study there was a marginal reduction in survival of high dose male rats. Mean body weights and survival in low dose male rats and in both dosed groups of female rats were comparable to those of their vehicle control groups. Mean body weights of high dose male mice and of both dosed groups of female mice were slightly (5%-9%) lower than those of the vehicle controls, whereas survival in both male and female mice was not affected by 3-chloro-2-methylpropene administration.

Dose-related increases in the incidence of forestomach inflammation were observed in male and female mice (male: vehicle control, 0/49; low dose, 9/49; high dose, 7/49; female: vehicle control, 2/50; low dose, 3/48; high dose, 9/44). Increased incidences of forestomach basal cell hyperplasia were observed in rats and mice of each sex. 3-Chloro-2-methylpropene induced forestomach squamous cell papillomas and squamous cell carcinomas in rats and mice as shown in the table. Invasion or metastasis of the squamous cell carcinomas to other organs was observed in two low dose male, three high dose male, and one high dose female mice.

Renal tubular cell adenocarcinomas (1/49), renal transitional cell carcinomas (1/49), and transitional cell papillomas (1/46) of the urinary bladder were observed in high dose male rats, and renal tubular cell adenomas (1/50) and renal tubular cell adenocarcinomas (1/50) were seen in low dose male rats. These urinary tract neoplasms were not observed in vehicle controls.

The incidences of inflammation of the nasal cavity and of nephropathy/nephrosis were greater in the two dosed groups than in the vehicle control groups of rats and mice of each sex.

INCIDENCES OF FORESTOMACH LESIONS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Basal Cell or Epithelial Hyperplasia		Squamous Cell Papilloma		Squamous Cell Carcinoma				
RATS	Vehicle Control	75 mg/kg	150 mg/kg	Vehicle Control		150 mg/kg	Vehicle Control		150 mg/kg
Male	19/50	41/50	44/48	1/50	5/50	30/48	0/50	0/50	2/48
Female	24/50	42/50	45/50	1/50	1/50	10/50	0/50	0/50	0/50
MICE	Vehicle Control	100 mg/kg	200 mg/kg	Vehicle Control	100 mg/kg	200 mg/kg	Vehicle Control	100 mg/kg	200 mg/kg
Male	0/49	14/49	15/49	3/49	19/49	30/49	0/49	5/49	7/49
Female	4/50	6/48	13/44	0/50	15/48	29/44	0/50	1/48	2/44

Negative trends or lower incidences of pheochromocytomas of the adrenal gland and C-cell adenomas or carcinomas (combined) of the thyroid gland were observed in dosed male rats. Negative trends were observed in the incidences of hepatocellular adenomas or carcinomas (combined) in dosed male mice and of hemangiomas or hemangiosarcomas (combined) in dosed female mice.

3-Chloro-2-methylpropene was weakly mutagenic in Salmonella typhimurium strain TA1537 with 10% rat liver S9; results in strain TA100 with 10% Syrian hamster liver S9 or with 10% or 30% rat liver S9 were judged equivocal. Mutagenicity tests with S. typhimurium strains TA1535 and TA98 were negative with or without metabolic activation. 3-Chloro-2-methylpropene was mutagenic in the mouse lymphoma L5178Y/TK^{+/-} forward mutation assay without exogenous metabolic activation. Cytogenetics tests with cultured Chinese hamster ovary cells were positive for induction of chromosomal aberrations and sister-chromatid exchanges (SCE's) in the absence of rat liver S9. With metabolic activation, SCE levels remained significantly elevated, but the number of chromosomal aberrations was reduced.

An audit of the experimental data was conducted for these 2-year carcinogenesis studies on 3-chloro-2-methylpropene. No data discrepancies were found that influenced the final interpretations.

Under the conditions of these 2-year gavage studies, there was clear evidence of carcinogenicity* for 3-chloro-2-methylpropene as shown by the increased incidences of squamous cell neoplasms in the forestomach of male and female F344/N rats and of male and female B6C3F₁ mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The public discussion regarding the interpretative conclusions is summarized on page 14.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of 3-Chloro-2-methyl-propene is based on the 13-week studies that began in September 1978 and ended in December 1978 and the 2-year studies that began in August 1980 and ended in August 1982 at Litton Bionetics, Inc.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Po C. Chan, Ph.D., Chemical Manager

Charles J. Alden, Ph.D.
Gary A. Boorman, D.V.M., Ph.D.
David M. DeMarini, Ph.D.
June K. Dunnick, Ph.D.
Joseph K. Haseman, Ph.D.
James Huff, Ph.D.

C.W. Jameson, Ph.D.
William M. Kluwe, Ph.D.
E.E. McConnell, D.V.M.
G.N. Rao, D.V.M., Ph.D.
B.A. Schwetz, D.V.M., Ph.D.
Raymond W. Tennant, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report on 7/28/83)

Robert Sauer, V.M.D. (Chair)
Clement Associates
Deborah Banas, D.V.M.
Experimental Pathology Laboratories
Gary A. Boorman, D.V.M., Ph.D. (NTP)
Thomas Bucci, D.V.M.

National Center for Toxicological Research

David Donofrio, D.V.M.
Battelle Columbus Laboratories
Scot L. Eustis, D.V.M., Ph.D. (NTP)
Morrow Thompson, D.V.M., Ph.D.
National Center for Toxicological Research
Marilyn Wolfe, D.V.M., Ph. D. (NTP)

Principal Contributors at Litton Bionetics, Inc. (Conducted Studies and Evaluated Tissues)

Allan Manus, D.V.M.
Principal Investigator
Richard Cardy, D.V.M.
Pathologist

Jerry Fitzgerald, Ph.D. Chemist J. Moe, D.V.M., Ph.D. Pathologist

Experimental Pathology Laboratories (Conducted Pathology Quality Assurance)

Deborah Banas, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D.
Project Manager
Abigail C. Jacobs, Ph.D.
Senior Scientist

John Warner, M.S. Chemist/Statistician

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on 3-chloro-2-methylpropene on November 2, 1984, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Jerry B. Hook, Ph.D. (Chair)
Vice President, Preclinical Research and Development
Smith Kline & French Laboratories
Philadelphia, Pennsylvania

Curtis Harper, Ph.D.
Associate Professor of Pharmacology
School of Medicine
University of North Carolina
Chapel Hill, North Carolina

James Swenberg, D.V.M., Ph.D.
Chief of Pathology
Chemical Industry Institute of Toxicology
Research Triangle Park, North Carolina

Ad Hoc Subcommittee Panel of Experts

Louis S. Beliczky, M.S., M.P.H. Wickcliffe, Ohio

Devra L. Davis, Ph.D.*

Board on Toxicology and Environmental

Health Hazards

National Academy of Sciences

Washington, D.C.

Seymour L. Friess, Ph.D. (Principal Reviewer) Arlington, Virginia

Thomas C. Jones, D.V.M.
(Principal Reviewer)
Professor, Comparative Pathology
New England Regional Primate Research Center
Harvard Medical School
Southborough, Massachusetts

Richard J. Kociba, D.V. M., Ph.D.
Dow Chemical USA, Midland, Michigan

David Kotelchuck, Ph.D.
Director, Environmental Health Sciences
Program, Hunter School of Health Sciences
New York, New York

Tom Slaga, Ph.D. (Principal Reviewer)
Science Park, Research Division
University of Texas System Cancer Center
Smithville, Texas

Steven R. Tannenbaum, Ph.D.*
Professor, Department of Nutrition and
Food Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

Bruce W. Turnbull, Ph.D.
Professor and Associate Director
College of Engineering
Cornell University
Ithaca, New York

John R. Van Ryzin, Ph.D.
Division of Biostatistics
School of Public Health
Columbia University
New York, New York

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF 3-CHLORO-2-METHYLPROPENE

On November 2, 1984, the draft Technical Report on the toxicology and carcinogenesis studies of 3-chloro-2-methylpropene received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held in the Conference Center, Building 101, South Campus, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. P. Chan, NTP, began the discussion with a summary of the study design, results and proposed conclusions (clear evidence of carcinogenicity in rats and mice of each sex). Dr. Slaga, a principal reviewer, agreed with the conclusions. As a second principal reviewer, Dr. Jones agreed with the conclusions, but he felt that the forestomach neoplasms might be more accurately described as "squamous cell papillomas or carcinomas (combined)." He asked what effects the contaminant dimethylvinyl chloride (up to 5% of the 3-chloro-2-methylpropene) may have had on the stomach lesions, since preliminary findings from the NTP indicated that it is a carcinogen for the forestomach. Dr. Jones also asked whether there might be a correlation between the poor survival of high dose male rats and the negative tumor trends, especially for thyroid gland C-cell adenomas and carcinomas.

As a third principal reviewer, Dr. Friess did not agree with the composite conclusion for both sexes of both species. Because of the lack of dose response for squamous cell papillomas in rats and no significant increases in carcinomas alone in rats and female mice, he thought the category should be some evidence of carcinogenicity. He agreed with the category of clear evidence of carcinogenicity for male mice. Dr. Kociba concurred. Dr. Friess questioned whether the estimated maximum tolerated doses (EMTD's) had been achieved, except for the doses for male rats. Dr. Swenberg said that the issue of whether an EMTD was reached becomes an important point only with a negative study. Dr. Hook asked that more discussion of how doses were selected be in the report. [See page 56.] Dr. Friess asked for further discussion in the text on (1) the potential contributions of dimethylvinyl chloride to the carcinogenic process in the forestomach and (2) the finding of renal tubular cell adenomas and carcinomas, albeit at low incidences, in male rats, and whether this may be an effect related to lowmolecular-weight chlorinated hydrocarbons in male rats. Dr. Chan commented that the 3-chloro-2methylpropene (containing about 5% dimethylvinyl chloride) was the material commercially available and the formulation to which humans are exposed. Dr. B. Schwetz, NTP, reported that completed NTP 2-year gavage studies with dimethylvinyl chloride in rats and mice showed a spectrum of neoplastic responses not seen in this study, including those of the nasal passage, oral cavities, and esophagus. Dr. Kociba and Dr. Swenberg asked that either the presence of the dimethylvinyl chloride be given in the title of the report or the designation "technical grade" be inserted. Dr. Hook added that the composition should be given more prominence in the abstract.

Considerable discussion ensued as to (1) whether there was some evidence of carcinogenicity or clear evidence of carcinogenicity in rats and female mice and (2) whether the species and sexes should be separated in the conclusions. Dr. J. Huff, NTP, explained that the clear evidence of carcinogenicity category allowed for a substantial increase in benign neoplasms and, further, that the affected organ in each of those four experiments was the same. Hence, the single category seemed appropriate. Dr. Friess said he could agree to the conclusions as explained. Dr. Swenberg and Dr. Slaga agreed that the single categorization for all made the most scientific sense, since there were only small differences between benign and malignant neoplasms of the forestomach, since these are known to progress, and since all groups had the same lesions.

Dr. Jones moved that the Technical Report on the toxicology and carcinogenesis studies of 3-chloro-2-methylpropene be accepted with the conclusion as stated, with some additional discussion on certain mentioned items and with the addition of "technical grade" to the title of the report and to the Abstract to indicate the presence of 5% dimethylvinyl chloride. Mr. Beliczky seconded the motion, and the report was approved by nine affirmative votes. There was one negative vote (Dr. Kociba).

I. INTRODUCTION

$$CH_3$$

$$|$$

$$ClCH_2 - C = CH_2$$

3-CHLORO-2-METHYLPROPENE

CAS No. 563-47-3

C₄H₇Cl Molecular weight: 90.55

Synonyms:

2-Methallyl chloride Methyl allyl chloride β-methallyl chloride y-chloroisobutylene Isobutenyl chloride 3-Chloro-2-methyl-1-propene 2-Methyl-2-propenyl chloride

3-Chloro-2-methylpropene is a colorless, volatile liquid with a pungent odor. It has a specific gravity of 0.92 at 15° C, a boiling point of 71°-72°C, a vapor pressure of 101.7 mm Hg at 20°C, and a refractive index of 1.4318 at 15° C. 3-Chloro-2-methylpropene is insoluble in water but is soluble in chloroform, acetone, alcohol, ether, and benzene. It is flammable with a flash point of -12° C (closed cup). Its explosive limit in air is 2.3%-9.3% (Merck Index, 1983; Hawley, 1977). 3-Chloro-2-methylpropene is relatively stable at room temperature but is unstable at high temperature. It reacts vigorously with oxidizing materials and during decomposition emits toxic fumes of chlorine and hydrochloric acid (Sax, 1979).

3-Chloro-2-methylpropene is produced by substitutive chlorination of isobutylene (Melnikov, 1971). The annual production of 3-chloro-2-methylpropene in the United States is 12-24 million pounds; less than 500 pounds was imported in 1984 (I.M. Kipnis, personal communication to NTP, January 1985).

3-Chloro-2-methylpropene is used as an intermediate for the production of plastics, pharmaceuticals, and other organic chemicals and as an insecticide and fumigant for grains, tobacco, and soil (Merck Index, 1983; Hawley, 1977). According to the manufacturer, approximately 97.5% of the 3-chloro-2-methylpropene produced in the United States is used as a site-limited intermediate in the synthesis of agricultural chemicals, 1.8% as a textile additive, 0.6% as a perfume additive, and 0.2% for other purposes. The

material is not registered for use as a pesticide in the United States; it may be used for that purpose in other countries (I.M. Kipnis, personal communication to NTP, January 1985).

3-Chloro-2-methylpropene at concentrations as high as 400 µg/m³ has been detected in the ambient air near Curtis Bay in Maryland (Pellizzari, 1982). Residual 3-chloro-2-methylpropene has also been detected in maize fumigated with the chemical (Taylor, 1975).

3-Chloro-2-methylpropene is toxic when inhaled, applied to the skin, or ingested and irritates the eyes and respiratory tract. The LC $_{50}$ values of 3-chloro-2-methylpropene are 34,000 mg/m³ for 30 minutes or 2,000 mg/m³ for 24 hours for rats and 91,000 mg/m³ for 10 minutes for mice (Sax, 1979). Inhalation studies in mice showed that 3-chloro-2-methylpropene caused respiratory failure and induced pulmonary tissue damage (Silverman and Abreu, 1938).

Investigations of the genetic toxicity of allylic chloride compounds (Neudecker et al., 1980; Eder et al., 1980, 1982) showed 3-chloro-2-methylpropene to be weakly mutagenic to Salmonella typhimurium strain TA100 without exogenous metabolic activation. Like the majority of allyl chlorides, this chemical is considered to be a direct-acting alkylating agent whose mutagenic potential is destroyed by activation. In contrast, the NTP-sponsored tests showed weak mutagenic activity in S. typhimurium strain TA1537 only in the presence of S9 from Aroclor 1254-induced male Sprague-Dawley rat livers;

activity was considered equivocal in strain TA100 with S9 from Aroclor 1254-induced male Syrian hamster and Sprague-Dawley rat livers (Appendix L. Table L1). 3-Chloro-2-methylpropene was also mutagenic in the L5178Y/TK+/mouse lymphoma assay in the absence of S9 (Table L2); it was not tested in the presence of S9. The chemical induced sister-chromatid exchanges (SCE's) and chromosomal aberrations in cultured Chinese hamster ovary cells without metabolic activiation. With Aroclor-1254-induced male Sprague-Dawley rat liver S9, SCE's remained significantly elevated. However, exogenous metabolic activation greatly reduced the strength of the mutagenic response as measured by chromosomal aberrations (Table L3 and L4). In addition, 3-chloro-2-methylpropene

induced unscheduled DNA synthesis in HeLa cells (Schiffmann et al., 1983). No information was found in the literature on the pharmacokinetics, reproductive toxicity, or carcinogenicity of 3-chloro-2-methylpropene.

Workers may be exposed to 3-chloro-2-methylpropene while using it as a gaseous insecticide or as an intermediate in organic synthesis. The U.S. Environmental Protection Agency nominated 3-chloro-2-methylpropene for carcinogenicity testing because of its presence in ambient air and its structural relationship to vinyl chloride, a recognized animal and human carcinogen. The gavage route of administration was chosen because the chemical is volatile and flammable.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF
3-CHLORO-2-METHYLPROPENE
PREPARATION AND CHARACTERIZATION OF
DOSE MIXTURES
SINGLE-ADMINISTRATION STUDIES
FOURTEEN-DAY STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES

Study Design
Source and Specifications of Animals
Animal Maintenance
Clinical Examinations and Pathology
Statistical Methods

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE

3-Chloro-2-methylpropene (manufactured by FMC Corporation) was obtained in two different lots (Table 1). Purity, identity, and stability analyses were conducted at Midwest Research Institute. Both lots of chemical were identified as 3-chloro-2-methylpropene by spectroscopy. Infrared, ultraviolet/visible, and nuclear magnetic resonance spectra were all consistent with the literature spectra and the structure of 3-chloro-2-methylpropene (Appendix G).

Cumulative data on lot no. 110967 indicated a purity of approximately 93%. The results of elemental analysis agreed with theoretical values. Titration of acidic components indicated the presence of 34 ppm hydrochloric acid. Gas chromatography analysis by two systems showed the study material to be approximately 93% pure and to contain two major impurities with areas of 3% and 6% relative to the major component. The retention time of the 6% relative impurity was consistent with that of dimethylvinyl chloride. The nuclear magnetic resonance spectrum contained five peaks attributed to impurities.

Two of these could be assigned to dimethylvinyl chloride; integration ratios indicated a concentration of 5% for the dimethylvinyl chloride. Therefore it was concluded that lot no. 11067 of the study material contained approximately 5% dimethylvinyl chloride as an impurity.

Lot no. P091781 was determined to have a purity of greater than 95% based on the following data. Results of elemental analysis were consistent with theoretical values. Titration of acidic components indicated the presence of 159 ppm hydrochloric acid. Gas chromatographic analysis by two systems showed the study material to be greater than 95% pure and to contain a 3.6% impurity that was identified as dimethylvinyl chloride.

The bulk chemical was stable when stored for 2 weeks at -20° to 60° C (Appendix G). The study laboratory stored several portions at -20° C as reference samples, and the remainder was stored at room temperature. Results of periodic reanalysis of the study and reference samples at the study laboratory by infrared spectroscopy and gas chromatography indicated that no notable deterioration of the study chemical occurred over the course of the studies.

TABLE 1. IDENTITY AND SOURCE OF LOTS USED IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers	110967	110967	110967	110967 and P091781
Date of Initial Use of Each Lot	N/A	N/A	N/A	8/81
Supplier	Lot no. 110967 Aldrich Chemical Co. (Milwaukee, WI)	Same as single administration studies	Same as single administration studies	Lot no. 110967Aldrich Chemical Co. (Milwaukee, WI); lot no. P091781 Pfaltz and Bauer (Stamford, CT)

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

3-Chloro-2-methylpropene and corn oil were mixed to yield the desired concentrations (Table 2; Appendix H). 3-Chloro-2-methylpropene (2.25% w/v) in corn oil was found to be stable (within the limits of detection) when stored at room temperature for 7 days. In the 2-year studies, mixtures of 3-chloro-2-methylpropene in corn oil were stored at room temperature for no longer than 7 days. Periodic analyses for

3-chloro-2-methylpropene were performed by the study and analytical chemistry laboratories to confirm that correct concentrations were administered to the animals (Appendix I). The analytical method included a methanol extraction followed by gas chromatographic analysis. The analytical results are presented in Appendix J and are summarized in Table 3. Because 53/62 samples analyzed were within ± 10% of target concentrations, it is estimated that dosing mixtures were formulated within specifications 85% of the time.

TABLE 2. PREPARATION AND STORAGE OF DOSE MIXTURES IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	on Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation	3-Chloro-2-methyl- propene was mixed with the appropriate volume of corn oil.	Same as single- administration studies	Same as single- administration studies	3-chloro-2-methyl- propene was added to a graduated cylinder, diluted with corn oil, and mixed by inversion.
Maximum Storage Time	N/A	7 d	7 d	7 d
Storage Conditions	N/A	Refrigerated	Refrigerated	Room temperature

TABLE 3. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIESOF 3-CHLORO-2-METHYLPROPENE

	Concentration of 3-Chloro-2-methylpropene in Corn Oil for Target Concentration (mg/ml)			
	10	15	20	30
Mean (mg/ml)	10.7	15.5	20.0	31.2
Standard deviation	0.77	0.70	4.80	1.50
Coefficient of variation (percent)	7.2	4.5	24.0	4.8
Range (mg/ml)	9.8-12.5	14.0-16.4	(a) 2.8-24.2	29.6-34.9
Number of samples	15	16	16	15

⁽a) The 2.8 mg/ml dose mixture was not used.

SINGLE-ADMINISTRATION STUDIES

Male and female F344/N rats and B6C3F₁ mice were obtained from Harlan Industries and observed for 2 weeks before the studies began. Groups of five rats of each sex were administered a single dose of 100, 316, 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methylpropene in corn oil by gavage. Groups of five mice of each sex were administered 31.6, 100, 316, 1,000, or 3,160 mg/kg. The selection of doses was based on available data in the literature. Rats and mice were observed daily and were killed 14 days after the dose was administered. A necropsy was performed on all animals. Details of animal maintenance are given in Table 4.

FOURTEEN-DAY STUDIES

Male and female F344/N rats and B6C3F₁ mice were obtained from Harlan Industries and held for 6 weeks (rats) or 3 or 4 weeks (mice) before the studies began. Groups of five rats of each sex were administered 0, 89, 158, 281, 500, or 750 mg/kg 3-chloro-2-methylpropene in corn oil by gavage for 14 consecutive days. Groups of five mice of each sex were administered 0, 125, 250, 500, 750, 1,250, 1,750, or 2,500 mg/kg on the same schedule. The 125 and 250 mg/kg groups of mice were started (without matched vehicle controls) 7 days after initiation of the studies because of the large number of deaths at 750 mg/kg. Results of the 14-day studies provided information on toxic effects and affected tissues and determined doses to be used in the 13-week studies.

Animals were housed five per cage and received water and feed ad libitum. Details of animal maintenance are presented in Table 4. The rats and mice were observed once per day and were weighed on days 1 and 15. A necropsy was performed on all animals.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated administration of 3-chloro-2-methylpropene and to determine the doses to be used in the 2-year studies.

Five- to six-week-old male and female F344/N rats and 5- to 6-week-old male and female B6C3F₁ mice were obtained from Harlan Industries and observed for 2 weeks before the studies began. The animals were housed five per cage in polycarbonate cages. Diets consisting of Purina Lab Chow and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum.

Groups of 10 rats of each sex were administered 0, 50, 100, 200, 300, or 400 mg/kg 3-chloro-2-methylpropene in corn oil by gavage, 5 days per week for 13 weeks. Groups of 10 mice of each sex received 0, 125, 250, 500, 750, or 1,250 mg/kg on the same schedule.

Animals were checked two times per day; moribund animals were killed. Clinical examinations were performed and animal weights were recorded once per week. At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined and further experimental details are listed in Table 4.

TWO-YEAR STUDIES

Study Design

Groups of 50 rats of each sex were administered 0, 75, or 150 mg/kg 3-chloro-2-methylpropene in corn oil by gavage, 5 days per week for 103 weeks. Groups of 50 mice of each sex were administered 0, 100, or 200 mg/kg on the same schedule.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F₁ (C57BL/6N, female, × C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River Breeding Laboratories (Kingston, NY) under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL	L DESIGN			
Study Laboratory	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.	Litton Bionetics, Inc.
Size of Study Groups	5 males and 5 females of each species	Same as single-administration studies	10 males and 10 females of each species	50 males and 50 females of each species
Doses	Rats100, 316, 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methyl-propene in corn oil by gavage; dose vol10 ml/kg; mice31.6, 100, 316, 1,000, or 3,160 mg/kg 3-chloro-2-methyl-propene in corn oil by gavage; dose vol10 ml/kg	Rats0, 89, 158, 281, 500, or 750 mg/kg 3-chloro-2-methyl-propene in corn oil by gavage; dose vol 3.3 ml/kg; mice0, 125, 250, 500, 750, 1,250, 1,750, or 2,500 mg/kg 3-chloro-2-methylpropene in corn oil by gavage; dose vol3.3 ml/kg	Rats0, 50, 100, 200, 300, or 400 mg/kg 3-chloro-2-methyl-propene in corn oil by gavage; dose vol10 ml/kg; mice0, 125, 250, 500, 750, or 1,250 mg/kg 3-chloro-2-methylpropene in corn oil by gavage; dose vol10 ml/kg	Rats0, 75, or 150 mg/kg 3-chloro-2-methylpropenin corn oil by gavage; dose vol5 ml/kg; mice 0, 100, or 200 mg/kg 3-chloro-2-methylpropenin corn oil by gavage; dose vol10 ml/kg
Date of First Dose	1/19/78	Rats3/31/78; mice5/1/78 (5/8/78 for 125 and 250 mg/kg groups)	9/22/78	Rats8/20/80; mice8/13/80
Date of Last Dose	N/A	Rats4/13/78; mice5/14/78 (5/21/78 for 125 and 250 mg/kg groups)	Rats12/27/78; mice12/21/78	Rats8/13/82; mice8/09/82
Duration of Dosin	g Single administra- tion only	14 consecutive d	5 × wk for 13 wk	$5 \times wk$ for 103 wk
Type and Frequency of Observation	Observed 1 h and 4 h after dosing; $1 \times d$ thereafter	Observed 1 × d; weighed on d 1 and d 15	Observed 2 × d; clinically examined 1 × wk; weighed 1 × wk	Observed 2 × d; clinically examined 1 × 4 wk; weighed 1 × wk for 13 wk, then 1 × 4 wk
Necropsy and Histologic Examination	Necropsy performed on all animals	Necropsy performed on all animals: tissues were not examined histo- logically	Necropsy performed on all animals; the following tissues were examined histologically: gross lesions and tissue masses, regional lymph nodes, mandibular or mesenteric lymph node, salivary glands, sternebrae, femur or vertebrae including marrow, thyroid gland, parathyroids, small intestine, colon, liver, prostate/testes or ovaries/uterus, lungs and mainstem bronchi, skin, gallbladder (mice), heart, esophagus,	Necropsy performed on all animals; the following tissues were examined histologically: gross lesions, tissue masses, regional lymph nodes, mandibular and mesenteric lymph nodes, colon, liver, sternebrae, femur or vertebrae including marrow, thyroid gland, parathyroids, salivary gland, urinary hladder, prostate/testes/seminal vesicles or ovaries/uterus, lungs and mainstem bronchi, gall-bladder (mice), skin, cecum, thigh muscle, costochondral junction

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Necropsy and Histologic Examination (Continued)			stomach, brain, thymus, trachea, pancreas, spleen, kidneys, adrenal glands, urinary bladder, pituitary gland, spinal cord (if neurologic signs were present), eyes (if grossly abnormal), and mammary glands	(rib), larynx, nasal cavity heart, esophagus, stomach, brain, thymus, trachea, pancreas, spleen kidneys, adrenal glands, pituitary gland, spinal cord (if neurologic signs were present), eyes (if grossly abnormal), mammary glands, duodenum, jejunum, ileum, sciatic nerve, and rectum
ANIMALS AND A	NIMAL MAINTENANC	CE		
Strain and Species	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source	Harlan Industries (Indianapolis, IN)	Same as single- administration studies	Same as single- administration studies	Charles River Breeding Laboratories (Kingston, NY)
Time Held Before Study	2 wk	Rats6 wk; mice3 wk (4 wk for 125 and 250 mg/kg groups)	2 wk	Rats3 wk; mice2 wk
Age When Placed on Study	8 wk	12 wk	7-8 wk	8 wk
Age When Killed	10 wk	14 wk	20-21 wk	113 wk
Necropsy Dates	2/2/78	Rats4/14/78; mice5/15/78 and 5/22/78	Rats12/28/78-12/29/78; mice12/22/78 and 12/27/78	Rats8/23/82-8/25/82; mice8/17/82-8/20/82
Method of Animal Distribution	At random	At random	Ratsassigned to groups according to a random numbers table; miceassigned to groups so that cage weights for each sex were approximately equal	Assigned to cages according to a random numbers table; then cages assigned to groups according to another set of random numbers
Animal Identification	None	Ear punch and cage card	Ear punch and cage card	Ear punch, toe clip, and cage card
Feed	Purina Lab Chow® meal (Ralston Purina, St. Louis, MO); available ad libitum	Same as single- administration studies	Same as single- administration studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum
Bedding	Ab-Sorb-Dri® heat-treated hardwood chips (Williams Feed and Bedding Corp., Gaithersburg, MD)	Same as single- administration studies	Same as single- administration studies	Ab-Sorb-Dri® heat- treated hardwood chips (Williams Feed and Bed- ding Corp., Gaithersburg, MD) until 9/23/81; then hardwood chip animal bedding (P.J. Murphy Forest Products Corp., Rochelle Park, NJ)

TABLE 4. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE STUDIES (Continued)

S	Single-Administration Studies	Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies	
Water	Acidified to pH 2.5 with hydrochloric acid, glass bottles; available ad libitum	Same as single- administration studies	Same as single- administration studies	Same as single- administration studie	
Cages	Polycarbonate (Lab Products, Inc., Garfield, NJ, and Rochelle Park, NJ)	Same as single- administration studies	Same as single- administration studies	Polycarbonate (Lab Products, Inc., Garfield, NJ and Rochelle Park, NJ; Hazleton Systems, Aberdeen, MD)	
Cage Filters	Nonwoven filter sheets	Same as single- administration studies	Same as single- administration studies	Nonwoven polyester filter sheets (Snow Filtration Co., Cincinnati, OH)	
Animals per Cage	5	5	5	5	
Other Chemicals or Study in the Sam Room		Ratsnone; mice1-chloro- 2-methylpropene (dimethylvinyl chloride)	None	None	
Animal Room Environment	Temp23° ± 1°C; humidity30%-70%; fluorescent light 12 h/d; 15 room air changes/h	Same as single- administration studies	Same as single- administration studies	Temp23° ± 1°C; humidity30%-70%; fluorescent light 12 h/d; 12-15 room air changes/h	

barrier-maintained rooms. Animals were shipped to the study laboratory at 5 weeks of age. The animals were quarantined at the study laboratory for 2 or 3 weeks. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rodents were placed on study at 8 weeks of age. The health of the animals was monitored during the course of the study according to the protocols of the NTP Sentinel Animal Program (Appendix K).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid B6C3F₁ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via

isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6 mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6 colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic non-uniformity in the hybrid mice on these results is not known, but the results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Rats and mice were housed five per cage in polycarbonate cages. Feed and water (acidified with hydrochloric acid to pH 2.5 for bacterial control) were available ad libitum. Details of animal maintenance are summarized in Table 4.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded once every 4 weeks. Body weights by cage were recorded once per week for the first 13 weeks of the study and once per month thereafter. Mean body weights were calculated for each group. Moribund animals were killed, as were animals that survived to the end of the study. A necropsy was performed on all animals, including those found dead unless they were excessively autolyzed or cannibalized. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study in each group.

Examinations for grossly visible lesions were performed on major tissues or organs. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Tissues examined microscopically are listed in Table 4.

When the pathology examination was completed, the slides, individual animal data records, and summary tables were sent to an independent quality assurance laboratory. Individual animal records and tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assurance pathologist. Slides of all target tissues and those about which the original and quality assurance pathologists disagreed were submitted to the Chairperson of the Pathology Working Group (PWG) for evaluation. Representative coded slides selected by the Chairperson were reviewed by PWG pathologists, who reached a consensus and compared their findings with the original and quality assurance diagnoses. When diagnostic differences were found, the PWG sent the appropriate slides and comments to the original pathologist for review. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent evaluations, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1985).

Nonneoplastic lesions are not examined routinely by the quality assurance pathologist or PWG. Certain nonneoplastic findings are reviewed by the quality assurance pathologist and PWG if they are considered part of the toxic response to a chemical or if they are deemed of special interest.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathologic results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found dead of other than natural causes or were found to be missing; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data. The two that adjust for intercurrent mortality employ the classical method for combining contingency tables developed by Mantel and Haenszel (1959). Tests of significance included pairwise comparisons of high dose and low dose groups with vehicle controls and tests for overall dose-response trends.

For studies in which compound administration has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. All reported P values for tumor analyses are one-sided.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and vehicle control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of

Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidence.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and vehicle control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Unadjusted Analyses--Primarily, survival-adjusted methods are used to evaluate tumor incidence. In addition, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendix containing the analyses of primary tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences.

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

SINGLE-ADMINISTRATION STUDIES
FOURTEEN-DAY STUDIES
THIRTEEN-WEEK STUDIES
TWO-YEAR STUDIES

Body Weights and Clinical Signs
Survival
Pathology and Statistical Analyses of Results

MICE

SINGLE-ADMINISTRATION STUDIES

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs
Survival
Pathology and Statistical Analyses of Results

SINGLE-ADMINISTRATION STUDIES

Rats that received 1,000, 3,160, or 10,000 mg/kg 3-chloro-2-methylpropene died before the end of the studies (Table 5). Final body weights were not recorded. Animals that died on day 1 frequently had darkened livers, spleens, and kidneys; red lungs; and small intestines filled with

red fluid. Animals that received 1,000 mg/kg and died on day 2 or 3 frequently had tan livers, darkened lungs and thymus, and gas in the stomach. No compound-related effects were observed at necropsy in animals dosed at 100 or 316 mg/kg.

TABLE 5. SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF RATS IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

Dose (mg/kg)	Survival	Initial Mean Body Weights (grams)		
MALE				
100	5/5	193		
316	5/5	188		
1,000	(b) 0/5	189		
3,160	(c) 0/5	190		
10,000	(c) 0/5	190		
FEMALE				
100	5/5	143		
316	5/5	144		
1,000	(d) 0/5	143		
3,160	(c) 0/5	143		
10,000	(c) 0/5	144		

⁽a) The steep survival curves precluded accurate $LD_{50}\,\mbox{calculations}.$

⁽b) Day of death: 2 (for all) (c) Day of death: 1 (for all) (d) Day of death: 2, 2, 2, 2, 3

FOURTEEN-DAY STUDIES

Rats that received 3-chloro-2-methylpropene at 500 or 750 mg/kg died before the end of the studies (Table 6). Male rats that received 281 mg/kg lost weight. Final mean body weights of all other dosed groups and vehicle control rats were comparable. Animals that died had yellow

intestines, dark stomachs, darkened and pale areas on the liver, and/or dark fluid in the urinary bladder. Based on survival, 400 mg/kg was chosen as the highest dose for the 13-week studies.

TABLE 6. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FOURTEEN-DAY GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

		Mean	Final Weight Relative		
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					
0	5/5	176	199	+ 23	
89	5/5	180	199	+ 19	0
158	5/5	184	200	+ 16	100.5
281	5/5	177	166	- 11	83.4
500	(c) 0/5	178	(d)	(d)	(d)
750	(e) 0/5	182	(d)	(d)	(d)
FEMALE					
0	5/5	119	130	+ 11	
89	5/5	127	137	+ 10	105.4
158	5/5	119	142	+ 23	109.2
281	5/5	124	138	+ 14	106.2
500	(f) 0/5	127	(d)	(d)	(d)
750	(g) 0/5	117	(d)	(d)	(d)

⁽a) Number surviving/number in group

⁽b) Mean body weight change of the survivors

⁽c) Day of death: 2, 2, 2, 4, 5

⁽d) No data are reported due to the 100% mortality in this group.

⁽e) Day of death: 1, 2, 2, 2, 2 (f) Day of death: 1, 1, 2, 2, 2 (g) Day of death: 1 (for all)

THIRTEEN-WEEK STUDIES

All rats that received 3-chloro-2-methylpropene at 400 mg/kg and 5/10 males and 2/10 females that received 300 mg/kg died before the end of the studies (Table 7). The deaths of 1/10 males that received 100 mg/kg and 2/10 females that received 200 mg/kg were considered to be due to gavage injury. Final mean body weights of male rats that received 200 or 300 mg/kg were depressed 5.0% and 6.6% relative to that of the vehicle controls.

Compound-related clinical signs (primarily rough coats) were observed in 5/10 females that received 300 mg/kg and in 9/10 males and 4/10 females that received 400 mg/kg.

Histologic evidence of chronic murine pneumonia was found in 5/10 male and 6/10 female vehicle controls. Pneumonia virus of mouse (PVM) antibody titers were found in 8/10 vehicle

controls, Kilham rat virus titers were found in 2/10 vehicle controls, and Sendai virus titers in 3/10 vehicle controls.

Focal areas of inflammation, which varied from acute to chronic, were observed in the livers of rats that received 300 or 400 mg/kg (Table 8). The areas of necrosis were distributed throughout the liver. In the more acute lesions, the zone of necrosis was surrounded by congestion or neutrophils. If the zone of inflammation was surrounded by a cellular infiltrate, the lesion was designated as necrotizing.

Dose Selection Rationale: Based on survival and the incidence of liver lesions, 3-chloro-2-methylpropene doses selected for rats for the 2-year studies were 0, 75, or 150 mg/kg in corn oil by gavage.

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

Dose (mg/kg)	Survival (a)	Mea	Final Weight Relative		
		Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					
0	10/10	119	258	+ 139	
50	10/10	121	275	+ 154	106.6
100	(c) 9/10	124	257	+ 133	99.6
200	10/10	122	245	+ 123	95.0
300	(d) 5/10	118	241	+ 123	93.4
400	(e) 0/10	120	(f)	(f)	(f)
FEMALE					
0	10/10	99	166	+ 67	
50	10/10	94	165	+ 71	99.4
100	10/10	99	170	+ 71	102.4
200	(c) 8/10	102	173	+ 71	104.2
300	(g) 8/10	97	166	+ 69	100.0
400	(h) 0/10	99	(f)	(f)	(f)

⁽a) Number surviving/number in group

⁽b) Mean weight change of the survivors

⁽c) Death (s) judged to be accidental

⁽d) Week of death: 10, 11, 11, 12, 12

⁽e) Week of death: 1, 2, 11, 11, 11, 11, 11, 11, 11, 11

⁽f) No data are reported due to the 100% mortality in this group.

⁽g) Week of death: 3, 10

⁽h) Week of death: 1, 1, 1, 1, 7, 10, 11, 11, 11, 12

TABLE 8. NUMBERS OF RATS WITH LIVER LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Vehicle Control	50 mg/kg	100 mg/kg	200 mg/kg	300 mg/kg	400 mg/kg
MALE						"
Inflammation, chronic, focal					4	1
Inflammation, acute, focal		1		••		ī
Inflammation, necrotizing, acute					'	4
Congestion	1			••	 '	2
Mineralization						1
FEMALE						
Inflammation, chronic, focal				••	1	2
Inflammation, acute, focal					$ar{f 2}$	5
Inflammation, necrotizing, chronic						3
Congestion				••		2
Mineralization	••			••		3

⁽a) Ten animals examined per group

TWO-YEAR STUDIES

Body Weights and Clinical Signs

The mean body weights of high dose male rats were lower (by more than 10%) than those of the vehicle controls beginning at week 10 of the studies (Table 9 and Figure 1). The mean body weights of low dose male rats were slightly lower (approximately 5%) than those of the vehicle

controls between week 13 and week 76. Mean body weights of high dose female rats were slightly lower (approximately 5%) than those of the vehicle controls after week 32. Mean body weights of low dose female rats were slightly greater than those of the vehicle controls throughout the studies.

TABLE 9. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

Weeks	Vehicle Control			75 mg/kg		150 mg/kg			
on Study	Av. Wt. No. of (grams) Survivors		Av. Wt. (grams)	Av. Wt. Wt. (percent No. of (grams) of veh. controls) Survivors			Av. Wt. Wt. (percent No. of (grams) of veh. controls) Survivors		
IALE							 		
0	141 170	50 49	144	102 97	50 50	143 169	101 99	50 50	
2	202	49	144 165 199 218 233 264 277 278 302 296 302 302 339 357 387 417 429 434 437 438 443 443	102 97 99 98 97 99 98 97 97	50	203	100	50	
3 4	222 239	49 49	218 233	98 97	50 50 50	210 223	95 93	50 50 50	
5 6	202 222 239 251 269 280 286	49 49	249 264	99 98	50 50	203 210 223 237 248 256 260 276	94 92	50 50	
ž	280	49	272	97	50 50	256	91	50 50	
ş	305	49 49	296	97	50 50	276 276	90	50	
10 11	313 321	49 49	302 305	96 95	50 50	280 286	89 89	50 49	
12 13	328 339	49 49	320 322	98 95	50 50	297 300	91 88	49 49	
16	305 313 321 328 339 358 375 392 413	49	339	96 95 95 95 95 94 93 94 95 94 94 94	50 50	305 319	85	49 49	
20 24	392	49	370	94	50	334	85	49	
28 3 2	426	49 49	387 3 98	94 93	50 50	334 348 363 372 375 379 382 389 393	84 85	49 49	
36 40	436 441	48 46	410 417	94 95	50 50	372 375	85 85	48 48	
44	447 452 460	45 44	422	9 <u>4</u>	50 50	379 382	85 85	48 47	
52	460	44	434	94	<u>5</u> 0	389	85	46	
56 60	463 463 465	42 41	437 439	9 4 95	46	391	84 84	44	
64 68	465 465	41 40	443 446	95 95 96 96	45 43	398 398	86 86	44 44	
72 78	466 472	40 20	448	96	43	403 406	86	44 42	
80	465	39	445	96	41	405	87	42	
84 88	465 456	38 38	449 444	97 97	37 36	394 400 397	88 88	39 34	
92 96	449 453	38 34	445 452	9 9 100	35 30	395	88 87	34 33	
01234567891011236048826648826668888889960104	449 442	50 499 499 499 499 499 499 499 499 499 49	446 448 446 445 449 444 445 452 438 438	94 96 97 97 99 100 98 100	50000000000000000000000000000000000000	386 387	99999999999999999999999999999999999999	50000000000000000000000000000000000000	
EMALE	748	00	110	100	20		-		
Q	115 129	50	115	100 101	50 50	116 129	101 100	50	
2	145	50 50	130 1 45	100	49	146	101	49	
3	153 162	50 50	154 162	101 100	49 49	154 165	101 102	49 49	
5	170 175	50	115 130 145 154 162 172 176	101 101	49 40	172	101 102	49 49	
1 2 3 4 5 6 7 8 9 10 11	179	50 50 50 50 50 50 50 50 50 49 49	182	102 102	49 49 49 49 49 49 49 49	172 178 181 187	101 102	50 50 49 49 49 49 49 49 49	
8	184 189	50 50	182 188 192 198 197 202	102 10 2	49 49	190	101	49	
10 11	195 193	50 49	198 197	102 102 102	49 49	190 193 193 198	101 99 100 101	49 49	
	193 196 199	49 49	202 204	103		198 197	101 99		
16	208	49	211	101	49	205 213	99 98	49 49	
24	221	49	225	102	49	213	96	49	
28 32	225 237	49 49	23 9	101	49	228	96	49	
36 40	239 244	49 49	242 249	101 10 2	48 48	231 235	97 96	48 48	
44	247 256	49 49	253 260	102 102	48 47	238 242	96 95	48 48	
52	263	48	268	102	47	249 254	95 ok	48 48	
60 60	277	48 48	284	103	46	259	94	48	
64 68	281 286	48 47	288 293	102 102	45 45	272	95 95	44	
72 76	290 293	47 44	299 304	103 104	44 44	273 277	94 95	41 41	
80 84	291 203	43 43	304 308	104 105	44 43	277 284	95 97	40 37	
88	296 302	39	307 313	104 104	42 40	284 288	96 95	35 32	
13 16 24 28 32 36 40 44 48 55 56 68 77 80 84 88 92 96 104	199 208 217 221 225 237 244 247 256 263 268 277 286 291 291 293 291 293 302 302 316	49 49 49 49 49 49 49 48 48 47 47 44 43 337 35 331	204 211 219 225 229 239 242 249 253 260 268 276 288 293 304 308 307 313 321 325 327	103 101 102 102 101 101 102 102 102 103 103 103 104 104 104 105 104 104 105	49 49 49 49 48 48 48 47 47 46 45 44 44 44 43 35 35 32	197 205 213 213 222 228 235 235 242 249 254 254 277 277 284 288 299 301	999869676655555455765865	49 49 49 49 48 48 48 48 48 48 41 40 37 532 28 27 6	
100	312	33	325	104	35	วักเ	àō	41	

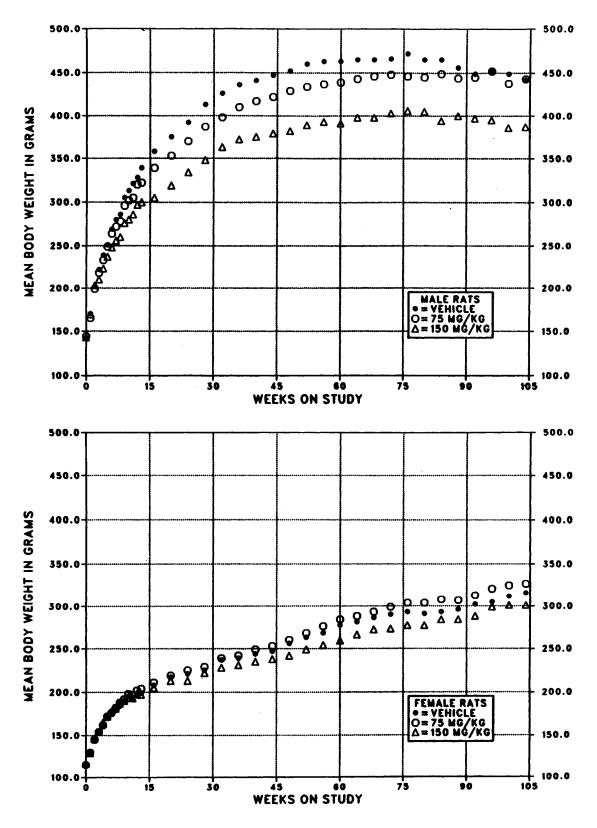


FIGURE 1. GROWTH CURVES FOR RATS ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 2. No significant differences in survival were observed between any groups of either sex, although late in the study, survival of high dose male rats was slightly reduced (P=0.056) relative to that of the vehicle controls (Table 10).

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions in the forestomach, urinary tract, testis, integumentary system, nasal cavity, liver, adrenal gland, and thyroid gland. Histopathologic findings on neoplasms in rats are summarized in Appendix A (Tables A1 and A2); Appendix A (Tables A3 and A4) also gives the survival and tumor status for individual male and female rats. Findings on nonneoplastic lesions are summarized in Appendix C (Tables C1 and C2). Appendix E (Tables E1 and E2) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

TABLE 10. SURVIVAL OF RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYL-PROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
MALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Survival P values (c)	50 19 1 30 0.053	50 25 0 25 0.419	50 32 1 17 0.056
FEMALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Accidentally killed Killed at termination Survival P values (c)	50 19 0 31 0.456	50 15 3 32 0.561	50 22 2 26 0.509

⁽a) Terminal-kill period: week 105

⁽b) Includes animals killed in a moribund condition

⁽c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

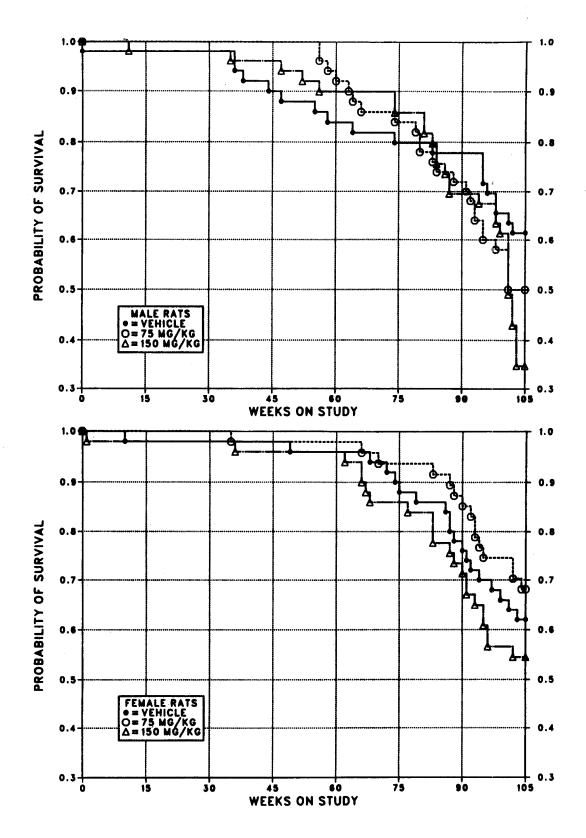


FIGURE 2. KAPLAN-MEIER SURVIVAL CURVES FOR RATS ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Forestomach: Basal cell hyperplasia was observed at increased incidences in dosed male and female rats (Table 11). Papillomas were observed at significantly increased incidences in high dose male and female rats. Squamous cell carcinomas were observed in 2/48 high dose male rats but not in any other groups. Metastasis was not observed.

Microscopically, the papillomas consisted of arborized finger-like projections from the surface. The projections had a core of fibrovascular tissue contiguous with the submucosa and were covered by hyperkeratotic squamous epithelium. In most instances, the papillomas were pedunculated and the arborized projections arose from a single stalk.

Squamous cell carcinomas were characterized by downward projecting sheets, nests, and anastomosing cords of squamous tumor cells that invaded underlying structures. The invading masses of cells originated at the base of papillomas. Keratinization at the center of a cluster of neoplastic cells resulted in concentrically arranged masses of keratin called "pearls."

TABLE 11. ANALYSIS OF FORESTOMACH LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Vehicle Control	75 mg/kg	150 mg/kg
MALE			
Basal Cell or Epithelial Hyperplasia			
Overall Rates	19/50 (38%)	41/50 (82%)	44/48 (90%)
Papilloma (b)			
Overall Rates	1/50 (2%)	5/50 (10%)	30/48 (63%)
Adjusted Rates	2.6%	15.5%	89.9%
Terminal Rates	0/30 (0%)	1/25 (4%)	14/17 (82%)
Life Table Tests	P<0.001	P = 0.084	P<0.001
Incidental Tumor Tests	P<0.001	P = 0.167	P<0.001
Squamous Cell Carcinoma			
Overall Rates	0/50 (0%)	0/50 (0%)	(c) 2/48 (4%)
FEMALE			
Basal Cell Hyperplasia			
Overall Rates	24/50 (48%)	42/50 (84%)	45/50 (90%)
Papilloma (d)			
Overall Rates	1/50 (2%)	1/50 (2%)	10/50 (20%)
Adjusted Rates	3.1%	3.1%	32.0%
Terminal Rates	0/31 (0%)	1/32 (3%)	7/26 (27%)
Life Table Tests	P<0.001	P = 0.753N	P = 0.003
Incidental Tumor Tests	P = 0.001	P = 0.720N	P = 0.006

⁽a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).

⁽b) Historical incidence of papillomas at study laboratory (mean): 0/147; historical incidence in NTP studies: 5/1,062 (0.5%)

⁽c) The two animals that had squamous cell carcinomas also had squamous cell papillomas.

⁽d) Historical incidence of papillomas at study laboratory (mean): 1/150 (0.7%); historical incidence in NTP studies: 5/1,062 (0.5%)

Urinary Tract: The incidences of nephropathy were increased in dosed male and high dose female rats (Table 12). A renal tubular cell adenoma was observed in 1/50 low dose male rats: renal tubular cell adenocarcinomas were observed in 1/50 low dose and 1/49 high dose male rats. A renal transitional cell carcinoma was observed in 1/49 high dose male rats, and a transitional cell papilloma was observed in the urinary bladder of 1/46 high dose male rats.

Testis: Interstitial cell tumors in male rats occurred with a significant positive trend, and the incidence in the high dose group was significantly greater than that in the vehicle controls (Table 13).

TABLE 12. INCIDENCES OF URINARY TRACT LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
MALE			
Nephropathy Overall Rates	35/50 (70%)	44/50 (88%)	47/49 (96%)
Renal Tubular Cell Adenoma Overall Rates	0/50 (0%)	1/50 (2%)	0/49 (0%)
Renal Tubular Cell Adenocarcinoma Overall Rates	0/50 (0%)	1/50 (2%)	1/49 (2%)
Renal Transitional Cell Carcinoma Overall Rates	0/50 (0%)	0/50 (0%)	1/49 (2%)
Urinary Bladder Transitional Cell Papilloma Overall Rates	0/48 (0%)	0/49 (0%)	1/46 (2%)
FEMALE			
Nephropathy Overall Rates	17/50 (34%)	15/50 (30%)	27/50 (54%)

TABLE 13. ANALYSIS OF TESTICULAR TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
nterstitial Cell Tumor (a)			
Overall Rates	36/50 (72%)	43/50 (86%)	43/48 (90%)
Adjusted Rates	97.3%	100.0%	100.0%
Terminal Rates	29/30 (97%)	25/25 (100%)	17/17 (100%)
Life Table Tests	P<0.001	P = 0.009	P<0.001
Incidental Tumor Tests	P = 0.003	P = 0.067	P = 0.012

39

⁽a) Historical incidence at study laboratory (mean ± SD): 92.0% ± 6.9%; historical incidence in NTP studies: 90.4% ± 5.7%

Integumentary System: Subcutaneous fibromas in female rats occurred with a significant positive trend; the incidences of fibromas, sarcomas, or fibrosarcomas (combined) in dosed female rats were not significantly greater than that in the vehicle controls (Table 14). Keratoacanthoma in male rats occurred with a significant negative trend (skin: vehicle control, 5/50, 10%; low dose, 0/50; high dose, 0/50; integumentary system: vehicle control, 6/50, 12%; low dose, 0/50; high dose, 0/50; P<0.02). The incidences in the dosed groups were significantly lower than that in the vehicle controls (P<0.05).

Nasal Cavity: Suppurative inflammation, acute/chronic inflammation, or chronic inflammation

occurred at increased incidences in high dose male and female rats (male: vehicle control, 0/50; low dose, 0/50; high dose, 26/50, 52%; female: vehicle control, 0/50; low dose, 0/50; high dose, 14/50, 28%).

Liver: Necrosis was observed in dosed male rats but not in any male vehicle controls. Centrilobular necrosis occurred in 1/50 (2%) low dose and 5/48 (10%) high dose male rats, focal necrosis was observed in 2/50 (4%) low dose and 2/48 (4%) high dose male rats, and midzonal necrosis was observed in 1/48 (2%) high dose male rats. The incidences of hepatocellular necrosis in high dose and vehicle control female rats were similar.

TABLE 14. ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Fibroma			
Overall Rates	0/50 (0%)	2/50 (4%)	4/50 (8%)
Adjusted Rates	0.0%	6.3%	13.7%
Terminal Rates	0/31 (0%)	2/32 (6%)	2/26 (8%)
Life Table Tests	P = 0.024	P = 0.245	P = 0.047
Incidental Tumor Tests	P = 0.030	P = 0.245	P = 0.060
Fibroma, Sarcoma, or Fibrosarcoma (a)			
Overall Rates	1/50 (2%)	3/50 (6%)	5/50 (10%)
Adjusted Rates	3.2%	9.4%	16.1%
Terminal Rates	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests	P = 0.046	P = 0.316	P = 0.077
Incidental Tumor Tests	P = 0.056	P = 0.316	P = 0.093

⁽a) Historical incidence of fibroma or fibrosarcoma at study laboratory (mean \pm SD): 2.7% \pm 1.2%; historical incidence in NTP studies: 1.8% \pm 1.5%

Adrenal Gland: Neoplasms of the adrenal medulla (pheochromocytomas and/or malignant pheochromocytomas [combined]) in male rats occurred with a significant negative trend, and the incidences in the high dose group were significantly lower than those in the vehicle controls (Table 15). The incidences of pheochromocytomas in dosed female rats were not significantly different from that in the vehicle controls (vehicle control, 4/50, 8%; low dose, 1/50, 2%; high dose, 4/50, 8%).

Thyroid Gland: The incidence of C-cell adenomas or carcinomas (combined) in high dose male rats was significantly lower than that in the vehicle controls (Table 16). C-cell adenomas in female rats occurred with a significant negative trend, and the incidences in the dosed groups were significantly lower than that in the vehicle controls; however, the incidences of of C-cell adenomas or carcinomas (combined) in dosed female rats were not significantly different from that in the vehicle controls.

TABLE 15. ANALYSIS OF ADRENAL GLAND TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Pheochromocytoma			
Overall Rates	14/50 (28%)	8/50 (16%)	4/48 (8%)
Adjusted Rates	43.6%	30.1%	14.6%
Terminal Rates	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests	P = 0.056N	P = 0.216N	P = 0.078N
Incidental Tumor Tests	P = 0.015N	P = 0.188N	P = 0.015N
Malignant Pheochromocytoma			
Overall Rates	0/50 (0%)	0/50 (0%)	1/48 (2%)
Pheochromocytoma or Malignant Phe	ochromocytoma (a)		
Overall Rates	14/50 (28%)	8/50 (16%)	5/48 (10%)
Adjusted Rates	43.6%	30.1%	18.2%
Terminal Rates	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests	P = 0.104N	P = 0.216N	P = 0.141N
Incidental Tumor Tests	P = 0.027N	P = 0.188N	P = 0.026N

⁽a) Historical incidence at study laboratory (mean \pm SD): 18% \pm 12%; historical incidence in NTP studies: 18% \pm 10%

TABLE 16. ANALYSIS OF THYROID GLAND TUMORS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
MALE			***************************************
C-Cell Adenoma			
Overall Rates	3/49 (6%)	3/48 (6%)	0/48 (0%)
Adjusted Rates	10.0%	12.0%	0.0%
Terminal Rates	3/30 (10%)	3/25 (12%)	0/17 (0%)
Life Table Tests	P = 0.223N	P = 0.578	P=0.236N
Incidental Tumor Tests	P = 0.223N	P = 0.578	P = 0.236N
C-Cell Carcinoma			
Overall Rates	4/49 (8%)	5/48 (10%)	0/48 (0%)
Adjusted Rates	13.3%	18.9%	0.0%
Terminal Rates	4/30 (13%)	4/25 (16%)	0/17 (0%)
Life Table Tests	P = 0.185N	P = 0.391	P=0.154N
Incidental Tumor Tests	P = 0.153N	P = 0.406	P = 0.154N
C-Cell Adenoma or Carcinoma			
Overall Rates	7/49 (14%)	8/48 (17%)	0/48 (0%)
Adjusted Rates	23.3%	30.5%	0.0%
Terminal Rates	7/30 (23%)	7/25 (28%)	0/17 (0%)
Life Table Tests	P = 0.078N	P = 0.349	P = 0.043N
Incidental Tumor Tests	P = 0.064N	P = 0.360	P=0.043N
FEMALE			
C-Cell Adenoma			
Overall Rates	6/50 (12%)	1/48 (2%)	0/49 (0%)
Adjusted Rates	17.8%	3.0%	0.0%
Terminal Rates	4/31 (13%)	0/30 (0%)	0/26 (0%)
Life Table Tests	P = 0.008N	P = 0.063N	P = 0.031N
Incidental Tumor Tests	P = 0.004N	P = 0.037N	P = 0.020N
C-Cell Carcinoma			
Overall Rates	2/50 (4%)	5/48 (10%)	5/49 (10%)
Adjusted Rates	6.5%	16.7%	19.2%
Terminal Rates	2/31 (6%)	5/30 (17%)	5/26 (19%)
Life Table Tests	P = 0.111	P=0.200	P=0.147
Incidental Tumor Tests	P=0.111	P = 0.200	P = 0.147
C-Cell Adenoma or Carcinoma			
Overall Rates	8/50 (16%)	6/48 (13%)	5/49 (10%)
Adjusted Rates	23.9%	19.2%	19.2%
Terminal Rates	6/31 (19%)	5/30 (17%)	5/26 (19%)
Life Table Tests	P = 0.333N	P = 0.400N	P = 0.399N
Incidental Tumor Tests	P = 0.292N	P = 0.349N	P = 0.355N

SINGLE-ADMINISTRATION STUDIES

All mice that received 3-chloro-2-methylpropene at 3,160 mg/kg died before the end of the studies (Table 17). Final body weights were not recorded. Yellow gelatinous intestines and pale

livers, spleens, and kidneys were found in mice that died before the end of the studies. No compound-related lesions were observed in animals that survived to the end of the studies.

TABLE 17. SURVIVAL AND INITIAL MEAN BODY WEIGHTS OF MICE IN THE SINGLE-ADMINISTRATION GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

Dose (mg/kg)	Initial Mean Body Weight (grams)	Survival	
MALE			
31.6	18	5/5	
100	16	5/5	
316	17	5/5	
1,000	16	5/5	
3,160	18	(b) 0/5	
FEMALE			
31.6	17	5/5	
100	16	5/5	
316	17	5/5	
1,000	17	5/5	
3,160	16	(c) 0/5	

⁽a) The steep survival curves preclude accurate LD_{50} calculations.

⁽b) Day of death: 2, 2, 2, 2, 5-14 (c) Day of death: 2, 2, 2, 2, 3

FOURTEEN-DAY STUDIES

All the mice that received 3-chloro-2-methylpropene at 750, 1,250, 1,750, or 2,500 mg/kg died on day 1 (Table 18). The death of 1/5 female mice that received 3-chloro-2-methylpropene at 250 mg/kg was considered unrelated to the chemical. Male and female vehicle control animals lost weight during the studies. Animals that died during the studies had bright red or orange lungs, pale livers, or soft intestines. No gross lesions were observed at necropsy at the end of the studies, except for a pale liver in one male in the 125 mg/kg group.

TABLE 18. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FOURTEEN-DAY GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

		Mean	Body Weights	(grams)	Final Weight Relative
Dose (mg/kg)		Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE				, = "	
0	5/5	23.0	22.0	- 1.0	••
125	5/5	23.0	24.0	+ 1.0	109.1
250	5/5	23.0	25.0	+ 2.0	113.6
500	5/5	23.0	21.0	- 2.0	95.5
750	0/5	22.0	(c)	(c)	(c)
1,250	0/5	23.0	(c)	(c)	(c)
1,750	0/5	23.0	(c)	(c)	(c)
2,500	0/5	23.0	(c)	(c)	(c)
FEMALE					
0	(d) 3/5	19.0	18.0	- 1.0	••
125	5/5	18.0	20.0	+ 2.0	111.1
250	(d) 4/5	19.0	21.0	+ 2.0	116.7
500	5/5	19.0	18.0	- 1.0	100.0
750	0/5	19.0	(c)	(c)	(c)
1,250	0/5	1 9 .0	(c)	(c)	(c)
1,750	0/5	19.0	(c)	(c)	(c)
2,500	0/5	1 9 .0	(c)	(c)	(c)

⁽a) Number surviving/number in group. All compound-related deaths occurred on day 1.

⁽b) Mean body weight change of the survivors

⁽c) No data are reported due to the 100% mortality in this group.

⁽d) Deaths judged accidental

THIRTEEN-WEEK STUDIES

All mice that received 3-chloro-2-methylpropene at 750 or 1,250 mg/kg and 9/10 males and 5/10 females in the 500 mg/kg groups died before the end of the studies (Table 19). The deaths of 1/10 males in the 500 mg/kg group and of mice in the other groups were considered to have been due to gavage injury.

Compound-related degenerative lesions were observed in the kidney and liver (Table 20). The kidney lesions consisted of degeneration and necrosis of cortical tubules, with accumulations of cellular debris in damaged tubules. Kidney lesions varied in severity within affected dose groups. The incidence and severity were greater in males than in females. Liver lesions consisted of coagulative necrosis and/or cytoplasmic vacuolization of hepatocytes. Liver and kidney

lesions often occurred in the same mice; more severe liver lesions were often associated with the more severe kidney lesions. Some animals, however, had neither lesion. Mice in all groups had lung lesions consisting of interstitial inflammation, sometimes with hyperplasia of bronchiolar epithelium and epithelialization of alveolar linings. The lesions were compatible with a viral infection. Mice in these studies had antibody titers for Sendai virus, PVM, or mouse hepatitis virus (MHV).

Dose Selection Rationale: Because of the liver lesions observed at 250 mg/kg, doses selected for mice for the 2-year studies were 0, 100, or 200 mg/kg 3-chloro-2-methylpropene in corn oil by gavage.

TABLE 19. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

		Mea	n Body Weights	s (grams)	Final Weight Relative
Dose (mg/kg)	Survival (a)	Initial	Final	Change (b)	to Vehicle Controls (percent)
MALE					
0	(c) 8/9	21	29	+ 8	
125	(c) 9/10	21	29	+ 8	100
250	(c) 8/10	20	28	+ 8	97
500	(d) 1/10	20	30	+ 10	103
750	(e) 0/10	21	(f)	(f)	(f)
1,250	(g) 0/10	21	(f)	(f)	(f)
FEMALE					
0	(c) 8/10	16	23	+ 7	••
125	(c) 9/10	17	23	+ 6	100
250	10/10	16	22	+ 6	96
500	(h) 5/10	16	23	+ 7	100
750	(g) 0/10	16	(f)	(f)	(f)
1,250	(g) 0/10	16	(f)	(f)	(f)

⁽a) Number surviving/number in group

⁽b) Mean body weight change of the survivors

⁽c) All deaths judged accidental

⁽d) Week of death: 1, 1, 1, 1, 1, 1, 2, 2, 4; one accidental.

⁽e) Week of death: 1, 1, 1, 1, 1, 1, 1, 1, 2

⁽f) No data are reported due to the 100% mortality in this group.

⁽g) Week of death: 1 (for all) (h) Week of death: 1, 2, 2, 2, 2

TABLE 20. NUMBERS OF MICE WITH LIVER AND KIDNEY LESIONS IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Vehicle Control	125 mg/kg	250 mg/kg	500 mg/kg	750 mg/kg	1,250 mg/kg
MALE						
Liver						
Necrosis, coagulative				2	3	3
Cytoplasmic vacuolization			3	4	7	8
Hemorrhage, multifocal				1		
Sinusoidal ectasia, multifocal	••		1		••	
Kidney						
Nephrosis		••		8	10	9
Cytoplasmic alteration, deep cortical tubules		••	1			••
FEMALE						
Liver						
Necrosis, coagulative				1	2	2
Necrosis, central						1
Cytoplasmic vacuolization	•-	1	3	2	6	6
Mineralization					••	1
Inflammation, suppurative			**		1	••
Kidney						
Nephrosis	••			3	4	3
Lymphocytic inflammatory infiltrate				ĭ	- 	

⁽a) Nine animals examined in vehicle control groups; 10 animals examined in all dosed groups.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of high dose male mice and low dose and high dose female mice were lower

(by less than 10%) than those of the vehicle controls throughout most of the studies (Table 21 and Figure 3). No compound-related clinical signs were observed.

TABLE 21. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

Weeks	Vehicle	e Control	- NV	100 mg/kg			200 mg/kg	
on Study	Av. Wt. (grams)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of veh. controls)	No. of Survivors
MALE					***************************************			<u> </u>
0 1 2 3 4 5 6 7 8 9 10 1 12 3 16 0 1 2 2 8 2 3 2 6 0 4 4 8 8 9 2 6 0 1 0 4 9 6 0 1 0 4 4 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23.8 0 4 3 1 6 9 0 5 0 7 5 8 5 2 9 4 3 6 6 8 9 8 6 5 0 8 6 5 2 8 3 1 3 3 3 3 3 4 4 2 6 8 9 4 4 5 6 9 8 6 6 8 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	500 5500 5500 5500 5500 5500 5500 5500	22.2.9.6.7.5.9.3.5.2.3.5.5.8.5.1.9.5.4.9.9.1.0.0.1.9.5.4.3.3.5.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	94 98 100 98 98 98 98 98 98 97 97 97 97 100 100 98 98 99 100 101 98 99 100 102 100 98 99	099888488888888888888888888888888888888	225.66.62.9.85.1.85.1.85.1.85.1.85.1.85.1.85.1.85	9509763422233223336965566537444464423259999999999999999999999999999999999	50099999999999999999999999999999999999
100 104	44.4 43.6 43.6	33 27	44.5 43.2 43.8	99 100	42 37	40.2 41.3	92 95	38 32
EMALE								
0 1 2 3 4 5 6 7 8 9 10 11 2 16 0 4 8 2 6 0 4 8 2 6 6 6 8 8 9 9 9 0 10 4	18.5 20.0 20.7 22.4 24.3 25.4 26.8 26.8 26.8 26.8 26.8 27.7 29.7 29.7 31.8 21.3 36.5 37.0 36.6 37.0 36.6 37.6 37.6 37.6 37.6 37.6 37.6 37.6	50 50 50 50 50 50 50 50 50 49 49 49 49 48 48 48 48 48 48 48 48 48 48 48 48 48	17.7 20.3 4.9 6 1.2 22.5 8 6 2.2 22.5 8 6 2.2 22.5 22.5 22.5 22.5 22.5 23.3 23.5 23.5	96 102 103 100 97 96 99 99 99 99 99 99 99 99 99 99 99 99	50000000000000000000000000000000000000	18.0.1.4.3.9.8.7.9.0.1.6.7.4.4.6.6.7.2.0.2.6.1.9.7.3.8.9.9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	992 1023 103 101 999 948 996 997 995 994 996 997 995 994 997 995 997 995 991 991 991 991 991 991 991 991 991	500000555444333444334444444444444444444



FIGURE 3. GROWTH CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice administered 3-chloro-2-methylpropene at the doses used in these studies and for vehicle controls are shown in the Kaplan and Meier curves in Figure 4. The survival of the male vehicle control group was significantly lower than that of the low dose group (Table 22). In one of the cages of the high dose female mice, four pregnant mice were discovered and were promptly removed from the study.

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions in the forestomach, nasal cavity, thyroid gland, kidney, circulatory system, and liver. Histopathologic findings on neoplasms in mice are summarized in Appendix B (Tables B1 and B2); Appendix B (Tables B3 and B4) also gives the survival and tumor status for individual male and female mice. Findings on nonneoplastic lesions are summarized in Appendix D (Tables D1 and D2). Appendix E (Tables E3 and E4) contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes). Historical incidences of tumors in corn oil vehicle control animals are listed in Appendix F.

TABLE 22. SURVIVAL OF MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYL-PROPENE

	Vehicle Control	100 mg/kg	200 mg/kg
MALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	23	12	17
Accidentally killed	1	1	1
Killed at termination	26	37	32
Survival P values (c)	0.198	0.025	0.249
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	13	5	15
Accidentally killed	0	0	2
Animals missing or removed	0	2	(d)6
Killed at termination	37	43	27
Survival P values (c)	0.343	0.091	0.368

⁽a) Terminal-kill period: week 105

⁽b) Includes animals killed in a moribund condition

⁽c) The result of the life table trend test is in the vehicle control column, and the results of the life table pairwise comparisons with the vehicle controls are in the dosed columns.

⁽d) Four pregnant mice in one cage were removed.

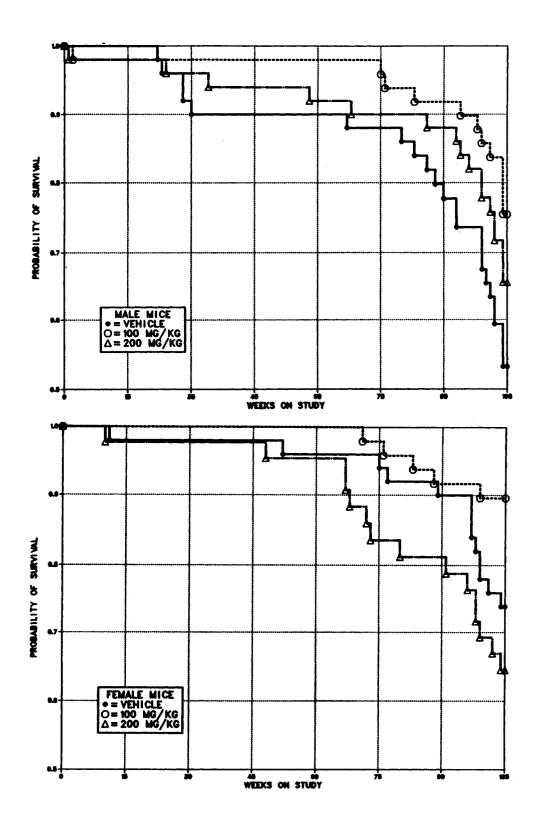


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR MICE ADMINISTERED 3-CHLORO-2-METHYLPROPENE IN CORN OIL BY GAVAGE FOR TWO YEARS

Forestomach: Incidences of inflammation of the forestomach were increased in dosed male and dosed female mice (male: vehicle control, 0/49; low dose, 9/49, 18%; high dose, 7/49, 14%; female: vehicle control, 2/50, 4%; low dose, 3/48, 6%; high dose, 9/44, 20%). Incidences of epithelial hyperplasia were increased in dosed male and dosed female mice (Table 23). Squamous cell papillomas in male and female mice, squamous cell carcinomas in male mice, and squamous cell papillomas or carcinomas (combined) in male and female mice occurred with significant positive trends. The incidences of papillomas in dosed male and dosed female mice, carcinomas in dosed male mice, and papillomas or carcinomas (combined) in dosed male and dosed female mice were significantly greater than those in the vehicle controls. Evidence of metastasis or invasion of other organs was observed in two low dose and three high dose male mice and in one high dose female mouse. The microscopic characteristics of squamous cell neoplasms of mice were similar to those described in rats.

Nasal Cavity: Acute inflammation of the nasal cavity was observed at increased (P<0.05) incidences in high dose male and female mice (male: vehicle control, 0/50; low dose, 0/50; high dose, 6/50, 12%; female: vehicle control, 0/50; low dose, 0/48; high dose, 5/44, 11%). The acute inflammation of the nasal cavity was similar histopathologically to that observed in rats.

Thyroid Gland: The incidences of follicular cysts in low dose and high dose female mice were greater than that in the vehicle controls (vehicle control, 5/44, 11%; low dose, 17/47, 36%; high dose, 8/38, 21%). Incidences of follicular cell neoplasms were not increased in dosed female mice.

Kidney: The incidence of nephrosis was increased in high dose male mice (male: vehicle control, 9/50, 18%; low dose, 10/50, 20%; high dose, 17/50, 34%; female: vehicle control, 2/50, 4%; low dose, 4/48, 8%; high dose, 5/44, 11%).

Circulatory System: Hemangiomas and hemangiomas or hemangiosarcomas (combined) in female mice occurred with significant negative trends (Table 24). The incidence of hemangiomas or hemangiosarcomas (combined) in the high dose female group was not significantly different from that in the vehicle controls. The following incidences of hemangiomas or hemangiosarcomas (combined) were observed in male mice: vehicle control, 2/50 (4%); low dose, 2/50 (4%); high dose, 3/50 (6%).

Liver: Hepatocellular carcinomas and hepatocellular adenomas or carcinomas (combined) in male mice occurred with a significant negative trend, and the incidences in the dosed groups were significantly lower than that in the vehicle controls (Table 25). In female mice, the following incidences of hepatocellular adenomas or carcinomas (combined) were observed: vehicle control, 4/50 (8%); low dose, 3/48 (6%); high dose, 1/44 (2%).

TABLE 23. ANALYSIS OF FORESTOMACH LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Vehicle Control	100 mg/kg	200 mg/kg
MALE			
Epithelial Hyperplasia			
Overall Rates	0/49 (0%)	14/49 (29%)	15/49 (31%)
Squamous Cell Papilloma			
Overall Rates	3/49 (6%)	19/49 (39%)	30/49 (61%)
Adjusted Rates	10.3%	46.0%	74.5%
Terminal Rates	2/26 (8%)	15/37 (41%)	22/32 (69%)
Life Table Tests	P<0.001	P = 0.003	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001
Squamous Cell Carcinoma			
Overall Rates	0/49 (0%)	5/49 (10%)	7/49 (14%)
Adjusted Rates	0.0%	11.6%	19.6%
Terminal Rates	0/26 (0%)	2/37 (5%)	5/32 (16%)
Life Table Tests	P = 0.014	P=0.061	P = 0.019
Incidental Tumor Tests	P=0.014	P=0.031	P=0.019
	F = 0.013	F = 0.031	F=0.010
Squamous Cell Papilloma or Carcinoma (b)			
Overall Rates	3/49 (6%)	24/49 (49%)	(c) 36/49 (73%)
Adjusted Rates	10.3%	54.1%	85.5%
Terminal Rates	2/26 (8%)	17/37 (46%)	26/32 (81%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001
FEMALE			
Epithelial Hyperplasia			
Overall Rates	4/50 (8%)	6/48 (12%)	13/44 (30%)
Squamous Cell Papilloma			
Overall Rates	0/50 (0%)	15/48 (31%)	29/44 (66%)
Adjusted Rates	0.0%	32.5%	80.2%
Terminal Rates	0/37 (0%)	12/43 (28%)	20/27 (74%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001
guamous Cell Carcinoma			
Overall Rates	0/50 (0%)	1/48 (2%)	2/44 (5%)
O 1 0 1 0 1 1 1 1 1 1 1 0 1 0 2	3/30 (0 <i>70)</i>	1/30 (4 70)	2144 (U 70)
Quamous Cell Papilloma or Carcinoma (d)	0/50 (00)	1.0/40 (000)	01/44/702
Overall Rates	0/50 (0%)	16/48 (33%)	31/44 (70%)
Adjusted Rates	0.0%	34.7%	81.5%
Terminal Rates	0/37 (0%)	13/43 (30%)	20/27 (74%)
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001

⁽a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix E (footnotes).
(b) Historical incidence of papillomas or carcinomas at study laboratory (mean): 2/147 (1.4%); historical incidence in NTP studies: 7/1,005 (0.7%)

⁽c) One animal had both papilloma and carcinoma.
(d) Historical incidence of papillomas or carcinomas at study laboratory (mean): 0/145; historical incidence in NTP studies: 4/1,027 (0.4%)

TABLE 24. ANALYSIS OF CIRCULATORY SYSTEM TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	100 mg/kg	200 mg/kg	
Hemangioma				
Overali Rates	4/50 (8%)	0/48 (0%)	0/44 (0%)	
Adjusted Rates	9.8%	0.0%	0.0%	
Terminal Rates	2/37 (5%)	0/43 (0%)	0/27 (0%)	
Life Table Tests	P = 0.022N	P = 0.055N	P = 0.115N	
Incidental Tumor Tests	P = 0.036N	P = 0.164N	P = 0.107N	
Hemangiosarcoma				
Overall Rates	1/50 (2%)	0/48 (0%)	0/44 (0%)	
Hemangioma or Hemangiosarcoma(a)				
Overall Rates	5/50 (10%)	0/48 (0%)	0/44 (0%)	
Adjusted Rates	12.0%	0.0%	0.0%	
Terminal Rates	2/37 (5%)	0/43 (0%)	0/27 (0%)	
Life Table Tests	P = 0.010N	P = 0.029N	P = 0.072N	
Incidental Tumor Tests	P = 0.019N	P = 0.141N	P = 0.060N	

⁽a) Historical incidence at study laboratory (mean \pm SD): 4% \pm 3.5%; historical incidence in NTP studies: 3% \pm 2.9%

TABLE 25. ANALYSIS OF LIVER TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	100 mg/kg	200 mg/kg
Hepatocellular Adenoma			
Overall Rates	4/50 (8%)	7/50 (14%)	2/50 (4%)
Hepatocellular Carcinoma			
Overall Rates	19/50 (38%)	10/50 (2 0%)	11/50 (22%)
Adjusted Rates	49.7%	24.5%	28.9%
Terminal Rates	8/26 (31%)	7/37 (19%)	6/32 (19%)
Life Table Tests	P = 0.019N	P = 0.008N	P = 0.031N
Incidental Tumor Tests	P = 0.046N	P = 0.061N	P = 0.069N
Hepatocellular Adenoma or Carcinoma	(a)		
Överall Rates	22/50 (44%)	16/50 (32%)	13/50 (26%)
Adjusted Rates	56.5%	39.6%	34.4%
Terminal Rates	10/26 (38%)	13/37 (35%)	8/32 (25%)
Life Table Tests	P = 0.012N	P = 0.025N	P = 0.020N
Incidental Tumor Tests	P = 0.027N	P = 0.149N	P = 0.042N

⁽a) Historical incidence at study laboratory (mean \pm SD): 22% \pm 8%; historical incidence in NTP studies: 31% \pm 10%

IV. DISCUSSION AND CONCLUSIONS

IV. DISCUSSION AND CONCLUSIONS

The discovery that vinyl chloride is carcinogenic in humans (Creech and Johnson, 1974) and animals (Maltoni, 1977) has focused attention on the potential mutagenicity and carcinogenicity of the structurally analogous aliphatic and olefinic halogenated hydrocarbons (NIEHS, 1977). Many halogenated aliphatic and olefinic hydrocarbons have since been shown to be carcinogens (Soderman, 1982). The present studies assessed the toxicity and carcinogenicity of another member of the olefinic halogenated hydrocarbon series: 3-chloro-2-methylpropene.

The toxicity and carcinogenicity of 3-chloro-2-methylpropene in F344/N rats and B6C3F₁ mice were evaluated in a series of short-term and 2-year studies. In the single-administration studies, rats received 100-10,000 mg/kg 3-chloro-2-methylpropene by gavage and mice received 31.6-3,160 mg/kg. In the 14-day studies, rats received 89-750 mg/kg and mice, 125-2,500 mg/kg by gavage on 14 consecutive days; vehicle control groups received corn oil on the same schedule. Rats in the 13-week gavage studies received 50-400 mg/kg and mice, 125-1,250 mg/kg; vehicle controls were administered corn oil.

In the 13-week studies, 50%-100% mortality occurred in groups of male and female rats receiving 400 mg/kg, male rats receiving 300 mg/kg, and male and female mice receiving 500, 750, or 1,250 mg/kg. Inflammation and necrosis of the liver occurred in both rats and mice administered 3-chloro-2-methylpropene for 13 weeks. Necrosis of cortical tubules of the kidneys was also observed in mice. Pathologic changes in the forestomach of dosed rats and mice were not found. Based on the histopathologic findings and the survival of the study animals in the 13-week studies, doses of 75 and 150 mg/kg for rats and 100 and 200 mg/kg for mice were selected for the 2-year studies.

Male rats receiving 150 mg/kg in the 2-year studies had reduced survival late in the study and lower mean body weights; body weight and survival were not affected in female rats or in male and female mice (see Tables 9, 10, 21, and 22; Figures 1-4).

Rats and mice administered 3-chloro-2-methylpropene by gavage in the 2-year studies had significantly increased incidences of forestomach neoplastic lesions (Table 26). For rats, these lesions were observed at 150 mg/kg. Both dosed groups of rats developed basal cell hyperplasia of the forestomach. Only a few cases of inflammation were observed. Male and female mice administered 100 or 200 mg/kg developed forestomach inflammation and forestomach epithelial hyperplasia and had significantly increased incidences of squamous cell papillomas and carcinomas of the forestomach accompanied by metastasis. The tumor data indicated that the doses of 3-chloro-2-methylpropene selected for the studies in rats and mice were appropriate for each species, even though body weight and survival were not affected in the female rats or in the male and female mice in the studies.

The forestomach of the rat and mouse is sometimes affected by chemical carcinogens, particularly when the chemical is administered by oral intubation. The squamous-lined forestomach (nonglandular stomach) is the proximal two-thirds of the stomach, immediately adjacent to the esophagus, and is sharply demarcated from the distal glandular stomach. The glandular portion of the rodent stomach is rarely a site of carcinogenesis in untreated animals or those given chemical carcinogens. The presence of mucus and/or a difference in local pH may play a role in protecting the glandular stomach from carcinogens. In the induction of malignant neoplasms in rodent forestomach by diglycidyl resorcinol ether, the earliest changes were basal cell hyperplasia. The hyperplasia progressed to papilloma and subsequently to carcinoma (NTP, 1986a). In the present studies, the pathogenesis of the forestomach neoplasm appeared to follow a similar pattern, from basal cell hyperplasia through papilloma to carcinoma.

In addition to these forestomach effects, lesions of the urinary bladder, kidney, testis, and liver were observed in dosed male rats. Although the incidence in vehicle controls was high, the incidence of nephropathy was increased in the dosed male rats (vehicle control, 35/50, 70%; low dose, 44/50, 88%; high dose, 47/49, 96%), and the

TABLE 26. NUMBERS OF RATS AND MICE WITH FORESTOMACH LESIONS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

RATS	Vehicle Control	75 mg/kg	150 mg/kg
Male			
Basal cell or epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	19/50 (38%) 1/50 (2%) 0/50 (0%)	(a) 41/50 (82%) 5/50 (10%) 0/50 (0%)	(a) 44/48 (90%) (a) 30/48 (63%) 2/48 (4%)
Female			
Basal cell hyperplasia Squamous cell papilloma Squamous cell carcinoma	24/50 (48%) 1/50 (2%) 0/50 (0%)	(a) 42/50 (84%) 1/50 (2%) 0/50 (0%)	(a) 45/50 (90%) (a) 10/50 (20%) 0/50 (0%)
MICE	Vehicle Control	100 mg/kg	200 mg/kg
Male			
Epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	0/49 (0%) 3/49 (6%) 0/49 (0%)	(a) 14/49 (29%) (a) 19/49 (39%) (b) 5/49 (10%)	(a) 15/49 (31%) (a) 30/49 (61%) (b) 7/49 (14%)
Female			
Epithelial hyperplasia Squamous cell papilloma Squamous cell carcinoma	4/50 (8%) 0/50 (0%) 0/50 (0%)	6/48 (12%) (a) 15/48 (31%) 1/48 (2%)	(a) 29/44 (66%) (a) 19/44 (43%) 2/44 (5%)

⁽a) Incidence significantly (P < 0.01) greater than that in the vehicle controls

incidence of nephrosis was increased in male mice (vehicle control, 9/50, 18%; low dose, 10/50, 20%; high dose, 17/50, 34%). A urinary bladder transitional cell papilloma, a renal transitional cell carcinoma, and a renal tubular cell adenocarcinoma occurred in high dose male rats, and renal tubular cell adenocarcinomas or adenomas were observed in two low dose male rats: neoplasms of the urinary system were not seen in the vehicle controls. Neoplasms of the urinary bladder have not been reported previously in male F344/N rats administered corn oil by gavage in NTP studies (Appendix F, Table F7). The NTP historical incidence of renal tubular cell neoplasms in male F344/N corn oil vehicle control rats is 4/1,091 (0.4%) and that for renal transitional cell neoplasms, 1/1,091 (0.1%) (Table F6). Thus, the renal lesions might have been compound related.

Increased incidences of testicular interstitial cell tumors in male rats were dose related. This neoplasm is commonly found in aging F344/N male rats, and the incidence of testicular interstitial cell tumors in the male rats dosed with 3-chloro-

2-methylpropene was within the range of historical incidence (Table F7); the development of these neoplasms was probably not chemically related. Liver necrosis, seen in rats and mice in the 13-week studies, was observed only in a few dosed male rats in the 2-year studies.

Negative trends or lower incidences were observed in dosed male rats for adrenal pheochromocytomas, C-cell adenomas or carcinomas (combined) of the thyroid gland, and keratoacanthomas of the skin. Negative trends were observed also in the incidences of liver tumors in dosed male mice and of hemangiomas or hemangiosarcomas (combined) in dosed female mice. The biologic significance of these findings is not clear. The marginally lower incidence of C-cell adenomas or carcinomas (combined) of the thyroid gland in the dosed male rats may be due to the low survival rate.

Increases were observed in the incidences of inflammation of the nasal cavity in high dose male and female rats and mice and in the incidences of follicular cysts of the thyroid gland in

⁽b) Incidence significantly (P<0.05) greater than that in the vehicle controls

dosed female mice. The effects on the nasal cavity may be related to the dimethylvinyl chloride (1-chloro-2-methylpropene). Commercial 3-chloro-2-methylpropene normally contains about 5% dimethylvinyl chloride. This component is difficult to remove by distillation (Deichmann and Gerarde, 1969). The two lots of 3chloro-2-methylpropene used in the present studies contained about 5% and 4% dimethylvinyl chloride, respectively. Thus, the male and female rats administered 75 or 150 mg/kg per day of 3-chloro-2-methylpropene received about 3 or 6 mg/kg per day of dimethylvinyl chloride, and male and female mice administered 100 or 200 mg/kg per day of 3-chloro-2-methylpropene received about 4 or 8 mg/kg per day of dimethylvinyl chloride.

Dimethylvinyl chloride caused neoplasms in F344/N rats and B6C3F₁ mice (NTP, 1986b). Administered to rats at 100 or 200 mg/kg in corn oil by gavage, it induced carcinomas of the nasal cavity in male and female rats; metastasis to the brain was also observed. Squamous cell papillomas or carcinomas were found in the oral cavity, esophagus, and forestomach of dosed male and female rats. Mice administered dimethylvinyl chloride by gavage at 100 or 200 mg/kg had increased incidences of squamous cell carcinomas of the forestomach with metastasis to the lungs.

In the present studies of 3-chloro-2-methylpropene, neoplasms of the oral and nasopharyngeal areas were not observed in rats or mice; however, the high dose rats and mice developed inflammation of the nasal cavity (Tables C1, C2, D1, and D2). This inflammation may possibly be related to the effects of low doses of dimethylvinyl chloride. The presence of dimethylvinyl chloride in 3-chloro-2-methylpropene may have contributed to the development of forestomach neoplasms in rats and mice in the present studies. Future studies could help to delineate the effects of low doses of dimethylvinyl chloride on forestomach carcinogenesis in rats and mice.

In general, studies suggest that chlorine substitution enhances the mutagenic and carcinogenic potential of propene and that monomethylation increases the alkylating potential, mutagenicity, and probably the carcinogenicity of allylic chlorides (Neudecker et al., 1980). Propene

(propylene; $CH_2 = CH - CH_3$) administered by inhalation was not carcinogenic in rats and mice (NTP, 1985) and was not mutagenic in Escherichia coli (Sandmeyer, 1981), whereas the structurally related 1-chloropropene (CHCl=CH-CH₃) and allyl chloride (CH₂=CH-CH₂Cl) administered orally induced forestomach tumors in mice (Van Duuren et al., 1979; NCI, 1978) and were mutagenic in Salmonella (McCoy et al., 1978; Eder et al., 1980; Neudecker et al., 1980). The mutagenicity of allyl chloride was enhanced by monomethylation: that is, the mutagenic potential of allyl chloride in Salmonella TA100 was less than that of 3-chloro-2-methylpropene (I); 3-chloro-1-butene (II) and 1-chloro-2-butene (III) were more potent mutagens than 3-chloro-2-methylpropene (Neudecker et al., 1980). Bimethylated allyl chlorides were slightly less mutagenic than were monomethylated allylic chlorides, and the mutagenic potencies of all of these compounds correlated well with their alkylating activities.

$$CH_3 \\ | \\ I. CH_2 = C - CH_2CI$$

$$\begin{array}{c} CH_3 \\ | \\ II. CH_2 = C - CHCl \end{array}$$

$$CH_3$$
|
III. $CH = CH - CH_2Cl$

Halogenated alkenes are thought to undergo epoxidation reactions that are catalyzed by the cytochrome P-450 dependent polysubstrate mono-oxygenase system. The resultant epoxides may react with tissue macromolecules, leading to toxicity, mutagenicity, and/or carcinogenicity (Bonse and Henschler, 1976; Anders, 1982; MacDonald, 1983). Halogenated hydrocarbons with more than two carbon atoms, such as allyl chloride, have also been postulated to be activated via the epoxidation pathway (Van Duuren, 1977).

The NTP found that 3-chloro-2-methylpropene required liver S9 to induce reverse mutation in Salmonella strains TA100 and TA1537

(Appendix L, Table L1). However, Neudecker et al. (1980) and Eder et al. (1982) reported that 3-chloro-2-methylpropene was a direct-acting mutagen in strain TA100 and that rat liver S9 greatly reduced its mutagenic effect. Results of the NTP mouse lymphoma tests (Table L2) and cytogenetic investigations (Tables L3 and L4) also suggest that 3-chloro-2-methylpropene is a direct-acting mutagen. The discrepancy between the findings of Neudecker et al. (1980) and Eder et al. (1982) and those of the NTP-sponsored tests in Salmonella may be due to differences in purity of the compound and in protocols. Taken as a whole, however, mutagenicity testing of 3-chloro-2-methylpropene indicates

that it is a direct-acting mutagen in both bacterial and mammalian cells. This finding is consistent with the observation that the administration of 3-chloro-2-methylpropene by gavage to rats and mice induced neoplasms in the forestomach, the site of application.

Conclusion: Under the conditions of these 2-year gavage studies, there was clear evidence of carcinogenicity* for 3-chloro-2-methylpropene as shown by the increased incidences of squamous cell neoplasms in the forestomach of male and female F344/N rats and male and female B6C3F₁ mice.

^{*}Categories of evidence of carcinogenicity are defined in the Note to the Reader on page 2. The public discussion regarding the interpretative conclusions is summarized on page 14.

V. REFERENCES

- 1. Anders, M. (1982) Mechanisms of haloalkane and haloalkene biotransformation. TIP Reviews, September, pp. 356-357.
- 2. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.
- 3. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.
- 4. Bonse, G.; Henschler, D. (1976) Chemical reactivity, biotransformation, and toxicity of polychlorinated aliphatic compounds. CRC Crit. Rev. Toxicol. 4:395-409.
- 5. Boorman, G.; Montgomery, C., Jr.; Hardisty, J.; Eustis, S.; Wolfe, M.; McConnell, E. (1985) Quality assurance in pathology for rodent toxicology and carcinogenicity tests. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.
- 6. Clive, D.; Johnson, K.; Spector, J.; Batson, A.; Brown, M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.
- 7. Cox, D. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.
- 8. Creech, J., Jr.; Johnson, M. (1974) Angiosarcoma of the liver in the manufacture of polyvinyl chloride. J. Occup. Med. 16:150.
- 9. Deichmann, W.; Gerarde, H. (1969) Toxicology of Drugs and Chemicals. New York: Academic Press.
- 10. Eder, E.; Neudecker, T.; Lutz, D.; Henschler, D. (1980) Mutagenic potential of allyl and allylic compounds. Structure-activity relationship as determined by alkylating and direct in vitro mutagenic properties. Biochem. Pharmacol. 29:993-998.
- 11. Eder, E.; Neudecker, T.; Lutz, D.; Henschler, D. (1982) Correlation of alkylating and mutagenic activities of allyl and allylic compounds: standard alkylation test vs. kinetic investigation. Chem. Biol. Interact. 38:303-315.

- 12. Galloway, S.; Bloom, A.; Resnick, M.; Margolin, B.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51.
- 13. Gart, J.; Chu, K.; Tarone, R. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.
- 14. Haseman, J. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.
- 15. Haseman, J.; Huff, J.; Boorman, G. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.
- 16. Hawley, G. (1977) The Condensed Chemical Dictionary, 9th ed. New York: Van Nostrand Reinhold Co., p. 558.
- 17. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.
- 18. Kaplan, E.; Meier, P. (1958) Nonparametric estimation of incomplete observations. J. Am. Stat. Assoc. 53:457-481.
- 19. Linhart, M.; Cooper, J.; Martin, R.; Page, N.; Peters, J. (1974) Carcinogenesis bioassay data system. Comp. Biomed. Res. 7:230-248.
- 20. Maltoni, C. (1977) Recent findings in the carcinogenicity of chlorinated olefins. Environ. Health Perspect. 21:1-5.
- 21. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.
- 22. Maronpot, R.; Boorman, G. (1982): Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

- 23. MacDonald, T. (1983) Chemical mechanisms of halocarbon metabolism. CRC Crit. Rev. Toxicol. 11:85-119.
- 24. McConnell, E.; Solleveld, H.; Swenberg, J.; Boorman, G. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. (in press).
- 25. McCoy, E.; Burrows, L.; Rosenkrantz, H. (1978) Genetic activity of allyl chloride. Mutat. Res. 57:11-15.
- 26. Melnikov, N. (1971) Chemistry of Insecticides. Gunther, F.; Davies, J., Transl. Eds. New York: Springer-Verlag, p. 40.
- 27. Merck Index, 9th ed., (1976) Rahway, NJ: Merck and Co., Inc., p. 273.
- 28. Merck Index, 10th ed., (1983) Rahway, NJ: Merck and Co., Inc., pp. 2117-2118.
- 29. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassays in Small Rodents. NCI Carcinogenesis Technical Report Series No. 1.
- 30. National Cancer Institute (NCI) (1978) Bioassay of Allyl Chloride for Possible Carcinogenicity, NCI TR 73. Bethesda, MD: U.S. Department of Health, Education, and Welfare.
- 31. National Institute of Environmental Health Sciences (NIEHS) (1977) Conference on comparative metabolism and toxicity of vinyl chloride related compounds. Environ. Health Perspect. 21:1-331.
- 32. National Institutes of Health (NIH), NIH Specification NIH-11-133f, November 1, 1978.
- 33. National Toxicology Program (NTP) (1985) Technical Report on the Toxicology and Carcinogenesis Studies of Propylene in F344/N Rats and B6C3F₁ Mice. NTP TR 272. U.S. Department of Health and Human Services, Public Health Service. 146 p.
- 34. National Toxicology Program (NTP) (1986a) Technical Report on the Carcinogenesis Studies of Diglycidyl Resorcinol Ether in F344/N Rats and B6C3F₁ Mice. NTP TR 257. U.S. Department of Health and Human Services, Public Health Service (in press).

- 35. National Toxicology Program (NTP) (1986b) Technical Report on the Carcinogenesis Studies of Dimethylvinyl Chloride in F344/N Rats and B6C3F₁ Mice. NTP TR 316. U.S. Department of Health and Human Services, Public Health Service (in press).
- 36. Neudecker, T.; Lutz, D.; Eder, E.; Henschler, D. (1980) Structure-activity relationship in halogen and alkyl substituted allyl and allylic compounds: Correlation of alkylating and mutagenic properties. Biochem. Pharmacol. 29:2611-2617.
- 37. Pellizzari, E. (1982) Analysis for organic vapor emissions near industrial and chemical waste disposal sites. Environ. Sci. Technol. 16:781-785.
- 38. Sadtler Standard Spectra, IR No. 4689, NMR No. 9682. Philadelphia: Sadtler Research Laboratories.
- 39. Sandmeyer, E. (1981) Aliphatic hydrocarbons. Clayton, G.; Clayton, F., Eds.: Patty's Industrial Hygiene and Toxicology, 3rd ed. New York: John Wiley & Sons, 2B:3199-3201.
- 40. Sax, N. (1979) Dangerous Properties of Industrial Materials, 5th ed. New York: Van Nostrand Reinhold Corp., p. 800.
- 41. Schiffmann, D.; Eder, E.; Neudecker, T.; Henschler, D. (1983) Induction of unscheduled DNA synthesis in HeLa cells by allylic compounds. Cancer Lett. 20:263-269.
- 42. Silverman, M.; Abreu, B. (1938) The toxic and anesthetic properties of certain monochloro-propenes. University of California Publications in Pharmacology 1:119-128.
- 43. Soderman, J. (1982) Handbook of Identified Carcinogens and Non-carcinogens, Vol. 1. Boca Raton, FL: CRC Press, Inc.
- 44. Tarone, R. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.
- 45. Taylor, R. (1975) Fumigation of individual sacks of grain using methyl chloride for control of maize weevil. Inst. Pest. Cont. 17:4-8.

V. REFERENCES

46. Van Duuren, B. (1977) Chemical structure, reactivity, and carcinogenicity of halohydrocarbons. Environ. Health Perspect. 21:17-23.

47. Van Duuren, B.; Goldschmidt, B.; Loewengart, G.; Smith, A.; Melchionne, S.; Seidman, I.; Roth, D. (1979) Carcinogenicity of halogenated olefinic and aliphatic hydrocarbons in mice. J. Natl. Cancer Inst. 63:1433-1439.

APPENDIX A

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL	Y 50		50		50	
NTEGUMENTARY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
FIBROUS HISTIOCYTOMA, MALIGNANT			1	(2%)		
*SKIN	(50)		(50)		(50)	
ADNEXAL ADENOMA		(2%)				
KERATOACANTHOMA		(10%)				
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
KERATOACANTHOMA		(2%)	_			
FIBROMA		(2%)	2	(4%)	2	(4%)
FIBROSARCOMA		(6%)				
FIBROUS HISTIOCYTOMA, MALIGNANT	1	(2%)				
RESPIRATORY SYSTEM						
#LUNG_	(50)		(50)		(50)	
ALVEOLAR/BRONCHIOLAR ADENOMA						(4%)
SARCOMA, NOS, METASTATIC					1	(2%)
LIPOSARCOMA, METASTATIC	1	(2%)				
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	(44)		(55)			(2%)
MALIG. LYMPHOMA, HISTIOCYTIC TYPE			1	(2%)	_	(=,
LEUKEMIA, MONONUCLEAR CELL	9	(18%)		(4%)	7	(14%)
#SPLEEN	(50)		(50)		(48)	
FIBROMA	1	(2%)				
CIRCULATORY SYSTEM						
#SPLEEN	(50)		(50)		(48)	
ANGIOSARCOMA	(00)		(00)			(2%)
#CARDIAC VALVE	(50)		(50)		(50)	(= .0)
LIPOSARCOMA		(2%)	(0.07)		(00)	
#CECUM	(49)	,	(49)		(47)	
HEMANGIOMA		(2%)	, , , ,		, ,	
DIGESTIVE SYSTEM					4-12-4	
*TONGUE	(50)		(50)		(50)	
PAPILLOMA, NOS	,,		(55)			(2%)
#SALIVARY GLAND	(50)		(47)		(49)	-
SARCOMA, NOS				(2%)		
#LIVER	(50)		(50)		(48)	
ADENOCARCINOMA, NOS, METASTATIC			1	(2%)		
NEOPLASTIC NODULE	2	(4%)				(6%)
HEPATOCELLULAR CARCINOMA						(4%)
SARCOMA, NOS, METASTATIC						(2%)
#PANCREAS	(50)		(50)		(48)	
ACINAR-CELL ADENOMA		(8%)		(2%)		
#FORESTOMACH	(50)		(50)		(48)	
PAPILLOMA, NOS	1		5			(63%)
SQUAMOUS CELL CARCINOMA	/405		(40)			(4%)
#COLON	(49)		(49)	(90%)	(47)	
ADENOCARCINOMA, NOS SARCOMA, NOS			1	(2%)		(904)
BARCUMA, NUB					1	(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
URINARY SYSTEM						
#KIDNEY	(50)		(50)		(49)	
TRANSITIONAL-CELL CARCINOMA	(30)		, , , ,			(2%)
TUBULAR-CELL ADENOMA			1	(2%)		
TUBULAR-CELL ADENOCARCINOMA			1	(2%)	1	(2%)
#URINARY BLADDER	(48)		(49)		(46)	
TRANSITIONAL-CELL PAPILLOMA					1	(2%)
ENDOCRINE SYSTEM						
#ANTERIOR PITUITARY	(49)		(50)		(50)	
ADENOMA, NOS		(18%)	. 8	(16%)	3	(6%)
#ADRENAL	(50)	(10,0)	(50)	(10011)	(48)	
CORTICAL ADENOMA		(6%)	(50)			(2%)
#ADRENAL MEDULLA	(50)	(370)	(50)		(48)	_ ·•/
PHEOCHROMOCYTOMA	1	(28%)		(16%)		(8%)
	14	(20 %)	0	(20,0)		(2%)
PHEOCHROMOCYTOMA, MALIGNANT GANGLIONEUROMA			1	(2%)	•	(= <i>(</i> 0)
	(49)		(48)	(470)	(48)	
#THYROID	(49)		(40)			(2%)
FOLLICULAR-CELL CARCINOMA	•	(00)	^	(COL)		(470)
C-CELL ADENOMA	3	(6%)	3	(6%)		
C-CELL CARCINOMA	4	(8%)		(10%)	(40)	
#PANCREATIC ISLETS	(50)		(50)	(04)	(48)	/ 4 ~~ \
ISLET-CELL ADENOMA		(6%)	3	(6%)	2	(4%)
ISLET-CELL CARCINOMA	1	(2%)				
REPRODUCTIVE SYSTEM						
*MAMMARY GLAND	(50)		(50)		(50)	
ADENOCARCINOMA, NOS	1	(2%)				
FIBROADENOMA			3	(6%)	1	(2%)
*PREPUTIAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	3	(6%)	4	(8%)	1	(2%)
ADENOMA, NOS		(2%)	1	(2%)		
#PROSTATE	(47)	(= ,,,	(49)	(= := /	(48)	
ADENOMA, NOS		(2%)		(2%)		(6%)
		(470)	(50)	(2 70)	(48)	(0.0)
#TESTIS	(50)	(77.00%)	,	(86%)		(90%
INTERSTITIAL-CELL TUMOR		(72%)		(00%)	(50)	(30 %
*SCROTUM	(50)		(50)			(94)
FIBROSARCOMA						(2%)
NERVOUS SYSTEM NONE						
SPECIAL SENSE ORGANS						
*EAR,	(50)		(50)		(50)	
NEUROFIBROSARCOMA	, ,		1	(2%)		
*ZYMBAL GLAND	(50)		(50)		(50)	
CARCINOMA, NOS	(55)		(,			(2%)
SQUAMOUS CELL CARCINOMA	1	(2%)				
MUSCULOSKELETAL SYSTEM						
*BONE	(50)		(50)		(50)	
OSTEOSARCOMA	(55)			(2%)	, -,	
					/=a\	
*VERTEBRA	(50)		(50)		(50)	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOWI	OOSE	HIGH	DOSE
BODY CAVITIES					
*THORACIC CAVITY	(50)	(50)		(50)	
SARCOMA, NOS			(2%)		
*ABDOMINAL CAVITY	(50)	(50)	(04)	(50)	
LIPOMA	1 (0%)		(2%)		
MESOTHELIOMA, NOS	1 (2%)		(2%)	(50)	
*TUNICA VAGINALIS MESOTHELIOMA, NOS	(50) 1 (2%)	(50)	(2%)	(50)	(4%)
MESOTHELIOMA, NOS	1 (270)	1	(270)		(470)
ALL OTHER SYSTEMS					
*MULTIPLE ORGANS	(50)	(50)		(50)	
SARCOMA, NOS, INVASIVE		1	(2%)		
MESOTHELIOMA, NOS				1	(2%)
ANIMAL DISPOSITION SUMMARY	,				
ANIMALS INITIALLY IN STUDY	50	50		50	
NATURAL DEATH	8	15		20	
MORIBUND SACRIFICE	11	10		12	
TERMINAL SACRIFICE	30	25		17	
DOSING ACCIDENT	1			1	
TUMOR SUMMARY					
TOTAL ANIMALS WITH PRIMARY TUN	IORS** 44	45		44	
TOTAL PRIMARY TUMORS	115	102		120	
TOTAL ANIMALS WITH BENIGN TUMO	ORS 42	45		44	
TOTAL BENIGN TUMORS	86	81		93	
TOTAL ANIMALS WITH MALIGNANT T	CUMORS 20	16		17	
TOTAL MALIGNANT TUMORS	25	19		21	
TOTAL ANIMALS WITH SECONDARY	TUMORS## 1	2		1	
TOTAL SECONDARY TUMORS	1	2		2	
TOTAL ANIMALS WITH TUMORS UNC	ERTAIN				
BENIGN OR MALIGNANT	3	2		6	
TOTAL UNCERTAIN TUMORS	4	2		6	

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

^{**} PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS # NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

^{##} SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTRO	L(VEH)	LOWI	OOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
NTEGUMENTARY SYSTEM	· · · · · · · · · · · · · · · · · · ·		7			
*SKIN	(50)		(50)	•	(50)	
PAPILLOMA, NOS			1	(2%)	1	(2%)
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
SARCOMA, NOS						(2%)
FIBROMA		(0~)		(4%)	4	(8%)
FIBROSARCOMA RHABDOMYOSARCOMA	1	(2%)	1	(2%)	† 1	(2%)
RESPIRATORY SYSTEM		<u> </u>				
#LUNG	(50)		(50)		(50)	
SQUAMOUS CELL CARCINOMA, METASTA						(2%)
ADENOCARCINOMA, NOS, METASTATIC		(2%)				
C-CELL CARCINOMA, METASTATIC			1	(2%)		
SARCOMA, NOS, METASTATIC					1	(2%)
FIBROSARCOMA, METASTATIC			1	(2%)		
ENDOMETRIAL STROMAL SARCOMA, MET	Γ 1	(2%)				
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMIA, MONONUCLEAR CELL		(32%)		(26%)		(20%)
#THYMUS	(41)		(46)		(48)	(00)
SQUAMOUS CELL CARCINOMA		·			<u> </u>	(2%)
CIRCULATORY SYSTEM NONE						
DIGESTIVE SYSTEM						
*TONGUE	(50)		(50)	(24)	(50)	
PAPILLOMA	/#A:			(2%)	(EA)	
#LIVER	(50)	(40%)	(50)	(2%)	(50)	
NEOPLASTIC NODULE		(4%)	(50)	(2%)	(50)	
#PANCREAS ACINAR-CELL ADENOMA	(50)	(2%)	(50)			(4%)
#FORESTOMACH	(50)	(470)	(50)		(50)	(470)
PAPILLOMA, NOS		(2%)		(2%)		(20%)
i at illionta, nod						(=3 70)
URINARY SYSTEM NONE						
ENDOCRINE SYSTEM						
#ANTERIOR PITUITARY	(50)		(50)		(49)	/m
CARCINOMA, NOS		(2%)		(2%)		(2%)
ADENOMA, NOS		(38%)		(42%)		(41%)
#ADRENAL	(50)		(50)		(50)	
CORTICAL ADENOMA	(50)	(6%)		(2%)		(6%)

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

(50) 4 (8%) (49) 2 (4%) 1 (2%) 5 (10%) 50) 3 (6%) 1 (2%) 10 (20%) 50) 1 (2%) 49)
4 (8%) (49) 2 (4%) 1 (2%) 5 (10%) 50) 3 (6%) 1 (2%) 10 (20%) 50) 1 (2%) 1 (2%)
4 (8%) (49) 2 (4%) 1 (2%) 5 (10%) 50) 3 (6%) 1 (2%) 10 (20%) 50) 1 (2%) 1 (2%)
(49) 2 (4%) 1 (2%) 5 (10%) 50) (50) 3 (6%) 1 (2%) 10 (20%) 1 (2%) 1 (2%)
2 (4%) 1 (2%) 5 (10%) 50) 3 (6%) 1 (2%) 10 (20%) 50) 1 (2%) 1 (2%)
1 (2%) 5 (10% 50) 50) 3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
5 (10% 50) 50) 3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
50) 3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
50) 3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
50) 3 (6%) 1 (2%) 10 (20%) 50) 1 (2%) 1 (2%)
3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
3 (6%) 1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
1 (2%) 10 (20% 50) 1 (2%) 1 (2%)
10 (20%) 50) 1 (2%) 1 (2%)
50) 1 (2%) 1 (2%)
50) 1 (2%) 1 (2%)
1 (2%) 1 (2%)
1 (2%)
49)
8 (16%)
U (10%)
49)
50)
30)
50 10
12
26
2
_

TABLE A2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

CON	TROL (VEH)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	43	42	41
TOTAL PRIMARY TUMORS	90	85	90
TOTAL ANIMALS WITH BENIGN TUMORS	37	36	35
TOTAL BENIGN TUMORS	61	58	68
TOTAL ANIMALS WITH MALIGNANT TUMORS	23	21	20
TOTAL MALIGNANT TUMORS	28	26	22
TOTAL ANIMALS WITH SECONDARY TUMORS##	£ 2	2	2
TOTAL SECONDARY TUMORS	2	2	2
TOTAL ANIMALS WITH TUMORS UNCERTAIN-			
BENIGN OR MALIGNANT	1	1	
TOTAL UNCERTAIN TUMORS	ī	1	

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

[#] NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

^{##} SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN † THE PWG DIAGNOSED THIS TUMOR AS A FIBROSARCOMA.

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

	0	0	0	0	0	ŏ	97	8	9	1	i	1 2	1	1	1	6	1	1 8	1	2	2	2 2	2	2	
weeks on Study	0 8 3	0	1 0 5	0 5	9	0	0 5 5	1 0 5	1 0 5	100	9	1 0 2	0 5	1 0 5	0 5	0	1 0 5	0 5	9	105	0	1 0 5	1 0 5	0 7	0.00
NTEGUMENTARY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adnexal adenoma Keratoacanthoma ubcutaneous tissue Keratoacanthoma Fibroma	+	+	+	X	+	+	+	+	+	X	+	+	+	+	+	+	*	+	+	+	+	+	X +	+	
Fibrosarcoma Fibrous histiocytoms, malignant	X																X						x		
ESPIRATORY SYSTEM ungs and bronchi Liposarcoma, metastatic rachea	+	+	+	++	+	+ +	+ +	+	+	++	++	+	++	+	+	++	++	+	+	+	+ +	+ +	+	+	_
EMATOPOIETIC SYSTEM one marrow pleen	 +	+	+	++	+	++	++	++	÷	++	++	++	÷	++	+	++	++	+	++	÷	++	†	+	++	
Fibroma ymph nodes hymus	‡	++	+	++	-	+	++	++	+	X + +	+	+	++	++	++	+	++	++	++	++	++	++	++	++	
IRCULATORY SYSTEM eart Liposarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_
IGESTIVE SYSTEM alivary gland iver	‡	++	++	+	+	+ +	++	‡	+	++	+	+	++	+	÷	++	+	+	+	<u>+</u>	-	<u>+</u>	+	+	_
Neoplastic nodule ile duct all bladder & common bile duct ancreas Acinar-cell adenoma	+ N +	+ X +	+ X +	+ N +	+ X +	X + N +	+ Z +	+ X +	+ N +	+ N + X	+ X +	+ N +	+ X +	+ N + X	+ X +	X + N +	+ N + X	+ N +	+ X +	+ X +	+ N + X	+ X +	+ X +	+ 7 +	. 1
ophagus omach Papilloma, NOS	+	++	+	+	+ *	++	+	+	+	++	+	+	+	++	+	++	++	+	+	++	++	+	+	+	
raphinia, NOS nall intestine irge intestine Temangioma	‡	+	+	+	+	+	+	+ * X	+	+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	
RINARY SYSTEM idney rinary bladder	‡	++	++	+	++	<u>+</u>	+	+	‡	++	+	+	+	+	++	‡	+	++	‡	+	+	++	‡	++	_
NDOCRINE SYSTEM tuitary Adenoma, NOS	+	+	+	+	-	+	+	+	+	÷	+	+	+	*	+	+	+	+	ţ.	+	+	+	+	+	_
irenal Cortical adenoma Pheochromocytoma Syroid	+	X	X	+	+	+	+	× X +	X X +	+	+	+	+	X +	+	X	+	+	+	+	+	+	+	+	
ceil adenoma -ceil carcinoma irathyroid increatic islets siet-cell adenoma siet-cell acrinoma	‡	+	÷ +	+	‡	+	+	+	-	+	Ŧ	+ + X	X + +	‡	+	X + X	+	+	+	x ÷	+	+	+	-	
EPRODUCTIVE SYSTEM ammary gland	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+		+	+	_
Adenocarcinoma, NOS sua sua suarstitual-cell tumor ostate	*	* X +	* *	* X + *	* *	* -	+ +	+ X +	* X +	* X +	* *	* -	* X +	* X +	* *	* X +	* *	* *	+ +	* *	* X +	^+ X +	* *	+ -	:
Adenoma, NOS Zarcinoma, NOS Adenoma, NOS	N	N	N	N	N		N X	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	1
ERVOUS SYSTEM rain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
ECIAL SENSE ORGANS mbal gland quamous cell carcinoma	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	1
USCULOSKELETAL SYSTEM	N X	N	N	N	N	N	+	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	1
sarcoma, NUS				N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	n	N	N	1
ODY CAVITIES eritoneum	N	N		••																					
Sarcoma, NOS ODY CAVITIES entoneum Mesothelioma, NOS unica vaginalis Mesothelioma, NOS LL OTHER SYSTEMS	N +	N +		+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: VEHICLE CONTROL (Continued)

ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	030	3	0 3 2	3	3 4	3	036	037	3	039	040	0 4	0 4 2	0 4 3	044	0	046	0 4	0 4 8	049	0 5 0	TOTAL
weeks on study	0 5	0 6	9	047	5	0 5	105	0 5	00	9 5	0 3 6	000	0 5	9	105	0 5	0 4 4	0 5	03	0 5	000	038	105	5	0 5	TISSUES
INTEGUMENTARY SYSTEM Skin Adnexal adenoma Keratoacanthoma Subcutaneous tasue Keratoacanthoma Fibroma Fibroma Fibrosarcoma Fibrous histocytoma, malignant		+ X + X	+ X + X	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 5 *50 1 1 3
RESPIRATORY SYSTEM Lungs and bronch: Liposarcoma, metastatic Traches	+	+	+	++	+	+	+	+	* *	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 49
HEMATOPOIETIC SYSTEM Bone marrow poleen Fibroma Lymph nodes Thymus	‡ ‡	++ +-	++ ++	++ +-	++ ++	++ ++	++++	++ ++	++ ++	++ ++	++ +-	* + + + + + + + + + + + + + + + + + + +	++++	++ ++	++ ++	++ ++	+++-	++++	++ ++	++ ++	++ ++	++ ++	+ + + +	++ ++	++ ++	50 50 1 49 41
CIRCULATORY SYSTEM Heart Liposarcoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
OIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Sile duct Palibladder & common bile duct Pancreas Acinar-ceil adenoma Saophagus Stomach Papilloma, NOS Small intestine Legg intestine Legg intestine Leggana	+++++++	++ +2+ ++	++ +X+ +++	++ +X+ ++ ++	++ +2+ ++ ++	++ +2+ ++	++ +2+ ++ ++	++ +2+ ++ ++	++ +2+ ++ ++	++ +X+ ++	++ +Z+ ++	++ +×+ ++ ++	++ +2+ ++ ++	++ +X+ ++ ++	++ +2+ ++ ++	++ +X+ ++ ++	++ +2+ ++ ++	++ +2+ ++ ++	++ +×+ ++ ++	++ +X+ +++++	++ +2+ ++ ++	++ +2+ ++ ++	++ +2+ ++ ++	++ +2+ ++ ++	++ +2+ ++ ++	50 50 2 50 250 60 4 49 50 1 48 49
URINARY SYSTEM Kidney Jrinary bladder	<u>+</u>	++	++	++	++	++	++	++	++	+	++	++	++	÷	++	++	++	++	++	+	++	++	++	++	++	50 48
ENDOCRINE SYSTEM Pitutary Aderoma, NOS Aderonal Cortical adenoma Pheochromocytoma Chyvoid C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet-cell adenoma Islet-cell adenoma	+ + X + +	+ + + ++	+ + X+ ++	+ + + -+	+ + + ++	+ + X+ ++	+ X + X + + + + + + + + + + + + + + + +	+ + X + +	+ + x + + * *	+ + + ++	+ ++	+ + + -+	+ + + X ++	+X++++	*X	+ X + X + + + + + + + + + + + + + + + +	+ X + + - +	+ + X + + +	+ + + -+	+ + + ++	+ + X + + +	+ + + +	+ + + x	+ X + + + + + + + + + + + + + + + + + +	- + + + X - +	49 9 50 3 14 49 3 4 40 50 3
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Testus Interstitual-cell tumoc Prostate Adenoma, NOS Preputsal/clitoral gland Carcinoma, NOS	* X +		+ + X N			+	+		+	+ * * N		+	+ * * * *	+			+		+	+ + X + N	+	+		+	и + x + и	*50 1 50 36 47 1 *50
Adenome, NOS NERVOUSSYSTEM Brain	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* +	+	+	+	+	50
PECIAL SENSE ONGANS ymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
AUSCULOSKELETAL SYSTEM Jone Sarcoma, NOS	N	N	N	+	N	N	N	N	N	N	+	+	N	N	N	N	+	N	+	N	N	+	N	+	n	*50 1
ODY CAVITIES Peritoneum Mesothelioma, NOS unics vaginalis Mesothelioma, NOS	N +	N +	N +	N +	N +	N X + X	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	- N +	*50 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N X	N	N	N	N	n	*50

^{*} Animals Necropsied

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

ANIMAL NUMBER	0	002	0	004	0 0 5	0	007	0	000	0	0 1 1	0 1 2	0 1 3	014	0 1 5	0	0117	018	9	020	0 2 1	2 2	23	024	0 2 5
weeks on Study	81	0	0 5	9	0 5	0	1 0 5	000	0 5	0 5	9	0	0 5 6	0 4	1 0 5	5 8	9	0 5	0 5	084	080	1 0 1	066	6	0 8 8
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	N	N	<u>-</u>
RESPIRATORY SYSTEM Lungs and bronchi Trachea	‡	+	++	÷	++	<u>+</u>	÷	++	+	‡	+	++	+	÷	+	+	++	+	+	<u>+</u>	<u>+</u>	-	+	-	- + +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	‡ ‡ ‡	+ + + +	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++ -+	++++	+++-	++++	++-+	++++	+++-	++++	++ -+	- * * * *
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	-	+	+	+	+	+	-	+	<u> </u>	+
Liver Adenocarcinoma, NOS, metastatic Bile duct Gallbladder & common bile duct	+ N	+ + N	+ *	+ N	+ N	+ N	+ N	+ + N	+ + N	X+	+ *X	+ N	+ N	+ + N	+ N		+ + N	+ *	+ N	X++	+ + X	+ + N	+ *	+ N	+ + N
Pancreas Acinar-cell adenoma Esophagus Stomach		+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ X + +	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++	+ ++
Papilloma, NOS Small intestine Large intestine Adenocarcinoma, NOS	‡	+	+	+ -	++	+	+	+	++	++	X + +	X + +	+	+	+	+	++	+	+	+	++	+	+	+	++
URINARY SYSTEM Kidney Tubular-cell adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	† X	+	+	+	+	+
Tubular-cell adenocarcinoma Urinary bladder	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal	+ +	+	+	+	+	+	+	+ +	+ +	* *	* *	+	+	* *	+ *	+	‡ *	+	* *	+	+	+	+	+	+
Pheochromocytoma Ganglioneuroma Thyroid C-cell adenoma	+	+	+	+	+	+	+	+ X	X +	+	+	+	+	+	X +	-	+	+	+	+	+	+	+	-	+
C-cell carcinoma Parathyroid Pancreatic islets Islet-cell adenoma	7	+ + X	+	+	+	+	+	+ *	+	X -	+	X + +	-	+	+	-	+	+	+	-	+	-	+	-	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+
Testis Interstitial-cell tumor Prostate Adenoma, NOS	X +	* X	+	+	+	+	*	+	* X +	+	**	* *	+	+	* * *	+	* X +	*	* * *	* * *	+ -	* *	* X +	+	* *
Preputiki/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Ear Neurofibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Osteosercoms	N	N	N	N	N	N	N	N	N	N	N	N	+	N	N	+	N	N	N	N	N	N	N	N	N
BODY CAVITIES Pleura Sarcoma, NOS Peritonoum	l		N N			N N																			
Lipoma Mesothelioms, NOS Tunica vaginalis Mesothelioms, NOS	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS, invasive Fibrous histicortoma, malignant	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N
Malig. lymphoma, histiocytic type Leukemia, mononuclear cell				X					x													_			

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

						6	UQ	nu	ını	160	1)															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	3	3	3 2	3	3	35	0 3 6	37	0 3 8	3	040	0 4 1	4 2	0 4 3	0 4	045	0 4 6	047	8	9	0 5 0	TOTAL
WEEKS ON STUDY	9	8	8	0	0 5	0	5	0 5	0	0	0	1 0 5	0 5	9	1 0 5	0	9	0 5	6	0 5	0	9	1 0 5	0 5	0 7 9	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	N	+	*	+	+	+	+	*50 2
RESPIRATORY SYSTEM Lungs and bronchs Trachea	‡	++	++	++	++	+	+	+	++	+	+	+	+	++	+	++	<u>+</u>	+	+	+	÷	+	+	+	<u>+</u>	50 47
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes	+	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	+++	- + +	+++	+++	+++	49 50 47
Thymus CIRCULATORY SYSTEM Heart	-	++	++	++	+++++++++++++++++++++++++++++++++++++++	+	+	++	++	+ +	+	++	+ +	<u>+</u> +	+ +	+ +	++	+ +	+ +	++	+ +	++	++	++	 +	50
DIGESTIVE SYSTEM Salivary gland Sarcoma, NOS Liver Adenocarcinoma, NOS, metastatic Bile duct Galibladder & common bile duct Pancreas Acinar-cell adenoma Esophagus Stomach Papilloma, NOS Small intestine Large intestine Adenocarcinoma, NOS	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + +N+ ++ ++	+ + + X+ ++ ++	+ + + + + + + + + +	+ + +X+ ++ ++	+ + + + + + + + + + + + + + + + + + + +	+ + +N+ ++X++	+ +X+N+ ++ ++X	+ + + + + + + + + + + + + + + + + + + +	+ + +2+ ++ ++	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + +2+ ++ ++	+ + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + +2+ ++ ++	+ + + + + + + + + +	+ + + + + + + + + +	+ + + N+ ++X++	+ + + + + + + + + +	+ + + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	47 1 50 150 50 50 50 50 50 50 50 50
URINARY SYSTEM Kidney Tubular-cell adenoma Tubular-cell adenocarcinoma Urinary bladder	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+	+	+	- + +	50 1 1 49
ENDOCRINE SYSTEM Ptuntary Adenoma, NOS Adrenal Pheochromocytoma Ganglioneuroma Thyroid C-ceil adenoma C-ceil carcinoma Parathyroid Pancreatic isleta Islet-ceil denoma	+ X + + +	+ + +	+X+ + ++	+ + + ++	+ + + +	+ + + +	+ + + -+	+	+	+	+ + + x + x	+ + * * +	+ + x + x + +	+ + + +	+ + + ++	+ + + X++	+ + + -	+ * * +	+ + +	+ + + +	+ + + +	+ * * +	+ + +	+ x + x + x + +	+ + + ++	50 8 50 8 1 48 3 5 38 50 3
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Testus Interatutal-cell tumor Proatate Adenoma, NOS Preputusi/clitoral gland Carcinoma, NOS Adenoma, NOS	+ * * * *	N + X + N	+ + + N	+ * * * N	+	+ * * * N	+ + + N	+	+	+ * * * N	+	+	+ + X + N	+ X +	* X +	+	+	+	+	+	+	+ + X + N	+	+	+	*50 3 50 43 49 1 *50 4
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Ear Neurofibrosarcoma	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	+	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Pleura Sarcoma, NOS Peritoneum Lipoma Mesothelioma, NOS Tunica vaginalis Mesothelioma, NOS	X									N N +																*50 1 *50 1 1 *50 1
ALL OTHER SYSTEMS Multiple organs NOS Sarcoma, NOS, invasive Fibrous histocytoma, malignant Malig lymphoma, histocytic type Leukemia, mononuclear cell	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N X	*50 I 1 1 2

^{*} Animals Necropsied

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

TWU-FEAR GAVAGE	3101		_) F		-U		-U	n.	<i>y-</i> 4	2-14	1 C	11		LF		OI	- E	14 1	95	H	-	n 	יע	JS	<u>e</u>
ANIMAL NUMBER			0	0	0	0	0	0	008	9	0	1	1 2	1 3	1	1 5	6	0 1 7	1 8	1 9	2	2	2	2	2	0 2 5
weeks on Study			1 0 5	9	0 8 4	1 0 3	1 0 1	1 0 5	0	0 8 7	0	9	1 0 3	1 0 1	1 0 5	9	1 0 5	0 8 1	1 0 2	0 3 5	0 5 5	1 0 5	1 0 5	1 0 5	1 0 2	1 0 5
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Sarcoma, NOS, metastatic		+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea	-	٠	+	+	-	+	+	+	-	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOLETIC SYSTEM Bone marrow Spleen	-	 +	+ +	+	++	<u>+</u>	++	+	++	++	+	<u>+</u>	+	++	++	++	+	++	++	++	++	++	++	+	++	- + +
Angiosarcoma Lymph nodes Thymus		+	+	+	++	-	+	++	+	+	+	++	++	++	+	+	+	-+	++	+	+	+	+	+	+	++
CIRCULATORY SYSTEM Heart	- -	- -	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
DIGESTIVE SYSTEM Oral cavity Papilloma, NOS	-	1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Salivary giand Liver Neoplastic nodule Hepatocellular carcinoma		+	+	+ X	++	++	++	+ X	+ X	++	+	+	++	+	+	+	* *	+	+	+	+	+	+	+	+ X	+
Sarcoma, NOS, metastatic Bile duct Galibladder & common bile duct Pancreas	i		+ N +	+ N +	+ N +	+ N +	+ X +	+ N +	+ X +	X + N +	+ X +	+ X +	+ X +	+ N +	+ X +	+ % +	+ % +	+ X +	+ N +	+ N +	+ X +	+ X +	+ % +	+ % +	+ 2 +	+ % +
Esophagus Stomach Papilloma, NOS] -	-	+ + X	++	+ + X	+ + X	- + X	+ + X	+ + X	+ *	+ + X	+ + X	++	+ *	÷ *	+ *	+ + X	++	+ + X	+	+	+ + X	+	+ + X	+	+ + X
Squamous cell carcinoma Small intestine Large intestine Sarcoma, NOS	:	-	+	+	+	+	+	+	-	+ + X	+	+	++	X + +	+	+	+	+	X + +	+	++	++	++	++	++	+
URINARY SYSTEM Kidney	- -	-	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	
Transitional-cell carcinoma Tubular-cell adenocarcinoma Urinary bladder Transitional-cell papiiloma		٠	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary	- -	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	•	,	+ K	+	+	+	+ X	+	*	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma, malignant Thyroid Follicular-cell carcinoma	.		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Parathyroid Pancreatic islets Islet-cell adenoma	:	-	+	-	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	++	Ŧ	+
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	-	-	+	N	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+
Testis Interstitial-cell tumor Prostate	1	٠.	+	+	+	+	_		+	+	+	+	+	+	+	+	+	+	+			+	+	+	* *	+
Adenoma, NOS Preputial/clitoral gland Carcinoma, NOS	1	1 1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
NERVOUS SYSTEM Brain	- -	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	1	1 1	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
BODY CAVITIES Tunica vaginalia Mesothelioma, NOS	-	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	†	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, NOS	- -	1 1	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N		N	N	N	N	N	N	N	n
Malignant lymphoma, NOS Leukemia, mononuclear cell Scrotum NOS Fibrosarcoma				x			x							-				X						x		
	_			_																_						_

- Tissue Examined Microscopically Required Tissue Not Examined Microscopically Tumor Incidence Necropsy, No Autolysis, No Microscopic Examination Animal Missexed

- No Tissue Information Submitted No rissue information Submitted
 Necropsy, No Histology Due To Protocol
 Autolysis
 Animal Missing
 No Necropsy Performed

TABLE A3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

						(1	UO.	nu	nu	lec	I)															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	2	3	3	3	3	3	3	3	37	3	0 3 9	040	4	4	0 4 3	044	0 4 5	0 4 6	0 4	4	9	0 5 0	TOTAL
weeks on Study	8	074	9	0	047	0 5	0	0 8 7	0 5 2	0	0	1 0 5	0 7 4	0 8 1	1	0 8 3	0	0	0	0	0	0	0	0 3	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous timus Fibroma	+	N	+	+	+	+	+	+	+	+	+	N	N	+	+	+	+	+	*	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Aiveolar/bronchiolar adenoma Sarcoma, NOS, metastatic Trachea	+	+	* *	+	+	+	+	* *	+ +	+	+ +	+ +	+	+	+	+	+	+	+ +	++	+ +	+ +	+	+ +	+	50 2 1 45
HEMATOPOIETIC SYSTEM Bone marrow Spleen Angiosarcoma Lymph nodes Thymus	+ + +	++	++ ++	++ ++	++ -+	++ ++	++ ++	* + + + + + + + + + + + + + + + + + + +	+ - + -	+ + X + +	++ ++	++++	++ ++	* * * * * * * * * * * * * * * * * * *	+ - + +	++ ++	++ ++	++ +-	++ ++	_	++++		++ -+	+ + + + + + + + + + + + + + + + + +	- + + -	50 48 1 45 41
CIRCULATORY SYSTEM	+	_ +	<u>.</u>	+	<u> </u>	<u>.</u>	+	+	+	+	+	<u> </u>	+	+	+	+	+	+	<u>.</u>	+	+	+	+	+	_	50
DIGESTIVE SYSTEM Oral cavity Papilloma, NOS Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma	и + +	N -	N + +	N ++	N + +	N ++	N ++	N + +	N +	N +	N + +	N + +	N + +	N + +	N +	N ++	N ++	N + +	N + +	N +	N X + +	N + +	N + +	N + +	N + +	*50 1 49 48 3
Sarcoma, NOS, metastatic Bille duct Gallbladder & common bile duct Pancreas Esophagus Stomach Papilloma, NOS Squamous cell carcinoma Small intestine	+N +++++	+2+++ ++	+X+++X+	+X+++X++	+2+++++	+Z+++X -+	+X+++X++	++++4+	17111	+X+++X++	+X+++X++	++++2+	++++4+	+2+++ ++		++ +1+2+	+++	+X+++X++	+X+++X++	+X+++X ++	+X+++X++	+X+++X++	++++2+	+2+++ ++	++++4	1 46 *50 48 46 48 30 2 46 47
Sarcoma, NOS JRINARY SYSTEM (idney Transitional-cell carcinoma Tubular-cell adenocarcinoma Jrinary bladder Transitional-cell papilloma	+	+	+ *	+	+	+	+	+	+	++	+	+	+	+	<u> </u>	+	+	+	+	+	+	+	+	+	- * * *	49 1 1 46
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Pheochromocytoma, malignant Thyroid Parityroid Parathyroid Parathyroid Parathyroid Parathyroid	+ + -+	+ +	+ + + +	+ + + + +	+ + + +	+ + + ++	+ + X+ ++	+ + x + +	+ - + +	+ + + + +	+ + * -	+ + + +	+ + + + +	+ + + +	+ - -	+ + + +	+ + + + **	+ X + + + + + + + + + + + + + + + + + +	* * + + + + + + + + + + + + + + + + + +	+ + + -	+ + + + +	+ + + + +	+ + + +	-+ + + + *	1 + x + + + + + + + + + + + + + + + + +	50 3 48 1 4 1 48 1 39 48 2
IEPRODUCTIVE SYSTEM fammary gland Fibroadenoma estis Interstitial-cell tumor rrostate Adenoma, NOS reputial-ciltoral gland	+ N	+	+ +x+ N	+	+ - - N	+ + + N	+ + x + N	* *	N + + N	+		*	+			+	+ * *	* X +	*	+	+	+ + + N	+	+	+	*50 1 48 43 48 3 *50
Carcinoma, NOS NERVOUSSYSTEM Brain	X	_		_	_	_	_	_	_	_	_	+	+	+	+	_	_	-	_	+		_	_	_	_	50
SPECIAL SENSE ORGANS Cymbel gland Carcinoms, NOS	N			_	N	N	N	N	N	<u>.</u>	N			_	_	N	N	N	N	N	N	N	N	N	N	*50
SODY CAVITIES Funica vaginalle Mesothelioma, NOS	+	+	+	+	N	+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+		+	+	+	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioms, NOS Melignant lymphoms, NOS Leukemis, mononuclear cell Scrotum NOS Fibrosarcoms	N	N	N X	N	N	N	N	N X		N	N	N	N	N	N	N	N	N	N	N			N		N X	*50 1 1 7

^{*} Animals Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR-GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

TWU-YEAR-GAVAGE STUDY	. 0		_	441	LU		U- 2	P. TA	1.C	1.5	11	LE	- R	V.	- 63	141	22	٧	E. I	111	-		U.	714	1 W
ANIMAL NUMBER	0	002	003	004	000	900	007	008	000	0	0 1 1	1 2	0 1 3	1	1 5	0	1 7	18	1 9	0 20	2	2 2	23	2	0 2 5
weeks on Study	0	0 5	0 97	072	880	0	0	0	0	0 5	0 5	0.5	0	0	0 5	1 0 5	040	0	074	0 5	0 5	0 7 5	0 5	0 5	0 9 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrusarcoma	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	*	+	N	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Endometrial stromal sercoma, meta Trachea	+	+	+	+	+	+	+	* +	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	**	* * * *	* ÷ ÷ ÷	++++	++++	++++	* * * * * * * * *	+++-	++++	++-+	++++	* ÷ ÷ ÷	++++	* * * + -	++++	* ÷ ÷ -	++++	++++	++++	++++	+ + + +	+++-	++++	++++	- ++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct	‡	++	‡	++	++	‡	÷	‡	++	++	+	‡	÷	++	+	÷	‡	+	++	++	++	++	++	++	- + +
Bile duct Galibiadder & common bile duct Pancreas Acinar-cell adenoma	+ X +	+ N +	+ N +	+ X +	+ N +	+ N +	+ N +	+ %+	+ N +	+ N +	+ X +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ N +	+ X +	+ 7 +	+ N +	+ X +
Esophagus Stomach Papilloma, NOS Small intestine	*	++ +	++ +	++++	++++	++++	++ +	++ +	++++	++++	++ +	++ +	++ +	++++	++++	++ +	++ +	++ +	++++	++++	++++	++++	+++++	++++	++++
Large intestine URINARY SYSTEM	÷	÷	<u>+</u>	<u>+</u>	÷	÷	<u>+</u>	+	÷	÷	÷	÷	÷	÷	÷ —	÷	<u>÷</u>	÷	÷	÷	÷	+	+	<u>÷</u>	÷
Kidney Urinary bladder	+	+	+	+	+	+	+	+	+	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS	+ X	+ *	+ *	+	+	+	+	+ *	+	+	+ *	+ X	+	+ X	+ X	+ X	+	+	+	+	+	+	+	+ X	+ X
Adrenal Cortical adexioma Pheochromocytoma Thyroid	+	+	+	+	+	+	+	+	T X +	+	+	+	+	* × +	+	* X	+	* +	+	+	+	+	+	+	+
Follicular-cell carcinema C-cell adenoma C-cell carcinema Parathyroid	+	+	+	+	+	+	+	_	+	x +	+	_	_	X +	X +	+	_	+	+	x +	+	_	+	+	X +
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS	+	+	+	+	N	+	+	+	+	‡	+	+	+	+	+	+	+	+	+	*	+	N	#	+	- + *
Adenocarcinoma, NOS Cystadenoma, NOS Fibroadenoma Preputia/clitoral gland Carcinoma, NOS	X	N	N	N	N	X N	N	X	N	N	N	N	N	N	N	X N	N	N	N	N	N	N	X N	x	X N
Carcinoma, NOS Utarus Adenocarcinoma, NOS Endometrial stromal pelyp Endometrial stromal sarcoma	+	+	+	+	+ X	+	+ X	*	+ X	+	+	+	+	+	+	+ *	+	+	+	+	+	+	+	+	+
Overy NERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	7	+	+	+	+	+	+	+	+	+
Brain Ependymoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Loukemis, menonuclear cell	N	N	N X	N	N	N X	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N	N	N

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: VEHICLE CONTROL (Continued)

				•	, ,,		•••	-	10	UII	ш	ue	, u	'												
ANIMAL NUMBER	020	0 22 7	028	0 22 9	30	3	3	3	034	3	3	37	3	3	040	0 4	0 4 2	0 4 3	044	0 45	046	047	0	040	0 5 0	TOTAL
weeks on Study	9	9	0 5	100	0	0 5	0 5	087	87	0	9	0	000	0	0	9	0	00	000	0 8 6	0	0	0	000	0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissus Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
RESPIRATORY SYSTEM Lungs and bronchi Adenocarcinoma, NOS, metastatic Endometrial stremal sarcoma, meta Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1 47
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	÷	++++	+++-	+++	++++	***	++++	++	* + + +	+++-	++++	++++	++	++ -+	++++	++++	++++	++++	* * * *	++++	++++	* * * *	++++	++++	+++-	49 49 46 41
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Callbladder & common bile duct	+ + N	+ + + N	++ +x	++×+N	++ +x	+ + + N	_ + + x + N	+ + + N	Z+ ++	+ + + N	++ +x	+ + + N	+ + + N	++ + N	++ + N	++ +x	++ + N	++ +x	+ + + N	++ +N	++ +N	+ + + N	++ +N	+ + + N	+ + + N	50 50 2 50 *50
Pancreas Acinar-ceil adenoma Ecophagus Stomach Papilloma, NOS Small intestine Large intestine	*	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ +1	+ ++ +1	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ +1	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ ++	+ ++ +	+ ++ +	+ ++ ++	+ ++ +	+ ++ +	+ ++ +	+X++X+:	* ++ +.	+ ++ +	50 1 50 50 1 50 80
URINARY SYSTEM Kidney Urinary bladder	*	*	+	-	- +	-	-	- +	- +	- +	* *	* +	- ‡	- ;	- ;	- ‡	- ‡	- ‡	+	++	+	- +	+	++		50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	+	+ + +	+ X +	+ + *	+	* +	+ +	+	+ X+	+ . +	+	+	+ X +	+ *	+	+ X +	+	+ X +	+	+	+	+	+ *	+	+ X +	50 1 19 50 3
Thyroid Follicular-cell carcinoma C-cell adenoma C-cell carcinoma Parathyroid	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+ X +	+ X +	*	+	+ X +	+	+	+	+	+	+	50 1 6 2 39
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Cystadenoma, NOS	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	*50 4 2
Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Uterus Adenocarcinoma NOS	N +	N +	NX+	N +	X N +	X H	N +	N +	N +	N +	+	+	+	N +	N +	N +	N +	X N +	N +	N +	X N +	X +	N	X N +	X N +	14 *50 50
Endometrial stromal polyp Endometrial stromal sercoma Ovary	+	+	+	+	+	+	+	+	+	+	X +	+	X +	+	+	+	+	+	+	+	+	X +	+	+	+	7 1 50
NERVOUS SYSTEM Brain Ependymoma	+	+	+	+	+	+	+	+	+	+	+	‡	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE OEGANS Zymbol gland Cartinema, NOS	ŧ	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALLOTHER SYSTEMS Multiple organe, NOS Leukemia, menemulear cell	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	N	N	N	N	*50

^{*} Animals Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

TWO-TEAR GAVAGE S	,,,	,,,	1	U	r	J-1	л	L	/R	U-	4 -1	V1 C	. 1	11	اما	7.17	· U	~	114	L:	L	01	T	DC	191	Dia.
ANIMAL NUMBER	T	0	0 2	0	0	0 0 5	0	0 0 7	0	9	0 1 0	1	0 1 2	0 1 3	0	0 1 5	0 1 6	0 1 7	1 8	1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
weekson Study		0 5	0 5	0	1 0 5	9	1 0 5	0	0 5	8	0 2	9	3	0	0	1 0 5	1 0 5	1 0 5	1 0 5	0	9	0	0 7 0	0 5	6	0 5
INTEGUMENTARY SYSTEM Skin	H	_	_	<u> </u>	_	_	<u> </u>	_	-	_	_	_	_	_	_	_	_	_		+	_	+	N	+	N	_
Papilloma, NOS Subcutaneous tissue Fibroma Fibrosarcoma		+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N		N	+
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fibrosarcoma, metastatic		+	+	+	+	+	+	+ X	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+
Trachea		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus		++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	+++-	++++	++++	++++	++++	++-+	+++-	+++	++++	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral Cavity Papilloms, NOS Salivary gland Liver Neoplastic nodule		N + +	N + +	N++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	* + 4 %	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +
Bile duct Gallbladder & common bile duct		+ N +	+ X +	+ N +	+ N	, N	+ X +	†	+ N	* *	† N	+ N	+ X +	+ X +	, N	† N	+ X +	, N	+ Z +	* X +	* *	+ X +	+ N	† N	+ N +	† N
Pancreas Esophagus Stomach Papilloma, NOS		+ +	+++	+++	* + + X	++	+	+++	+++	++	+++	+++	++	+++	+++	+++	+	+++	+++	+	++	++	+++ :	+++	++	+++
Small intestine Large intestine		Ŧ	Ŧ	÷	Ŧ	+	Ŧ	Ŧ	+	Ŧ	Ŧ	÷	Ŧ	÷	Ŧ	Ŧ	Ŧ	+	+	Ŧ	+	Ŧ	+	Ŧ	Ŧ	+
URINARY SYSTEM Kidney Urinary bladder		++	++	+	++	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	++	++	+
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	Γ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenoma, NOS Adrenai Cortical adenoma		X +	X +	X +	+	+	+	X +	X	X +	+	+	+	+	+	¥ +	X + X	+	+	+	+	+	+	X +	+	+
Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma C-cell adenoma		+	+	+ x	*	+	X +	-	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	-	+	+
C-cell carcinoma Parathyroid Pancreatic islets Islet-cell carcinoma		-	-	++	+	+	-	-	+	++	+	+	+	-	х -	+	+	+	-	х -	-	++	+	-	++	-
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Cystadenoma, NOS		+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+
Fibrosarcoma Fibrosaenoma Preputia/clitorai gland Carcinoma, NOS		N	N	N	N	N	N	N	N				N				N		N	X	N	N	N	N	X N	N
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary		+	+	+	+	+	+	* +	+	+ +	+	+	+ +	+	+ +	* *	+ +	+	* +	+	* +	+	+	+	+ +	+
NERVOUSSYSTEM Brain	-	+	+	+	+	+	+	+	<u> </u>	+	+	+	+	<u>.</u>	+	<u> </u>	+	+	+	+	+	+	+	+	+	-
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell		N	N	N	N	N X	N	N	N	N	N	N	N	N X	N	N X	N	N X	N	N	N X	N	N	N	N	N
	_	_	_								-							_	_			_			_	1

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

						"	0	nu	ını	160	"															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	9	0 3 0	3	3 2	3	34	3 5	3	037	3	9	040	041	0 4 2	0 4 3	044	0 4 5	046	0 4 7	0 4 8	049	50	TOTAL
weeks on Study	1 0 2	0 5	0	000	094	0 5	0 5	0 5	0 5	0 5	0 8 7	9	044	105	0 5 8	0 5	0 5	8	9	0 5	0 5	0 5	0 5	105	0 5	TISSUES TUMORS
INTECUMENTARY SYSTEM Skin Papilloma, NOS Subcutaneous tissue Fibroma Fibromarcoma	+	+	+	+	+	+ +	+	+ *	+	++	+	+	+	+ *	+	+	+	+	+	* *	+	+	+	+	++	*50 1 *50 2
RESPIRATORY SYSTEM Lungs and bronchi C-cell carcinoma, metastatic Fibrosarcoma, metastatic Traches	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_ + +	50 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	* * * * * * *	++++	++++	++++	++-+	++++	++++	++-+	++++	++++	++++	+ + + +	+ + + -	+++	++++	-+++	++++	+ + + +	++++	++++	++++	++++	++++	++++	+ + + +	49 50 47 46
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Oral Cavity Papilloma, NOS Salivary gland Liver Neoplastic nodule	N + +	N + +	N + +	N +	N ++	N + +	N + +	N + +	N ++	N + +	7 + +	N + +	N + +	N + +	N + +	N ++	N ++	N + +	N + +	N + +	N + +	N + +	N +	N X + + X	N + +	50 1 50 50
Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Small intestine	+ + + + +	++++	++++	++++	++++++	++++ 7+	++++	+ + + + Z +	++++++	++++X+	+ + + + Z+	+ + + + Z+	+++X+	++++4	+ + + + Z+	++++4	++++7+	+++++	+ + + + 2+	+ + + + 4 + 4	++++	+ + + + + Z +	++++Z+	+ 2 + + + +	+ + + + + 12 +	50 *50 50 50 50 49
Large intestine URINARY SYSTEM	-	-	+	-	-	-	-	÷	÷	+	+	-	+	-	-	-	+	+	÷	÷	+	÷	-	+	-	50
Kidney Urinary bladder	÷	+	+	+	+	+	+	‡	+	++	+	+	‡	+	+		+	+	+	‡	+	+	+	+	+	50 49
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adenoma	+	+ x	+ x	+	+ X	+ X	+ x	+ X	+	+	+	+	+	+ X	+	+	+ X	+	+ X	+	+	+	+ X	+	+ X	50 1 21 50
Cortical adenoma Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	1 1 48 2 1
C-cell adenoma C-cell carcinoma Parathyroid Pancreatic islets Islet-cell carcinoma	Ŧ	-	÷ +	++	÷ ÷	X + X	X +	-	+	÷ ÷	+ +	+ +	-	+ +	+ +	+	+ +	÷ ÷	+ +	-	X + +	+	+	÷	+	1 5 32 50 1
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Cystadenoma, NOS	+	+ x	+	N	+	+	+	+	+	*	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	*50 2 1
Fibrosarcoma Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Uterus	N +	X N +	N +	N +	N +		N X +	X N +	X N	N +	N +	N +	N +	X N +	N +	X X N +	+	N +	N +	X N +	X N +	N +	n +	N +	-	15 *50 1 50
Endometrial stromal polyp Endometrial stromal sarcoma Ovary		+	Х +	, +	, +	* +	+	+	+	, +	, +	X +	+	· +	+	χ́ +	χ́ +	, +	, +	+	+	X +	+	, +	* *	9 2 50
NERVOUSSYSTEK Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N X	N	N	N	N	N	N X	N X	N	N	N X	N X	N	N	N	N	N	N X	N	N	N X	N	N	N	N X	*50 13

^{*} Animals Necropsied

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

																			-					_		
ANIMAL NUMBER	1	0	002	003	604	005	000	007	008	9	0	1	1 2	13	14	1 5	0	1 7	1 8	9	ONO	2	22	22	824	0 2 5
weeks on Study		9	005	05	0 5	83	0 5	6	0	05	0 5	0 2	36	080	83	000	9	93	0	105	0	062	0	88	000	7 7
INTEGUMENTARY SYSTEM Skin Papilloma, NOS Subcutaneous tissue Sarcoma, NOS Fibroma Rhabdomyosarcoma		+	+	+	+	+	+	N N	+	+	+	+ + x	+	+	+	+	+	+	+	+	+	N N	+	+ *	* * * *	- + +
RESPIRATORY SYSTEM Lungs and bronchi Squamous cell carcinoma, metastatic Sarcoma, NOS, metastatic Trachea		+	+	+	+	‡ +	+	+	+	+	+	+	+	+	+	+	+	+	+ +	+	+	+	+	+ X +	+	- + +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus Squamous cell carcinoma		++++	++++	++++	++++	+ + + + x	+++-	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++ :+	++++	++++	++++	++++	++++	++++
CIRCULATORY SYSTEM Heart	Γ	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Caliblader & common bile duct Pancreas Acinar-cell adenoma Esophagus Stomach Papilloma, NOS Small intestine Large intestine	1	++**+ ++*++	+++z+ ++ ++	+++2+++	++X++ ++X++	+++**+ ++ ++	++ +2+++	+++*+++++	++ +2+ ++ ++	++X++ ++X++	+++2+++++	++ +2+ ++ ++	++ +2+ ++ ++	+++×+ +++++	+++*+ ++ ++	++ +* +* ++	+++2+++	++ +2+ ++ ++	+++*++++++	++ +2+++	++X+++X+++	+++X++++	+++2+++	++ +2+ ++ ++	+++×++++++	++ ++ + + +++
URINARY SYSTEM Kidney Urinary bladder	-	<u>+</u>	<u>+</u>	++	+	+	+	+	++	++	<u></u>	+	+	++	++	+	++	++	+	++	<u>+</u>	+	+	+	<u>+</u>	- + +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma C-cell carcinoma Parathyroid		+ + +	+	+ X+ X+ X+	+ x+ +	+ + +	+ X+ + +	+ + +	+ x + + x -	- + +	+ ×+ +	+ x+ + +	+ + -	+ x+ + +	+ + +	* + + -	+ + +	+ x+ + +	+ ×+ +	+ + +	+ + +	+ x+ + +	+ + +	+ + +	-+ ×+ + -	-+ + -
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenocarcinoma, NOS Fibroadenoma Preputial/clitoral gland	1	+ K	+ N	* x	+ X N	+ N	+ X N	+ N	+ N	+ N	+ N	+ x N	+ N	+ N	+ N	+ N	+ N	+ N	+ X N	+ N	+ N	+ N		+ N	+ N	+ N
Carcinoma, NOS Cystadenoma, NOS Uterus Endometrial stromal polyp Ovary		+	+	+	* *	+	+	+	* * *	+	+ +	+	+	+	+	+	+	+	+	+	* * *	+	* + +	+	+ +	+ +
NERVOUS SYSTEM Brain	Ŀ	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Loukemia, mononuclear cell	'	N	N	N	N	N X	N	N	N	N X	N	N	N	N X	N	N	N X	N X	N	N	N	N	N	N X	N	N

+ : Tissue Examine'd Microscopically
- : Required Tissue Not Examined Microscopically
X : Tumor Incidence
N : Necropsy, No Autolysis, No Microscopic Examination
S : Animal Missexed

: No Tissue Information Submitted
C: Necropsy, No Histology Due To Protocol
A: Autolysis
M: Animal Missing
B: No Necropsy Performed

TABLE A4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

					U	US	E	U	OU	ш	ıuı	ea,	,													
ANIMAL NUMBER	0 2 6	2	0 2 8	0 2 9	3	0 3 1	0 3 2	3	3	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	040	4	0 4 2	9	0 4	0 4 5	0	0 4	0 4 8	9	0 5 0	TOTAL
weeks on Study	0 6 9	0 5	6	9	0 5	0 5	0 6 8	9	7 2	1 0 5	1 0 5	1 0 5	1 0 5	0 8 3	0 5	6	1 0 5	0	0	5	1 0 5	0	1 0 5	9	1 0 5	TISSUES
INTEGUMENTARY SYSTEM Skin Papilloma, NOS Subcutaneous tissue Sarcoma, NOS Fibroma Rhabdomyosarcoma	N	+	N	+ + X	+	+	N N	+	N N	+	+	+ +	+ +	+	+	N N	+	+	+	+	+ + X	+ + X	+	+ + X	++	*50 1 *50 1 4 1
RESPIRATORY SYSTEM Lungs and bronch Squamous cell carcinoma, metastat Sarcoma, NOS, metastatic Trachea	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	50 1 1 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus Squamous cell carcinoma	÷	++++	++++	++	++++	++++	++++	++-+	++++	++-+	++++	++++	++++	++++	+ + + +	+ + - +	++++	++++	++++	++++	++++	++++	+ + + +	+ + + +	++++	50 50 45 48 1
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DICESTIVE SYSTEM Salivary gland Laver Bile duct Galibladder & common bile duct Pancreas Acunar-cell adenoma Esophagua Stomach Papilioma, NOS Small intestine Large intestine	++ + + + + + + + + + + + + + + + + + + +	++X+X+X+++	++X++ +X++	++ +z+++	++ ++ +Z+++	++ ++ +Z++1	++ ++ +Z+++	+++Z+++	++ +Z+++	++ ++ +Z+++	++X++ +X++	++ ++ +Z+++	++ ++ +Z+++	++ ++ +Z+++	++ ++ +Z+++	++X++ +X++	++X++ +X+++	++ ++ +Z+++	++ ++ +Z+++	++ +z+ ++	+++X+X+++++	++ +z+++	++ ++ + ++++	++ ++ +Z+++	++*++ + 72+++	49 50 50 *50 *50 2 50 50 10 50 49
URINARY SYSTEM Kidney Urinary bladder	‡	++	+	+	+	++	+	+	++	+	+	+	++	++	++	++	++	++	+	++	+	+	++	++	++	50 50
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular-cell adenoma Follicular-cell carcinoma C-cell carcinoma Parathyroid	+ + +	+ X + +	+ + +	+ + +	+ X + X + +	+ + + X+	+ + +	+ X + + X +	+ + +	+ X+ + +	+ X +	+ + +	+ X + +	+ + * *	+ + +	+ + +	+ + + X+	+ + X +	+ + -	+ + X +	+ X + X +	+ + + X	+ X + + X	+ *X +	- + X + + +	49 1 20 50 3 4 4 4 9 2 1 5 37
REPRODUCTIVE SYSTEM Mammary gland Adenoma, NOS Adenoma, NOS Fibroadenoma Preputual/elitoral gland Carcinoma, NOS Cystadenoma, NOS Uterus Endometrial stromal polyp Ovary	+ N + +	+ × + +	+ N + +	+ XN + +	+ XX + +	+ x +	+ N + +	+ x + +	+ N + +	+ XN +X+	+ N + X+	+ XN + +	* X X X X + +	+	+ N + X +	+ N +	+ N +		N N -+	+ XX + +	+ N X+X+	+ X + +	+ N + +		+ x x + +	*50 3 1 10 *50 1 1 49 8 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
ALL, OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N	N	N X	N	N	N	N X	N	*50 10
		-	-	_	_	_		_		_		_		_	_		_			_			_		_	

^{*} Animals Necropsied

APPENDIX B

SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

CO.	ONTRO	L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
SQUAMOUS CELL PAPILLOMA						(2%)
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
SARCOMA, NOS	1	(2%)		(4%)	2	(4%)
SARCOMA, NOS, INVASIVE		40.41	1	(2%)		(0.4)
FIBROMA		(2%)			3	(6%)
LEIOMYOSARCOMA	1	(2%)				
RESPIRATORY SYSTEM	,:					
#LUNG	(50)		(50)		(48)	(4.04)
HEPATOCELLULAR CARCINOMA, METAST		(00)		(00)		(4%)
ALVEOLAR/BRONCHIOLAR ADENOMA		(6%)		(8%)	_	(4%)
ALVEOLAR/BRONCHIOLAR CARCINOMA		(8%)		(12%)	1	(2%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
MALIGNANT LYMPHOMA, NOS	4	(8%)	2	(4%)	2	(4%)
CIRCULATORY SYSTEM						
*SUBCUTANEOUS TISSUE	(50)		(50)		(50)	
HEMANGIOMA					1	(2%)
HEMANGIOSARCOMA		(2%)				
#SPLEEN	(48)		(46)		(50)	
HEMANGIOSARCOMA				(4%)		(4%)
#HEART	(49)		(50)		(50)	(0~)
HEMANGIOSARCOMA, METASTATIC	(50)		(50)			(2%)
#LIVER	(50)	(90%)	(50)		(50)	
HEMANGIOSARCOMA HEMANGIOSARCOMA, METASTATIC	1	(2%)	1	(2%)	1	(2%)
DIGESTIVE SYSTEM	/=a-		/# **		/wa.	
#LIVER	(50)		(50)		(50)	(204)
SQUAMOUS CELL CARCINOMA, METASTA HEPATOCELLULAR ADENOMA	A	(8%)	77	(14%)		(2%) (4%)
HEPATOCELLULAR CARCINOMA		(38%)		(20%)		(22%)
ALVEOLAR/BRONCHIOLAR CA, METASTA	1.5	(00%)		(20%) (2%)	11	(44 /0)
LIPOSARCOMA				(2%)		
#FORESTOMACH	(49)		(49)	_ <i>\</i> ~/	(49)	
SQUAMOUS CELL PAPILLOMA		(6%)		(39%)		(61%)
SQUAMOUS CELL CARCINOMA	•	, - , - ,		(10%)		(14%)
LEIOMYOSARCOMA			•	/		(2%)

URINARY SYSTEM NONE

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
PAIDOODING CVCTVA			
ENDOCRINE SYSTEM	(45)	(47)	(47)
#PITUITARY	(45)	(47)	1 (2%)
ADENOMA, NOS #ADRENAL	(48)	(50)	(49)
CORTICAL ADENOMA	(40)	2 (4%)	(40)
#ADRENAL MEDULLA	(48)	(50)	(49)
PHEOCHROMOCYTOMA	(40)	2 (4%)	(40)
	(45)	(47)	(47)
#THYROID FOLLICULAR-CELL ADENOMA	1 (2%)	(-1)	2 (4%)
	1 (270)	1 (2%)	2 (4%)
FOLLICULAR-CELL CARCINOMA	(05)	(23)	(26)
#PARATHYROID	(25)	1 (4%)	(20)
ADENOMA, NOS	(47)		(50)
#PANCREATIC ISLETS	(47)	(49)	(80)
ISLET-CELL CARCINOMA		1 (2%)	
REPRODUCTIVE SYSTEM			
#TESTIS	(50)	(50)	(50)
INTERSTITIAL-CELL TUMOR			1 (2%)
NERVOUS SYSTEM NONE			
SPECIAL SENSE ORGANS			
*HARDERIAN GLAND	(50)	(50)	(50)
ADENOMA, NOS	1 (2%)		
PAPILLARÝ ADENOMA		2 (4%)	3 (6%)
MUSCULOSKELETAL SYSTEM NONE			
BODY CAVITIES NONE			
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(50)	(50)
SQUAMOUS CELL CARCINOMA, INVASI		_	1 (2%)
SQUAMOUS CELL CARCINOMA, METAST	'A	2 (4%)	1 (2%)
SARCOMA, NOS, METASTATIC		2 (4%)	
SARCOMA, NOS, UNC PRIM OR META		1 (2%)	
LEIOMYOŚARCÓMA, INVASIVE			1 (2%)
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	14	5	7
MORIBUND SACRIFICE	9	ž	10
TERMINAL SACRIFICE	26	37	32
DOSING ACCIDENT	1	-,	-
ACCIDENTALLY KILLED, NDA	•		1
ACCIDENTALLY KILLED, NOS		1	-
12001111111111111111111111111111111111		-	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

CC	NTROL (VEH)	LOW DOSE	HIGH DOSE
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	33	42	45
TOTAL PRIMARY TUMORS	44	68	72
TOTAL ANIMALS WITH BENIGN TUMORS	13	26	36
TOTAL BENIGN TUMORS	13	37	46
TOTAL ANIMALS WITH MALIGNANT TUMORS	28	27	23
TOTAL MALIGNANT TUMORS	31	30	26
TOTAL ANIMALS WITH SECONDARY TUMORS	##	6	8
TOTAL SECONDARY TUMORS		7	8
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	•		
BENIGN OR MALIGNANT			1
TOTAL UNCERTAIN TUMORS			1
TOTAL ANIMALS WITH TUMORS UNCERTAIN-	-		
PRIMARY OR METASTATIC		1	
TOTAL UNCERTAIN TUMORS		1	

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.
** PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

[#] NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

^{##} SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	CONTRO	L (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS MISSING	00		2		2	
ANIMALS NECROPSIED	50		48		44	
animals examined histopathologicall	Y 50		48		44	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(48)		(44)	
SARCOMA, NOS					1	(2%)
*SUBCUTANEOUS TISSUE	(50)		(48)		(44)	
MALIGNANT MELANOMA		(2%)				
SARCOMA, NOS		(2%)			_	
LIPOSARCOMA	1	(2%)			1	(2%)
RESPIRATORY SYSTEM						
#LUNG	(50)		(48)		(43)	
ALVEOLAR/BRONCHIOLAR ADENOMA	3	(6%)	2	(4%)	3	(7%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(48)		(44)	
MALIGNANT LYMPHOMA, NOS	• • • • •	(16%)		(15%)		(14%)
GRANULOCYTIC LEUKEMIA		(4%)	·	(20,0)		(5%)
#SPLEEN	(50)	(170)	(48)		(43)	(0,0)
MALIGNANT LYMPHOMA, NOS		(2%)	(-5/		(20)	
#MESENTERIC L, NODE	(39)	(-,-,	(32)		(28)	
MALIGNANT LYMPHOMA, NOS			1	(3%)		
#CECUM	(49)		(48)		(42)	
MALIGNANT LYMPHOMA, NOS	1	(2%)				
#THYMUS	(42)		(43)		(36)	
ADENOCARCINOMA, NOS, METASTATIC			1	(2%)		
CIRCULATORY SYSTEM						
*SUBCUTANEOUSANEOUS TISSUE	(50)		(48)		(44)	
HEMANGIOSARCOMA, METASTATIC	1	(2%)				
#SPLEEN	(50)		(48)		(43)	
HEMANGIOSARCOMA	1	(2%)				
#LIVER	(50)		(48)		(44)	
HEMANGIOMA		(2%)				
#UTERUS	(50)		(48)		(44)	
HEMANGIOMA		(4%)				
LYMPHANGIOMA		(2%)	(40)		(44)	
#OVARY HEMANGIOMA	(49) 1	(2%)	(48)		(44)	
NATIONAL STATES						
DIGESTIVE SYSTEM	/EU/		(40)		(44)	
#LIVER	(50)	(4%)	(48)	(6%)	(44)	(2%)
HEPATOCELLULAR ADENOMA HEPATOCELLULAR CARCINOMA		(4%) (4%)	3	(070)	1	(470)
#FORESTOMACH	(50)	(1270)	(48)		(44)	
SQUAMQUS CELL PAPILLOMA	(00)			(31%)		(66%)
SQUAMOUS CELL PAPILLOMA SQUAMOUS CELL CARCINOMA				(31%)		(5%)
#CECUM	(49)		(48)	(270)	(42)	(070)
LEIOMYOSARCOMA	(# <i>0)</i>		(40)			(2%)
URINARY SYSTEM						
#URINARY BLADDER	(49)		(43)		(38)	

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOWDOSE	HIGH DOSE
ENDOCRINE SYSTEM			7,000
#PITUITARY INTERMEDIA ADENOMA, NOS	(46)	(47)	(39) 1 (3%)
#ANTERIOR PITUITARY	(46)	(47)	(39)
CHROMOPHOBE ADENOMA	9 (20%)	11 (23%)	5 (13%)
#ADRENAL	(49)	(48)	(44)
CORTICAL ADENOMA	1 (2%)	1 (2%)	
#THYROID	(44)	(47)	(38)
FOLLICULAR-CELL ADENOMA	1 (2%)	1 (2%)	
#PANCREATIC ISLETS	(49)	(48)	(41)
ISLET-CELL ADENOMA		1 (2%)	
REPRODUCTIVE SYSTEM			
*MAMMARY GLAND	(50)	(48)	(44)
ADENOCARCINOMA, NOS	1 (2%)	4 (8%)	1 (2%)
#UTERUS	(50)	(48)	(44)
ADENOCARCINOMA, NOS		2 (4%)	
ENDOMETRIAL STROMAL POLYP	1 (2%)		2 (5%)
ENDOMETRIAL STROMAL SARCOMA	440	1 (2%)	(4.4)
#OVARY	(49)	(48)	(44)
ADENOCARCINOMA, NOS, INVASIVE LUTEOMA		1 (2%)	1 (2%)
NERVOUSSYSTEM			
#BRAIN	(50)	(48)	(43)
ASTROCYTOMA	(00)	(40)	1 (2%)
SPECIAL SENSE ORGANS	(FA)	(40)	(44)
*HARDERIAN GLAND	(50)	(48)	(44)
PAPILLARY ADENOMA	1 (2%)		1 (2%)
MUSCULOSKELETAL SYSTEM			
*SKULL	(50)	(48)	(44)
OSTEOSARCOMA		1 (2%)	4445
*LUMBAR VERTEBRA	(50)	(48)	(44)
SARCOMA, NOS	(PA)	(40)	1 (2%)
*RIB OSTEOSARCOMA	(50) 1 (2%)	(48)	(44)
OSIEOSARCOMA	1 (270)		***
BODY CAVITIES NONE			
ALL OTHER SYSTEMS			
*MULTIPLE ORGANS	(50)	(48)	(44)
SQUAMOUS CELL CARCINOMA, METAST.		, =,	1 (2%)
OSTEOSARCOMA, METASTATIC	1 (2%)	1 (2%)	, .,

TABLE B2. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

CON	TROL (VEH)	LOW DOSE	HIGH DOSE
ANIMAL DISPOSITION SUMMARY			
ANIMALS INITIALLY IN STUDY	50	50	50
NATURAL DEATH	5	2	8
MORIBUND SACRIFICE	8	3	7
SCHEDULED SACRIFICE			4
TERMINAL SACRIFICE	37	43	27
DOSING ACCIDENT			1
ACCIDENTALLY KILLED, NDA			1
ANIMAL MISSING		2	2
TUMOR SUMMARY			
TOTAL ANIMALS WITH PRIMARY TUMORS**	28	32	37
TOTAL PRIMARY TUMORS	43	51	59
TOTAL ANIMALS WITH BENIGN TUMORS	17	27	32
TOTAL BENIGN TUMORS	23	34	43
TOTAL ANIMALS WITH MALIGNANT TUMORS	17	17	14
TOTAL MALIGNANT TUMORS	20	17	16
TOTAL ANIMALS WITH SECONDARY TUMORS#	# 1	2	2
TOTAL SECONDARY TUMORS	1	3	2

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

^{**} PRIMARY TUMORS: ALL TUMORS EXCEPT SECONDARY TUMORS

[#] NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

^{##} SECONDARY TUMORS: METASTATIC TUMORS OR TUMORS INVASIVE INTO AN ADJACENT ORGAN

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

ANIMAL NUMBER	9	엉	0	0	9	Ŋ	o	ò	0	0	ņ	o	ज़	ņ	9	여	O	9	ġ	ু	엉	भू	g	9	0 2
NUMBER	1	2	3	4	5	6	7	8	9	ò	i	1 2	3	4	5	6	7	8	9	2	2	2	3	24	5
weeks on Study	0 5	1 0 5	0	0	0	1 0 5	0	1 0 5	9	100	0	0 2	0	0 5	0 2 8	8	3	0	0	0 2	0	0	3	9	9
NTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Leiomyosarcoma Hemangiosarcoma	+	+	+ x	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	-
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Frachea	+	+	+	+	+	+	+ X +	+	+	+	+	+	+	+ X +	+	+	+	*	+	+	+	+	+	+	_ +
HEMATOPOIETIC SYSTEM Sone marrow Spleen Lymph nodes Thymus	++	+ + + +	++++	++-+	++-+	++-+	++++	+++-	+++-	++++	++-+	+++-	+++-	++++	++-+	+++-	+ +	++-+	++++	+++-	++++	++ -+	++++	+++-	++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	<u>-</u> +
DIGESTIVE SYSTEM Salivary gland Laver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma Sile duct Callbladder & common bile duct	‡ ‡	+ + x + n	++ ++	++ ++	++ ++	++ ++	+ + X + +	+ + X + +	++ ++	‡ x +	++ x ++	++ x++	+ x +	+ + x + N	+ + + + *	+ x + N	* + + x	++ ++	- + + + + +	++ ++	++ ++	++ ++	++	+ x +	- ++ ++
ancreas Espainagus Stomach Squamous cell papilloma mall intestine arge intestine	++ ++ ++	+++ ++	+++	+++ ++	+++	+++ ++	+++ ++	+++ ++	+ + + X + +	+++	+++ ++	+++ ++	+++ ++	++++	+++	+++	++	+++	+++	+++ ++	+++ ++	++*X++	+++	+++	+++ ++
URINARY SYSTEM Kidney Urinary bladder	‡	+	++	+	+	++	+	+	++	++	+	++	++	+	+	++	+	++	+	++	++	+	+	++	++
ENDOCRINE SYSTEM Pituitary Adrenal Phyroid Follicular-cell adenoma Parathyroid	* * *	+++++	+++++	÷ ÷ +	+++	++++	* * * +	+++ +	÷ ÷ ÷	**	++++	+++++	- + +	÷ ÷ +	÷ ÷ + +	÷ ÷ -	+ -	=	* * * * +	÷ ÷ ÷ -	+++	+ + +	÷ -	÷ ÷ +	_ +++ +
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	N + +	+ + Z	N + +	N + +	N + +	++1	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	- + + +
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: VEHICLE CONTROL (Continued)

									•																	
ANIMAL NUMBER	0 2 6	7	2	9	3	3	3	3	034	0 3 5	3	3	3	3	040	4	4	0 43	044	9	046	047	8	9	0 5 0	TOTAL
weeks on Study	0 6 8	0	05	9	0	8	0 5	80	0 5	0 5	0 5	0	0	0	8	0	2 2	00	9	0 2 8	0	0 5	0 5	9	0	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tiesus Sarcoma, NOS Fibroma Leiomyosarcoma Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	*	+	+	+	+	+	+	*50 i 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+ x	+ x -	*	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	50 3 4 21
HEMATOPOIETIC SYSTEM Bone marrow Spicen Lymph nodes Thymus	++-+	++++	++++	++++	++++	++	++++	++++	+ + + +	++-+	+ + + +	+++	+ + - +	+ + - +	+ + + +	+++	+ = =	+++	+ + + +	+ + + +	+++	++-+	++++	+++	+ + - +	50 48 32 34
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma Bile duct Gallbiadder & common bile duct Pancreas Eaophagus Stomach Squamous cell papilloma Small intestine	+++	++ X +X+++ +	++ +++++ +	++ x +x+++ +	_ ++	++++Z++++	++ +++++ +	++ x +x+++ -	++ +++++ +	++ ++++X+	++XX ++++ +	++ +++++ +	++ x +++++ +	+	++ x +N+++ +	** X **** *	++ + + +	++ x +++++ +	++* +++++ +	-+ +++++ -	++ x +x+++ +	++ +++++ +	++ +++++ +	++ x +N -++ -	+	49 50 4 19 1 50 *50 47 50 49 3
Large intestine URINARY SYSTEM Kidney Urinary bladder	+ + +	+ + +	++	+	÷	++	++	<u>+</u> + +	++	++	<u>+</u> + +	+ +	+ +	++	<u>+</u> +	<u>+</u> + +	+	+ + +	<u>-</u>	+ + +	++	+ +	++	++	+ ++	50 48
ENDOCRINE SYSTEM Pituitary Adrenal Thyroid Follicular-cell adenoma Parathyroid	÷ ÷ ÷	+++	* * * +		+ + + x -	***	÷ ÷ ÷ -	* * * * *	* * * * * *	- + +	** +	- + + +	+++	+++++	+++	+ + -	++	+++ -	+ + +	+ + + + +	* + + -	÷ -	+++	+ + - -	+++ +	45 48 45 1 25
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	И + +	N + +	÷ ÷ +	N++	N + +	N + +	*50 50 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	*50

^{*} Animals Necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

ANIMAL	Q	ुष	Ò	o	o	ø	O	Ò	q	Ņ	o	o	0	o	OI.	Ò	0	o	이	이	0	O	Q(0	7
NUMBER	0	0 2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	2 0	1	2	3	4	
WEEKSON	1	1	ग	I	П	1	Ţ	11	1	1	1	П	1	1	Ţ	11	ol	0	1	1	T	0	II	11	-
STUDY	5	5	9	0 5	š	5	5	5	5	5	5	5	5	5	9	0 5	9	0	0 5	5	5	6	9	5	1
ntegumentary system	-						_					_						_							_
Subcutaneoùs tissue Sarcoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Sarcoma, NOS, invasive	-																								
RESPIRATORY SYSTEM	-								_											_					_
ungs and bronchi	+	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	1	X			v		v													v	X		X		
rachea	+	+	+	+	+	+	7		+	_	-	+	-	-	-	+	+	-	+	_	4	_	+	+	
EMATOPOLETIC SYSTEM	-		_							-				-	_		_	-					_		_
lone marrow	+	+	+	+	+	+	+	-	+	_	+	+	+	+	+	+	+	+	+	+	4.	_	+	+	
pieen Hemangiosarcoma	+	+	+	+	-	+	-	+	+	+	+	+	+	+	+	+	-	+	+	+	4.	+	+	+	
ymph nodes	+	_	+	+	_	+	+	+	~	+	+	_	_	_	+	+	+	+	+	+	4.	+	_	_	
hymus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	-	-	-	+	+	+	+	+	
IRCULATORY SYSTEM feart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- -	+	+	+	-
(GESTIVE SYSTEM	-																								-
alivary gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
ıver Hepatocellular adenoma	1 #	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	4.	+	+	+	
riepatoceitular adenoma Fiepatoceitular carcinoma	l ŵ	X	X							X				x						^			X	x	
Aiveolar/bronchiolar ca, metastatic	_						X																		
Liposarcoma Hemangiosarcoma, metastatic	1																						X		
Bile duct	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4.	+	+	+	
alibiadder & common bile duct ancreas	:	+	+	‡	‡	+	‡	‡	‡	+	+	++	N +	+	+	+	N	N	+	+	N	++	+	+	
sophagus	‡	÷	+	÷	÷	÷	_	÷	÷	÷	+	+	+	+	+	÷	+	÷	÷	÷	j.	÷	÷	÷	
tomach	+	+	+	‡	+	‡	+	;	+	+	‡	+	+	+,	.	+	+	+	*	*	+	+	÷	+	
Squamous cell papilloma Squamous cell carcinoma	1		•	^		^		^			^		^		•		X		•	^		X	X	X	
mail intestine	1 +	+	+	+	+	+	+	+	+	+	+	+	-	-	+	+	-	+	+	+	4.	+	+	+	
arge intestine		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	+	+	+	+	+	+	+	
URINARY SYSTEM Lidney			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	٠.	_	_	_	
Jrinary bladder	+	÷	+	Ŧ	+	Ŧ	Ť	Ŧ	Ŧ	÷	Ŧ	÷	÷	Ŧ	Ŧ	÷	-	÷	÷	+	+	÷	Ť	Ŧ	
NDOCRINE SYSTEM	-					_						-		_					_	_					-
lituitary	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
drenal Cortical adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma	1								X																
hyroid	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Follicular-cell carcinoma arathyroid	1 +	+	_	+	+	+	+	_	+	_	_	_	_	_	_	_	+	+	+	_	4.	+	_	+	
Adenoma, NOS	1 .	•		•		•	•		•						-		•	•	•		Ċ	•		•	
ancreatic islets Islet-cell carcinoma	+	+	+.	. +	+	+	+	+	+	+	+	+	+	+	*	+	-	+	+	+	4.	+	+	+	
EPRODUCTIVE SYSTEM	-	_					_						_												-
lammary gland	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Ŋ	N	N	N	N	N	
estis rostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4.	+	+	+	
		*			_			•	_	_	_				•		_	ŕ			·-	_		_	
ERVOUS SYSTEM rain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4.	+	+	+	
PECIAL SENSE ORGANS	-								_				_					_							-
arderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	
LL OTHER SYSTEMS	·						-		<u> </u>	<u> </u>				<u> </u>	<u> </u>	_					<u> </u>				-
luitiple organs, NOS Squamous call carcinoma, metastat	l N	N	u	N	N	N	N	N	N	N	N	N	N	N	C.	N	N	N	N	N	Pi	N	N	N	
Squamous cell carcinoma, metastat Sarcoma, NOS, metastatic	1																					•			
Sarcoma, NOS, unc prim or meta	1																								
Malignant lymphoma, NOS	1															X									

TABLE 83. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

						(1	CO.	םמ	ın t	160	1)															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	9	3	3	3	3	034	0 3 5	3	3	0 3 8	3	040	4	0 4 2	0 4 3	044	0 4 5	046	047	0	040	0 5 0	TOTAL
wreks on Study	0 5	0	0 7 5	0	0 5	00	0	0	0	0	05	8	1 0 5	0	9	0 5	0	0	0 5	0	0	0	0 5	0	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tinsus Sarcoma, NOS Sarcoma, NOS, invasive	+	+	+	+	+	+	+	*	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 2 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+ x	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+ X +	+	50 4 6 27
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Lymph nodes Thymus	*	** **	÷ =	++ -+	++ ++	÷ ÷	- + + -	* + +	+ + x + +	++ ++	++ ++	+-+-	++ -+	** **	* + + -	‡ + -	++ -+	** **	++ -+	++ ++	++ +-	+ + x + -	++ -+	++ ++	- + -	46 46 2 33 40
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Alveolar/bronchiolar ca, metastat Liposarrooma	‡	++	+	++	++	+ *	+ *	‡	++	+ + x	+ *	++	++	++	÷	† *	+	‡ x	++	‡	++	‡ x	* * X	++	÷	50 50 7 10 1
Hemangiosarvoma, metastatic Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carvinoma Small intestine Large intestine	+ + + + X + +	+++++ ++	+++++ ++	+++++ ++	+++++ ++	+++++X ++	+ X+++X+	+++++X ++	****** ++	+++++ ++	++ +:+Z+	+1 ++2+	+++++ X++	++++2+	+++++ X++	+++++X ++	+++++ ++	+++++ ++	+++++X ++	+++++X ++	+++++X ++	++++Z+	+++++	+++++X ++	+++++ ++	1 50 50 49 48 49 19 5 46 49
URINARY SYSTEM Kidney Urinary bladder	‡	+	-	++	<u>+</u>	÷	++	+	<u>+</u>	<u>+</u>	+	<u>+</u>	+	++	++	÷	++	++	++	+	+	+	÷	+	- +	50 47
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular-cell carcinoma Parathyroid Adenoma, NOS Pancreatic islets Islet-cell carcinoma	+ + + +	+ + - +	++ + + +	* + - +	* + + +	+ + + + + +	* + + + +	* + + - +	÷ +	++ + - +	+ + X + X + X +	÷ + - +	* + + - +	÷ - - +	÷ + - +	+ * * + + +	÷ + - +	+ + + +	÷ + - +	÷ + - +	+++++++++++++++++++++++++++++++++++++++	÷ + - +	* + + +	÷ + - +	_ ++ + +	47 50 2 2 47 1 23 1 49
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N + +	N + +	÷ ÷	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + -	*50 50 48
NERVOUSSYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, metastat Sarcoma, NOS, matastatic Sarcoma, NOS, une prim or meta Malignant lymphoma, NOS	N	N	N	N	N	N	N	N X	N	N	N	N X	N	N	N X	N	N	N	N X	N	N	N	N	N	N	*50 2 2 1 1 2

^{*} Animals Necropsied

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

IWO-IEAN GAVAGE 5.	UD	•	٧.		-0		-		 -	- 14			• •			•			90	***		••		,,,	_
ANIMAL NUMBER	0 0 1	0	0	0	0 0 5	0	0	0	9	0	1	1 2	13	1	0 1 5	0 1 6	0 1 7	0 1 8	9	020	0 2 1	0 2 2	2	0 2 4	0 2 5
weekson Study	0	1 0 5	9	0 8 6	1 0 5	1 0 5	1 0 5	0 2	1 0 5	1 0 5	0	1 0 5	0	1 0 5	0	0 6 8	1 0 5	1 0 5	0 5	0	0 2	9	0	0	1 0 5
INTEGUMENTARY SYSTEM Skin Squamous cell papilloms Subcutaneous tissue Sarcoma, NOS Fibroma Hemangioma	+	+	+ *	+	+	+ + x	+	+	+	+	+	+	+	+	+	+	+ + x	+	+	+	+ +	+ *	+ + x	++	+
RESPIRATORY SYSTEM Lungs and bronch Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	* *	+	+	+	+ x +	+	+	+	+	+	+	+ x -	- +	+	-+	+	+	+	+	+	+	+	- + +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangtosarcoma Lymph nodes Thymus	;	++++	+++	+ x + +	++++	++ ++	÷ ÷	++ +-	+ + -	+++	* + + + + + + + + + + + + + + + + + + +	÷ ÷	+ +	++	++ ++	+++-	++	++ -+	+ + -	++ -+	+++	+++	++ ++	+ + +	- ++ ++
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary giand Liver Squamous cell carcinoma, metastatic Hepatocellular adenoma Hepatocellular carcinoma Hemangiosarcoma, metastatic Bile duct	*	* x	; ;	+ + X	++	++	‡	+ x	‡ *	‡ x	‡	‡	++	‡	* * * *	‡	÷	÷	‡ x	+	+	+	‡ x	-	++ x
Callblader & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Leiomyosarcoma Small intestine Large intestine	***	++++	++++	T++++X	T++++X ++	T++++X ++	T+++X ++	T++++X ++	+++++++++	***** **	T++++X ++	T++++X ++	T++++XX ++	T++++X ++	+ + + x +	T++++X ++	** * * * * *	T++++X ++	T++++X ++	T++++X ++	T++++X ++	****** ++	T++ :+X ++	T++++X X++	++++X
URINARY SYSTEM Kidney Urinary bladder		+	<u>+</u>	<u> </u>	<u>+</u>	++	+	<u>+</u>	<u>+</u>	++	<u>.</u> ‡	· +	++	<u>.</u> ‡	÷	<u>+</u>	++	++	+	+	<u> </u>	<u>+</u>	<u>.</u> ‡	<u>.</u> ‡	++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Thyroid Follicular-ceil adenoma Parathyroid	+ + +	+ + +	+ + + +	+ + +	+ + + X	+ + +	+ + +	+ + -	+ + -	+ +	- + +	+ + -	+ + -	+ + +	+ ++	+ X + + +	+ + -	+ + +	+ + +	+ + * *	+ + +	÷ ÷ ÷	+ + +	+ + -	+ ++ +
REPRODUCTIVE SYSTEM Mammary gland Tests Interstitial-cell tumor Prostate	N +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N+++	N+ +	N + +	N + +	N + +	N + +	N + +	× + +	N + +	N + +	N + +	- + +	× +	N + +	N + +	N + +	+ 4%
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, invasive Squamous cell carcinoma, metastatic Leiomyesarcoma, invasive Malignant lymphoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N X	N		N X	N

Tissue Examined Microscopically
 Required Tissue Not Examined Microscopically
 Tumor Incidence
 Necropsy, No Autolysis, No Microscopic Examination
 Animal Missexed

No Tissue Information Submitted
C: Necropsy, No Histology Due To Pretocol
A: Autolysis
M: Animal Missing
B: Ne Necropsy Performed

TABLE B3. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: HIGH DOSE (Continued)

						,,	0	ш	mu	160	1,															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	3	0 3 1	0 3 2	3	3	3	3	0 3 7	3	3	0	0	4	0 4 3	044	0 4 5	0 4 6	0 4 7	0 4 8	9	0 5 0	TOTAL
weeks on Study	0) 9) 3)	0 5	1 0 5	0 5 8	3	9	1 0 5	1 0 5	1 0 5	9	1 0 5	1 0 5	1 0 5	1 0 5	0	1 0 5	0	0	0 2 4	1 0 5	1 0 5	1 0 5	1 0 5	9	1 0 5	TISSUES TUMORS
INTEGUMENTARY SYSTEM Skin Squamous cell papilloma Subcutaneous tissue Sarcoma, NOS Fibroma Hemangioma	+	+	+ + x	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1 *50 2 3 1
RESPIRATORY SYSTEM Lungs and bronch Hepatoesilular carcinoma, metasta Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoms Trachea	+	+	+	+	+	+	+	+	+	+	+	* -	+	+	+	+	+	+	+	+	+	+	+	+	+ x -	48 2 2 2 1 26
HEMATOPOIETIC SYSTEM Bone marrow Spieen Hemangioaercoma Lymph nodes Thymus	* + -	++ -+	++ -+	++ ++	++-+	÷ -	++	++ ++	++++	++ -+	++	++	++ -+	++	++	+ + X + +	+++-	++++	++ -+	++	++ -+	++ -+	++ -+	++ +-	++++	50 50 2 24 36
CIRCULATORY SYSTEM Heart Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Squamous cell carcinoma, metastat Hepatocellular adenoma Hemangiosarcoma, metastatic Bile duct Gailbladder & common bile duct Panereas Eaophagus Stomach Squamous cell papilloma Squamous cell carcinoma Leiomyosarcoma Small intestine	++ +++++ +	++ ++++* +	++ ++++* +	· ++ ++++ +	++ + + + + + + + + + + + + + + + + + + +	++ + +x++ x -	++ ++++X +	++++	++ x ++++* +	++ +++++x +	++ +++++ +	++ x ++++ x +	++ ++++* +	++ +++++ x +	+ x +++++	++ +++++x +	++ +X+-+	++ +++++x +	++ +++++ +	++ ++++* +	++ +++++ +	++ x +++++ +	++ ++++X +	++ x +++++ x +	_ ++ ++++* +	50 50 1 2 11 1 50 *50 50 45 49 30 7
Large intestine URINARY SYSTEM Kidney Urinary bladder	÷	+ +	+ +	+ +	<u>-</u> +	+ + +	<u>+</u> +	<u>+</u> +	+ + +	+++	++	++	+ + +	+++	++	++	+	+ +	<u>+</u> +	+ ++	+ +	+ +	++	+ ++	+ - ++	50 49
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenai Thyroid Polituiar-cell adenoma Parathyroid	+ +1 1	+ + + +	+ + + +	+ + + -	+ + +	+ + + -	+ + + +	+ + +	+ + + +	+ + -	+ + -	+ + + +	+ + + +	+ + + -	+ + -	+ + -	+ + +	+ + +	- + -	- + + +	+ ++ +	+ + -	+ ++	+ -	+ ++	47 1 49 47 2 26
REPRODUCTIVE SYSTEM Mammary gland Testis Interstitial-ceil tumor Prostate	N +	N + +	N + +	N + X +	N + +	N + +	N + +	N + +	N + +	N + +	× +	¥ +	N + +	N + +	N + +	N +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	- - - - - - -	*50 50 1 50
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N X	N	N	*50 3
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, invasive Squamous cell carcinoma, metastat Leiomyosarcoma, invasive Malignant lymphoma, NOS	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	*50 I 1 1 2

^{*} Animals Necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: VEHICLE CONTROL

- 4	-	- 87	- 21	_						_	_		-			_			_					
0	0	03	0	0	6	9	8	9	1	1	1 2	13	14	1 5	6	7	0 1 8	1	2	2	2 2	2	2	0 2 5
9	0	1 0 5	0 5	0	0	9	0 5	0	1 0 5	0	0	0	0	0 5	0	0 5 2	0 5	9	097	8	0	0	8	1 0 5
N	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	N	+	+
+	+	+	* *	+	+	+	+	++	+	++	++	+	+	+	+	+	+	+	+	+	+	+	+	- + +
+++	++ ++	+ + X + +	++ ++	++ ++	++ -+	+ + x + +	++ ++	++ ++	++ ++	++ +-	** **	++ -+	- + +	++ +-	++ -+	* + + + +	++ -+	++ +-	++ +-	++ ++	++ ++	-+-	++ +-	- + +
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
‡	÷	÷	+ * X	++	++	÷ ÷	÷	÷ +	++	++	÷ ÷	÷ ÷	++	÷ +	++	++	++	++	++	++	++	÷	++	- +
* * * * * * * * * * * * * * * * * * *	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	+++-++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++	++++++
+	++	++	+	++	+	++	<u>+</u>	+	++	-	+	++	+	+	<u>+</u>	÷	+	÷	÷	+	-	<u>+</u>	+	- +
+	* + + +	+ + +	+x+x+ +	+ +	+ + + +	+ + +	+ +	+ + +	+ + + +	- + + +	+ + + -	* X + + +	+ + + -	+ + +	+ + + -	+ - + +	+ + + +	- + +	+ +	+ + + +	+ + +	+ + -	* * + + +	_ + + ₊ _
+	++	+ +	++	++	++	++	++	++	++	<u>+</u> +	++	++	++	++	++	++	N +	N +	+ +	++	++	N +	* *	_ + +
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	*	+	+	x +	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
i		N X	N	N	N	N	N	N X	N	N	N X	N	N	N	N	N	N	N X				N X	N	N
	C97 N	097 X + + + + + + + + + + + + + + + + + +	097	0 10 10 10 10 10 10 10 10 10 10 10 10 10	0 1 1 1 1 1 1 1 0 0 9 7 1 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 0 0 9 9 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1	0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0	0 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1	0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1	0 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1	9 10 10 10 10 10 10 10 10 10 10 10 10 10	9 10 10 10 10 10 10 10 10 10 10 10 10 10	0 11 0 11 11 11 11 10 10 11 11 11 11 11		9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 10 10 10 10 10 10 10 10 10 10 10 10 10

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: VEHICLE CONTROL (Continued)

							••	_	,,	On			,													
ANICIAL NUMBER	0 2 6	0 2 7	0 2 8	9	3	3	3 2	3	3	3	3	37	3	3	040	4	0 4	043	0 4 4	045	0 4 6	047	048	0 4 9	5	TOTAL
weeks on Study	1 0 5	0	0	0	0	0 5	0 7 5	0 5	0 5	0	0 5	077	1	0	0	0 5	0 5	1 0 5	0	0	1 0 5	0	9	1 0 5	T 0 5	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Malignant melanoma Sarcoma, NOS Liposarcoma Hemangiosarcoma, metastatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+ x	+	+ x	*50 1 1 1 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	+	* * *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	50 3 27
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Malignant lymphoma, NOS	÷	‡	++	++	++	+	÷	++	++	++	++	++	+	++	++	+	÷	+	++	++	+	÷	÷	+	÷	48 50 1
Lymph nodes Thymus	-	7	‡	7	+	<i>‡</i>	<u>+</u>	‡	‡	<u></u>		‡	‡	<u></u>	7	<u></u>	7	‡	‡	7	+	<i>‡</i>	+	÷	∓	39 42
CIRCULATORY SYSTEM Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Hemangioma	‡	+	‡	+	+	+	+	‡	‡	‡	+	‡	+	‡ *	+ * X	‡ X	+	+	+	++	+	‡ *	+	+	‡	50 50 2 2 2
Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine	+++++	+++++	+++++	++++*	+++++	+++++	+++++	+++++	++++*	+++++	++++	+++++	+ + + + 4 + + 7	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	+++++	50 *50 49 49 50 48
Large intestine Malignant lymphoma, NOS	+	+	*	_	_	+	_	+	_	+	_	+	+	+	+	+	+	+	+	+	+	+	+	+	_	1
URINARY SYSTEM Kidney Urinary bladder	‡	++	+	+	+	+	++	+	++	+	+	+	+	+	‡	+	+	+	+	+	+	++	++	+	+	50 49
ENDOCRINE SYSTEM Pitutary Chromophobe adenoma Adrenai Cortical adenoma Thyroid Follicular-ceil adenoma Parathyroid	+ + +	+ + + +	+ + +	* * + + + -	+ + + +	+ + + -	+ + +	+ +	* * + + +	+ + + +	+ + + +	- + +	+ + + -	+ + + -	* * + +	* * + + +	+ + + -	* * * * * * * * * * * * * * * * * * *	- + -	+ + + +	+ + + -	+ + + -	+ + +	+ + + -	+ + + +	46 9 49 1 44 1 25
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus	+	++	++	++	++	++	++	++	++	++	++	++	++	+	+ +	+ +	++	++	++	+	+ ±	++	++	++	+ +	*50 1 50
Endometrial stromal polyp Hemangioma Lymphangioma Ovary Hemangioma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x +	-	X +	+	+	1 2 1 49 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Osteosarcome, metastatic Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N	N	N		N X	N	N	N	N	N	N	N	N	N	N X	N	N	Ŋ	*50 1 8 2

^{*} Animals Necropsied

TABLE 84. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: LOW DOSE

			_	•		-	-				_	-	_					•			•		•		~~
ANIMAL NUMBER	0	002	0	0	0	0	007	0	9	0	1	0 1 2	1 3	1 4	0 1 5	0	0 1 7	1 8	1 9	02	0 2 1	2 2	0 2 3	0 2 4	0 2 5
weeks on Study	0 7 1	0 7 6	0 1 5	1 0 5	0 1 5	1 0 5	0	1 0 5	0 8 3	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0	0	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	M		M M	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++
HEMATOPOLETIC SYSTEM Bone marrow Spleen Lymph nodes Malignant lymphoma, NOS Thymus Adenocarcinoma, NOS, metastatic	+ + +	++-+	M M M	+	M M M	++-+	++-+	+ +	++-+	++-+	+++++	+++++	+++	+++ +	++-+	+++++	+++++	+++++	+++++	+++++	++-+	++-+	++-+	÷ ÷ +	- +++ +
CIRCULATORY SYSTEM Heart	+	+	M	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- -	_ +
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma	+ + + + + X	++ ++++	M M M M M M	++ +++++	M M M M M M	++ ++++X	++ ++++ x	+ + + + + X2	++ ++++	++ ++++X	++X++++	++ +++++	++ ++++X	++ ++++x	++ ++++	++ ++++	++X++++X	++ +++++	++ +++++	++ +++++	++ +++++	++ +++++	++ +++++	+ + + + + + + + +	+ + X + + + + + + + + + + + + + + + + +
Small intestine Large intestine	++	++	M	++	M	++	++	+	++	++	++	++	++	++	+	++	+	+	+	+	++	+	++	+	+
URINARY SYSTEM Kidney Urinary bladder	‡	++	M	+	M	+	+	+	++	+	+	+	+	++	++	+	+	÷	++	+	‡	÷	++	÷	- + +
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Cortical adenoma Thyroid Follicular-cell adenoma Parathyroid Pancreatic islets Islet-cell adenoma	+ + + + +	+ + + -+	M M M M	+	M M M	* + - - +	+ + + -	+ * * + -	+ + + -	+ + + +	+ + + +	*X + + + +	+ + + ++	- + + +	+ + + ++	+ + + +	+ + + ++	* * + + + - +	*X + + + +	* * + + - +	+ + + +	+ + + +	+X+ + ++	* * * * * * * * * * * * * * * * * * *	- + + + +
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal sarcoma Ovary Adenocarcinoma, NOS, invasive	+ +	+ +	M M M	+	M M M	•	+ + +	+ + +	+ + +	+ + +	+ * *	* * +	+ + +	N +	+ + X +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	+ + +	++++	- + +
NERVOUSSYSTEM Brain	+	+	M	+	M	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N X	M	N	M	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	- N
ALL OTHER SYSTEMS Multiple organs, NOS Osteosarcoma, metastatic Malignant lymphoma, NOS	N X	N X	М	N	M	N	N	N	N X	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

						,,	•				-,															
ANIMAL NUMBER	0 2 6	0 2 7	0 2 8	0 2 9	3	3	3	3	3	0 3 5	3	3	3	3	040	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	47	0 4 8	9	0 5 0	TOTAL
weeks on Study	1 0 5	0 8 8	1 0 5	0	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	0	1 0 5	1 0 5	1 0 5	1 0 5	0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	1 0 5	9	1 0 5	1 0 5	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	+	+	* *	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 + +	48 2 35
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Malignant lymphoma, NOS Thymus Adenocarcinoma, NOS, metastatic	++-+	+ + - x	+++++++++++++++++++++++++++++++++++++++	+++++	+++	+++++	+++++	+++++	++-+	+++++	+++++	+++++	+ + + X +	+++++	++	+++++	++-+	++++++	+ + + +	+++++	+++++	++	+++++	++++++	+++ +	47 48 32 1 43
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma Small intestine Large intestine	++ +++++ ++	++ +X+++ -+	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	++ ++++X ++	++ +++++ ++	++ +++++ ++	++ +++X ++	++ +++++ ++	++ +++++ ++	++ +++++ ++	-+ +++++ ++	++ +++++ ++	++ +++++ ++	++ ++++X ++	++ +++++ ++	++ +++++X ++	++ +++++ ++	++ ++++X ++	++ X+++X+++	++ ++++X ++	++ +++++ ++	47 48 3 48 *48 48 48 48 15 47 48
URINARY SYSTEM Kidney Urinary bladder	++	+	++	+	+	++	++	+	++	++	+	++	÷	÷ +	++	++	++	++	++	++	‡	+	++	++	÷	48 43
ENDOCRINE SYSTEM Pituitary Chromophobe adenoma Adrenal Cortical adenoma Thyroid Follicular-cell adenoma Parathyroid Pancreatic islets Islet-cell adenoma	+ + + +	* + + + + + + + + + + + + + + + + + + +	+ + + X + +	+ + + +	+ + + -	* X + + - +	+ + + -	+ + + +	+ + + -	+ + + -	*X+ + ++	+ + + +	+ + + -	+ + + +	+ + + -+	+ + + +	+ + + -+	+ + + +	+ + + -	+ + + -+	+ + + +	* + + -	* X + + - +	+ + + +	+ + + -+	47 11 48 1 47 1 26 48
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Endometrial stromal sarcoma Ovary Adenocarcinoma, NOS, invasive	+ +	+ * * *	+ + +	+ +	+ + +	+ + +	+ + +	+ + +	+ + +	* * +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++++	* * +	+ X +	+ + +	*48 4 48 2 1 48
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	- +	48
MUSCULOSKELETAL SYSTEM Bone Osteosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	n	*48
ALL OTHER SYSTEMS Multiple organs, NOS Osteosarcoms, metastatic Malignant lymphoms, NOS	И	N	N X	N	N X		N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	Z	*48 1 7

^{*} Animals Necropsied

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE: HIGH DOSE

		_	•	•	•			•••	J-4	. 44						٠-	_	- ' -				••			~
ANIMAL NUMBER	1	0	0	0	0 0 5	0 0 6	0	0	9	0	1	1 2	0 1 3	0 1 4	0 1 5	0	0 1 7	0 1 8	0 1 9	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5
weeks on Study	100	0 5	1 0 5	1 0 5	0 4 8	1 0 5	1 0 5	9	1 0 5	0	0 2	1 0 5	1 0 5	0 9 8	1 0 5	0 6 8	0	0 7 2	1 0 5	1 0 5	1 0 5	0 6 7	0 6 7	0	1 0 5
INTEGUMENTARY SYSTEM Skin Sarcoma, NOS Subcutaneous tissue Liposarcoma		+ +	• +	+	+	+	+	+	+	+	* *	+	+	+	+	+	M	+	+	+	+	+	+	+	++
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	-	+ +	. +	+	+	+	+	+	+	+	+	+	+	* -	+	+	M M	+	+	+	+	+	+	+	* *
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	****	- 1	+++++++++++++++++++++++++++++++++++++++	+++++	++++	++++	++ -+	++++	++ -+	++++	+++-	++-+	++-+	+++-	++-+	++++	M M M	+++-	+++-	++++	++++	++++	++++	++++	+ + + +
CIRCULATORY SYSTEM Heart	7	- 4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Laver Hepatoceilular adenoma Bile duct Galibiadder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Squamous cell carcinoma	* * * * * * * * * * * * * * * * * * *	• + + - +		+ + + + + + X	++ ++-++	++ ++++X	++ ++++X	++ +X++X	++ ++++X	++ +++++	++ +++-+X	++ ++++X	++ ++++X	++x++++ x	++ +++-+	++ ++++X	M M M M M M	++ ++-++	++ +++-+	++ +++++	++ ++++X	++ +++++	++ +X++X	++ ++++ X	++++X
Small intestine Large intestine Leiomyosarcoma URINARY SYSTEM Kidney	1	: ;	+	+	+	+	÷ -	‡ +	‡ +	+	+++	++	‡ +	+	‡ —	+	M M M	‡ —	‡ +	++	+	‡ +	∓	+	÷ -
Urinary bladder Liposarcoma, invasive		• •	÷		÷	<u>-</u>	÷	<u>-</u>	÷	÷	÷	÷	÷	÷	÷	÷	M	-	÷	÷	+	÷	÷	÷	÷
ENDOCRINE SYSTEM Ptuutary Adenoma, NOS Chromophobe adenoma Adrenai Thyroid Parathyroid	4 + 4 -	• •	+ + -	* + + + + + + + + + + + + + + + + + + +	+ +++	+ +++	+ ++-	+ ++-	+ X + -	+ +++	+ ++-	+ +++	+ ++-	+ +	+ ++-	+ +++	M M M	+ +++	+ +	- ++-	+ +++	+ ++-	+ -	+ ++-	+ ++-
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus Endometrial stromal polyp Ovary Luteoma	+	. +	+	+ + +	+ + +	* * +	+ + +	+ + +	+ * *	N + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	M M M	+ + +	+ * *	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +
NERVOUSSYSTEM Brain Astrocytoma	1	. +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M	+	+	÷ x	+	+	+	+	+
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	M	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	M	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcunoma, metastat Malignant lymphoma, NOS Granulocytic leukemia	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N X		N	M	N X	N	N X	N	N	N	N X	N X

+ : Tissue Examined Microscopically
- : Required Tissue Not Examined Microscopically
X : Tumor Incidence
N : Necrops, No Autolysis, No Microscopic Examination
S : Animal Missexed

: No Tissue Information Submitted
C: Necropsy, No Histology Due To Protocol
A: Autolysis
B: Aumai Missing
B: No Necropsy Performed

TABLE B4. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: HIGH DOSE (Continued)

						٠,	-				.,												
ANTMAL NUMBER	0 2 6	2	0 2 8	2	3	3	3 2	3	3	0 3 5	3	4	0 4	0 4 3	044	0 4 5	0	047	8	9	0 5 0	TOTA	
weeks on Study	9	6	1 0 5	1 0 5	0	0	073	8	0 5	0	007	9	9	0	0	0 5	0 5	0 5	0	0	0	TUM	JES ORS
INTEGUMENTARY SYSTEM Skin Sarcoma, NOS Subcutaneous tissue Liposarcoma	+ *	+	+	+	+	+	N	+	+	+	M	+	+	+	+	+	+	+	+	+	+	*44 1 *44	
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+	+	+	+	+	* *	+	+	+	+	M M	+	-	+	+	+	+	+	+	+	+	43 3 25	
HEMATOPOLETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++-	++++	++++	++++	++ -+	++++	++-+	+ - + +	++-+	++-+	M M M	++-+	++	++++	++++	++-+	+++-	++-+	++-+	++-+	+++-	44 43 28 36	
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	M	+	_	+	+	+	+	+	+	+	+	43	
DIGESTIVE SYSTEM Salivary gland Liver fiepatoceitular adenoma Bile duct	‡	++	+++++++++++++++++++++++++++++++++++++++	++++	÷ + +	++++	÷ +	+++	+++	++ +	M M	+++	- + +	+++	+++	+++	÷ +	+++	÷ + +	+++	+++++++++++++++++++++++++++++++++++++++	43 44 1	
Gallbladder & common bile duct Pancreas Esophagus Stomach	N + + + >	+++	+ + + + X	+ + + + X	++++	+ + + + X	++++X	N - + + X	++++X	+++X	M M M M	+++X	N+ -+X	++++	++++	++++	+ + + + X	+++X	+ + + + X	X+++X	+ + + + X	44 *44 41 39	
Squamous cell papilloma Squamous cell carcinoma Small intestine Large intestine Leiomyosarcoma	7	+	+	++	+	++	++	-	* + +	^ + +	M	++	- X	+	+	+	^ + +	++	++	* + +	++	29 2 39 42 1	
URINARY SYSTEM Kidney Urinary bladder Liposarcoma, invasive	÷	+	+	÷	÷	+	÷	++	<u>+</u>	++	M	+	÷	+	++	++	+	++	+	++	++	44 38 1	
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	-	+	+	+	+	+	-	+	+	+	M	+	-	+	+	+	+	+	+	+	+	39	
Chromophobe adenoma Adrenal Thyroid Parathyroid	÷ -	+++	+++	+++	+ -	++-	++-	+++	+	+++	M M M	++-	+ -	+++	++-	+++	X + + -	X + +	X + -	+++	+++	38 16	
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Uterus	*	+	+	+	N +	+ +	N +	+	+	+ +	M	+ +	+ +	N +	+ +	++	+	+	+	+	+ +	*44	
Endometrial stromal polyp Ovary Luteoma	+	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	+	+	+	*	44 1	
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	M	+	_	+	+	+	+	+	+	+	+	4:	
SPECIAL SENSE ORGANS Harderian gland Papillary adenoma	N	N	N	N	N	N	N	N	N X	N	M	N	N	N	N	N	N	N	N	N	N	*41	·
MUSCULOSKELETAL SYSTEM Bone Sarcoma, NOS	N	N	N	N	N	N	N	N	N	N	M	N X	N	N	N	N	N	N	N	N	N	•4	
ALL OTHER SYSTEMS Multiple organs, NOS Squamous cell carcinoma, metastat Malignant lymphoma, NOS Granulocytic leukemia	И	N	N	N	N	N	N	N X	N	N	M	N	N	N	N	N	N	N	N	N	N	*44	<u>.</u>

^{*} Animals Necropsied

APPENDIX C

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN RATS IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

HEMORRHAGE 1 (2%) HYPERKERATOSIS 1 (2%) RESPIRATORY SYSTEM *NASAL CAVITY (50) CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC INFLAMMATION, CRANULOMATOUS HYPERPLASIA, EPITHELIAL LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS **LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 4 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 4 (8%) **LUNG/ALVEOLI (50) FIBROSIS (5	OW DOSE	HIGH	DOSE
ANIMALS EXAMINED HISTOPATHOLOGICALLY 50 INTEGUMENTARY SYSTEM *SKIN (50) HEMORRHAGE 1 (2%) HYPERKERATOSIS 1 (2%) RESPIRATORY SYSTEM *NASAL CAVITY (50) CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, SQUAMOUS #INFLAMMATION, CHRONIC FOCAL METAPLASIAS, SQUAMOUS #LUNG ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) ELDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL 1 (2%) ENDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) INFLAMMATION, CUTE/CHRONIC 1 (2%) PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW (50) FIBROSIS, FOCAL HEMOSIDEROSIS #MANDIBULAR L, NODE (49) PLASMACYTOSIS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L, NODE (49) PLASMACYTOSIS (41) HEMORRHAGE 1 (2%)	50	50	
*SKIN (50) HEMORRHAGE 1 (2%) HYPERKERATOSIS 1 (2%) RESPIRATORY SYSTEM *NASAL CAVITY (50) CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA (49) LUMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, CHRONIC 1 (2%) INFLAMMATION, CHRONIC 1 (2%) INFLAMMATION, CHRONIC 5FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #MANDIBULAR L NODE (49) PIGMENTATION, NOS #FIBROSIS, FOCAL HEMOSTDEROSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L, NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)	50	50	
*SKIN (50) HEMORRHAGE 1 (2%) HYPERKERATOSIS 1 (2%) RESPIRATORY SYSTEM *NASAL CAVITY (50) CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA (49) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS (50) ATELECTASIS (6) CONGESTION, NOS (6) EDEMA, INTERSTITIAL (2%) CONGESTION, NOS (6) EDEMA, INTERSTITIAL (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS (1) INFLAMMATION, INTERSTITIAL ABSCESS, NOS (1) INFLAMMATION, CHRONIC (1) INFLAMMATION, CHRONIC MURINE (1) INFLAMMATION, CHRONIC FOCAL (2) INFLAMMATION, CH	50	50	
HEMORRHAGE HYPERKERATOSIS RESPIRATORY SYSTEM *NASAL CAVITY CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG ATELECTASIS CONGESTION, NOS EDEMA, INTERSTITIAL HEMORRHAGE LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL HEMORRHAGE LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, ACUTE/CHRONIC PPEUMONIA, CHRONIC MURINE INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM INSTICCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW			
HYPERKERATOSIS 1 (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2%)	(50)	(50)	
**RESPIRATORY SYSTEM **NASAL CAVITY CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC FOCAL HYPERPLASIA, EPITHELIAL **TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS **LUNG ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 1 (2%) HISTIOCYTOSIS 4 (8%) **LUNG/ALVEOLI HISTIOCYTOSIS 4 (8%) **HEMATOPOIETIC SYSTEM #*BONE MARROW 500 HYPERPLASIA, NOS **SPLEEN 500 HEMATOPOIETIC SYSTEM #*BONE MARROW 500 HYPERPLASIA, NOS **SPLEEN 500 HEMATOPOIETIC SYSTEM #BONE MARROW 500 HYPERPLASIA, NOS **SPLEEN 500 HEMATOPOIETIC SYSTEM #BONE MARROW 500 HYPERPLASIA, NOS **SPLEEN 500 HEMATOPOIETIC SYSTEM #BONE MARROW 500 HYPERPLASIA, NOS **SPLEEN 500 HEMATOPOIETIC SYSTEM #BONE MARROW 500 HEMATOPOIETIC	4 (04)		
*NASAL CAVITY CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG ATELECTASIS (000ESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 4 (8%) #MANDIBULAR L. NODE PLASMACYTOSIS #MANDIBULAR L. NODE PLASMACYTOSIS #MANDIBULAR L. NODE #MEMORRHAGE 1 (2%) #ICHORY #MANDIBULAR L. NODE	1 (2%)		
CONGESTION, NOS INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA (49) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, CHRONIC FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) #LUNG/ALVEOLI (50) HISTIOCYTOSIS (50) FIBROSIS, FOCAL HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)			
INFLAMMATION, SUPPURATIVE INFLAMMATION, CHRONIC INFLAMMATION, CRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG ATELECTASIS (50) ATELECTASIS (1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE ILYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC MURINE INFLAMMATION, CHRONIC FOCAL INFLAMMATION, CHRONIC FOCAL INFLAMMATION, CHRONIC FOCAL INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRAVULOMATOUS FOCAL INFLAMMATION, GRAVULOMATOUS FOCAL INFLAMMATION, TRAVILOMATOUS FOCAL INFLAMMATION, TRAVILOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM INFLOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW HYPERPLASIA, NOS #SPLEEN #BONE MARROW #BONE MARROW #BONE MARROW HYPERPLASIA, NOS #SPLEEN #BONE MARROW #BONE MAR	(50)	(50)	
INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG ATELECTASIS (50) ATELECTASIS (12%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC INFLAMMATION, CHRONIC 1 (2%) INFLAMMATION, GRANULOMATOUS FOCAL INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM HYPERPLASIA, ALVEOLAR EPITHELIUM #BONE MARROW HYPERPLASIA, NOS #SPLEEN #BONE MARROW HYPERPLASIA, NOS #THYMUS #MANDIBULAR L. NODE			(2%)
INFLAMMATION, CHRONIC INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA (49) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) #LUNG/ALVEOLI (50) HISTOCYTOSIS 2 (4%) #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)			(24%)
INFLAMMATION, GRANULOMATOUS HYPERPLASIA, EPITHELIAL #TRACHEA (49) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 4 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIETIC SYSTEM #BONE MARROW (49) PLASMACYTOSIS #MANDIBULAR L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGMENTATION, NOS #THYMUS (41) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGMENTATION, NOS #THYMUS (41) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGMENTATION, NOS #THYMUS (41) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)			(14%)
#TYPERPLASIA, EPITHELIAL #TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW #BONE MARO			(14%)
#TRACHEA LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 4 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 4 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) #MATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L, NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) *IRCULATORY SYSTEM #MANDIBULAR L, NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)			(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS #LUNG	(49)		(2%)
INFLAMMATION, CHRONIC FOCAL METAPLASIA, SQUAMOUS	(47)	(45)	(00)
#LUNG (50) ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) INFLAMMATION, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS 1 (2%) #UNG/ALVEOLI (50) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 1 (8%) #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS (50) FIBROSI			(2%)
#LUNG ATELECTASIS 1 (2%) CONGESTION, NOS 6 (12%) EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, CHRONIC FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS FOCAL 2 (4%) HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L, NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGRENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)			(4%)
ATELECTASIS CONGESTION, NOS EDEMA, INTERSTITIAL LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS EDEMA, INTERSTITIAL EDEMA, INTERSTITIAL	(50)	(50)	(2%)
CONGESTION, NOS EDEMA, INTERSTITIAL EDEMA, INTERSTITIAL HEMORRHAGE LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS INFLAMMATION, ACUTE/CHRONIC PNEUMONIA, CHRONIC MURINE INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM #UNG/ALVEOLI HISTIOCYTOSIS #UNG/ALVEOLI #BONE MARROW #BONE MARO	1 (2%)		(2%)
EDEMA, INTERSTITIAL 1 (2%) HEMORRHAGE 1 (2%) LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) PIGRENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%)	3 (6%)		(14%)
HEMORRHAGE	0 (070)	•	(1470)
LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, INTERSTITIAL ABSCESS, NOS 1 (2%) INFLAMMATION, ACUTE/CHRONIC 1 (2%) PNEUMONIA, CHRONIC MURINE 1 (2%) INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	1 (2%)		
INFLAMMATION, INTERSTITIAL ABSCESS, NOS	3 (6%)	1	(2%)
ABSCESS, NOS INFLAMMATION, ACUTE/CHRONIC INFLAMMATION, CHRONIC MURINE INFLAMMATION, CHRONIC MURINE INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS FOCAL INFLAMMATOPOISIS INFLAMMATOUS INFLAMMATOUS INFLAMMATOPOISIS INFLAM	0 (0,0)		(4%)
INFLAMMATION, ACUTE/CHRONIC 1 (2%)		_	(/
PNEUMONIA, CHRONIC MURINE INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS FOCAL HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW #BONE MARROW #BONE MARROW #SPLEEN #BROSIS FIBROSIS FIBROSIS FIBROSIS FIBROSIS HEMATOPOIETIC SYSTEM #BONE MARROW #SPLEEN FIBROSIS FIBROSIS FIBROSIS HEMATOPOIETIC HEMOSIDEROSIS #PANCREATIC L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE I (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) #MANDIBULAR L. NODE (49)			
INFLAMMATION, CHRONIC FOCAL 2 (4%) INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) (50) (50) HISTIOCYTOSIS 4 (8%) (8%) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50			
INFLAMMATION, GRANULOMATOUS FOCAL 2 (4%) HYPERPLASIA, ADENOMATOUS HYPERPLASIA, ALVEOLAR EPITHELIUM 2 (4%) HISTIOCYTOSIS 1 (2%) #LUNG/ALVEOLI (50) HISTIOCYTOSIS 4 (8%) #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)		2	(4%)
HYPERPLASIA, ALVEOLAR EPITHELIUM HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW #BONE MARROW HYPERPLASIA, NOS #SPLEEN FIBROSIS FIBROSIS FIBROSIS FIBROSIS HEMATOPOIESIS #MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) CIRCULATORY SYSTEM #MANDIBULAR L. NODE #MANDIBULAR L. NODE (49) CIRCULATORY SYSTEM #MANDIBULAR L. NODE	2 (4%)		
HYPERPLASIA, ALVEOLAR EPITHELIUM HISTIOCYTOSIS #LUNG/ALVEOLI HISTIOCYTOSIS #BONE MARROW #BONE MARROW HYPERPLASIA, NOS #SPLEEN FIBROSIS FIBROSIS FIBROSIS FIBROSIS HEMATOPOIESIS #MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE #MANDIBULAR L. NODE #ICHORY SYSTEM #MANDIBULAR L. NODE #ICHORY SYSTEM #MANDIBULAR L. NODE #ICHORY SYSTEM #MANDIBULAR L. NODE		1	(2%)
#LUNG/ALVEOLI HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE (49) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) CIRCULATORY SYSTEM #MANDIBULAR L. NODE #MANDIBULAR L. NODE (49)	3 (6%)		
HISTIOCYTOSIS 4 (8%) HEMATOPOIETIC SYSTEM #BONE MARROW (50) HYPERPLASIA, NOS #SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)			
#BONE MARROW (50) #YPERPLASIA, NOS #SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	(50)	(50)	
#BONE MARROW	4 (8%)	1	(2%)
#YPERPLASIA, NOS #SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)			
#SPLEEN (50) FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	(49)	(50)	
FIBROSIS 2 (4%) FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE (49) PLASMACYTOSIS #PANCREATIC L. NODE (49) PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	1 (2%)		
FIBROSIS, FOCAL HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	(50)	(48)	
HEMOSIDEROSIS HEMATOPOIESIS #MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49) (49)	1 (2%)		(2%)
######################################	0. (0~)		(4%)
#MANDIBULAR L. NODE PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	3 (6%)	2	(4%)
PLASMACYTOSIS #PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	2 (4%)	/451	
#PANCREATIC L. NODE PIGMENTATION, NOS #THYMUS HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	(47)	(45)	
PIGMENTATION, NOS #THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	1 (2%)	(45)	
#THYMUS (41) HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L, NODE (49)	(47) 1 (2%)	(40)	
HEMORRHAGE 1 (2%) CIRCULATORY SYSTEM #MANDIBULAR L. NODE (49)	(46)	(41)	
#MANDIBULAR L. NODE (49)	(20)		(7%)
#MANDIBULAR L. NODE (49)			
	(47)	(45)	
	\ - • •	2	(4%)
	(47)	(45)	,
LYMPHANGIECTASIS	1 (2%)	\- -	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
CIRCULATORY SYSTEM (Continued)		······································		, ,, 		
#LUNG	(50)		(50)		(50)	
PERIVASCULITIS	(00)			(2%)		
#HEART	(50)		(50)		(50)	
INFLAMMATION, CHRONIC FOCAL		(2%)				
#HEART/ATRIUM	(50)	(= /0)	(50)		(50)	
THROMBOSIS, NOS		(2%)		(2%)	1	(2%)
#MYOCARDIUM	(50)	(= ,,,	(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC		(2%)			1	(2%)
INFLAMMATION, CHRONIC		(2%)	1	(2%)	1	(2%)
INFLAMMATION, CHRONIC FOCAL		(2%)			1	(2%)
FIBROSIS	-	(= / • /			2	(4%)
DEGENERATION, NOS	34	(68%)	34	(68%)	36	(72%)
#ENDOCARDIUM	(50)	(00%)	(50)	(00,11)	(50)	
HYPERPLASIA, NOS	, . ,	(2%)		(2%)	, ,	
*PULMONARY ARTERY	(50)	(4 70)	(50)	(2,0)	(50)	
	(00)		, ,	(2%)		(2%)
MINERALIZATION	1	(2%)		(2%)		(2%)
CALCIFICATION, NOS	1	(270)		(2%)	-	(= ,-,
CALCIFICATION, FOCAL	(50)		(50)	(270)	(50)	
*CEREBRAL ARTERY		(2%)	(00)		(00)	
FIBROSIS		(2%)				
CALCIFICATION, NOS		(270)	(50)		(50)	
*SUP. PANC-DUOD. ARTERY	(50)		(30)			(2%)
HYPERTROPHY, NOS	(FO)		(EO)		(50)	(270)
*PULMONARY VEIN	(50)	(0.00)	(50)		(30)	
THROMBOSIS, NOS		(2%)	(EO)		(48)	
#HEPATIC SINUSOID	(50)	(0~)	(50)			(2%)
DILATATION, NOS		(2%)	(50)		(48)	(270)
#PANCREAS	(50)	(0~)	(50)		(40)	
PERIARTERITIS	1	(2%)				
NORGHITE SYSTEM						
DIGESTIVE SYSTEM	(50)		(47)		(49)	
#SALIVARY GLAND	(30)		(41)			(2%)
DILATATION/DUCTS						(2%)
RETENTION OF CONTENT		(00)			-	(=,
CYSTIC DUCTS		(2%)				
INFLAMMATION, ACUTE/CHRONIC		(2%)				
METAPLASIA, SQUAMOUS		(2%)	(50)		(48)	
#LIVER	(50)		(50)	(40)		(2%)
CONGESTION, NOS		(4%)	Z	(4%)		(270)
HEMORRHAGE		(2%)		(00)	1	(2%)
CHOLANGIOFIBROSIS	2	(4%)	4	(8%)		(2%)
DEGENERATION, HYDROPIC				4460		
NECROSIS, FOCAL			2	(4%)		(4%)
NECROSIS, MIDZONAL						(2%)
INFARCT, NOS			_		1	(2%)
LIPOIDOSIS				(2%)	•	(40)
BASOPHILIC CYTO CHANGE				(2%)		(4%)
GROUND-GLASS CYTO CHANGE		(6%)		(2%)		(4%)
FOCAL CELLULAR CHANGE	1	(2%)	1	(2%)		(4%)
EOSINOPHILIC CYTO CHANGE						(2%)
#LIVER/CENTRILOBULAR	(50)		(50)		(48)	/o~ ·
CONGESTION, NOS						(2%)
DEGENERATION, GRANULAR						(2%)
NECROSIS, NOS			1	(2%)		(10%
HYPERTROPHY, NOS						(2%)
#LIVER/PERIPORTAL	(50)		(50)		(48)	
INFLAMMATION, NECROTIZING				(2%)	_	
#LIVER/HEPATOCYTES	(50)		(50)		(48)	
CYTOPLASMIC VACUOLIZATION			1	(2%)		
HYPERPLASIA, BASAL CELL					1	(2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	DL (VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)						
#BILE DUCT	(50)		(50)		(48)	
CYST, NOS	, .		,		1	(2%)
HYPERPLASIA, NOS	31	(62%)	31	(62%)		(13%)
HYPERPLASIA, CYSTIC	•	(0=10)		(2%)	_	.
#PANCREATIC ACINUS	(50)		(50)	(= .,,	(48)	
ATROPHY, NOS		(6%)		(6%)		(6%)
ATROPHY, FOCAL		(20%)		(12%)		(4%)
HYPERPLASIA, FOCAL		(20%)	Ū	(1470)	-	(470)
#GASTRIC MUCOSA	(50)	(20%)	(50)		(48)	
CALCIFICATION, NOS		(2%)	(50)		(40)	
#GLANDULAR STOMACH			(50)		(48)	
	(50)		(00)			(2%)
CYST, NOS		(4%)	(50)		(48)	(270)
#GASTRIC SUBMUCOSA	(50)		* * * * * * * * * * * * * * * * * * * *	(2%)	(40)	
EDEMA, NOS						
INFLAMMATION, ACUTE/CHRONIC	(FA)			(2%)	(40)	
#FORESTOMACH	(50)	(40%)	(50)	(40)	(48)	(0~
ULCER, NOS		(4%)	2	(4%)	1	(2%)
INFLAMMATION, ACUTE/CHRONIC		(2%)				
INFLAMMATION, CHRONIC		(2%)				
INFLAMMATION, CHRONIC FOCAL	1	(2%)				(2%)
HYPERPLASIA, EPITHELIAL					1	(2%)
HYPERPLASIA, BASAL CELL	19	(38%)	41	(82%)	43	(90%)
HYPERKERATOSIS					3	(6%)
#DUODENUM	(48)		(50)		(46)	
ULCER, NOS	(/		(* - /		, ,	(2%)
INFLAMMATION, CHRONIC			1	(2%)		
#COLON	(49)		(49)	(= / • /	(47)	
ULCER, NOS	((/			(2%)
PARASITISM	1	(2%)	1	(2%)		(4%)
NECROSIS, FOCAL		(=)		,_,,		(2%)
URINARY SYSTEM			· · · · · · · · · · · · · · · · · · ·			
#KIDNEY	(50)		(50)		(49)	
	, ,	(90%)	(50)		(49)	
CONGESTION, NOS		(2%)		(00)		
PYELONEPHRITIS, NOS	1	(2%)		(2%)		
PYELONEPHRITIS, ACUTE	0.5	(700)		(2%)	477	(000)
NEPHROPATHY	35	(70%)		(88%)	41	(96%)
CALCIFICATION, FOCAL	(FO)			(2%)	(40)	
#KIDNEY/CORTEX	(50)	(00)	(50)		(49)	
CYST, NOS	1	(2%)	0	(4%)		
PYELONEPHRITIS, NOS		(2%)	Z	(4%)		
PYELONEPHRITIS, FOCAL	_	4		(10%)	•	(100)
ABSCESS, NOS		(14%)		(10%)		(18%)
#KIDNEY/MEDULLA	(50)		(50)		(49)	
CALCIFICATION, NOS		(2%)				
CALCIFICATION, FOCAL		(2%)				
#KIDNEY/TUBULE	(50)		(50)		(49)	
DILATATION, NOS	1	(2%)				
DEGENERATION, HYALINE				(2%)		
NECROSIS, NOS			1	(2%)		
REGENERATION, NOS			1	(2%)		
#KIDNEY/PELVIS	(50)		(50)		(49)	
DILATATION, NOS				(2%)		
HYPERPLASIA, EPITHELIAL	1	(2%)		(2%)		
#URINARY BLADDER	(48)		(49)		(46)	
HEMORRHAGE		(2%)				
INFLAMMATION, SUPPURATIVE		(2%)	1	(2%)		
INFLAMMATION, ACUTE	•	\-···	-	,	1	(2%)
INFLAMMATION. ACCTE						

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSI
INDOCRINE SYSTEM	· · · · · · · · · · · · · · · · · · · 		······································	 		
#PITUITARY	(49)		(50)		(50)	
CYST, NOS	` - ,		,			(2%)
HEMORRHAGE						(2%)
#PITUITARY INTERMEDIA	(49)		(50)		(50)	, ,
CYST, NOS	(,		(,		1	(2%)
PIGMENTATION, NOS			1	(2%)		,
#ANTERIOR PITUITARY	(49)		(50)		(50)	
CYST, NOS		(12%)		(8%)		(8%)
PIGMENTATION, NOS	•	(22/0)		(4%)	-	(0,0)
CYTOPLASMIC VACUOLIZATION				(2%)	1	(2%)
HYPERPLASIA, FOCAL	16	(33%)		(46%)		(36%
ANGIECTASIS		(2%)	20	(4070)		(2%)
#ADRENAL	(50)		(50)		(48)	(2,0)
ANGIECTASIS	(00)		(00)			(2%)
#ADRENAL CORTEX	(50)		(50)		(48)	(2,0)
ACCESSORY STRUCTURE	(00)			(4%)	(10)	
HEMORRHAGE			•	(470)	1	(2%)
FIBROSIS, FOCAL			1	(2%)	•	(270)
DEGENERATION, NOS			•	(270)	1	(2%)
DEGENERATION, NOS DEGENERATION, LIPOID		(900)		(10%)		(23%)
	11	(22%)			11	(2370
INFARCT, NOS	•	(00)	1	(2%)	•	
CYTOPLASMIC CHANGE, NOS	1	(2%)	•	(0%)		
ATROPHY, FOCAL				(2%)		
HYPERTROPHY, FOCAL	_			(2%)		(004)
HYPERPLASIA, FOCAL		(10%)		(18%)		(23%)
#ADRENAL MEDULLA	(50)		(50)		(48)	
ATROPHY, FOCAL		(2%)			_	
HYPERPLASIA, FOCAL		(26%)		(8%)		(17%)
#THYROID	(49)		(48)	(0.41)	(48)	
ULTIMOBRANCHIAL CYST				(2%)		
CYST, NOS			1	(2%)	_	
FOLLICULAR CYST, NOS			_			(2%)
HYPERPLASIA, C-CELL	6	(12%)	6	(13%)		(8%)
hyperplasia, follicular-cell						(2%)
#PARATHYROID	(40)		(38)		(39)	
HYPERPLASIA, NOS				(3%)		(3%)
#PANCREATIC ISLETS	(50)		(50)		(48)	
HYPERPLASIA, FOCAL	3	(6%)				
eproductive system	(#4)		.=		(** 0)	
*MAMMARY GLAND	(50)	(60)	(50)		(50)	(40)
GALACTOCELE CYSTIC DUCTS		(6%)			Z	(4%)
CYSTIC DUCTS		(2%)	~	(1.4%)		(100)
LACTATION		(8%)		(14%)		(10%)
*MAMMARY LOBULE	(50)		(50)	(0~)	(50)	(OM)
HYPERPLASIA, NOS		(2%)		(2%)		(2%)
*PREPUTIAL GLAND	(50)		(50)		(50)	
DILATATION/DUCTS	1	(2%)				
CYST, NOS				(2%)		
INFLAMMATION, ACUTE			1	(2%)		
ABSCESS, NOS	3	(6%)				
INFLAMMATION, CHRONIC	1	(2%)				
HYPERPLASIA, NOS		(2%)	_			
#PROSTATE	(47)		(49)		(48)	
INFLAMMATION, SUPPURATIVE		(2%)		(2%)		(4%)
ABSCESS, NOS	1	(2%)		(4%)		(2%)
INFLAMMATION, ACUTE/CHRONIC			1	(2%)	1	(2%)
		(4%)				
INFLAMMATION, CHRONIC FOCAL	2	(4:70)				
INFLAMMATION, CHRONIC FOCAL INFLAMMATION, GRANULOMATOUS	2	(470)			1	(2%)
INFLAMMATION, CHRONIC FOCAL	2	(470)	1	(2%)		(2%) (2%)

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
REPRODUCTIVE SYSTEM			
#PROSTATE (Continued)	(47)	(49)	(48)
HYPERPLASIA, FOCAL	4 (9%)	4 (8%)	5 (10%)
*SEMINAL VESICLE	(50)	(50)	(50)
INFLAMMATION, SUPPURATIVE	1 (2%)	• •	, ,
ABSCESS, NOS	1 (2%)		
#TESTIS	(50)	(50)	(48)
HAMARTOMA		1 (2%)	
HYPERPLASIA, INTERSTITIAL CELL	1 (2%)		1 (2%)
#SPERMATID	(50)	(50)	(48)
CYTOMEGALY		1 (2%)	
*EPIDIDYMIS	(50)	(50)	(50)
HYPERPLASIA, EPITHELIAL			1 (2%)
NERVOUS SYSTEM			
#CEREBRAL VENTRICLE	(50)	(50)	(50)
DILATATION, NOS	1 (2%)	•	•
#BRAIN	(50)	(50)	(50)
HEMORRHAGE	1 (2%)		
#BRAIN STEM	(50)	(50)	(50)
DEMYELINIZATION		1 (2%)	
#CEREBELLUM	(50)	(50)	(50)
CALCIFICATION, FOCAL			1 (2%)
SPECIAL SENSE ORGANS			
*EYE	(50)	(50)	(50)
ABSCESS, NOS			1 (2%)
CATARAĆT	5 (10%)	1 (2%)	6 (12%)
ATROPHY, NOS		2 (4%)	
*EYE/SCLERA,	(50)	(50)	(50)
CALCIFICATION, FOCAL		1 (2%)	
METAPLASIA, OSSEOUS	2 (4%)	1 (2%)	1 (2%)
*EYE/RETINA	(50)	(50)	(50)
ATROPHY, NOS	4 (8%)	3 (6%)	8 (16%)
*EYE/LACRIMAL GLAND	(50)	(50)	(50)
PORPHYRIN			1 (2%)
*NASOLACRIMAL DUCT	(50)	(50)	(50)
INFLAMMATION, SUPPURATIVE			1 (2%)
INFLAMMATION, CHRONIC			1 (2%)
MUSCULOSKELETAL SYSTEM NONE			
BODY CAVITIES	to the second se		
*MEDIASTINUM	(50)	(50)	(50)
HEMORRHAGE	• • • •	, ,	1 (2%)
NECROSIS, FAT	1 (2%)		
*ABDOMINAL CAVITY	(50)	(50)	(50)
	1 (2%)	1 (2%)	

TABLE C1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS ADIPOSE TISSUE			
NECROSIS, FAT	3		<u>-</u>
SPECIAL MORPHOLOGY SUMMARY NONE			

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.
NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

CC	ONTRO)L (VEH)	LOWI	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50	- · · · · · · · · · · · · · · · · · · ·	50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SUBCUT TISSUE	(50)		(50)		(50)	
HEMATOMA, NOS	1	(2%)				
RESPIRATORY SYSTEM						
*NASAL CAVITY	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE						(16%)
INFLAMMATION, ACUTE/CHRONIC			(FA)			(12%)
#TRACHEA	(47)		(50)		(49)	
HYPERPLASIA, EPITHELIAL		(2%)	(50)		(50)	
#LUNG	(50)		(50)		(50)	(90%)
ATELECTASIS CONGESTION, NOS	1	(2%)	9	(6%)		(2%) (2%)
EDEMA, NOS	1	(470)		(0%) (2%)	1	(470)
HEMORRHAGE	2	(4%)	•	(2 %)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	_	(470)				(2%)
INFLAMMATION, INTERSTITIAL	1	(2%)				(4%)
PNEUMONIA, ASPIRATION		,,	1	(2%)		•
INFLAMMATION, SUPPURATIVE	1	(2%)				
BRONCHOPNEUMONIA, ACUTE			1	(2%)		
ABSCESS, NOS					1	(2%)
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
PNEUMONIA, CHRONIC MURINE			1	(2%)		
INFLAMMATION, CHRONIC		.=	_			(2%)
INFLAMMATION, CHRONIC FOCAL		(2%)	2	(4%)		(2%)
INFLAMMATION, GRANULOMATOUS FOCA	.L 3	(6%)				(2%)
HEMOSIDEROSIS		(00)			1	(2%)
HYPERPLASIA, ADENOMATOUS		(2%)	1	(2%)		
HYPERPLASIA, ALVEOLAR EPITHELIUM HISTIOCYTOSIS		(2%) (2%)	1	(270)		
#LUNG/ALVEOLI	(50)	(2 %)	(50)		(50)	
HISTIOCYTOSIS		(12%)		(6%)		(26%)
HEMATOPOIETIC SYSTEM						
#BONE MARROW	(49)		(49)		(50)	
HYPOPLASIA, NOS	ŕ			(4%)	1	(2%)
HYPERPLASIÁ, NOS				(2%)		
#SPLEEN	(49)		(50)		(50)	
FIBROSIS	1	(2%)	2	(4%)		(2%)
INFARCT, NOS	_	(0%)	_	(0%)		(2%)
HEMOSIDEROSIS		(6%)	1	(2%)	8	(16%)
DEPLETION, LYMPHOID HEMATOPOIESIS		(2%) (8%)	0	(4%)	1	(2%)
#LYMPH NODE	(46)	(8%)	(47)	(470)	(45)	(4/0)
HEMORRHAGE		(2%)	(=1)		(40)	
PLASMACYTOSIS	•	_, - ,-,-	1	(2%)		
#MANDIBULAR L. NODE	(46)		(47)	,	(45)	
HEMORRHAGE	,		` '			(2%)
INFLAMMATION, GRANULOMATOUS					1	(2%)
INFLAMMATION, GRANULOMATOUS FOCAL	L		1	(2%)		
PLASMACYTOSIS						(2%)
MASTOCYTOSIS				(2%)		(2%)
	(40)		(47)		(45)	
#MEDIASTINAL L. NODE	(46)	.=	(47)		(40)	
#MEDIASTINAL L. NODE INFLAMMATION, GRANULOMATOUS FOCAL HISTIOCYTOSIS	L 1	(2%) (2%)	(47)		(40)	

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

со	NTRO	L (VEH)	LOWI	OOSE	HIGH	DOSI
HEMATOPOIETIC SYSTEM (Continued)						
#LIVER	(50)		(50)		(50)	
HEMATOPOIESIS	(00)		(30)			(2%)
#THYMUS	(41)		(46)		(48)	(,
CYST, NOS		(2%)	(55)		` -,	
HEMORRHAGE		_ , ,	1	(2%)	3	(6%)
CIRCULATORY SYSTEM						
#RENAL LYMPH NODE	(46)		(47)		(45)	
LYMPHANGIECTASIS	(10)			(2%)	(-0)	
#HEART	(50)		(50)	(270)	(50)	
CONGEN. CARDIOVASC. MALFORMATION		(2%)	(00)		(00)	
METAMORPHOSIS, FATTY	•	(270)			1	(2%)
#LEFT ATRIUM	(50)		(50)		(50)	(2 /0)
INFLAMMATION, SUPPURATIVE	(00)			(2%)	(00)	
#MYOCARDIUM	(50)		(50)	_ ~/	(50)	
INFLAMMATION, ACUTE/CHRONIC	(50)			(2%)	(00)	
INFLAMMATION, ACCITE/CHRONIC INFLAMMATION, CHRONIC FOCAL				(2%)		
FIBROSIS, FOCAL	9	(4%)	•	(= /0)		
		(4%)	21	(62%)	94	(48%
DEGENERATION, NOS		(2%)	31	(02 10)	44	(40 %
NECROSIS, NOS		(470)	(EO)		(50)	
*PULMONARY ARTERY	(50)		(50)			(90%)
MINERALIZATION			•	(40)	1	(2%)
CALCIFICATION, FOCAL	(FA)			(4%)	(70)	
*HEPATIC VEIN	(50)		(50)	(0.41)	(50)	
HYPERPLASIA, NOS				(2%)	(70)	
#HEPATIC SINUSOID	(50)		(50)		(50)	(DW)
DILATATION, NOS	(TO)		(50)			(2%)
#ADRENAL CORTEX	(50)	(00)	(50)		(50)	
THROMBOSIS, NOS		(2%)			·	<u> </u>
DIGESTIVE SYSTEM						
#TONGUE	(50)		(50)		(50)	
Hyperplasia, epithelial						(2%)
#SALIVARY GLAND	(50)		(50)		(49)	
INFLAMMATION, CHRONIC FOCAL					1	(2%)
ATROPHY, NOS			1	(2%)		
#LIVER	(50)		(50)		(50)	
CONGESTION, NOS					1	(2%)
INFLAMMATION, CHRONIC FOCAL	1	(2%)				
INFLAMMATION, GRANULOMATOUS				(2%)		
GRANULOMA, NOS				(2%)	_	
INFLAMMATION, GRANULOMATOUS FOCAL		(18%)		(16%)	_	(14%
CHOLANGIOFIBROSIS		(4%)		(2%)		(4%)
NECROSIS, FOCAL	2	(4%)	3	(6%)		(4%)
NECROSIS, DIFFUSE					1	(2%)
CYTOPLASMIC VACUOLIZATION		(2%)		(8.41)		
BASOPHILIC CYTO CHANGE		(6%)		(2%)	_	
GROUND-GLASS CYTO CHANGE	2	(4%)		(2%)		(4%)
FOCAL CELLULAR CHANGE			1	(2%)	1	(2%)
CLEAR-CELL CHANGE	1	(2%)				
HYPERTROPHY, FOCAL						(2%)
Hyperplasia, nos					1	(2%)
ANGIECTASIS		•		(2%)		
#PORTAL TRACT	(50)		(50)		(50)	
INFLAMMATION, NOS						(2%)
						(2%)
PIGMENTATION, NOS					(EO)	
	(50)		(50)		(50)	
PIGMENTATION, NOS	(50)		1	(2%)		
PIGMENTATION, NOS #LIVER/CENTRILOBULAR		(2%)	1	(2%) (6%)		(2%)

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOW	DOSE	HIGH	DOSI
DIGESTIVE SYSTEM (Continued)						
#BILE DUCT	(50)		(50)		(50)	
INFLAMMATION, CHRONIC		(2%)	(00)		(00)	
HYPERPLASIA, NOS		(48%)	99	(44%)	1.4	(28%
						(20%
#PANCREATIC ACINUS	(50)		(50)		(50)	
ATROPHY, NOS		(2%)		(4%)		
ATROPHY, FOCAL		(8%)		(2%)		
#GLANDULAR STOMACH	(50)		(50)		(50)	
ABSCESS, NOS					1	(2%)
FIBROSIS, FOCAL	1	(2%)				
#GASTRIC SUBMUCOSA	(50)		(50)		(50)	
EDEMA, NOS	(00)		(00)			(4%)
#FORESTOMACH	(50)		(50)		(50)	(=,0)
	, , ,	(2%)	(00)			(2%)
ULCER, NOS		, , , ,				
INFLAMMATION, ACUTE		(2%)			1	(2%)
ULCER, ACUTE	1	(2%)				
INFLAMMATION, ACUTE/CHRONIC		.=				(2%)
INFLAMMATION, CHRONIC		(2%)				(2%)
HYPERPLASIA, BASAL CELL	24	(48%)	42	(84%)	45	(90%
HYPERKERATOSIS		•				(2%)
#JEJUNAL MUCOSA	(50)		(49)		(50)	,
DIVERTICULUM		(2%)	(=0)		(00)	
DIVERVICE DOM		(2 10)				
JRINARY SYSTEM						
#KIDNEY	(50)		(50)		(50)	
HAMARTOMA		(2%)	(00)		(00)	
PYELONEPHRITIS, NOS	•	(270)	1	(2%)		
_	1	(2%)	•	(2 10)		
FIBROSIS, DIFFUSE			15	(000)	977	(E 40).
NEPHROPATHY	17	(34%)	19	(30%)		(54%
INFARCT, NOS	_		_			(2%)
CALCIFICATION, FOCAL		(6%)	3	(6%)		(4%)
#KIDNEY/CORTEX	(50)		(50)		(50)	
CYST, NOS	1	(2%)				
#KIDNEY/MEDULLA	(50)	,	(50)		(50)	
MINERALIZATION	(00)		(/			(2%)
	•	(2%)			î	
CALCIFICATION, NOS				(04)		
CALCIFICATION, FOCAL		(4%)		(2%)		(2%)
#RENAL PAPILLA	(50)		(50)		(50)	
CALCIFICATION, FOCAL		(2%)				
#KIDNEY/PELVIS	(50)		(50)		(50)	
CALCULUS, MICROSCOPIC EXAMINATION	N 1	(2%)	1	(2%)		
MINERALIZATION		(2%)			2	(4%)
DILATATION, NOS		-	1	(2%)		
CALCIFICATION, NOS	1	(2%)		(6%)	1	(2%)
CALCIFICATION, NOS		(4%)		(14%)		(4%)
UNDERDIACIA PRIMUMITAT					2	(=70)
HYPERPLASIA, EPITHELIAL		(4%)		(6%)	(EA)	
#URINARY BLADDER	(49)		(49)		(50)	
INFLAMMATION, CHRONIC FOCAL	1	(2%)				
Hyperplasia, epithelial			1	(2%)		
AND CONTROL OF CONTROL						
NDOCRINE SYSTEM			,			
#PITUITARY	(50)		(50)		(49)	
CYST, NOS			1	(2%)		
DEGENERATION, NOS	1	(2%)				
#PITUITARY INTERMEDIA	(50)		(50)		(49)	
CYST, NOS	, ,				2	(4%)
#ANTERIOR PITUITARY	(50)		(50)		(49)	
CYST, NOS		(54%)		(48%)		(47%
HEMORRHAGE	4 ((07/0)	44	(-20 /0)		(2%)
m n.MCJK.R.M A1+N						
		(400)		(000//)	4 4	
HYPERPLASIA, FOCAL ANGIECTASIS		(40%) (8%)		(20%) (6%)		(29%) $(12%)$

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
ENDOCRINE SYSTEM (Continued)						
#ADRENAL	(50)		(50)		(50)	
CONGESTION, NOS		(2%)	, , ,			
ANGIECTASIS				(2%)		
#ADRENAL CORTEX	(50)		(50)		(50)	
ACCESSORY STRUCTURE						(2%)
CYST, NOS						(2%)
CONGESTION, NOS						(2%)
DEGENERATION, LIPOID		(36%)	15	(30%)	23	(46%)
INFARCT, FOCAL	1	(2%)	-			
FOCAL CELLULAR CHANGE				(2%)		(90)
HYPERTROPHY, FOCAL			1	(2%)		(2%)
HYPERTROPHY, DIFFUSE	* 4	(00%)	10	(000)		(4%)
HYPERPLASIA, FOCAL	14	(28%)	10	(20%)		(26%)
HYPERPLASIA, DIFFUSE			n	(10%)		(2%) (2%)
ANGIECTASIS	/EA\			(4%)	(50)	(270)
#ADRENAL MEDULLA	(50)		(50)			(2%)
FIBROSIS, FOCAL	^	(CM)	0	(40%)		(8%)
HYPERPLASIA, FOCAL		(6%)	(48)	(4%)	(49)	(070)
#THYROID	(50)	(9%)	(48)		(48)	
ULTIMOBRANCHIAL CYST		(2%)	1	(2%)	4	(8%)
HYPERPLASIA, C-CELL	э	(10%)	1	(270)		(2%)
HYPERPLASIA, FOLLICULAR-CELL #THYROID FOLLICLE	(50)		(48)		(49)	(2/0)
HYPERTROPHY, NOS	(30)		(40)			(2%)
REPRODUCTIVE SYSTEM *MAMMARY GLAND	(50)		(50)		(50)	
GALACTOCELE	(30)			(4%)	(00)	
LACTATION	99	(44%)		(44%)	21	(42%)
*MAMMARY LOBULE	(50)	(4470)	(50)	(41/0)	(50)	(== ,0 ,
HYPERPLASIA, NOS		(6%)		(6%)		(6%)
*PREPUTIAL GLAND	(50)	(0,0)	(50)	(0,10)	(50)	(,
ABSCESS, NOS	(00)			(2%)		
*CLITORAL GLAND	(50)		(50)	((50)	
DILATATION, NOS	17.			(2%)		
DILATATION/DUCTS					1	(2%)
CYSTIC DUCTS			1	(2%)		
ABSCESS, NOS				(4%)		
INFLAMMATION, ACUTE/CHRONIC				(2%)		
HYPERPLASIA, NOS				(4%)		
#CERVIX UTERI	(50)		(50)		(49)	
CYST, NOS	1	(2%)		(8.4)		
ABSCESS, NOS				(2%)	_	/10~
METAPLASIA, NOS		(18%)		(8%)		(12%)
#UTERUS/ENDOMETRIUM	(50)		(50)		(49)	(40)
CYST, NOS	2	(4%)		(OW)	2	(4%)
INFLAMMATION, ACUTE/CHRONIC	_	/ 4 ~ \		(2%)		(90%)
FIBROSIS		(4%)	1	(2%)	1	(2%)
HYPERPLASIA, NOS		(2%)				
HYPERPLASIA, PAPILLARY		(2%)	7	(14%)	9	(4%)
HYPERPLASIA, CYSTIC		(4%) (2%)		(14%) (2%)	2	(** 70 <i>)</i>
HYPERPLASIA, ADENOMATOUS	1	(2%)		(2%)		
HYPERPLASIA, STROMAL #ENDOMETRIAL GLAND	(EA)		(50)	(470)	(49)	
#ENDOMETRIAL GLAND HYPERPLASIA, NOS	(50)		(50)			(2%)
	(50)		(50)		(50)	(470)
#OVARY		(6%)		(4%)		(2%)
CYST, NOS HYPERPLASIA, NOS		(0%) (2%)	4	(-170 <i>)</i>		(2 10)
II I FUNFLIADIA, NUO	1	(470)				

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
NERVOUS SYSTEM						
#CEREBRAL VENTRICLE	(50)		(50)		(49)	
DILATATION, NOS		(2%)	(20)		(40)	
#LATERAL VENTRICLE	(50)	(404)	(50)		(49)	
DILATATION, NOS		(4%)	(FO)		(40)	
#BRAIN HEMORRHAGE	(50)		(50)		(49)	(2%)
INFARCT, HEMORRHAGIC			1	(2%)	1	(470)
SPECIAL SENSE ORGANS				· · · · · · · · · · · · · · · · · · ·		
*EYE	(50)		(50)		(50)	
TRAUMATIC ABNORMALITY	,,			(2%)		
HEMORRHAGE			_	(= ///	1	(2%)
CATARACT	8	(16%)	9	(18%)		(8%)
ATROPHY, NOS		(4%)	· ·	/	-	, ,
*EYE/SCLERA,	(50)	, ,	(50)		(50)	
CALCIFICATION, FOCAL	(00)			(2%)	(,	
METAPLASIA, OSSEOUS	1	(2%)		(2%)		
*EYE/CORNEA	(50)		(50)		(50)	
INFLAMMATION, CHRONIC		0	1	(2%)		
*EYE/RETINA	(50)		(50)		(50)	
ATROPHY, NOS	10	(20%)	9	(18%)	7	(14%)
*NASOLACRIMAL DUCT	(50)		(50)		(50)	
INFLAMMATION, SUPPURATIVE					2	(4%)
INFLAMMATION, CHRONIC					2	(4%)
METAPLASIA, SQUAMOUS					1	(2%)
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES						
*THORACIC CAVITY	(50)		(50)		(50)	
INFLAMMATION, FIBRINOUS				(2%)		
BACTERIAL SEPTICEMIA				(2%)	.= 6:	
*MEDIASTINUM	(50)		(50)		(50)	
HEMORRHAGE				(4%)		(4%)
*ABDOMINAL CAVITY	(50)		(50)		(50)	
NECROSIS, FAT		(6%)				(4%)
*PLEURA	(50)		(50)		(50)	
ABSCESS, NOS				(2%)		
INFLAMMATION, ACTIVE CHRONIC			1	(2%)		(O#)
FIBROSIS, FOCAL	(20)		(50)		(50)	(2%)
*PERICARDIUM	(50)		(50)		(50)	(0/4)
INFLAMMATION, ACUTE						(2%)
ABSCESS, NOS						(2%)
INFLAMMATION, ACUTE/CHRONIC						(2%) (2%)
INFLAMMATION, CHRONIC						
GRANULOMA, FOREIGN BODY	(E0)		(50)		(50)	(2%)
*EPICARDIUM	(50)		(50)			(2%)
INFLAMMATION, ACUTE			1	(2%)	1	(470)
INFLAMMATION, ACUTE FIBRINOUS			1	(470)		

TABLE C2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTROL (VEH)	LOW DOSE	HIGH DOSE
ALL OTHER SYSTEMS *MULTIPLE ORGANS INFLAMMATION, CHRONIC	(50)	(50)	(50) 1 (2%)
ADIPOSE TISSUE NECROSIS, FAT		1	

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.
NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

APPENDIX D

SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	JNIKU	L (VEH)	LOW	DOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50		50	<u>, ,.</u> ,	50	•
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*SKIN	(50)		(50)		(50)	
EPIDERMAL INCLUSION CYST		/ON \				(2%)
EDEMA, NOS	I	(2%)	0	(40)		(2%)
INFLAMMATION, ACUTE/CHRONIC HYPERPLASIA, EPITHELIAL	1	(2%)	Z	(4%)	1	(2%)
				·		
RESPIRATORY SYSTEM	(FO)		(FA)		(FO)	
*NASAL CAVITY	(50)		(50)		(50)	(AGL)
CONGESTION, NOS						(4%)
LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION. ACUTE		*				(6%) (12%)
	(20)		(FA)			(1270)
#LUNG	(50)	(9%)	(50)	(AGL)	(48)	(COL)
CONGESTION, NOS		(8%)	2	(4%)	3	(6%)
EDEMA, NOS		(2%)		(46)	•	(00)
HEMORRHAGE		(2%)		(4%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	1	(2%)	2	(4%)	4	/0 <i>6</i> ′ \
INFLAMMATION, ACUTE					1	(2%)
INFLAMMATION, GRANULOMATOUS	1	(2%)				٠,٠٠٠
HYPERPLASIA, ALVEOLAR EPITHELIUM	_	(a)	_			(2%)
HISTIOCYTOSIS	3	(6%)	3	(6%)	1	(2%)
IEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
LEUKEMOID REACTION	1	(2%)				
PLASMACYTOSIS						(2%)
HYPERPLASIA, GRANULOCYTIC						(2%)
HYPERPLASIA, LYMPHOID	1	(2%)	1	(2%)		(4%)
HEMATOPOIESIS	4	(8%)				(4%)
MYELOPOIESIS					1	(2%)
#BONE MARROW	(50)		(46)		(50)	
ANGIECTASIS			1	(2%)		
MASTOCYTOSIS						(2%)
#SPLEEN	(48)		(46)		(50)	
ACCESSORY STRUCTURE			1	(2%)	-	
HEMOSIDEROSIS						(2%)
ANGIECTASIS	_	(0.4)	-	(a.e.)		(2%)
HYPERPLASIA, LYMPHOID	_	(2%)	_	(2%)	_	(8%)
HEMATOPOIESIS		(4%)		(11%)		(10%)
#SPLENIC FOLLICLES	(48)	(90)	(46)		(50)	
NECROSIS, NOS		(2%)	(00)		(BA)	
#MANDIBULAR L. NODE	(32)		(33)	(20)	(24)	
PLASMACYTOSIS				(3%)		
MASTOCYTOSIS	/00×			(3%)	(0.4)	
#MEDIASTINAL L. NODE	(32)	(0 <i>0</i> ′)	(33)		(24)	
HYPERPLASIA, LYMPHOID		(3%)	(00)		(QA)	
#MESENTERIC L. NODE	(32)	(00)	(33)	(150)	(24)	/1 E~ `
HEMORRHAGE	3	(9%)		(15%)	4	(17%)
INFLAMMATION, ACUTE		(00)	1	(3%)		
HYPERPLASIA, LYMPHOID		(3%)		(20)		
HEMATOPOIESIS #RENAL LYMPH NODE		(3%)		(3%)	(24)	
ARRINALLY WERE NOUTE	(32)		(33)		(Z4)	
	1	(90L)				
EDEMA, NOS #FEMORAL LYMPH NODE	(32)	(3%)	(33)		(24)	

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSI
HEMATOPOIETIC SYSTEM (Continued)			······································		<u>, , , , , , , , , , , , , , , , , , , </u>	
#LIVER	(50)		(50)		(50)	
MYELOPOIESIS	(00)		(00)			(2%)
#JEJUNUM	(41)		(46)		(46)	(,
HYPERPLASIA, LYMPHOID	(/		(10)		, , ,	(4%)
#ILEUM	(41)		(46)		(46)	(-,-,
HYPERPLASIA, LYMPHOID	,,		(/		ì	(2%)
#THYMUS	(34)		(40)		(36)	,
CYST, NOS	2	(6%)	10	(25%)	4	(11%
MULTIPLE CYSTS	1	(3%)				
DEPLETION, LYMPHOID	1	(3%)			1	(3%)
CIRCULATORY SYSTEM						
*MULTIPLE ORGANS	(50)		(50)		(50)	
PERIARTERITIS	1	(2%)				
*MEDIASTINUM	(50)		(50)		(50)	
THROMBOSIS, NOS	. ,				1	(2%)
#RENAL LYMPH NODE	(32)		(33)		(24)	•
THROMBOSIS, NOS	,,		,		1	(4%)
#LUNG	(50)		(50)		(48)	
THROMBOSIS, NOS		(2%)	•			
#HEART	(49)		(50)		(50)	
MINERALIZATION		(2%)				
LYMPHOCYTIC INFLAMMATORY INFILT		(2%)			1	(2%)
INFLAMMATION, ACUTE		(2%)				· ·
INFLAMMATION, CHRONIC	_	· •			1	(2%)
FIBROSIS			1	(2%)		
#CARDIAC VALVE	(49)		(50)		(50)	
PIGMENTATION, NOS		(2%)	5	(10%)	5	(10%
#PROSTATE	(50)	(,	(48)		(50)	
THROMBUS, ORGANIZED		(2%)				
DIGESTIVE SYSTEM						-
*TOOTH	(50)		(50)		(50)	
INFLAMMATION, ACUTE						(2%)
#SALIVARY GLAND	(49)		(50)		(50)	
MINERALIZATION		(2%)				(2%)
LYMPHOCYTIC INFLAMMATORY INFILT	R				1	(2%)
ATROPHY, NOS				(2%)		
#LIVER	(50)		(50)		(50)	
ECTOPIA	1	(2%)	-	(0.41)		
HEMORRHAGE			1	(2%)		46
INFLAMMATION, ACUTE NECROTIZING					1	(2%)
INFLAMMATION, GRANULOMATOUS				(2%)		
GRANULOMA, NOS				(2%)	_	
NECROSIS, NOS	1	(2%)		(2%)		(6%)
NECROSIS, FOCAL			1	(2%)		(2%)
NECROSIS, COAGULATIVE						(2%)
INFARCT, NOS		(0 %)			1	(2%)
NUCLEAR-SIZE ALTERATION		(2%)	_	(1.00%)		(DA~
CYTOPLASMIC VACUOLIZATION	7	(14%)		(16%)		(26%)
BASOPHILIC CYTO CHANGE		.00~\		(2%)		(4%)
CLEAR-CELL CHANGE		(20%)		(20%)		(14%
HEPATOCYTOMEGALY		(22%)		(22%)	5	(10%)
ANGIECTASIS		(4%)		(2%)		
#PANCREAS	(47)		(49)		(50)	
NECROSIS, NOS	1	(2%)				
NECROSIS, FAT		(2%)				(2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

C	ONTRO	OL (VEH)	LOWI	DOSE	HIGH	DOSE
DIGESTIVE SYSTEM (Continued)						
#PANCREATIC ACINUS	(47)		(49)		(50)	
ATROPHY, NOS		(17%)		(12%)	, ,	(18%)
HYPERTROPHY, FOCAL		(2%)	-	(2%)	•	(1070
HYPERPLASIA, NOS	•	(= 10)		(2%)		
#ESOPHAGUS	(50)		(48)	. ,	(45)	
VEGETABLE FOREIGN BODY		(2%)	(40)		(40)	
		(270)			•	(90%)
INFLAMMATION, CHRONIC	(40)		(40)			(2%)
#STOMACH INFLAMMATION, ACUTE	(49)		(49)		(49)	
	1		(40)		(40)	
#GASTRIC FUNDAL GLAND	(49)		(49)		(49)	(00)
DILATATION, NOS	1		(40)			(2%)
#GLANDULAR STOMACH	(49)		(49)		(49)	
INFLAMMATION, ACUTE		(2%)		(2%)		
#FORESTOMACH	(49)		(49)		(49)	
ANIMAL FOREIGN BODY			1	(2%)		
CYST, NOS	1	(2%)				
ULCER, NOS					2	(4%)
INFLAMMATION, ACUTE			7	(14%)	3	(6%)
ULCER, ACUTE			· ·	(==,0)		(2%)
ABSCESS, NOS			1	(2%)	-	(=,
INFLAMMATION, ACUTE/CHRONIC				(4%)	4	(8%)
HYPERPLASIA, EPITHELIAL				(29%)		(31%)
#JEJUNUM	(41)		(46)	(25 %)	(46)	(01 %)
INFLAMMATION, ACUTE/CHRONIC	(41)		(40)			(2%)
111 21111111111111111111111111111111111						
RINARY SYSTEM						
#KIDNEY	(50)		(50)		(50)	
CALCULUS, MICROSCOPIC EXAMINATION			1	(2%)		
MINERALIZATION		(22%)		(8%)	Я	(16%)
HYDRONEPHROSIS		(2%)		(2%)	·	(20.0)
CYST, NOS		(4%)		(8%)	1	(2%)
MULTIPLE CYSTS		(2%)	•	(070)		(4%)
		(470)				
HEMORRHAGE		(40)	•	(90)		(2%)
GLOMERULONEPHRITIS, NOS		(4%)	1	(2%)	1	(2%)
PYELONEPHRITIS, NOS		(6%)	_	(4.04)	_	
LYMPHOCYTIC INFLAMMATORY INFILTR		(20%)	6	(12%)	7	(14%)
INFLAMMATION, ACUTE	1	(2%)				
NEPHROSIS, NOS	9	(18%)	10	(20%)	17	(34%)
INFARCT, NOS			3	(6%)		
ATROPHY, NOS					1	(2%)
METAPLASIA, OSSEOUS	1	(2%)	2	(4%)	1	(2%)
#KIDNEY/TUBULE	(50)	.	(50)	,	(50)	
DILATATION, NOS	(00)		(,			(2%)
#URINARY BLADDER	(48)		(47)		(49)	(= ,-,
CALCULUS, GROSS OBSERVATION ONLY	(40)			(2%)	(40)	
DILATATION, NOS	0	(4%)		(2%)	1	(2%)
		(470)	1	(270)		
LYMPHOCYTIC INFLAMMATORY INFILTR INFLAMMATION, ACUTE/CHRONIC			1	(2%)	1	(2%)
						
NDOCRINE SYSTEM	(AE)		(47)		(47)	
#ANTERIOR PITUITARY	(45)		(47)		(47)	(ACL)
CYST, NOS	/405		/86			(4%)
#ADRENAL/CAPSULE	(48)	(44)	(50)	(44)	(49)	
		(6%)		(6%)		(4%)
HYPERPLASIA, NOS			(50)		(49)	
HYPERPLASIA, NOS #ADRENAL CORTEX	(48)				4	(0A)
HYPERPLASIA, NOS		(2%)			1	(2%)
HYPERPLASIA, NOS #ADRENAL CORTEX		(2%)				(2%)
HYPERPLASIA, NOS #ADRENAL CORTEX CYTOPLASMIC VACUOLIZATION		(2%)			1	
HYPERPLASIA, NOS #ADRENAL CORTEX CYTOPLASMIC VACUOLIZATION FOCAL CELLULAR CHANGE	` 1	(2%) (6%)	3	(6%)	1 2	(2%)

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L(VEH)	LOWI	OOSE	HIGH	DOSE
ENDOCRINE SYSTEM (Continued)						
#ADRENAL MEDULLA	(48)		(50)		(49)	
		(00)			(49)	
HYPERPLASIA, NOS		(2%)		(2%)	(49)	
#THYROID	(45)	(0 W)	(47)	/4 PA	(47)	/0~\
FOLLICULAR CYST, NOS		(9%)		(15%)		(9%)
HYPERPLASIA, FOLLICULAR-CELL		(9%)		(11%)		(6%)
#PARATHYROID	(25)		(23)		(26)	
THYROGLOSSAL DUCT CYST				.(4%)	/ -	
#PANCREATIC ISLETS	(47)		(49)		(50)	
HYPERPLASIA, NOS	1	(2%)			1	(2%)
REPRODUCTIVE SYSTEM						
*PENIS	(50)		(50)		(50)	
INFLAMMATION, ACUTE	, ,	(2%)			1	(2%)
*PREPUCE	(50)	•	(50)		(50)	
IMPACTION, NOS		(2%)				
*PREPUTIAL GLAND	(50)	•	(50)		(50)	
DILATATION, NOS		(4%)		(4%)		(4%)
INFLAMMATION, ACUTE				•		(2%)
ABSCESS, NOS	1	(2%)	1	(2%)		(6%)
INFLAMMATION, ACUTE/CHRONIC		(4%)		(2%)	1	(2%)
INFLAMMATION, CHRONIC		(2%)		.	_	
#PROSTATE	(50)	(= ,0)	(48)		(50)	
HEMORRHAGE	(00)			(2%)		(4%)
INFLAMMATION, ACUTE	3	(6%)	•	(2 //)		(2%)
GRANULOMA, NOS	-	(2%)			•	(2 10)
*SEMINAL VESICLE	(50)	(270)	(50)		(50)	
DILATATION, NOS	•	(6%)	(30)			(4%)
COLLAPSE	3	(070)				(2%)
INFLAMMATION, CHRONIC						(2%) (2%)
PIGMENTATION, NOS	(50)		(50)			(270)
*COAGULATING GLAND	(50)		(50)		(50)	(90)
DILATATION, NOS	(20)		(50)			(2%)
#TESTIS	(50)	(8.4.4)	(50)	(400)	(50)	
MINERALIZATION	17	(34%)	9	(18%)		(14%)
GRANULOMA, NOS					1	(2%)
GRANULOMA, SPERMATIC			1	(2%)	٠	
ATROPHY, NOS						(2%)
ASPERMATOGENESIS					1	(2%)
HYPERPLASIA, INTERSTITIAL CELL	1	(2%)	1	(2%)		
#TESTIS/TUBULE	(50)		(50)		(50)	
DILATATION, NOS	1	(2%)				
MULTINUCLEATE GIANT-CELL						(2%)
*EPIDIDYMIS	(50)		(50)		(50)	
MINERALIZATION			2	(4%)	1	(2%)
INFLAMMATION, GRANULOMATOUS				(2%)		
GRANULOMA, SPERMATIC CYTOMEGALY	3	(6%)		(4%) (2%)	1	(2%)
NERVOUS SYSTEM			··	······································		
#BRAIN	(50)		(50)		(50)	
MINERALIZATION		(58%)		(50%)		(72%)
CYST, NOS				(2%)		

TABLE D1. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

•	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
SPECIAL SENSE ORGANS					, , , , , , , , , , , , , , , , , , , 	
*EYE	(50)		(50)		(50)	
SYNECHIA, ANTERIOR						(2%)
RETINOPATHY						(2%)
CATARACT		(2%)				(2%)
*EYE/CORNEA	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC			_		1	(2%)
FIBROSIS				(2%)		
*EYE/CONJUNCTIVA	(50)		(50)		(50)	
INFLAMMATION, ACUTE/CHRONIC			1	(2%)		
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES			·····	· · · · · · · · · · · · · · · · · · ·		
*MEDIASTINUM	(50)		(50)		(50)	
VEGETABLE FOREIGN BODY	(00)			(2%)	(00)	
ABSCESS, NOS				(2%)		
*PERITONEAL CAVITY	(50)		(50)	(270)	(50)	
NECROSIS, FAT	(00)			(2%)	,,	(2%)
*EPICARDIUM	(50)		(50)	(2 %)	(50)	(2,0)
INFLAMMATION, ACUTE	(00)			(2%)	(00)	
*MESENTERY	(50)		(50)	(= ,0)	(50)	
NECROSIS, FAT	(00)		(00)		,	(2%)
ALL OTHER SYSTEMS		· · · · · · · · · · · · · · · · · · ·				
*MULTIPLE ORGANS	(50)		(50)		(50)	
CONGESTION, NOS		(4%)	(30)		(30)	
HEMORRHAGE	-	1-10/			1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTI	R 21	(42%)	17	(34%)		(20%)
INFLAMMATION, ACUTE		(6%)		(2%)		(=0,0)
INFLAMMATION, CHRONIC	•	\-,-,	•	\/	1	(2%)
INFLAMMATION, GRANULOMATOUS						(2%)
BACTERIAL SEPTICEMIA	2	(4%)			-	_ <i>_</i> ,
NECROSIS, FAT	_	/			1	(2%)
HEMOSIDEROSIS	1	(2%)			-	,
TAIL	-					
INFLAMMATION, ACUTE NECROTIZING	1					
ADIPOSE TISSUE						
NECROSIS, FAT	1					

SPECIAL MORPHOLOGY SUMMARY NONE

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.
NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

C	ONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
ANIMALS INITIALLY IN STUDY	50	····	50	· · · · · · · · · · · · · · · · · · ·	50	
ANIMALS MISSING			2		2	
ANIMALS NECROPSIED	50		48		44	
ANIMALS EXAMINED HISTOPATHOLOGICALLY 	50		48		44	
INTEGUMENTARY SYSTEM						
*SKIN	(50)		(48)		(44)	
INFLAMMATION, ACUTE/CHRONIC					1	(2%)
RESPIRATORY SYSTEM						_
*NASAL CAVITY	(50)		(48)		(44)	
CONGESTION, NOS						(2%)
HEMORRHAGE						(5%)
INFLAMMATION, ACUTE						(11%)
#LUNG	(50)		(48)		(43)	
ATELECTASIS		(2%)			_	
CONGESTION, NOS		(2%)				(5%)
HEMORRHAGE		(2%)		(2%)	1	(2%)
LYMPHOCYTIC INFLAMMATORY INFILTR	. 1	(2%)		(2%)		
INFLAMMATION, ACUTE			1	(2%)	_	(0~)
INFLAMMATION, ACUTE/CHRONIC	_		_	(0.00)		(2%)
HYPERPLASIA, ALVEOLAR EPITHELIUM	2	(4%)		(2%)		(5%)
HISTIOCYTOSIS			1	(2%)	3	(7%)
HEMATOPOIETIC SYSTEM						
*MULTIPLE ORGANS	(50)		(48)		(44)	
LEUKEMOID REACTION						(2%)
HYPERPLASIA, LYMPHOID	1	(2%)		(10%)		(7%)
HEMATOPOIESIS			1	(2%)	1	(2%)
MYELOPOIESIS		(2%)				
#BONE MARROW	(48)		(47)		(44)	
MYELOSCLEROSIS		(81%)		(83%)		(59%)
#SPLEEN	(50)	/4 4 m/ \	(48)	(40~)	(43)	(O#)
HEMOSIDEROSIS		(14%)		(19%)	4	(9%)
HYPERPLASIA, LYMPHOID		(10%)		(10%)	•	(70.)
HEMATOPOIESIS #LYMPH NODE		(10%)		(2%)		(7%)
#LYMPH NODE HYPERPLASIA, LYMPHOID	(39)		(32)	(3%)	(28)	
#MANDIBULAR L. NODE	(39)		(32)	(070)	(28)	
HYPERPLASIA, LYMPHOID		(3%)	(32)		(20)	
#MEDIASTINAL L. NODE	(39)	(3 ~)	(32)		(28)	
PLASMACYTOSIS		(3%)	(02)		(23)	
HYPERPLASIA, LYMPHOID		(3%)				
#HEPATIC LYMPH NODE	(39)	(2.4)	(32)		(28)	
HYPERPLASIA, LYMPHOID	(00)		(02)			(4%)
#MESENTERIC L. NODE	(39)		(32)		(28)	
HEMORRHAGE	,,		(22)			(7%)
#RENAL LYMPH NODE	(39)		(32)		(28)	•
HYPERPLASIA, LYMPHOID		(3%)	ν/		, -,	
#LIVER	(50)		(48)		(44)	
HEMATOPOIESIS	•			(6%)		
#ADRENAL	(49)		(48)		(44)	
HEMATOPOIESIS		(2%)				
#THYMUS	(42)		(43)		(36)	
CYST, NOS	4	(10%)		(14%)	3	(8%)
ACCUMENT OF CALCUMO			2	(5%)		
MULTIPLE CYSTS			_	(0,0)		
MULTIPLE CYSTS HEMORRHAGE			_	(0,0)	1	(3%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
HEMATOPOIETIC SYSTEM (Continued)				*		
#THYMIC LYMPHOCYTES	(42)		(43)		(36)	
NECROSIS, NOS		(2%)	, .,			
CIRCULATORY SYSTEM			,		· · · · · · · · · · · · · · · · · · ·	
*MULTIPLE ORGANS	(50)		(48)		(44)	
PERIVASCULITIS	(00)			(2%)	(44)	
#HEART	(50)		(48)	(270)	(43)	
MINERALIZATION		(2%)		(2%)		(2%)
HEMORRHAGE	•	(270)		(2%)	-	(2 10)
INFLAMMATION, CHRONIC			•	(2 10)	1	(2%)
#HEART/VENTRICLE	(50)		(48)		(43)	(270)
DEGENERATION, NOS	(00)			(2%)	(=0)	
#CARDIAC VALVE	(50)		(48)	(2 10)	(43)	
PIGMENTATION, NOS	,	(8%)		(19%)		(2%)
*AORTA	(50)	(6%)	(48)	(1970)	(44)	(270)
MINERALIZATION	(00)			(2%)	(1212)	
#UTERUS/ENDOMETRIUM	(50)		(48)	(470)	(44)	
THROMBOSIS, NOS	(00)		(40)			(2%)
#ADRENAL	(49)		(48)		(44)	(4,0)
THROMBOSIS, NOS	(-0)			(2%)	(/	
DIGESTIVE SYSTEM						
#SALIVARY GLAND	(50)		(47)		(43)	
LYMPHOCYTIC INFLAMMATORY INFILTS	₹ 1	(2%)				
CYTOPLASMIC VACUOLIZATION					1	(2%)
#LIVER	(50)		(48)		(44)	
ABNORMAL CURVATURE	1	(2%)	1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFILTE	3				2	(5%)
INFLAMMATION, ACUTE	1	(2%)	2	(4%)		
GRANULOMA, NOS	1 ((2%)				
CHOLANGIOFIBROSIS			1	(2%)		
NECROSIS, NOS	1 ((2%)			3	(7%)
CYTOPLASMIC VACUOLIZATION	27	(54%)	38	(79%)	23	(52%)
BASOPHILIC CYTO CHANGE					2	(5%)
CLEAR-CELL CHANGE	10	(20%)	9	(19%)	6	(14%)
HEPATOCYTOMEGALY			1	(2%)	1	(2%)
ATROPHY, NOS					1	(2%)
ANGIECTÁSIS	1 ((2%)	1	(2%)	1	(2%)
#LIVER/KUPFFER CELL	(50)		(48)		(44)	
HYPERPLASIA, NOS	1 ((2%)			1	(2%)
*GALLBLADDER	(50)		(48)		(44)	
CYST, NOS		(2%)				
#BILE DUCT	(50)		(48)		(44)	
DILATATION, NOS						(2%)
#PANCREAS	(49)		(48)		(41)	
DILATATION/DUCTS	1 ((2%)	1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFILTR	Į.				1	(2%)
INFLAMMATION, CHRONIC			1	(2%)		
#PANCREATIC ACINUS	(49)		(48)		(41)	
ATROPHY, NOS	9 ((18%)	3	(6%)		(7%)
ATROPHY, EXHAUSTION						(2%)
HYPERTROPHY, FOCAL	1 ((2%)			2	(5%)
#ESOPHAGUS	(49)		(48)		(39)	
VEGETABLE FOREIGN BODY					1	(3%)
INFLAMMATION, ACUTE						(3%)
#STOMACH	(50)		(48)		(44)	
INFLAMMATION, ACUTE					1	(2%)
#GASTRIC FUNDAL GLAND	(50)		(48)		(44)	
DILATATION, NOS	1 (2%)	1	(2%)		
DEGENERATION, BALLOONING					4	(2%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L(VEH)	LOWI	OOSE	HIGH	DOSI
DIGESTIVE SYSTEM (Continued)		······································	· · · · · · · · · · · · · · · · · · ·			
#GLANDULAR STOMACH	(50)		(48)		(44)	
HYPERPLASIA, EPITHELIAL		(2%)	(10)		(/	
#FORESTOMACH	(50)	(2 70)	(48)		(44)	
ANIMAL FOREIGN BODY	(00)			(2%)	()	
DIVERTICULUM	1	(2%)	•	(2 10)		
INFLAMMATION, ACUTE		(2%)	1	(2%)	6	(14%
INFLAMMATION, ACUTE/CHRONIC		(2%)		(4%)		(7%)
HYPERPLASIA, EPITHELIAL		(8%)		(13%)		(30%
IDINADV CVCTEM				······································		
JRINARY SYSTEM	(50)		(40)		(44)	
#KIDNEY	(50)		(48)	(BW)	(44)	(OW)
MINERALIZATION		(4%)		(2%)	1	(2%)
HYDRONEPHROSIS	1	(2%)	2	(4%)	_	/a = / .
CYST, NOS						(2%)
GLOMERULONEPHRITIS, NOS		(04)	_	/4~		(7%)
LYMPHOCYTIC INFLAMMATORY INFILT	K 4	(8%)		(4%)	3	(7%)
PYELONEPHRITIS, CHRONIC			1	(2%)		
DEGENERATION, HYALINE		(2%)				
NEPHROSIS, NOS		(4%)		(8%)	5	(11%)
INFARCT, NOS	4	(8%)	3	(6%)		
CYTOPLASMIC VACUOLIZATION						(2%)
METAPLASIA, OSSEOUS	2	(4%)	4	(8%)	2	(5%)
#KIDNEY/TUBULE	(50)		(48)		(44)	
DILATATION, NOS	1	(2%)				
#URINARY BLADDER	(49)		(43)		(38)	
MINERALIZATION			1	(2%)		
LYMPHOCYTIC INFLAMMATORY INFILT	R 3	(6%)			3	(8%)
ENDOCRINE SYSTEM						
#PITUITARY	(46)		(47)		(39)	
CYST, NOS		(2%)	(-//		(+-/	
CONGESTION, NOS		(2%)			1	(3%)
HEMORRHAGE, CHRONIC		(2%)			_	(
ANGIECTASIS	_	(=)	1	(2%)	1	(3%)
#ANTERIOR PITUITARY	(46)		(47)	(=)	(39)	(,
COLLOID CYST	(-0)			(2%)		(3%)
MULTIPLE CYSTS				(2%)	•	(- ,- ,
HYPERPLASIA, CHROMOPHOBE-CELL	K	(11%)		(19%)	6	(15%)
ANGIECTASIS		(2%)		(4%)	•	(2010)
#ADRENAL	(49)	(3 ~)	(48)	12,07	(44)	
ANGIECTASIS	, ,	(2%)	(40)		(==)	
#ADRENAL CORTEX	(49)	(2 70)	(48)		(44)	
DEGENERATION, BALLOONING	(43)			(2%)	(34)	
CYTOPLASMIC VACUOLIZATION	9	(4%)	•	(470)		
CYTOPLASMIC VACUOLIZATION CYTOPLASMIC AGGREGATE, NOS	4	(-2 70)			1	(2%)
ATROPHY, BROWN	1.4	(29%)	12	(27%)		(11%)
HYPERTROPHY, FOCAL		(4%)		(4%)		(2%)
HYPERTROPHY, DIFFUSE		(2%)	. 2	(-1 /V)	1	(270)
	1	(470)	1	(2%)		
HYPERPLASIA, NOS	•	(90%)	1	(2%)		
ANGIECTASIS		(2%)	/40	-	(4.4)	
#ADRENAL MEDULLA	(49)	(0~)	(48)		(44)	
HYPERPLASIA, NOS		(2%)	2.4 900		(88)	
#THYROID	(44)	(114)	(47)	(0.00)	(38)	/01 ~ ·
FOLLICULAR CYST, NOS		(11%)		(36%)		(21%)
HYPERPLASIA, FOLLICULAR-CELL	4	(9%)	5	(11%)	4	(11%)

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L (VEH)	LOWI	OOSE	HIGH	DOSE
REPRODUCTIVE SYSTEM		<u>-</u>				
*MAMMARY GLAND	(50)		(48)		(44)	
DILATATION/DUCTS	1 1	(8%)		(2%)	3	(7%)
HYPERPLASIA, NOS		(2%)		(6%)		(5%)
LACTATION		(4%)		(2%)		
*CLITORAL GLAND	(50)	(=,-,	(48)	(=)	(44)	
DILATATION, NOS	, ,	(2%)	(/		(-,	
#UTERUS	(50)	(=,0)	(48)		(44)	
DILATATION, NOS	(00)		(/			(2%)
HYDROMETRA			1	(2%)		(2%)
HEMORRHAGIC CYST	1	(2%)		(2%)	_	(
ABSCESS, NOS	-	(270)	•	(= ,0)	1	(2%)
ANGIECTASIS						(2%)
#UTERUS/ENDOMETRIUM	(50)		(48)		(44)	(= /0/
CYST, NOS		(6%)		(8%)		(20%)
INFLAMMATION, ACUTE		(2%)	•	(3 70)	•	(2010)
HYPERPLASIA, NOS		(2%)				
		(72%)	41	(85%)	92	(59%)
HYPERPLASIA, CYSTIC	30	(1270)	41	(0070)		
HYPERPLASIA, STROMAL						(2%)
METAPLASIA, SQUAMOUS	(=0)		(40)			(2%)
#FALLOPIAN TUBE	(50)		(48)		(44)	(O#)
LYMPHOCYTIC INFLAMMATORY INF	ILTR					(2%)
INFLAMMATION, ACUTE						(2%)
#OVARY/PAROVARIAN	(49)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INF						(2%)
ABSCESS, NOS	1	(2%)			2	(5%)
#OVARY	(49)		(48)		(44)	
MINERALIZATION					1	(2%)
CYST, NOS	19	(39%)	14	(29%)	11	(25%)
HEMORRHAGIC CYST			3	(6%)		
HYPERPLASIA, PAPILLARY	1	(2%)				
#OVARIAN LIGAMENT	(49)		(48)		(44)	
ABSCESS, NOS					1	(2%)
NERVOUS SYSTEM						
#BRAIN	(50)		(48)		(43)	
MINERALIZATION	29	(58%)	28	(58%)	19	(44%)
HYDROCEPHALUS, NOS					1	(2%)
FIBROSIS					1	(2%)
CYTOPLASMIC VACUOLIZATION			3	(6%)		
SPECIAL SENSE ORGANS						
*EYE/CORNEA	(50)		(48)		(44)	
INFLAMMATION, ACUTE			1	(2%)		
INFLAMMATION, ACUTE/CHRONIC	1	(2%)				
*EUSTACHIAN TUBE	(50)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INF	, ,				1	(2%)
MUSCULOSKELETAL SYSTEM NONE						
BODY CAVITIES						
	(50)		(48)		(44)	

TABLE D2. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	CONTRO	L(VEH)	LOWI	OOSE	HIGH	DOSE
ALL OTHER SYSTEMS						
*MULTIPLE ORGANS	(50)		(48)		(44)	
LYMPHOCYTIC INFLAMMATORY INFILT		(48%)	28	(58%)	14	(32%)
INFLAMMATION, ACUTE	1	(2%)				
BACTERIAL SEPTICEMIA					1	(2%)
NECROSIS, FAT	1	(2%)				
TAIL						
FIBROUS OSTEODYSTROPHY	1					
OMENTUM						
NECROSIS, FAT			1			
UTERINE LIGAMENT						
ABSCESS, NOS					1	
	*****					110
SPECIAL MORPHOLOGY SUMMARY			_		0	
ANIMAL MISSING/NO NECROPSY			2		2	
NO NECROPSY PERFORMED					4	

^{*} NUMBER OF ANIMALS RECEIVING COMPLETE NECROPSY EXAMINATION; ALL GROSS LESIONS INCLUDING MASSES EXAMINED MICROSCOPICALLY.

[#] NUMBER OF ANIMALS EXAMINED MICROSCOPICALLY AT THIS SITE

APPENDIX E

ANALYSES OF PRIMARY TUMORS IN RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Skin: Keratoacanthoma			
Overall Rates (a)	5/50 (10%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	14.8%	0.0%	0.0%
Terminal Rates (c)	3/30 (10%)	0/25 (0%)	0/17 (0%)
Life Table Tests (d)	P = 0.013N	P = 0.046N	P = 0.069N
Incidental Tumor Tests (d)	P = 0.008N	P = 0.033N	P = 0.054N
Cochran-Armitage Trend Test (d)	P = 0.006N	1 = 0.00011	1 -0.00414
Fisher Exact Test	1 -0.00011	P = 0.028N	P = 0.028N
ntegumentary System: Keratoacanthoma	ı.		
Overall Rates (a)	6/50 (12%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	17.9%	0.0%	0.0%
Terminal Rates (c)	4/30 (13%)	0/25 (0%)	0/17 (0%)
Life Table Tests (d)	P = 0.006N	P = 0.027N	P = 0.047N
Incidental Tumor Tests (d)	P = 0.004N	P = 0.019N	P = 0.036N
Cochran-Armitage Trend Test (d)	P = 0.003 N		
Fisher Exact Test	2 3.00011	P = 0.013N	P = 0.013 N
ubcutaneous Tissue: Fibrosarcoma			
Overall Rates (a)	3/50 (6%)	0/50 (0%)	0/50 (0%)
Adjusted Rates (b)	8.1%	0.0%	0.0%
Terminal Rates (c)	1/30 (3%)	0/25 (0%)	0/17 (0%)
Life Table Tests (d)	P = 0.046N	P = 0.129N	P = 0.150N
Incidental Tumor Tests (d)	P=0.015N	P = 0.028N	P = 0.058N
Cochran-Armitage Trend Test (d)	P=0.037N	1 = 0.02814	1 -0.00014
Fisher Exact Test	1 - 0,00111	P = 0.121N	P = 0.121N
Subcutaneous Tissue: Fibroma or Fibrosa	, maama		
Overall Rates (a)		2/50 (40%)	9/50 (40%)
The state of the s	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	10.8%	8.0%	11.8%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	2/17 (12%)
Life Table Tests (d)	P = 0.390N	P = 0.384N	P = 0.466N
Incidental Tumor Tests (d)	P = 0.283N	P = 0.216N	P = 0.294N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test		P = 0.339N	P = 0.339N
Hematopoietic System: Mononuclear Cell			
Overall Rates (a)	9/50 (18%)	2/50 (4%)	7/50 (14%)
Adjusted Rates (b)	26.3%	6.3%	27.7%
Terminal Rates (c)	6/30 (20%)	1/25 (4%)	3/17 (18%)
Life Table Tests (d)	P = 0.548N	P = 0.045N	P = 0.537
Incidental Tumor Tests (d)	P = 0.318N	P = 0.014N	P = 0.442N
Cochran-Armitage Trend Test (d)	P = 0.322N		
Fisher Exact Test		P = 0.026N	P = 0.393 N
iver: Neoplastic Nodule			
Overall Rates (a)	2/50 (4%)	0/50 (0%)	3/48 (6%)
Adjusted Rates (b)	6.7%	0.0%	14.4%
Terminal Rates (c)	2/30 (7%)	0/25 (0%)	2/17 (12%)
Life Table Tests (d)	P = 0.236	P = 0.279N	P = 0.291
Incidental Tumor Tests (d)	P = 0.291	P = 0.279N	P = 0.360
Cochran-Armitage Trend Test (d)	P = 0.375		
Fisher Exact Test		P = 0.247N	P = 0.480
iver: Neoplastic Nodule or Hepatocellula	ar Carcinoma		
Overall Rates (a)	2/50 (4%)	0/50 (0%)	5/48 (10%)
Adjusted Rates (b)	6.7%	0.0%	20.7%
Terminal Rates (c)	2/30 (7%)	0/25 (0%)	2/17 (12%)
Life Table Tests (d)	P = 0.055	P = 0.279N	P = 0.095
Incidental Tumor Tests (d)	P=0.119	P = 0.279N	P = 0.201
Cochran-Armitage Trend Test (d)	P = 0.119 P = 0.108	1 -0.21011	1 -0.201
Fisher Exact Test	1 - 0.100	P = 0.247N	P = 0.201
I IOHUL MAGO ICAL		1 -0.24111	1 - 0.201

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Pancreas: Acinar Cell Adenoma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	0/48 (0%)
Adjusted Rates (b)	13.3%	4.0%	0.0%
Terminal Rates (c)	4/30 (13%)	1/25 (4%)	0/17 (0%)
Life Table Tests (d)	P = 0.064N	P = 0.235N	P = 0.154N
Incidental Tumor Tests (d)	P = 0.064N	P = 0.235N	P = 0.154N
Cochran-Armitage Trend Test (d)	P = 0.027N	- 0.2001	- 0,1-0 11,
Fisher Exact Test		P = 0.181N	P = 0.064N
Forestomach: Papilloma			
Overall Rates (a)	1/50 (2%)	5/50 (10%)	(e) 30/48 (63%)
Adjusted Rates (b)	2.6%	15.5%	89.9%
Terminal Rates (c)	0/30 (0%)	1/25 (4%)	14/17 (82%)
Life Table Tests (d)	P<0.001	P = 0.084	P<0.001
Incidental Tumor Tests (d)	P<0.001	P≈0.167	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	1 -0.107	1 < 0.001
Fisher Exact Test	1 < 0.001	P = 0.102	P<0.001
ituitary: Adenoma			
Overall Rates (a)	9/49 (18%)	8/50 (16%)	3/50 (6%)
Adjusted Rates (b)	24.7%	23.5%	17.6%
Terminal Rates (c)	5/30 (17%)	3/25 (12%)	3/17 (18%)
Life Table Tests (d)	P = 0.159N	P = 0.586N	P = 0.196N
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.050N P = 0.048N	P = 0.339N	P = 0.145N
Fisher Exact Test	F 0.04014	P = 0.482N	P = 0.056N
drenal: Cortical Adenoma			
Overall Rates (a)	3/50 (6%)	0/50 (0%)	1/48 (2%)
Adjusted Rates (b)	10.0%	0.0%	3.3%
Terminal Rates (c)	3/30 (10%)	0/25 (0%)	0/17 (0%)
Life Table Tests (d)	P = 0.276N	P = 0.154N	P = 0.471N
Incidental Tumor Tests (d)	P = 0.218N	P = 0.154N	P = 0.389N
		F = 0.15414	r = 0.56511
Cochran-Armitage Trend Test (d) Fisher Exact Test	P=0.184N	P = 0.121N	P = 0.324N
		- 311111	
Adrenal: Pheochromocytoma Overall Rates (a)	14/50 (28%)	8/50 (16%)	4/48 (8%)
Adjusted Rates (b)	43.6%	30.1%	14.6%
Terminal Rates (c)	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests (d)		P = 0.216N	P = 0.078N
Incidental Tumor Tests (d)	P≈0.056N	P = 0.216N P = 0.188N	P = 0.078N P = 0.015N
Cochran-Armitage Trend Test (d)	P = 0.015N	L = 0.1991	r=0.019N
Fisher Exact Test	P = 0.008N	P = 0.114N	P = 0.011N
drenal: Pheochromocytoma or Malignan	t Dhaahramaaytama		
		8/50 (16%)	5/AQ (100-)
Overall Rates (a)	14/50 (28%)		5/48 (10%)
Adjusted Rates (b)	43.6%	30.1%	18.2%
Terminal Rates (c)	12/30 (40%)	7/25 (28%)	1/17 (6%)
Life Table Tests (d)	P = 0.104N	P = 0.216N	P = 0.141N
Incidental Tumor Tests (d)	P = 0.027N	P = 0.188N	P = 0.026N
Cochran-Armitage Trend Test (d)	P = 0.017N		
Fisher Exact Test		P = 0.114N	P = 0.025N
hyroid: C-Cell Adenoma			
Overall Rates (a)	3/49 (6%)	3/48 (6%)	0/48 (0%)
Adjusted Rates (b)	10.0%	12.0%	0.0%
Terminal Rates (c)	3/30 (10%)	3/25 (12%)	0/17 (0%)
Life Table Tests (d)	P = 0.223N	P = 0.578	P = 0.236N
	P = 0.223N	P = 0.578	P = 0.236N
incidental lumor resistat			
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.105N		

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Thyroid: C-Cell Carcinoma			
Overall Rates (a)	4/49 (8%)	5/48 (10%)	0/48 (0%)
Adjusted Rates (b)	13.3%	18.9%	0.0%
Terminal Rates (c)	4/30 (13%)	4/25 (16%)	0/17 (0%)
Life Table Tests (d)	P = 0.185N	P = 0.391	P = 0.154N
Incidental Tumor Tests (d)	P = 0.153N	P = 0.406	P = 0.154N
Cochran-Armitage Trend Test (d)	P = 0.074N		
Fisher Exact Test		P = 0.487	P = 0.061N
Thyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	7/49 (14%)	8/48 (17%)	0/48 (0%)
Adjusted Rates (b)	23.3%	30.5%	0.0%
Terminal Rates (c)	7/30 (23%)	7/25 (28%)	0/17 (0%)
Life Table Tests (d)	P = 0.078N	P = 0.349	P = 0.043N
Incidental Tumor Tests (d)	P = 0.064N	P = 0.360	P = 0.043N
Cochran-Armitage Trend Test (d)	P = 0.016N		
Fisher Exact Test	2 - 0,02021	P = 0.482	P = 0.007 N
Pancreatic Islets: Islet Cell Adenoma			
Overall Rates (a)	3/50 (6%)	3/50 (60L)	9/49 (40%)
Adjusted Rates (b)	· · · · · · · · · · · · · · · · · · ·	3/50 (6%)	2/48 (4%)
	9.4%	11.2%	10.4%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	1/17 (6%)
Life Table Tests (d)	P = 0.583N	P = 0.586	P = 0.658N
Incidental Tumor Tests (d)	P = 0.351N	P = 0.650	P = 0.399N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.431N	P = 0.661	P = 0.520N
		1 - 0.001	2 0.02011
Pancreatic Islets: Islet Cell Adenoma or Overall Rates (a)	Carcinoma 4/50 (8%)	3/50 (6%)	2/48 (4%)
Adjusted Rates (b)	12.5%	11.2%	10.4%
Terminal Rates (c)	2/30 (7%)	2/25 (8%)	1/17 (6%)
Life Table Tests (d)	P = 0.442N	P = 0.587N	P = 0.528N
Incidental Tumor Tests (d)	P = 0.237N	P = 0.530N	P = 0.289N
Cochran-Armitage Trend Test (d)	P = 0.280N		
Fisher Exact Test		P = 0.500N	P = 0.359N
Mammary Gland: Fibroadenoma			
Overall Rates (a)	0/50 (0%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	0.0%	12.0%	2.5%
Terminal Rates (c)	0/30 (0%)	3/25 (12%)	0/17 (0%)
Life Table Tests (d)	P = 0.256	P=0.090	P = 0.505
Incidental Tumor Tests (d)	P=0.334	P = 0.090	P = 0.892
Cochran-Armitage Trend Test (d)	P = 0.378	1 0.000	. 0.00-
Fisher Exact Test	1 -0.010	P = 0.121	P = 0.500
Preputial Gland: Carcinoma			
Overall Rates (a)	3/50 (6%)	4/50 (8%)	1/50 (2%)
	• •		2.7%
Adjusted Rates (b)	9.6%	16.0%	
Terminal Rates (c)	2/30 (7%)	4/25 (16%)	0/17 (0%)
Life Table Tests (d)	P = 0.430N	P = 0.407	P = 0.419N
Incidental Tumor Tests (d)	P = 0.303N	P = 0.424	P = 0.183N
Cochran-Armitage Trend Test (d)	P = 0.252N		
Fisher Exact Test		P = 0.500	P = 0.309N
reputial Gland: Adenoma or Carcinoma	1		
Overall Rates (a)	5/50 (10%)	5/50 (10%)	1/50 (2%)
Adjusted Rates (b)	16.0%	20.0%	2.7%
Terminal Rates (c)	4/30 (13%)	5/25 (20%)	0/17 (0%)
Life Table Tests (d)	P=0.231N	P = 0.518	P = 0.214N
Incidental Tumor Tests (d)	P=0.148N	P=0.533	P = 0.081N
Cochran-Armitage Trend Test (d)	P = 0.146N P = 0.090N	1 - 0.000	1 -0.00114
	F - 0.05011	D = 0.000	D_0 10037
Fisher Exact Test		P = 0.630	P = 0.102N

TABLE E1. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Prostate: Adenoma			
Overall Rates (a)	1/47 (2%)	1/49 (2%)	3/48 (6%)
Adjusted Rates (b)	3.4%	4.0%	17.6%
Terminal Rates (c)	1/29 (3%)	1/25 (4%)	3/17 (18%)
Life Table Tests (d)	P = 0.085	P = 0.729	P = 0.137
Incidental Tumor Tests (d)	P = 0.085	P = 0.729	P = 0.137
Cochran-Armitage Trend Test (d)	P=0.206		
Fisher Exact Test		P = 0.742N	P = 0.316
Testis: Interstitial Cell Tumor			
Overall Rates (a)	36/50 (72%)	43/50 (86%)	43/48 (90%)
Adjusted Rates (b)	97.3%	100.0%	100.0%
Terminal Rates (c)	29/30 (97%)	25/25 (100%)	17/17 (100%)
Life Table Tests (d)	P<0.001	P = 0.009	P<0.001
Incidental Tumor Tests (d)	P = 0.003	P = 0.067	P = 0.012
Cochran-Armitage Trend Test (d)	P = 0.015		
Fisher Exact Test		P = 0.070	P = 0.025
All Sites: Mesothelioma			
Overall Rates (a)	1/50 (2%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	3.3%	8.0%	14.7%
Terminal Rates (c)	1/30 (3%)	2/25 (8%)	2/17 (12%)
Life Table Tests (d)	P = 0.101	P = 0.436	P = 0.165
Incidental Tumor Tests (d)	P = 0.130	P = 0.436	P = 0.217
Cochran-Armitage Trend Test (d)	P = 0.222		
Fisher Exact Test		P = 0.500	P = 0.309

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).
(e) Two animals also had squamous cell carcinomas.

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	75 mg/kg	150 mg/kg
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	0/50 (0%)	2/50 (4%)	4/50 (8%)
Adjusted Rates (b)	0.0%	6.3%	13.7%
Terminal Rates (c)	0/31 (0%)	2/32 (6%)	2/26 (8%)
Life Table Tests (d)	P=0.024	P = 0.245	P = 0.047
Incidental Tumor Tests (d)	P = 0.030	P = 0.245	P = 0.060
Cochran-Armitage Trend Test (d)	P = 0.037	- 0.2.10	2 0.000
Fisher Exact Test		P = 0.247	P = 0.059
Subcutaneous Tissue: Fibroma or Fibro	sarcoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	4/50 (8%)
Adjusted Rates (b)	3.2%	9.4%	13.7%
Terminal Rates (c)	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests (d)	P = 0.093	P = 0.316	P = 0.138
Incidental Tumor Tests (d)	P = 0.106	P = 0.316	P = 0.162
Cochran-Armitage Trend Test (d)	P=0.133	- 0,010	- 00-
Fisher Exact Test	2 0.200	P = 0.309	P = 0.181
ubcutaneous Tissue: Fibroma, Sarcoma	, or Fibrosarcoma		
Overall Rates (a)	1/50 (2%)	3/50 (6%)	5/50 (10%)
Adjusted Rates (b)	3.2%	9.4%	16.1%
Terminal Rates (c)	1/31 (3%)	3/32 (9%)	2/26 (8%)
Life Table Tests (d)	P = 0.046	P = 0.316	P = 0.077
Incidental Tumor Tests (d)	P=0.056	P = 0.316	P = 0.093
Cochran-Armitage Trend Test (d)	1 - 0.000	1 -0.010	1 -0.000
Fisher Exact Test (d)	P = 0.070	P = 0.309	P = 0.102
Iematopoietic System: Mononuclear Cell	I Laukamia		
Overall Rates (a)	16/50 (32%)	13/50 (26%)	10/50 (20%)
Adjusted Rates (b)	38.8%	32.9%	26.5%
Terminal Rates (c)	7/31 (23%)	7/32 (22%)	26.5% 1/26 (4%)
Life Table Tests (d)	P = 0.224N	P = 0.312N	P = 0.263N
Incidental Tumor Tests (d)		P = 0.312N P = 0.422N	
	P=0.083N	P = 0.422N	P = 0.087N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.105N	P = 0.330N	P = 0.127N
Sanatana aka Marelii ana			
orestomach: Papilloma	1 (50 (00)	1/50/00)	10(50 (000)
Overall Rates (a)	1/50 (2%)	1/50 (2%)	10/50 (20%)
Adjusted Rates (b)	3.1%	3.1%	32.0%
Terminal Rates (c)	0/31 (0%)	1/32 (3%)	7/26 (27%)
Life Table Tests (d)	P<0.001	P = 0.753N	P = 0.003
Incidental Tumor Tests (d)	P = 0.001	P = 0.720N	P = 0.006
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P = 0.753N	P = 0.004
ituitary: Adenoma	10/50 (00%)	01/50/40%	00/40 /44 ~ >
Overall Rates (a)	19/50 (38%)	21/50 (42%)	20/49 (41%)
Adjusted Rates (b)	49.3%	57.9%	65.7%
Terminal Rates (c)	12/31 (39%)	17/32 (53%)	15/25 (60%)
Life Table Tests (d)	P = 0.196	P = 0.470	P = 0.230
Incidental Tumor Tests (d)	P = 0.299	P = 0.482	P = 0.365
Cochran-Armitage Trend Test (d)	P = 0.427	_	_
Fisher Exact Test		P = 0.419	P = 0.468
*** * * * * * * * * * * * * * * * * * *			0 (50 (00)
drenal: Cortical Adenoma Overall Rates (a)	3/50 (6%)	1/50 (2%)	3/50 (6%)
*** * * * * * * * * * * * * * * * * * *	3/50 (6%) 9.7%	1/50 (2%) 3.1%	10.4%
Overall Rates (a)			
Overall Rates (a) Adjusted Rates (b)	9.7%	3.1%	10.4%
Adjusted Rates (b) Terminal Rates (c)	9.7% 3/31 (10%)	3.1% 1/32 (3%)	10.4% 2/26 (8%)
Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d)	9.7% 3/31 (10%) P=0.525	3.1% 1/32 (3%) P=0.293N	10.4% 2/26 (8%) P = 0.585

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Adrenal: Pheochromocytoma			
Overall Rates (a)	4/50 (8%)	1/50 (2%)	4/50 (8%)
Adjusted Rates (b)	12.1%	3.1%	14.4%
Terminal Rates (c)	3/31 (10%)	1/32 (3%)	3/26 (12%)
Life Table Tests (d)	P = 0.505	P = 0.170N	P = 0.552
Incidental Tumor Tests (d)	P = 0.528	P = 0.200N	P = 0.582
Cochran-Armitage Trend Test (d)	P = 0.583		
Fisher Exact Test		P = 0.181N	P = 0.643
Fhyroid: Follicular Cell Adenoma or Card	inoma		
Overall Rates (a)	1/50 (2%)	3/48 (6%)	3/49 (6%)
Adjusted Rates (b)	3.2%	10.0%	9.5%
Terminal Rates (c)	1/31 (3%)	3/30 (10%)	1/26 (4%)
Life Table Tests (d)	P=0.186	P = 0.292	P = 0.255
Incidental Tumor Tests (d)	P = 0.207	P = 0.292	P = 0.292
Cochran-Armitage Trend Test (d)	P = 0.233	1 - 0.202	1 -0.202
Fisher Exact Test	1 - 0.200	P = 0.293	P = 0.301
		1 - 0.200	1 -0.001
Thyroid: C-Cell Adenoma	0(50 (10%)	1/40/00	0/40/0%
Overall Rates (a)	6/50 (12%)	1/48 (2%)	0/49 (0%)
Adjusted Rates (b)	17.8%	3.0%	0.0%
Terminal Rates (c)	4/31 (13%)	0/30 (0%)	0/26 (0%)
Life Table Tests (d)	P = 0.008N	P = 0.063N	P = 0.031 N
Incidental Tumor Tests (d)	P = 0.004N	P = 0.037N	P = 0.020N
Cochran-Armitage Trend Test (d)	P = 0.005N	D 0.0001	D 001437
Fisher Exact Test		P = 0.062N	P = 0.014N
Thyroid: C-Cell Carcinoma			
Overall Rates (a)	2/50 (4%)	5/48 (10%)	5/49 (10%)
Adjusted Rates (b)	6.5%	16.7%	19.2%
Terminal Rates (c)	2/31 (6%)	5/30 (17%)	5/26 (19%)
Life Table Tests (d)	P = 0.111	P = 0.200	P = 0.147
Incidental Tumor Tests (d)	P = 0.111	P = 0.200	P = 0.147
Cochran-Armitage Trend Test (d)	P = 0.172		
Fisher Exact Test		P = 0.201	P = 0.210
Thyroid: C-Cell Adenoma or Carcinoma			
Overall Rates (a)	8/50 (16%)	6/48 (13%)	5/49 (10%)
Adjusted Rates (b)	23.9%	19.2%	19.2%
Terminal Rates (c)	6/31 (19%)	5/30 (17%)	5/26 (19%)
Life Table Tests (d)	P = 0.333N	P = 0.400N	P = 0.399N
Incidental Tumor Tests (d)	P = 0.333N P = 0.292N	P = 0.349N	P = 0.355N
Cochran-Armitage Trend Test (d)	P = 0.239N	7 010-2014	1 - 0,00011
Fisher Exact Test	1 -0.20014	P = 0.419N	P = 0.290N
fammary Gland: Fibroadenoma Overall Rates (a)	14/50 (28%)	15/50 (30%)	10/50 (20%)
Adjusted Rates (b)	40.4%	45.0%	33.6%
Terminal Rates (c)	11/31 (35%)	14/32 (44%)	7/26 (27%)
Life Table Tests (d)	P = 0.368N	P = 0.537	P = 0.409N
Incidental Tumor Tests (d)	P = 0.386N P = 0.284N	P = 0.537 P = 0.504	P = 0.409 N P = 0.314 N
Cochran-Armitage Trend Test (d)	P = 0.264N P = 0.212N	1 -0.004	1 -0.01411
Fisher Exact Test	r = 0.212N	P = 0.500	P = 0.241N
		•	
fammary Gland: Adenoma or Fibroadeno		17/EO (940/)	19/50 (940)
Overall Rates (a)	18/50 (36%)	17/50 (34%)	12/50 (24%)
Adjusted Rates (b)	49.2%	49.5%	40.6%
		15/32 (47%)	9/26 (35%)
Terminal Rates (c)	13/31 (42%)		D 0.00#31
Terminal Rates (c) Life Table Tests (d)	P = 0.252N	P = 0.457N	P = 0.295N
Terminal Rates (c) Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.252N P = 0.170N		P = 0.295N P = 0.199N
Terminal Rates (c) Life Table Tests (d)	P = 0.252N	P = 0.457N	

TABLE E2. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	75 mg/kg	150 mg/kg
Mammary Gland: Adenoma			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	11.4%	5.8%	11.5%
Terminal Rates (c)	2/31 (6%)	1/32 (3%)	3/26 (12%)
Life Table Tests (d)	P = 0.493N	P = 0.325N	P=0.588N
Incidental Tumor Tests (d)	P = 0.454N	P = 0.314N	P = 0.554N
Cochran-Armitage Trend Test (d)	P = 0.417N	1 0.01	1 0.0011
Fisher Exact Test		P = 0.339N	P = 0.500N
Mammary Gland: Adenoma or Cystade	noma		
Overall Rates (a)	5/50 (10%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (b)	14.0%	8.9%	11.5%
Terminal Rates (c)	2/31 (6%)	2/32 (6%)	3/26 (12%)
Life Table Tests (d)	P = 0.363N	P = 0.343N	P = 0.454N
Incidental Tumor Tests (d)	P = 0.309N	P = 0.309N	P = 0.392N
Cochran-Armitage Trend Test (d)	P = 0.283N		
Fisher Exact Test	2 0120011	P = 0.357N	P = 0.357N
Mammary Gland: Adenoma, Cystadenoi	na or Adenocarcinoma		
Overall Rates (a)	5/50 (10%)	4/50 (8%)	4/50 (8%)
Adjusted Rates (b)	14.0%	11.9%	14.8%
Terminal Rates (c)	2/31 (6%)	3/32 (9%)	3/26 (12%)
Life Table Tests (d)	P = 0.528N	P = 0.480N	P = 0.603N
Incidental Tumor Tests (d)	P = 0.460N	P = 0.451 N	P = 0.523N
Cochran-Armitage Trend Test (d)	P = 0.429N		
Fisher Exact Test		P = 0.500N	P = 0.500N
Jterus: Endometrial Stromal Polyp			
Overall Rates (a)	7/50 (14%)	9/50 (18%)	8/49 (16%)
Adjusted Rates (b)	19.5%	26.8%	28.8%
Terminal Rates (c)	4/31 (13%)	8/32 (25%)	7/26 (27%)
Life Table Tests (d)	P = 0.314	P = 0.426	P = 0.371
Incidental Tumor Tests (d)	P = 0.330	P = 0.313	P = 0.391
Cochran-Armitage Trend Test (d)	P = 0.428		
Fisher Exact Test		P = 0.393	P = 0.483

⁽a) Number of tumor-bearing animals/number of animals examined at the site(b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

	Vehicle Control	100 mg/kg	200 mg/kg
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	1/50 (2%)	0/50 (0%)	3/50 (6%)
Adjusted Rates (b)	3.8%	0.0%	8.9%
Terminal Rates (c)	1/26 (4%)	0/37 (0%)	2/32 (6%)
Life Table Tests (d)	P = 0.209	P = 0.430N	P=0.381
Incidental Tumor Tests (d)	P = 0.205	P = 0.430N	P=0.363
Cochran-Armitage Trend Test (d)	P = 0.176	1 -0.40014	1 -0.000
Fisher Exact Test	1 -0.170	P = 0.500N	P = 0.309
ung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	3/50 (6%)	4/50 (8%)	2/48 (4%)
Adjusted Rates (b)	10.9%	10.8%	6.7%
Terminal Rates (c)	2/26 (8%)	4/37 (11%)	2/30 (7%)
Life Table Tests (d)	P = 0.344N	P = 0.622N	P = 0.431N
Incidental Tumor Tests (d)	P = 0.355N	P=0.632	P = 0.448N
Cochran-Armitage Trend Test (d)	P = 0.436N	1 -0.004	I -0'440M
Fisher Exact Test	F - 0.400M	P = 0.500	D = 0 E90NT
		r=0.500	P = 0.520N
ung: Alvolar/Bronchiolar Carcinoma Overall Rates (a)	4/50 / Qa-\	6/50 (19%)	1/49 (90%)
	4/50 (8%)	6/50 (12%)	1/48 (2%)
Adjusted Rates (b)	13.6%	16.2%	3.3%
Terminal Rates (c)	3/26 (12%)	6/37 (16%)	1/30 (3%)
Life Table Tests (d)	P = 0.115N	P = 0.583	P = 0.144N
Incidental Tumor Tests (d)	P = 0.167N	P = 0.487	P = 0.218N
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.183N	P = 0.370	P = 0.194N
A	~ .		
ung: Alveolar/Bronchiolar Adenoma or		10/50 (90%)	0 (40 (00)
Overall Rates (a)	7/50 (14%)	10/50 (20%)	3/48 (6%)
Adjusted Rates (b)	23.9%	27.0%	10.0%
Terminal Rates (c)	5/26 (19%)	10/37 (27%)	3/30 (10%)
Life Table Tests (d)	P = 0.085N	P = 0.591	P = 0.108N
Incidental Tumor Tests (d)	P = 0.122N	P = 0.472	P = 0.160N
Cochran-Armitage Trend Test (d)	P = 0.170N		
Fisher Exact Test		P = 0.298	P = 0.176N
ematopoietic System: Lymphoma, All M	alignant		
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	11.8%	5.1%	4.9%
Terminal Rates (c)	1/26 (4%)	1/37 (3%)	0/32 (0%)
Life Table Tests (d)	P = 0.196N	P = 0.227N	P = 0.275N
Incidental Tumor Tests (d)	P=0.318N	P = 0.485N	P = 0.423N
Cochran-Armitage Trend Test (d)	P = 0.252N		- 0
Fisher Exact Test		P = 0.339N	P = 0.339N
irculatory System: Hemangioma or Hem	angiosarcoma		
Overall Rates (a)	2/50 (4%)	2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	6.6%	5.4%	8.3%
Terminal Rates (c)	0.0%	2/37 (5%)	2/32 (6%)
Life Table Tests (d)	P = 0.480	P = 0.569N	P = 0.578
Incidental Tumor Tests (d)			
	P=0.347	P = 0.689	P = 0.413
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.406	$P = 0.691 \mathrm{N}$	P = 0.500
iver: Hepatocellular Adenoma			
Overall Rates (a)	A/50 (90/s)	7/50 (1/4%)	9/50 (40%)
	4/50 (8%)	7/50 (14%)	2/50 (4%)
Adjusted Rates (b) Terminal Rates (c)	13.9%	18.9%	6.3%
Lerming I Kgtes (c)	3/26 (12%)	7/37 (19%)	2/32 (6%)
I : P · D · l· l · D · · · · · (1)	D 0 10037		
Life Table Tests (d)	P=0.193N	P = 0.478	P≈0.251N
Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.200N	P = 0.478 P = 0.441	P=0.261N $P=0.261N$
Life Table Tests (d)			

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Liver: Hepatocellular Carcinoma			
Overall Rates (a)	19/50 (38%)	10/50 (20%)	11/50 (22%)
Adjusted Rates (b)	49.7%	24.5%	28.9%
Terminal Rates (c)	8/26 (31%)	7/37 (19%)	6/32 (19%)
Life Table Tests (d)	P = 0.019N	P = 0.008N	P = 0.031N
Incidental Tumor Tests (d)	P = 0.046N	P=0.061N	P = 0.069N
Cochran-Armitage Trend Test (d)	P = 0.045N	1 -0.00111	1 -0.00314
Fisher Exact Test	1 - 0.04011	P = 0.038N	P = 0.063N
.iver: Hepatocellular Adenoma or Carcin	ıoma		
Overall Rates (a)	22/50 (44%)	16/50 (32%)	13/50 (26%)
Adjusted Rates (b)	56.5%	39.6%	34.4%
Terminal Rates (c)	10/26 (38%)	13/37 (35%)	8/32 (25%)
Life Table Tests (d)	P = 0.012N	P = 0.025N	P = 0.020N
Incidental Tumor Tests (d)	P = 0.027N	P = 0.149N	P = 0.042N
Cochran-Armitage Trend Test (d)	P = 0.036N	1 0.11011	1 0,01211
Fisher Exact Test	- 3,0001,	P = 0.151N	P = 0.046N
orestomach: Squamous Cell Papilloma			
Overall Rates (a)	3/49 (6%)	19/49 (39%)	30/49 (61%)
Adjusted Rates (b)	10.3%	46.0%	74.5%
Terminal Rates (c)	2/26 (8%)	15/37 (41%)	22/32 (69%)
Life Table Tests (d)	P<0.001	P = 0.003	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
orestomach: Squamous Cell Carcinoma	0(10(00)		
Overall Rates (a)	0/49 (0%)	5/49 (10%)	7/49 (14%)
Adjusted Rates (b)	0.0%	11.6%	19.6%
Terminal Rates (c)	0/26 (0%)	2/37 (5%)	5/32 (16%)
Life Table Tests (d)	P = 0.014	P = 0.061	P = 0.019
Incidental Tumor Tests (d)	P = 0.013	P = 0.031	P = 0.016
Cochran-Armitage Trend Test (d)	P = 0.008		
Fisher Exact Test		P = 0.028	P = 0.006
orestomach: Squamous Cell Papilloma o			
Overall Rates (a)	3/49 (6%)	24/49 (49%)	36/49 (73%)
Adjusted Rates (b)	10.3%	54.1%	85.5%
Terminal Rates (c)	2/26 (8%)	17/37 (46%)	26/32 (81%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	D -0.004	D -0.001
Fisher Exact Test		P<0.001	P<0.001
arderian Gland: Papillary Adenoma Overall Rates (a)	0/50 (0%)	0/50 (40)	0/50 (00)
Adjusted Rates (b)	0/50 (0%)	2/50 (4%)	3/50 (6%)
	0.0%	5.1%	8.7%
Terminal Rates (c)	0/26 (0%)	1/37 (3%)	2/32 (6%)
Life Table Tests (d)	P = 0.102	P<0.001	P = 0.160
Incidental Tumor Tests (d)	P=0.099	P<0.001	P = 0.148
Cochran-Armitage Trend Test (d) Fisher Exact Test	P = 0.082	P<0.001	P = 0.121
	A		
arderian Gland: Adenoma or Papillary A Overall Rates (a)		2/50 (4%)	3/50 (6%)
Adjusted Rates (b)	1/50 (2%) 3.4%	2/50 (4%) 5.1%	3/50 (6%) 8.7%
		5.1% 1/37 (3%)	8.7% 2/32 (6%)
Terminal Rates (e)	0/26 (0%) P=0.274		
Terminal Rates (c) Life Table Tests (d)	P = 0.274	P = 0.620	P = 0.378
Terminal Rates (c)			

TABLE E3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(c) Observed tumor incidence at terminal kill

⁽b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLPROPENE

Overall Rates (a)		Vehicle Control	100 mg/kg	200 mg/kg
Överall Rates (a) 3/50 (6%) 2/48 (4%) 3/43 (7%) 10.3% Terminal Rates (c) 3/37 (8%) 2/43 (5%) 227 (7%) 10.3% Life Table Tests (d) P=0.433 P=0.431 N P=0.514 Incidental Tumor Tests (d) P=0.433 P=0.431 N P=0.498 Cochran-Armitage Trend Test (d) P=0.518 P=0.520N P=0.587 Hematopoletic System: Lymphoma, All Malignant 10/50 (20%) 8/48 (17%) 6/44 (14%) Adjusted Rates (h) 23.3% 17.6% 16.7% Terminal Rates (c) 537 (14%) 6/43 (14%) 127 (4%) Life Table Tests (d) P=0.360N P=0.318N P=0.218N Cochran-Armitage Trend Test (d) P=0.247N P=0.435N P=0.2218N Flematopoletic System: Lymphoma or Leukemia Overall Rates (a) 12/50 (24%) 8/48 (17%) 8/44 (18%) Overall Rates (a) 26.9% 17.8% 23.1% Terminal Rates (a) 567 (14%) 6/43 (14%) 29.27 (11%) Life Table Tests (d) P=0.219N P=0.557N P=0.456N Pe	Lung: Alveolar/Bronchiolar Adenoma			
Adjusted Rates (b) 8.1% 4.7% 10.3% 127(7%) Life Table Tests (d) P=0.435 P=0.431N P=0.518 P=0.431 N P=0.518 P=0.431 N P=0.518 P=0.431 N P=0.518 P=0.520N P=0.587 P=0.588 P=0.520N P=0.587 P=0.587 P=0.588 P=0.520N P=0.587 P=0.587 P=0.588 P=0.520N P=0.587 P=0.587 P=0.588 P=0.520N P=0.587 P=0.587 P=0.589 P=		3/50 (6%)	2/48 (4%)	3/43 (7%)
Terminal Rates (c) 3/37 (8%) 2/43 (5%) 2277 (7%) Life Table Tests (d) P=0.455 P=0.431N P=0.514 Incidental Tumor Tests (d) P=0.433 P=0.431N P=0.498 Cochran-Armitage Trend Test (d) P=0.518 Fisher Exact Test P=0.520N P=0.587 Hematopoietic System: Lymphoma, All Malignant Overall Rates (a) 23.3% 17.6% 16.7% Terminal Rates (c) 5/37 (14%) 6/43 (14%) 17/1(%) Life Table Tests (d) P=0.360N P=0.318N P=0.430N Cochran-Armitage Trend Test (d) P=0.176N P=0.605N P=0.216N Cochran-Armitage Trend Test (d) P=0.176N P=0.435N P=0.295N Hematopoietic System: Lymphoma or Leukemia Overall Rates (a) 12/50 (24%) 8/48 (17%) 8/44 (18%) Adjusted Rates (b) 26.9% 17.6% 23.1% Terminal Rates (c) 5/37 (14%) 6/43 (14%) 3/27 (11%) Life Table Tests (d) P=0.406N P=0.176N P=0.495N Terminal Rates (c) 5/37 (14%) 6/43 (14%) 3/27 (11%) Life Table Tests (d) P=0.219N P=0.557N P=0.295N Terminal Rates (c) 5/37 (14%) 6/43 (14%) 3/27 (11%) Life Table Tests (d) P=0.219N P=0.557N P=0.295N Life Table Tests (d) P=0.219N P=0.557N P=0.295N Fisher Exact Test P=0.258N P=0.333N Circulatory System: Hemangioma Overall Rates (a) 4/50 (8%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 9.8% 0.0% 0.0% Cochran-Armitage Trend Test (d) P=0.022N P=0.055N P=0.115N Cochran-Armitage Trend Test (d) P=0.039N P=0.064N P=0.076N Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.039N P=0.064N P=0.076N Pen.076N P=0.076N P=0.076N P=0.076N Pen.076N P=0.076N P=0.076N P=0.076N Pen.076N P=0.076N P=0.076N P=0.076N Pen.076N P=0.076N P=0.076N P=0.076N P=0.076N Life Table Tests (d) P=0.076N P=0.076N P=0.076N P=0.076N Life Table Tests (d) P=0.076N				
Life Table Tests (d) P=0.435 P=0.431N P=0.518 P=0.431N P=0.498 Cochran-Armitage Trend Test (d) P=0.433 P=0.518 P=0.431N P=0.498 Cochran-Armitage Trend Test (d) P=0.518 P=0.520N P=0.587 P=0.				
Incidental Tumor Tests (d)	· ·			. — . , ,
Cochran-Armitage Trend Test (d)				
Fisher Exact Test			1 -0.40111	1 -0.430
Overall Rates (a) 10/50 (20%) 8/48 (17%) 6/44 (14%) Adjusted Rates (b) 23.3% 17,6% 16.7% Terminal Rates (c) 5/37 (14%) 6/43 (14%) 1/27 (4%) Life Table Feats (d) P=0.360N P=0.318N P=0.436N Life Table Feats (d) P=0.176N P=0.606N P=0.216N Cochran-Armitage Trend Test (d) P=0.247N P=0.436N P=0.295N Hematopoietic System: Lymphoma or Leukemia Verall Rates (a) 12/50 (24%) 8/48 (17%) 8/44 (18%) Adjusted Rates (b) 26.9% 17.6% 23.1% 23.1% 17.6% 23.1% 22.1% 22.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/27 (11%) 14.1% 3/24 (11%)		1 -0.010	P = 0.520N	P = 0.587
Adjusted Rates (b) 23.3% 17.6% 16.7% 16.7% 16.7% 16.7% 16.7% 17erminal Rates (c) 5/37 (14%) 6/43 (14%) 1/27 (4%) Life Table Tests (d) P=0.360N P=0.318N P=0.430N Incidental Tumor Tests (d) P=0.176N P=0.605N P=0.216N Cochran-Armitage Trend Test (d) P=0.247N P=0.435N P=0.225N P=0.295N	Iematopoietic System: Lymphoma, All M	lalignant		
Terminal Rates (c)		10/50 (20%)	8/48 (17%)	6/44 (14%)
Life Table Tests (d) P=0.360N P=0.318N P=0.430N Incidental Tumor Tests (d) P=0.176N P=0.605N P=0.216N Cochran-Armitage Trend Test (d) P=0.247N P=0.247N P=0.258N P=0.295N P	Adjusted Rates (b)	23.3%	17.6%	16.7%
Incidental Tumor Tests (d)	Terminal Rates (c)	5/37 (14%)	6/43 (14%)	1/27 (4%)
Incidental Tumor Tests (d)	Life Table Tests (d)	P = 0.360N	P = 0.318N	
Cochran-Armitage Trend Test (d)	Incidental Tumor Tests (d)			
Fisher Exact Test			1 -0.00011	1 -0.21011
Nematopoletic System: Lymphoma or Leukemia		1 - 0.23111	P = 0.435N	P = 0.295N
Overall Rates (a) 12/50 (24%) 8/48 (17%) 8/44 (18%) Adjusted Rates (b) 26.9% 17.6% 23.1% Terminal Rates (c) 5/37 (14%) 6/43 (14%) 3/27 (11%) Life Table Tests (d) P=0.406N P=0.179N P=0.495N Incidental Tumor Tests (d) P=0.219N P=0.557N P=0.233N Fisher Exact Test P=0.274N P=0.258N P=0.333N Fisher Exact Test P=0.274N P=0.258N P=0.333N Firculatory System: Hemangioma Overall Rates (a) 4/50 (8%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 9.8% 0.0% 0.0% 0.0% Adjusted Rates (b) 9.8% 0.0% 0.0% 0.0% Life Table Tests (d) P=0.022N P=0.055N P=0.115N P=0.115N P=0.019N P=0.019N P=0.019N P=0.019N P=0.019N P=0.019N P=0.019N P=0.010N P=0.064N P=0.017N N=0.076N 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% <td></td> <td>-1</td> <td></td> <td>_</td>		-1		_
Adjusted Rates (b) 26.9% 17.6% 23.1% Terminal Rates (c) 5.37 (14%) 6/43 (14%) 3/27 (11%) Life Table Tests (d) P=0.406N P=0.179N P=0.495N Incidental Tumor Tests (d) P=0.219N P=0.557N P=0.281N Cochran-Armitage Trend Test (d) P=0.274N Fisher Exact Test P=0.09% Fi			0/40 /4 77 6/ \	0/44/40%
Terminal Rates (c)				
Life Table Tests (d)				
Incidental Tumor Tests (d)				
Cochran-Armitage Trend Test (d)	, , ,			
Fisher Exact Test			P = 0.557N	P = 0.281 N
Circulatory System: Hemangioma Overall Rates (a)		P = 0.274N		
Overall Rates (a) 4/50 (8%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 9.8% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.022N P=0.055N P=0.115N Incidental Tumor Tests (d) P=0.019N P=0.164N P=0.107N Cochran-Armitage Trend Test (d) P=0.019N P=0.064N P=0.076N Fisher Exact Test P=0.019N P=0.064N P=0.076N Circulatory System: Hemangioma or Hemangiosarcoma Overall Rates (a) 5/50 (10%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 12.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.010N P=0.029N P=0.072N Incidental Tumor Tests (d) P=0.019N P=0.141N P=0.039N Iver: Hepatocellular Adenoma 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (a) 5/50 (4%) 3/43 (7%) 0/27 (0%) Incidental Tumor Tests (d)<	Fisher Exact Test		P = 0.258N	P = 0.333N
Adjusted Rates (b) 9.8% 0.0% 0.0% 0.0% 1 Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) 1 Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) 1 Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) 1 Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) 1 Terminal Rates (c) 2/37 (5%) 0/48 (0%) 0/44 (0%) 0/44 (0%) 1 Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 3/37 (5%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) 1 Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%)				
Terminal Rates (c)		4/50 (8%)	0/48 (0%)	0/44 (0%)
Life Table Tests (d)	Adjusted Rates (b)	9.8%	0.0%	0.0%
Incidental Tumor Tests (d)	Terminal Rates (c)	2/37 (5%)	0/43 (0%)	0/27 (0%)
Incidental Tumor Tests (d)	Life Table Tests (d)	P = 0.022N	P = 0.055N	P = 0.115N
Cochran-Armitage Trend Test (d) P=0.019N P=0.064N P=0.076N Circulatory System: Hemangioma or Hemangiosarcoma 3/50 (10%) 0/48 (0%) 0/44 (0%) Overall Rates (a) 5/50 (10%) 0.0% 0.0% Adjusted Rates (b) 12.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.010N P=0.029N P=0.072N Incidental Tumor Tests (d) P=0.019N P=0.141N P=0.060N Cochran-Armitage Trend Test (d) P=0.008N P=0.031N P=0.039N iver: Hepatocellular Adenoma 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (a) 2/50 (4%) 3/48 (6%) 0/27 (0%) Itier Table Tests (d) P=0.270N P=0.569 P=0.310N Incidental Tumor Tests (d) P=0.270N P=0.569 P=0.310N Cochran-Armitage Trend Test (d) P=0.235N P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma Verall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted	Incidental Tumor Tests (d)			
Fisher Exact Test P=0.064N P=0.076N Circulatory System: Hemangioma or Hemangiosarcoma Overall Rates (a) 5/50 (10%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 12.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.010N P=0.029N P=0.072N Incidental Tumor Tests (d) P=0.019N P=0.141N P=0.060N Cochran-Armitage Trend Test (d) P=0.008N Fisher Exact Test P=0.008N iver: Hepatocellular Adenoma Overall Rates (a) 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.270N P=0.569 P=0.310N Cochran-Armitage Trend Test (d) P=0.270N P=0.569 P=0.310N Cochran-Armitage Trend Test (d) P=0.235N Fisher Exact Test P=0.285N Fisher Exact Test P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.075N P=0.418N P=0.109N				
Overall Rates (a) 5/50 (10%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 12.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P= 0.010N P= 0.029N P= 0.072N Incidental Tumor Tests (d) P= 0.019N P= 0.141N P= 0.060N Cochran-Armitage Trend Test (d) P= 0.008N P= 0.031N P= 0.039N iver: Hepatocellular Adenoma Overall Rates (a) 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P= 0.270N P= 0.569 P= 0.310N Incidental Tumor Tests (d) P= 0.270N P= 0.569 P= 0.310N Inver: Hepatocellular Adenoma or Carcinoma P= 0.235N P= 0.480 P= 0.280N inver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0%		. 0.0101	P = 0.064N	P = 0.076N
Overall Rates (a) 5/50 (10%) 0/48 (0%) 0/44 (0%) Adjusted Rates (b) 12.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P= 0.010N P= 0.029N P= 0.072N Incidental Tumor Tests (d) P= 0.019N P= 0.141N P= 0.060N Cochran-Armitage Trend Test (d) P= 0.008N P= 0.031N P= 0.039N iver: Hepatocellular Adenoma Overall Rates (a) 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P= 0.270N P= 0.569 P= 0.310N Cochran-Armitage Trend Test (d) P= 0.270N P= 0.569 P= 0.310N Iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table	Circulatory System: Hemangioma or Hem	angiosarcoma		
Adjusted Rates (b) 12.0% 0.0% 0.0% 0.0% Terminal Rates (c) 2/37 (5%) 0/43 (0%) 0/27 (0%) Life Table Tests (d) P=0.010N P=0.029N P=0.072N Incidental Tumor Tests (d) P=0.019N P=0.141N P=0.060N Cochran-Armitage Trend Test (d) P=0.008N Fisher Exact Test P=0.008N P=0.031N P=0.039N P=0.039N P=0.031N P=0.032N P=0.032N P=0.032N P=0.032N P=0.0			0/48 (0%)	0/44 (0%)
Terminal Rates (c)				
Life Table Tests (d)		- · · · · · · · · · · · · · · · · · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, -,			
Cochran-Armitage Trend Test (d) P=0.008N Fisher Exact Test P=0.031N P=0.039N diver: Hepatocellular Adenoma 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (a) 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.270N P=0.569 P=0.310N Incidental Tumor Tests (d) P=0.235N P=0.569 P=0.310N Fisher Exact Test P=0.235N P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Incidental Tumor Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.063N				
Fisher Exact Test P=0.031N P=0.039N Adjuster: Hepatocellular Adenoma Overall Rates (a) Adjusted Rates (b) Terminal Rates (c) Life Table Tests (d) Fisher Exact Test P=0.270N P=0.269 P=0.310N P=0.270N P=0.569 P=0.310N P=0.270N P=0.569 P=0.310N P=0.270N P=0.569 P=0.310N P=0.280N Adjusted Rates (a) Fisher Exact Test P=0.480 P=0.280N Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) Adjusted Rates (d) P=0.075N P=0.418N P=0.109N P=0.109N P=0.109N P=0.109N			r = 0.1411V	L ~ O'OOO'N
Overall Rates (a)		F=0.008N	P = 0.031 N	P = 0.039N
Overall Rates (a) 2/50 (4%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.270N P=0.569 P=0.310N Incidental Tumor Tests (d) P=0.270N P=0.569 P=0.310N Cochran-Armitage Trend Test (d) P=0.235N P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma P=0.480 P=0.280N overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Incidental Tumor Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.063N P=0.019N			1 -0.00111	1 - 0.00011
Adjusted Rates (b) 5.4% 7.0% 0.0% Terminal Rates (c) 2/37 (5%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.270N P=0.569 P=0.310N Incidental Tumor Tests (d) P=0.270N P=0.569 P=0.310N Cochran-Armitage Trend Test (d) P=0.235N Fisher Exact Test P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Incidental Tumor Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.063N		9/50 (4%)	0/40/0%\	0/44/08/
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		• •		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
Fisher Exact Test P=0.480 P=0.280N iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Incidental Tumor Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.063N		P = 0.270N	P = 0.569	P = 0.310N
iver: Hepatocellular Adenoma or Carcinoma Overall Rates (a)		P = 0.235N		
Overall Rates (a) 4/50 (8%) 3/48 (6%) 0/44 (0%) Adjusted Rates (b) 10.8% 7.0% 0.0% Terminal Rates (c) 4/37 (11%) 3/43 (7%) 0/27 (0%) Life Table Tests (d) P=0.075N P=0.418N P=0.109N Incidental Tumor Tests (d) P=0.075N P=0.418N P=0.109N Cochran-Armitage Trend Test (d) P=0.063N P=0.063N	Fisher Exact Test		P = 0.480	P = 0.280N
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		oma		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Overall Rates (a)	4/50 (8%)	3/48 (6%)	0/44 (0%)
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Incidental Tumor Tests (d) $P = 0.075N$ $P = 0.418N$ $P = 0.109N$ Cochran-Armitage Trend Test (d) $P = 0.063N$				
Cochran-Armitage Trend Test (d) P=0.063N				
			1 -0.41014	1 -0.103N
	Fisher Exact Test	F - 0.00314	P = 0.523 N	P = 0.076N

TABLE E4. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR GAVAGE STUDY OF 3-CHLORO-2-METHYLEPROPENE (Continued)

	Vehicle Control	100 mg/kg	200 mg/kg
Forestomach: Squamous Cell Papilloma			
Overall Rates (a)	0/50 (0%)	15/48 (31%)	29/44 (66%)
Adjusted Rates (b)	0.0%	32.5%	80.2%
Terminal Rates (c)	0/37 (0%)	12/43 (28%)	20/27 (74%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Forestomach: Squamous Cell Papilloma	or Carcinoma		
Overall Rates (a)	0/50 (0%)	16/48 (33%)	31/44 (70%)
Adjusted Rates (b)	0.0%	34.7%	81.5%
Terminal Rates (c)	0/37 (0%)	13/43 (30%)	20/27 (74%)
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		
Fisher Exact Test		P<0.001	P<0.001
Pituitary: Chromophobe Adenoma			
Overall Rates (a)	9/46 (20%)	11/47 (23%)	5/39 (13%)
Adjusted Rates (b)	24.5%	24.9%	19.2%
Terminal Rates (c)	8/35 (23%)	9/42 (21%)	5/26 (19%)
Life Table Tests (d)	P = 0.355N	P = 0.555	P = 0.390N
Incidental Tumor Tests (d)	P = 0.339N	P = 0.548	P = 0.373N
Cochran-Armitage Trend Test (d)	P = 0.273N		
Fisher Exact Test		P = 0.422	P = 0.296N
Mammary Gland: Adenocarcinoma			
Overall Rates (a)	1/50 (2%)	4/48 (8%)	1/44 (2%)
Adjusted Rates (b)	2.2%	9.1%	3.7%
Terminal Rates (c)	0/37 (0%)	3/43 (7%)	1/27 (4%)
Life Table Tests (d)	P = 0.486	P = 0.213	P = 0.690
Incidental Tumor Tests (d)	P = 0.540	P = 0.139	P = 0.727N
Cochran-Armitage Trend Test (d)	P = 0.550		
Fisher Exact Test		P = 0.168	P = 0.720

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidence at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence. A negative trend or lower incidence is indicated by (N).

APPENDIX F

HISTORICAL INCIDENCES OF TUMORS IN F344/N RATS AND B6C3F₁ MICE ADMINISTERED CORN OIL BY GAVAGE

TABLE F1. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumors in Vehicle Controls	Site	Diagnosis
Historical Incidence at Lit	ton Bionetics, Inc.			
Diallylphthalate	50	0		
Tris(2-ethylhexyl)phosphate	48	0		
2,4-Toluene diisocyanate	49	0		
TOTAL	147	0		
Overall Historical Inciden	ce			
	1,062	1	Stomach, NOS	Squamous cell papilloma
	-,00-	ī	Stomach, NOS	Squamous cell carcinoma
		$\dot{2}$	Forestomach	Squamous cell papilloma
		$\overline{1}$	Cardiac stomach	Squamous cell papilloma
TOTAL		(b) 5 (0.5%)		

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F2. HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumor in Vehicle Control	-	Diagnosis
Historical Incidence at Lit	ton Bionetics, Inc.			
Diallylphthalate	50	0		
Tris(2-ethylhexyl)phosphate	50	0		
2,4-Toluene diisocyanate	50	1	Stomach, NOS	Squamous cell papilloma
TOTAL	150	1 (0.6%)		
Overall Historical Inciden	ce			
1,073	2	Stomach, NOS	Squamous cell papilloma	
-,	1		Squamous cell carcinoma	
	1	Gastric mucosa	Squamous cell papilloma	
	1	Forestomach	Squamous cell papilloma	
Total	(b) 5 (0.5%)			

⁽b) No more than one tumor was observed in any vehicle control group.

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks (b) No more than one tumor was observed in any vehicle control group.

TABLE F3. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Keratoacanthoma in Vehicle Controls	
Historical Incidence at Litton Bioneti	cs, Inc.	
Diallylphthalate	5/50	
Tris(2-ethylhexyl)phosphate	1/50	
2,4-Toluene diisocyanate	1/50	
TOTAL	7/150 (4.7%)	
SD(b)	4.62%	
Range (c)		
High	5/50	
Low	1/50	
Overall Historical Incidence		
TOTAL	(d) 26/1,094 (2.4%)	
SD(b)	2.36%	
Range (c)		
High	5/50	
Low	0/50	

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

⁽b) Standard deviation

⁽c) Range and SD are presented for groups of 35 or more animals.
(d) Two of these tumors were observed in the subcutaneous tissue; the remaining were seen in the skin. The range is the same for both skin and integumentary system.

TABLE F4. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN FEMALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Incidence in Vehicle Controls				
Study	Fibroma	Fibrosarcoma	Fibroma or Fibrosarcoma	
Historical Incidence at Litto	n Bionetics, Inc.			
Diallylphthalate	1/50	0/50	1/50	
Tris(2-ethylhexyl)phosphate	1/50	0/50	1/50	
2,4-Toluene diisocyanate	0/50	2/50	2/50	
TOTAL	2/150 (1.3%)	2/150 (1.3%)	4/150 (2.7%)	
SD(b)	1.15%	2.31%	1.15%	
Range (c)				
High	1/50	2/50	2/50	
Low	0/50	0/50	1/50	
Overall Historical Incidence	•			
TOTAL	13/1,095 (1,2%)	7/1,095 (0.6%)	20/1,095 (1.8%)	
SD(b)	1.33%	1.30%	1.50%	
Range (c)				
High	2/50	2/50	2/50	
Low	0/50	0/50	0/50	

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

⁽b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

TABLE F5. HISTORICAL INCIDENCE OF ADRENAL GLAND TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

		Incidence in Vehicle Controls	
Study	Pheochromo-	Malignant	All
	cytoma	Pheochromocytoma	Pheochromocytomas
Historical Incidence at Litte	on Bionetics, Inc.		
Diallylphthalate	13/50	0/50	13/50
Tris(2-ethylhexyl)phosphate	2/50	0/50	2/50
2,4-Toluene diisocyanate	12/50	0/50	12/50
Total	27/150 (18.0%)	0/150 (0.0%)	27/150 (18.0%)
SD(b)	12.17%	0%	12.17%
Range (c)			
High	13/50	0/50	13/50
Low	2/50	0/50	2/50
Overall Historical Incidenc	e		
Total	193/1,135 (17.0%)	10/1,135 (0.9%)	202/1,135 (17.8%)
SD(b)	10.20%	1.51%	10.13%
Range (c)			
High	19/49	3/48	19/ 49
Low	1/50	0/52	1/50

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F6. HISTORICAL INCIDENCE OF RENAL TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumors in Vehicle Controls	Diagnosis
Historical Incidence at Litton Bio	onetics, Inc.		
Diallylphthalate Tris(2-ethylhexyl)phosphate 2,4-Toluene diisocyanate	50 50 50	0 0 1	 Adenocarcinoma, NOS
TOTAL	150	1 (0.6%)	
Overall Historical Incidence			
	1,091	2 2 1	Adenocarcinoma, NOS Tubular cell adenocarcinoma Transitional cell papilloma
TOTAL		(b) 4 (0.4%) 1 (0.1%)	Tubular cell Transitional cell

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

⁽b) Standard deviation

⁽c) Range and SD are presented for groups of 35 or more animals.

⁽b) No more than one tumor was observed in any vehicle control group.

TABLE F7. HISTORICAL INCIDENCE OF URINARY BLADDER TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

	Number of Animals Examined	Number of Tumors in Vehicle Controls	
Historical Incidence at Litton Bionetics, Inc.			
	150	0	
Overall Historical Incidence	1,040	0	

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F8. HISTORICAL INCIDENCE OF TESTICULAR TUMORS IN MALE F344/N RATS ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Incidence of Interstitial Cell Tumors in Vehicle Controls	
Historical Incidence at Litton Bionetics	, Inc.	
Diallylphthalate	48/50	
Tris(2-ethylhexyl)phosphate	42/50	
2,4-Toluene diisocyanate	48/50	
TOTAL	138/150 (92.0%)	
SD(b)	6.93%	
Range (c)		
High	48/50	
Low	42/50	
Overall Historical Incidence		
TOTAL	(d) 985/1,090 (90.4%)	
SD (b)	5.75%	
Range (c)		
High	48/50	
Low	37/49	

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

⁽b) Standard deviation

⁽c) Range and SD are presented for groups of 35 or more animals.

⁽d) Includes one interstitial cell tumor, malignant

TABLE F9. HISTORICAL INCIDENCE OF STOMACH TUMORS IN MALE B6C3F1 MICE ADMINISTERED CORN OIL BY GAVAGE (a)

Study	Number of Animals Examined	Number of Tumo in Vehicle Contr		Diagnosis
Historical Incidence at Litto	n Bionetics, Inc.			
Diallylphthalate	49	0		
2.4-Toluene diisocyanate	48	1	Forestomach	Papilloma, NOS
Tris(2-ethylhexyl)phosphate	50	1	Stomach	Squamous cell papilloma
TOTAL	147	2 (1.4%)		
Overall Historical Incidence				
	1,005	1	Stomach, NOS	Papilloma, NOS
		2 2	Stomach, NOS	Squamous cell papilloma
		2	Stomach, NOS	Squamous cell carcinoma
		1	Forestomach	Papilloma, NOS
		1	Forestomach	Squamous cell carcinoma
TOTAL		(b) 7 (0.7%)		

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks

TABLE F10. HISTORICAL INCIDENCE OF STOMACH TUMORS IN FEMALE B6C3F $_1$ MICE ADMINISTERED CORN OIL BY GAVAGE (a)

Number of Animals	Numbe Examined	er of Tumors in Vehicle Controls	Site	Diagnosis
Study	Examined	III venicle Controls		
Historical Incidence at Littor	n Bionetics, Inc.			
Diallylphthalate	48	0	**	**
2,4-Toluene diisocyanate	49	0		
Tris(2-ethylhexyl)phosphate	48	0		
TOTAL	145	0	=	
Overall Historical Incidence				
	1,027	2	Stomach, NOS	Squamous cell papilloma
	-,	$\overline{1}$	Stomach, NOS	Adenocarcinoma, NOS
		$\bar{1}$	Gastric mucosa	Squamous cell papilloma
		1	Gastric mucosa	Adenoma, NOS
		1	Gastric mucosa	Adenomatous polyp, NOS
		1	Forestomach	Squamous cell papilloma
Total squamous cell tumors:		(b) 4 (0.4%)		

⁽b) No more than two tumors were observed in any control group.

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks (b) No more than two tumors of any description were observed in any control group.

TABLE F11. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE $B6C3F_1$ MICE ADMINISTERED CORN OIL BY GAVAGE (a)

		Incidence in Vehicle	Controls
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
Historical Incidence at Litton	Bionetics, Inc.		
Diallylphthalate	0/50	7/50	7/50
2,4-Toluene diisocyanate	5/49	6/49	11/49
Tris(2-ethylhexyl)phosphate	7/50	9/50	15/50
TOTAL	12/149 (8.1%)	22/149 (14.8%)	33/149 (22.1%)
SD(b)	7.24%	2.95%	8.00%
Range (c)			
High	7/50	9/50	15/50
Low	0/50	6/49	7/50
Overall Historical Incidence			
TOTAL	133/1,084 (12.3%)	(d) 222/1,084 (20.5%)	340/1,084 (31.4%)
SD(b)	6.70%	7.90%	10.30%
Range (c)			
High	13/50	18/50	25/50
Low	0/50	4/50	5/50

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) One hepatoblastoma also was observed.

TABLE F12. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN FEMALE B6C3F1 MICE ADMINISTERED CORN OIL BY GAVAGE (a)

	Incidence in Vehicle Controls Hemangioma Hemangiosarcoma Hemangiosarcoma Hemangiosarcoma		
Study			
Historical Incidence at Litton	Bionetics, Inc.		
Diallylphthalate	1/50	2/50	3/50
2,4-Toluene diisocyanate	0/50	0/50	0/50
Tris(2-ethylhexyl)phosphate	0/49	3/49	3/49
TOTAL	1/149 (0.7%)	5/149 (3.4%)	6/149 (4.0%)
SD(b)	1.15%	3.11%	3.50%
Range (c)			
High	1/50	3/49	3/49
Low	0/50	0/50	0/50
Overall Historical Incidence			
TOTAL	9/1,137 (0.8%)	30/1,137 (2.6%)	39/1,137 (3.4%)
SD(b)	1.34%	2.43%	2.91%
Range (c)			
High	2/50	3/49	4/50
Low	0/97	0/50	0/50

⁽a) Data as of March 16, 1983, for studies of at least 104 weeks(b) Standard deviation(c) Range and SD are presented for groups of 35 or more animals.

APPENDIX G

CHEMICAL CHARACTERIZATION OF 3-CHLORO-2-METHYLPROPENE

I. Identity and Purity Determinations of 3-Chloro-2-methylpropene Performed by the Analytical Chemistry Laboratory

A. Lot no. 110967

1.	Ph	ysical properties	<u>Determined</u>	<u>Literature Values</u>
	a.	Boiling point:	68.2 ± 0.6 (δ)° C at 729 torr (visual, micro boiling point) 69.8°-71.8° C (Dupont 900 DTA)	71°-72° C (Merck Index, 1976)
	b.	Refractive index:	$n_{_{D}}^{20}$: 1.4277 ± 0.0004 (8)	n ²⁰ : 1.4274 (Merck Index, 1976)
	c. 1	Density:	$d_{22}^{24.5}$: 0.9245 ± 0.0003 (8) g/ml	d_4^{20} : 0.9165 g/ml
				d_{20}^{20} : 0.926-0.930 g/ml
				for commercial grade (Merck Index, 1976)
	d.	Appearance:	Clear, colorless liquid	
2.	Spe	ectral data		
	a.	Infrared		
		Instrument:	Beckman IR-12	
		Cell:	0.054 mm liquid cell with sodium chloride windows	
		Results:	See Figure 5	Consistent with literature spectrum (Sadtler Standard Spectra)

b. Ultraviolet/visible

Instrument: Cary 118

Concentration: 1%

Solvent: Methanol

Results: No absorbance between 350 and

800 nm; no maximum between 212 and 350 nm but a gradual increase in absorbance toward the solvent cutoff at 212 nm No literature reference

found

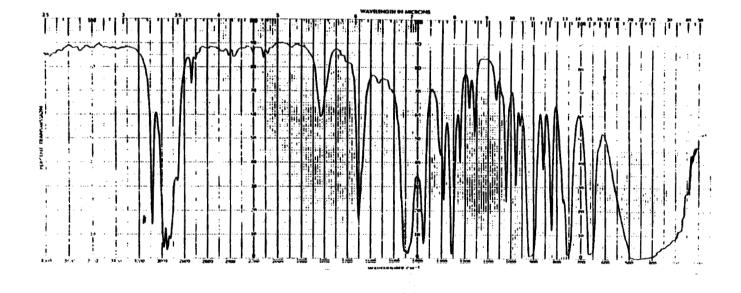


FIGURE 5. INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. 110967)

c. Nuclear magnetic resonance

<u>Determined</u> <u>Literature Values</u>
D C C C 111111 C C

Instrument:

Varian HA-100

Solvent:

Neat, tetramethylsilane

added

Assignments:

See Figure 6

Consistent with literature spectrum (Sadtler Standard Spectra); impurity peaks e, f, and g are larger in literature spectrum; peaks h and i are approximately the same size in sample and in literature spectra

Chemical shift (δ): a m, 1.77 ppm

d, 3.88 ppm

c m, 4.81 ppmd m, 4.95 ppm

e 1.02 ppm

f 2.10 ppm

g 3.41 ppm

h 1.68 ppm i 5.66 ppm

Peaks h and i are consistent in chemical shift with peaks for dimethylvinyl chloride; concentration of dimethylvinyl chloride based on integration of peak h: 5%

Coupling constant: $J_{ac} = 1.6 \text{ Hz}$

 $J_{ad} = 1.0 \,\mathrm{Hz}$

 $J_{bd} = 1.0 \,\mathrm{Hz}$

Integration ratios: a 2.98

b 2.00

c 1.02

1 1.02

d 1.00

e 0.05

 $f \hspace{0.5cm} 0.02$

g 0.08

h 0.28

0.05

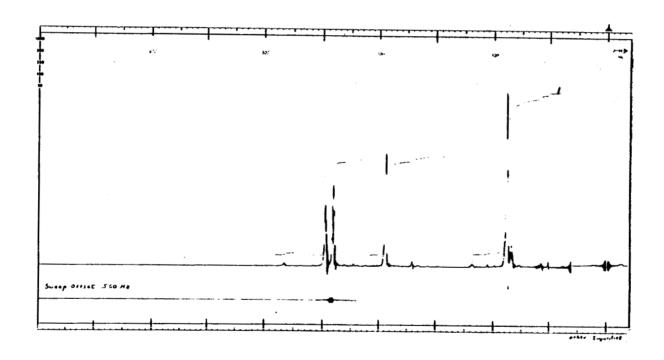


FIGURE 6. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. 110967)

3. Water analysis (Karl Fischer): $0.029\% \pm 0.002$ (8)%

4. Titration for acidic components: 34 ± 5 (8) ppm (assumed to be HCl)

5. Elemental analysis

Element	\mathbf{C}	Н	Cl
Theory	53.05	7.79	39.16
Determined	52.86 52.96	7.71 7.83	39.07 39.10

6. Chromatographic analysis: Gas chromatography

Instrument: Tracor MT 220
Detector: Flame ionization
Inlet temperature: 200° C
Detector temperature: 270° C
Carrier gas: Nitrogen, 70 ml/min

a. System 1

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/200 mesh Supelcoport, 1.8 m imes

4 mm ID, glass

Oven temperature program: 50°C, 5 min; 50°-170°C at 10°C/min

Sample injected: 6µl neat liquid, diluted to 1% and 0.5% in o-dichlorobenzene to

quantitate the major peak and check for overloading

Results: Major peak and 31 impurities. One impurity had an area 3% that of the major peak area; the combined area of the other 30 impurities was less than 0.3% that of the major peak area.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
1	0.3	0.1	< 0.001
2	0.6	0.2	< 0.001
3	0.8	0.3	< 0.001
4	1.1	0.4	< 0.01
5	1.3	0.5	0.07
6	2.7	1.0	100
7	3.8	1.4	< 0.02 (shoulder)
8	4.1	1.5	0.01
9	5.4	2.0	< 0.01
10	5.7	2.1	< 0.01
11	6.6	2.4	< 0.01
12	7.4	2.8	< 0.001
13	9.0	3.3	< 0.01
14	9.6	3.6	< 0.001
15	10.1	3.8	< 0.01
16	11.0	4.1	< 0.01
17	11.4	4.2	< 0.001
18	11.8	4.4	< 0.001
19	12.3	4.6	< 0.001
20	12.9	4.8	< 0.01
21	13.3	4.9	< 0.01
22	13.8	5.1	< 0.001
23	14.1	5.2	3
24	14.9	5.5	< 0.001
25	15.4	5.7	< 0.01
26	16.5	6.1	< 0.001
27	16.7	6.2	< 0.001
28	18.5	6.9	< 0.01
29	19.0	7.0	< 0.01
30	20.4	7.6	< 0.01
31	21.5	8.0	< 0.01
32	24.4	9.1	0.07
		<u></u>	

b. System 2

Column: 10% Carbowax 20M-TPA on 80/100 mesh Chromosorb W AW, 1.8 m \times 4 mm ID, glass

Oven temperature program: 50°C, 5 min; 50°-200°C at 10°C/min

Sample injected: $6 \mu l$ neat liquid, diluted to 1% in o-dichlorobenzene to quantitate the major peak

Results: Major peak and 26 impurities. One impurity had an area 6% that of the major peak area, and another 3% that of the major peak area; the combined area of the other 24 impurities was less than 0.3% that of the major peak area.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
1	0.4	0.2	< 0.01
f 2	0.6	0.4	0.09
3	0.9	0.6	6
4	1.6	1.0	100
5	3.5	2.1	< 0.01
6	7.7	4.7	0.01
7	8.2	5.1	< 0.01
8	8.4	5.2	< 0.01
9	8.6	5.2	< 0.01
10	9.2	5.6	< 0.01
11	9.7	6.1	< 0.01
12	10.0	6.2	< 0.01
13	10.6	6.5	< 0.01
14	10.8	6.6	< 0.01
15	11.2	6.9	< 0.01
16	11.6	7.1	< 0.01
17	12.0	7.3	< 0.01
18	12.5	7.6	3
19	13.3	8.1	< 0.01
20	13.4	8.2	< 0.01
21	13.7	8.4	< 0.01
22	14.3	8.7	< 0.01
23	14.5	8.9	< 0.01
24	14.9	9.1	< 0.01
25	15.4	9.4	< 0.01
26	16.7	10.2	< 0.01
27	18.7	11.4	0.1

Note: Under these conditions, dimethylvinyl chloride, an isomer of 3-chloro-2-methylpropene, had a retention time of 1.1 minute. Peak no. 3 could be dimethylvinyl chloride, but this was not confirmed by addition of dimethylvinyl chloride to the sample.

7. Conclusions: The results of the elemental analysis agree with the theoretical values. Gas chromatography with one system indicated 31 impurities, one with an area 3% that of the major peak; the combined areas of the other 30 impurities totaled less than 0.3% that of the major peak. A second system indicated 26 impurities; the two largest impurities had areas 6% and 3% that of the major peak. Titration for acidic components indicated 34 ± 5 ppm acidity (assumed to be HCl). The infrared spectrum was consistent with the structure. The nuclear magnetic resonance spectrum was basically consistent with the structure but indicated five peaks attributed to impurities. The chemical shifts of two of these were consistent with the shifts observed for dimethylvinyl chloride. By this assignment, the integration ratios indicated a concentration of 5% dimethylvinyl chloride. The retention time of the 6% impurity observed in one gas chromatographic system was consistent with that of dimethylvinyl choride, but this assignment was not confirmed by addition of dimethylvinyl chloride to the samples used for gas chromatography or nuclear magnetic resonance spectroscopy.

B. Lot no. P091781

1. Appearance: Clear, colorless liquid

2. Spectral data

Determined

Literature Values

a. Infrared

Instrument:

Perkin Elmer

Cell:

Thin film between silver

chloride plates

Results:

See Figure 7

Consistent with structure and literature spectrum

(Sadtler Standard Spectra)

b. Ultraviolet/visible

Instrument:

Cary 219

Solvent:

Methanol

Results:

No absorbance maximum between 800 nm and 217 nm was observed, but a gradual increase in absorbance toward the solvent cutoff at 217 nm was observed for a 1% (v/v) solution

No literature reference found: spectrum consistent with structure

c. Nuclear magnetic resonance

Instrument:

Varian EM-360A

Solvent:

Neat; tetramethylsilane internal standard added

Assignments:

See Figure 8

Consistent with structure and literature spectrum (Sadtler Standard Spectra)

Chemical shift (δ) : a m, 1.82 ppm

s, 3.94 ppm m, 4.86 ppm c m, 5.00 ppm d 1.60 ppm е f 1.72 ppm g 5.72 ppm

(e, f, and g above are assumed to be impurities)

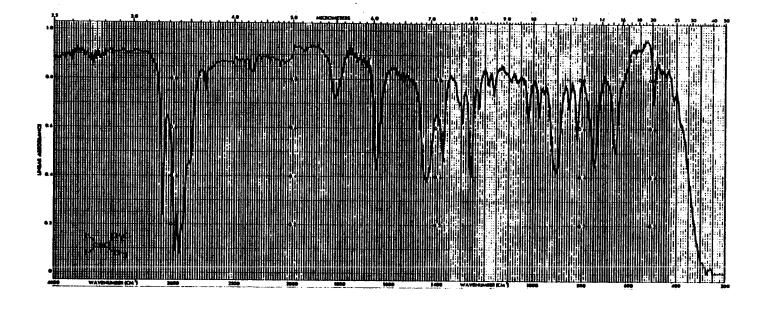


FIGURE 7. INFRARED ABSORPTION SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. P091781)

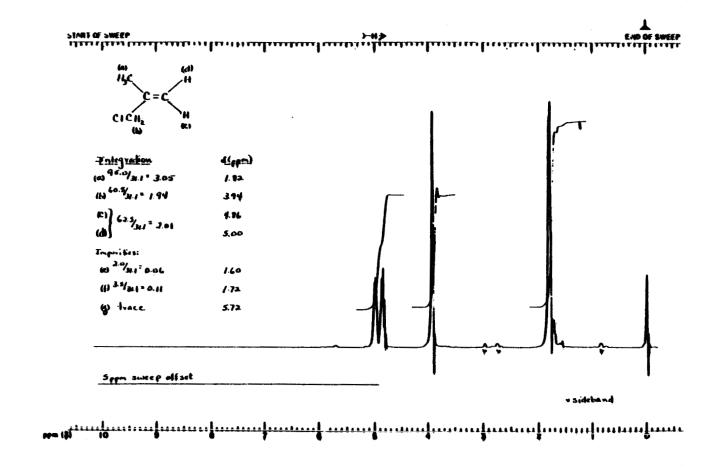


FIGURE 8. NUCLEAR MAGNETIC RESONANCE SPECTRUM OF 3-CHLORO-2-METHYLPROPENE (LOT NO. P091781)

Integration ratios:

a 3.05
b 1.94
c } 2.01
e 0.06
f 0.11
g trace

- 3. Water analysis (Karl Fischer): < 0.01%
- 4. Titration of acidic components
 - a. Method: Aliquots (5 ml) of the sample were diluted with 25 ml methanol and titrated with 0.1N sodium hydroxide. The titration was monitored visually to the phenolphthalein endpoint.
 - **b.** Results: 159 ± 1 (s) ppm (calculated as hydrochloric acid).

5. Elemental analysis

Element	\mathbf{C}	H	Cl	
Theory	53.05	7.79	39.16	
Determined	53.49 53.64	7.78 7.72	38.69 38.55	

6. Chromatographic analysis: Gas chromatography

Instrument: Varian 3700
Detector: Flame ionization
Inlet temperature: 200° C
Detector temperature: 250° C
Carrier gas: Nitrogen, 70 ml/min

a. System 1

Column: 10% Carbowax 20M-TPA on 80/100 Chromosorb W (AW)

Oven temperature program: 50° C for 5 min then 50°-200° C at 10° C/min

Samples injected: Neat liquid (4 µl) and 1% (v/v) and 0.5% (v/v) solutions of 3chloro-2-methylpropene in o-dichlorobenzene to quantitate impurities and check
linearity of detector response

Results: Major peak and 10 impurities with individual areas greater than 0.01% that of the major peak area. Three impurities eluting before the major peak and seven eluting after the major peak had a combined area 6.65% that of the major peak area. Peak no. 3 was identified by spiking as dimethylvinyl chloride. Quantitation against standards indicated a concentration of $3.6\% \pm 0.5\%$ (v/v) dimethylvinyl chloride in the sample.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
1	0.5	0.26	0.03
2	0.6	0.32	(a) 0.48
3	1.1	0.58	(a) 5.1
major 4	1.9	1.00	100
5	2.8	1.47	0.01
6	5.1	2.68	0.40
7	9.0	4.74	0.05
8	9.7	5.11	0.02
9	14.2	7.47	0.20
10	14.6	7.68	0.28
11	15.7	8.26	0.12

⁽a) Measurements taken from chromatograms of 1% solution

b. System 2

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcoport Oven temperature program: 50° C for 5 min then 50°-170° C at 10° C/min Samples injected (a): Neat liquid (4 µl) and 1% (v/v) and 0.5% (v/v) solutions of 3chloro-2-methylpropene in o-dichlorobenzene to quantitate impurities and check linearity of detector response

Results: Major peak and four impurities with individual areas greater than 0.01% that of the major peak area. One impurity eluting before the major peak and four eluting after the major peak had a combined area 1.11% that of the major peak area.

Peak No.	Retention Time (min)	Retention Time Relative to Major Peak	Area (percent of major peak)
1	1.6	0.6	0.43
major 2	2.8	1.0	100
3	4.2	1.5	0.01
4	6.6-6.9	2.4-2.5	0.41
5	16.1	5.7	0.26

7. Conclusions: The sample was identified as 3-chloro-2-methylpropene by spectroscopy. Less than 0.01% water was found in the sample. Gas chromatography with one system indicated impurities totaling 6.65% that of the major peak, and with a second system, impurities totaling 1.11% that of the major peak. The largest peak in the first system (5.1%) was identified by spiking as dimethylvinyl chloride and quantitated against standards at 3.6% ± 0.5% (v/v) in the sample. This impurity was not observed in the second system and is believed to have coeluted with the major peak, accounting for the lower relative total area of impurities in that system.

II. Chemical Stability Study of Lot No. 110967 Performed by the Analytical Chemistry Laboratory

A. Sample storage: Samples of 3-chloro-2-methylpropene were stored for 2 weeks at -20°, 5°, 25°, and 60° C.

B. Analytical method: Gas chromatography

Instrument: Bendix 2500 Detector: Flame ionization

Column: 20% SP 2100/0.1% Carbowax 1500 on 100/120 mesh Supelcoport, 4 mm \times 1.8 m,

glass

Carrier gas: Nitrogen, 40 ml/min

Retention time: 2.7 min

Temperatures
Inlet: 100°C
Detector: 285°C
Oven: 30°C, isothermal

C. Results: One impurity was detected in all samples at the detection sensitivity used for this study. The retention time was 1.4 minute, and the peak area was constant at $0.41\% \pm 0.002\%$ relative to the major component.

Storage Temperature (degrees centigrade)	Area of Major Peak Relative to -20° Sample (percent)
	100 ± 4
5	102 ± 4
25	102 ± 4
60	100 ± 4

D. Conclusion: 3-Chloro-2-methylpropene is stable as the bulk chemical when stored for 2 weeks at temperatures of up to 60° C.

III. Chemical Stability Study of Lot No. 1 10967 Performed by the Study Laboratory

A. Storage conditions: 4°C

B. Analytical methods for purity and identity

1. Purity: Gas-liquid chromatography

Instrument: Hewlett Packard 5880 with 7672A Liquid Sampler

Column: $1.8 \text{ m} \times 2 \text{ mm}$ ID, silanized glass, 20% SP 2100/0.1% Carbowax 1500 on

100/120 mesh Supelcoport
Detector: Flame ionization
Detector temperature: 270° C
Inlet temperature: 200° C

Oven temperature program: 50° C for 5 min, 50°-200° at 10° C/min, 200° for 5 min

Carrier gas: Nitrogen, 40 ml/min

Sample size: 3 µl neat liquid, followed by 1% and 0.5% 3-chloro-2-methylpropene in o-dichlorobenzene to quantitate major peak and check for detector overloading

2. Identity: Infrared spectroscopy

Instrument: Perkin Elmer Model 283B, 398, or 457

Cell: Neat liquid

C. Results

1. Gas chromatography

		Percer	nt Impurities
<u>Date</u>	Lot No.	Bulk	Reference
05/10/78	110967	99.8	
10/06/78		97.8	
07/09/79		95.6	94.6
12/18/79		92.6	
05/07/80		94.6	95.2
08/08/80		93.5	93.9
04/07/81		94.7	93.9
08/12/81		96.4	95.8
09/24/81	P091781	98.9	
01/19/82		99.1	99.1
05/20/82		99.3	99.3
09/08/82		99.4	99.3

- 2. Infrared: All bulk and reference spectra were essentially identical.
- D. Conclusion: No notable degradation occurred during the studies.

APPENDIX H

PREPARATION AND CHARACTERIZATION OF DOSE MIXTURES

APPENDIX H. PREPARATION AND CHARACTERIZATION

Studies Conducted at the Analytical Chemistry Laboratory

- I. Sample preparation and storage: Solutions of 3-chloro-2-methylpropene in corn oil (2.25% w/v; 22.5 mg/ml) were prepared in duplicate for storage of 0, 5, 6, or 7 days, respectively. A typical sample was prepared as follows: 2 ml of corn oil was transferred into an 8.5-ml septum vial, and the vial was sealed (Microsep F-138 gas chromatography septa with Teflon® film facing from Canton BioMedical Products, Inc.; aluminum crimp seals from Wheaton Scientific Co., Inc.) and weighed. Approximately 45 mg of 3-chloro-2-methylpropene then was injected via microliter syringe, and the vial was reweighed. The sample was agitated on a vortex mixer for 30 seconds and then stored at room temperature (25° C) in the dark for the appropriate time period.
- II. Sample extraction and analysis: At the end of each storage time period, the appropriate samples were extracted with 2 ml of absolute methanol that was injected into the vials with a 2-ml syringe. The two-phase mixtures were thoroughly agitated on the vortex mixer for 1 minute and placed in an ultrasonic vibratory bath for 1 minute. Aliquots for analysis were removed directly from the upper (methanol) layer of each sample by microliter syringe and analyzed by the gas chromatographic system described below.

Instrument: Bendix 2500

Column: $1.8 \text{ m} \times 2 \text{ mm}$ ID, silanized glass, 20% SP 2100/0.1% Carbowax 1500 on 100/120 mesh

Supelcoport

Detection: Flame ionization

Temperatures Inlet: 100°C

Oven: 30°C, isothermal Detector: 285°C

Carrier gas: Nitrogen, 40 ml/min

Retention time: 2.7 min

III. Results

G. M. (1	Average Percent Chemical Found in
Storage Time (days)	<u>Chemical/Vehicle Mixture</u> (a)
1	(b) 2.27 ± 0.20
5	1.97 ± 0.17
6	2.04 ± 0.18
7	1.97 ± 0.17

⁽a) Corrected for a spike recovery of 70.8% ± 4.3%

IV. Conclusion: 3-Chloro-2-methylpropene mixed with corn oil at the 2.25% concentration is stable, within the error limits of this study, when stored in the dark at room temperature (25° C) for 7 days, with an average loss of 0.27% after 5, 6, and 7 days of storage.

⁽b) The original concentration of 3-chloro-2-methylpropene in corn oil at time of sample preparation was 2.27% with a variation among samples of 0.02%.

APPENDIX I

METHODS OF ANALYSIS OF DOSE MIXTURES

Analysis Performed at Analytical Chemistry Laboratory

- I. Preparation of standard spiked corn oil: Two standard solutions of 3-chloro-2-methylpropene were prepared independently in methanol. The solutions were diluted with methanol to
 make four additional standards. Aliquots (20 ml) of the six standard solutions were pipetted
 into individual 35-ml septum vials containing 2 g of undosed corn oil to make spiked corn oil
 standards bracketing the specified dose range of the referee sample. One 35-ml septum vial
 containing 2 g of undosed corn oil was treated with 20 ml of methanol for use as a blank. After
 the vials with Teflon®-lined septa were sealed, the spiked corn oils and the corn oil blank were
 used in the analysis procedure described below.
- II. Preparation of referee sample: Three portions (approximately 2 g each) of the referee sample were transferred to individual tared 35-ml septum vials and weighed to the nearest 0.001 g. Methanol (20 ml) was pipetted into each vial; the vials then were sealed, and the samples were analyzed immediately by the procedure below.
- III. Analysis procedure: Vials containing the samples, standards, and the blank were agitated for 10 seconds on a vortex mixer and then shaken at maximum stroke for 20 minutes on a wrist-action shaker. After the extraction mixtures were centrifuged for 3 minutes, a 5-ml aliquot of the methanol layer from each vial was diluted to 10 ml with methanol. The solutions were mixed; then the 3-chloro-2-methylpropene content was determined by the gas chromatographic systems described below.

Instrument: Varian 3700 Gas chromatograph with Autosampler and Varian CDS 111-C

integrator

Detection: Flame ionization Detector temperature: 250°C Inlet temperature: 200°C

Carrier gas: Nitrogen, 30 ml/min Volume of solution injected: 3-5 ul

A. System 1

Column: 1% SP 1000 on 100/120 Supelcoport, 1.8 m × 4 mm ID, glass, silanized

Oven temperature program: 60° or 70° C, isothermal

Internal standard: None or anisole

Retention times

3-chloro-2-methylpropene at 60°C: 6.2 min

Internal standard at 60° C: 4.2 min

Results: The total amount of 3-chloro-2-methylpropene in the referee corn oil samples was computed from the linear regression equation obtained from the standard data by relating the peak area of each spiked corn oil sample to the amount of chemical in the respective spiked corn oil sample.

APPENDIX I. METHODS OF ANALYSIS

B. System 2

Column: 1% SP 2100/0.1% Carbowax 1500 on 100/120 Supelcoport, 1.8 m \times 4 mm ID, glass,

silanized

Oven temperature program: 38°C, isothermal

Internal standard: 1,2-dichloroethylene

Retention times

3-chloro-2-methylpropene: 4.0 min

Internal standard: 2.3 min

IV. Quality Assurance Measures: The referee corn oil sample was analyzed in triplicate, and the undosed corn oil sample was analyzed once. Individually spiked portions of undosed corn oil (six concentrations bracketing the specified dose range of the referee sample) were prepared from two independently weighed standards and were used for obtaining standard data. Triplicate injections of each standard and sample were made into the gas chromatograph in a randomized order.

APPENDIX J

RESULTS OF ANALYSIS OF DOSE MIXTURES

TABLE J1. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE THIRTEEN-WEEK GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Concentration (a) of 3-Chloro-2-methylpropene in Corn Oil (mg/ml)		Determined as a
Date Mixed	Target	Determined	Percent of Targe
04/14/80	5	5,48	109.64
	10	9.70	97.0
	20	18.20	91.0
	30	27.00	90.0
	40	36.00	90.0

⁽a) Results of duplicate analysis

TABLE J2. RESULTS OF ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

	Concentration (a) of 3-Chloro-2-methylpropene in Corn Oil for Target Concentration (mg/ml)				
Date Mixed	10	15	20	30	
08/12/80	10.2		20.7		
08/19/80		15.3		30.3	
10/07/80		15.8		30.9	
12/02/80	10.9	16.4	22.1	31.5	
01/29/81		15.3	18.3	29.7	
03/24/81	10.1	16.3	20.1		
05/19/81	(b) 12.5	15.9	21.2	(b) 34.9	
05/22/81	(c) 10.4	••	(c) 21.2	(c) 31.5	
07/14/81	11.0	15.6	21.1	(b) 33.4	
07/17/81				(b,c) 34.8	
07/20/81		••	••	(c) 30.0	
07/21/81	(d)	(d)	(d)	(d)	
07/23/81	(e) 9.8	(e) 14.5	(b,e) 2.8	(e) 29.9	
07/24/81	(0,0.0		(f) 23.2	(0) 20.0	
07/28/81	10.2	14.9	19.9	30.3	
08/04/81	10.4	15.1			
08/11/81			20.0	••	
08/18/81				29.8	
09/18/81	11.7	16.4	20.8	32.7	
09/11/81	11.2				
1/03/81	11.0	15.9	21.0	31.3	
12/29/81	10.0	14.9	21.9	30.6	
02/23/82	(b) 11.4	16.1	(b) 24.2	31.5	
02/26/82	(g) 11.2		(g) 23.0	**	
03/03/82	(c) 11.0		(c) 22.0		
04/20/82	9.8	14.0	(f) 22.3	29.6	
06/15/82	10.9	15.9	20.7	31.3	
Mean (mg/ml)	10.7	15.5	20.0	31.2	
Standard deviation	0.77	0.70	4.80	1.50	
Coefficient of variation (percent)	7.2	4.5	24.0	4.8	
Range (mg/ml)	9.8-12.5	14.0-16.4	2.8-24.2	29.6-34.9	
Number of samples	15	16	16	15	

⁽a) Results of duplicate analysis

⁽b) Out of specifications. Not used in the study.
(c) Remix. Not included in the mean.
(d) Probable analytical error. Not included in the mean.

⁽e) Remixes of 7/21/81. Included in the mean.

⁽f) Out of specifications. Not remixed.
(g) Remixes used for 2 days. Not included in the mean.

TABLE J3. RESULTS OF REFEREE ANALYSIS OF DOSE MIXTURES IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE

Date Mixed	Target Concentration	Determined Concentration (a)	
	(mg/ml)	Study Laboratory	Referee Laboratory
10/07/80	15	15.8	14.7
03/24/81	20	20.1	21.1
12/29/81	30	30.6	29.9
04/20/82	10	9.8	10.2

⁽a) Results of triplicate analysis

APPENDIX K

SENTINEL ANIMAL PROGRAM

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via viral serology on sera from extra (sentinel) animals in the test rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen B6C3F₁ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected vehicle controls of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	<u>ELISA</u>
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai	M.Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) Sendai (24 mo)	MHV (mouse hepatitis virus)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai	RCV (rat coronavirus) Sendai (24 mo)	

II. Results

Results are presented in Table K1.

TABLE K1. MURINE VIRUS ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR GAVAGE STUDIES OF 3-CHLORO-2-METHYLPROPENE (a)

	Interval (months)	No. of Animals	Positive Serologic Reaction for
RATS			
	6	1/10 3/10	RCV Sendai
	12	3/10 10/10	RCV Sendai
	18	1/9 9/9	RCV Sendai
	24	9/9	RCV
IICE			
	6		None positive
	12		None positive
	18	1/10 9/10	PVM Sendaí
	24	8/8 9/10 1/10	Sendai MHV PVM

⁽a) Blood samples were taken from sentinel animals at approximately 6, 12, and 18 months after the start of dosing and from the vehicle control animals just before they were killed; samples were sent to Microbiological Associates, Inc. (Bethesda, MD) for the Animal Disease Screening Program.

APPENDIX L

GENETIC TOXICOLOGY OF 3-CHLORO-2-METHYLPROPENE

TABLE L1. MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN SALMONELLA TYPHIMURIUM

	Revertants/plate (a,b)					
Strain	Dose (µg/plate)	- S9	+ S9 (rat)	+ S9 (hamster)		
TA100	0 100 333 1,000 3,333 10,000	135 ± 20.7 142 ± 8.7 133 ± 11.4 124 ± 11.7 Toxic Toxic	144 ± 3.5 210 ± 6.8 197 ± 5.7 202 ± 10.0 268 ± 10.0 Toxic	130 ± 3.6 197 ± 11.1 189 ± 3.2 185 ± 2.7 233 ± 21.1 Toxic		
TA1535	0 100 333 1,000 3,333 10,000	6 ± 1.0 7 ± 0.6 3 ± 0.3 Toxic Toxic Toxic	10 ± 1.2 9 ± 0.3 12 ± 1.0 Toxic Toxic Toxic	10 ± 0.9 12 ± 1.2 12 ± 0.9 13 ± 0.9 16 ± 1.8 1 ± 0.3		
TA1537	0 100 333 1,000 3,333 10,000	4 ± 1.2 7 ± 0.9 4 ± 0.3 Toxic Toxic Toxic	$7 \pm 0.7 4 \pm 0.6 10 \pm 2.3 18 \pm 0.9 21 \pm 1.0 1 \pm 0.7$	7 ± 1.8 5 ± 0.3 5 ± 2.2 8 ± 1.2 8 ± 1.7 2 ± 0.3		
TA98	0 100 333 1,000 3,333 10,000	19 ± 1.8 21 ± 2.1 19 ± 0.9 8 ± 0.7 Toxic Toxic	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 ± 1.9 26 ± 1.7 22 ± 1.0 25 ± 2.7 23 ± 0.9 Toxic		

⁽a) The S9 fractions were prepared from the livers of Aroclor 1254-induced male Sprague-Dawley rats and male Syrian hamsters. Cells and study compound or solvent (water) were incubated for 20 minutes at 37° C in the presence of either S9 or buffer. After the addition of soft agar, the contents of each tube was poured onto minimal medium, and the plates were incubated at 37° C for 48 hours (Haworth et al., 1983). The experiment was performed twice, each in triplicate; because the results were similar, data from only one experiment are shown.

⁽b) Mean ± standard error

TABLE 12. MUTAGENICITY OF 3-CHLORO-2-METHYLPROPENE IN L5178Y/TK $^{+/-}$ MOUSE LYMPHOMA CELLS IN THE ABSENCE OF S9

Compound (a) (Dose)	Total Mutant Clones	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutation Frequency (mutants/10 ⁸ clonable cells)
Absolute ethanol (1%)				
	80	76.8	114.0	35
	92	95.2	112.0	32
	136	67.0	72.0	68
	134	87.7	88.0	51
Ethyl methanesulfonate (250 μg/ml)				
	871	67.8	44.5	428
	1,000	86.8	55.6	384
	789	63.0	45.8	417
3-Chloro-2-methylpropene (nl/ml)				
20	0	16.0	15.5	0
	5	17.5	26.2	10
	54	94.8	159.4	19
30	111	97.3	120.5	38
••	163	130.3	103.6	42
	113	102.3	104.7	37
40	168	78.8	73.7	71
	160	109.7	107.3	49
	159	77.5	67.3	68
50	239	94.8	55.0	84
• •	218	97.5	60.3	75
	194	90.3	43.2	72
80	545	54.2	10.3	335
00	369	67.7	15.8	182
	467	60.5	9.3	257

⁽a) Experiments were performed twice, and all doses were tested in triplicate except the solvent control that was tested in quadruplicate. Because the results were similar, data from only one experiment are shown. The protocol was basically that of Clive et al. (1979). Cells $(6 \times 10^5/\text{ml})$ were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^6 cells were plated in medium supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium to determine the percentage of viable cells.

TABLE L3. INDUCTION OF SISTER-CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE (a)

-S9 (b)		+ 8	39 (c)
Dose (µg/ml)	SCE/Cell (d)	Dose (µg/ml)	SCE/Cell (d)
Negative control		Negative control	
•	8.1	-	7.9
DMSO		DMSO	
	9.2		8.6
-Chloro-2-methylpropene		3-Chloro-2-methylpropene	•
5	11.0	5	9.3
16	12.0	16	10.0
50	12.2	50	11.3
160	21.8	160	15.6
Mitomycin C		Cyclophosphamide	
0.001	26.3	0.300	14.0
0.010	61.9	2	33.9

⁽a) SCE = sister-chromatid exchange

(d) Cells were collected by mitotic shake-off, treated for 3 minutes with potassium chloride (75 mM), washed twice with fixative, and dropped onto slides and air-dried (Galloway et al., 1985).

TABLE 14. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY 3-CHLORO-2-METHYLPROPENE (a)

-S9 (b)		+ S9 (c)	
Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)	Dose (µg/ml)	Abs/100 Cells (percent cells w/abs)
Negative control		Negative control	
	1(1)		0 (0)
DMSO		DMSO	
	0 (0)	0	0 (0)
3-Chloro-2-methylpropene		3-Chloro-2-methylpropene	
120	7 (7)	5	0 (0)
160	8 (8)	16	0 (0)
200	13 (12)	50	1(1)
		160	4 (4)
Mitomycin C		Cyclophosphamide	
0.125	26 (23)	15	55 (40)
0.250	42 (28)	50	144 (68)

⁽a) Abs = aberrations

⁽b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent at 37° C; 2 hours after initiation of treatment, 10 μ M BrdU was added, and incubation was continued for an additional 22-24 hours. Cells were washed, fresh medium containing BrdU (10 μ M) and colcemid (0.1 μ g/ml) was added, and incubation was continued for 2-3 hours (Galloway et al., 1985).

⁽c) In the presence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37°C. Then cells were washed, and medium containing 10 µM BrdU was added. Cells were incubated for a further 26 hours, with colcemid (0.1 µg/ml) present for the final 2-3 hours. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

⁽b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid (0.1 µg/ml) was added. After a further 2-3 hours of incubation, cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa (Galloway et al., 1985).

⁽c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Cells were then washed, fresh medium was added, and incubation was continued for 8-10 hours. Colcemid (0.1 µg/ml) was added for the last 2-3 hours of incubation; then cells were harvested by mitotic shake-off, fixed, and stained in 6% Giemsa. S9 was from the livers of Aroclor 1254-induced male Sprague-Dawley rats (Galloway et al., 1985).

APPENDIX M

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pelleted Diet: June 1980 to July 1982

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

TABLE M1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight		
Ground #2 yellow shelled corn	24.50		
Ground hard winter wheat	23.00		
Soybean meal (49% protein)	12.00		
Fish meal (60% protein)	10.00		
Wheat middlings	10.00		
Dried skim milk	5.00		
Alfalfa meal (dehydrated, 17% protein)	4.00		
Corn gluten meal (60% protein)	3.00		
Soy oil	2.50		
Brewer's dried yeast	2.00		
Dry molasses	1.50		
Dicalcium phosphate	1.25		
Ground limestone	0.50		
Salt	0.50		
Premixes (vitamin and mineral)	0.25		

⁽a) NIH, 1978; NCI, 1976

TABLE M2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

	Amount	Source
Vitamins		
A	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D_3	4,600,000 IU	D-activated animal sterol
d-a-Tocopheryl aceta		
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Folic acid	2.2 g	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
$\mathbf{B_{12}}$	4,000 µg	
Biotin	140.0 mg	d-Biotin
K ₃	2.8 g	Menadione activity
Choline	560.0 g	Choline chloride
Ainerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zinc oxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

⁽a) Per ton (2,000 lb) of finished product

⁽b) Ingredients should be ground to pass through a U.S. Standard Screen No. 16 before being mixed.

TABLE M3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

Nutrient	Mean	Range	Number of Samples
Crude protein (percent by weight)	24.04 ± 0.75	22.7-25.1	24
Crude fat (percent by weight)	4.84 ± 0.80	4.1-5.7	24
Crude fiber (percent by weight)	3.40 ± 0.29	2.9-4.3	24
Ash (percent by weight)	6.56 ± 0.50	5.7-7.43	24
Essential Amino Acids (percent o	f total diet)		
Arginine	1.260	1.21-1.31	2
Cystine	0.395	0.39-0.40	2
Glycine	1.175	1.15-1.20	2
Histidine	0.553	0.530-0.576	2
Isoleucine	0.908	0.881-0.934	2
Leucine	1.905	1.85-1.96	2
Lysine	1.250	1.20-1.30	2
Methionine	0.310	0.306-0.314	2
Phenylalanine	0.967	0.960-0.974	2
Threonine	0.834	0.827-0.840	2
Tryptophan	0.175	0.171-0.178	2
Tyrosine	0.587	0.566-0.607	2
Valine	1.085	1.05-1.12	$\overline{f 2}$
Essential Fatty Acids (percent of	total diet)		
Linoleic	2.37		1
Linolenic	0.308		1
Arachidonic	0.008		1
⁷ itamins			
Vitamin A (IU/kg)	11,146 ± 2,291	7,200-17,000	24
Vitamin D (IU/kg)	6,300		1
a-Tocopherol (ppm)	37.6	31.1-44.0	$ar{2}$
Thiamine (ppm)	17.6 ± 3.3	7.4-27.0	(b) 23
Riboflavin (ppm)	6.9	6.1-7.4	2
Niacin (ppm)	75	65-85	2
Pantothenic acid (ppm)	30.2	29.8-30.5	2
Pyridoxine (ppm)	7.2	5.6-8.8	2
Folic acid (ppm)	2.1	1.8-2.4	2
Biotin (ppm)	0.24	0,21-0.27	$ar{f 2}$
Vitamin B ₁₂ (ppb)	12.8	10.6-15.0	$\frac{1}{2}$
Choline (ppm)	3,315	3,200-3,430	2
Minerals			
Calcium (percent)	1.29 ± 0.21	0.81-1.69	24
Phosphorus (percent)	1.00 ± 0.07	0.88-1.10	24
Potassium (percent)	0.809	0.772-0.846	2
Chloride (percent)	0.557	0.479-0.635	2
Sodium (percent)	0.304	0.258-0.349	2
Magnesium (percent)	0.172	0.166-0.177	$\overline{f 2}$
Sulfur (percent)	0.278	0.270-0.285	2
Iron (ppm)	418	409-426	- 2
Manganese (ppm)	90.8	86.0-95.5	2
Zinc (ppm)	55.1	54.2-56.0	$ar{f 2}$
Copper (ppm)	12.68	9.65-15.70	2
Iodine (ppm)	2.58	1.52-3.64	2
Chromium (ppm)	1.86	1.79-1.93	$ar{f 2}$
Cobalt (ppm)	0.57	0.49-0.65	$ar{ ilde{2}}$

⁽a) One or two batches of feed analyzed for nutrients reported in this table were manufactured in January and/or April 1983. (b) One batch (7/22/81) not analyzed for thiamine

TABLE M4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Contaminant	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.42 ± 0.21	<0.05-1.06	24
Cadmium (ppm)	0.09 ± 0.02	< 0.05-0.10	24
Lead (ppm)	0.99 ± 0.72	0.42-3.37	24
Mercury (ppm) (a)	< 0.05		
Selenium (ppm)	0.31 ± 0.08	0.14-0.52	24
Aflatoxins (ppb) (a,b)	<10	<5.0-<10.0	24
Nitrate nitrogen (ppm) (c)	8.15 ± 3.65	<2.1-17.0	24
Nitrite nitrogen (ppm) (c)	2.23 ± 1.59	< 0.4-6.9	24
BHA (ppm) (d,e)	4.55 ± 3.59	< 0.5-13.0	24
BHT (ppm) (d)	2.55 ± 1.40	0.8-5.9	24
Aerobic plate count (CFU/g) (h)	40,592 ± 32,056	4,900-120,000	24
Coliform (MPN/g) (f)	30.3 ± 53.2	<3-240	23
Coliform (MPN/g) (g)	74.8 ± 224.5	<3-1,100	24
E. Coli (MPN/g) (h)	<3	y	24
Total nitrosamines (ppb) (i,j)	7.20 ± 7.04	0.8-24,5	21
Total nitrosamines (ppb) (i,k)	29.40 ± 64.76	0.8-273.2	24
V-Nitrosodimethylamine (ppb) (i,j)	5.67 ± 6.49	0.8-20.0	21
V-Nitrosodimethylamine (ppb) (i,k)	27.67 ± 64.38	0.8-272	24
V-Nitrosopyrrolidine (ppb)	1.35 ± 0.92	0.3.5	24
Pesticides (ppm)			
a-BHC (a,l)	< 0.01		24
3-BHC(a)	< 0.02		24
r-BHC-Lindane (a)	< 0.01		24
-BHC(a)	< 0.01		24
Heptachlor (a)	< 0.01		24
Aldrin (a)	< 0.01		24
Heptachlor epoxide (a)	< 0.01		24
DDE (a)	< 0.01		24
ODD(a)	< 0.01		24
ODT(a)	< 0.01		24
HCB(a)	< 0.01		24
firex (a)	< 0.01		24
Methoxychlor (a,m)	< 0.05	0.09 (8/26/81)	24
Dieldrin (a)	< 0.01		24
Endrin (a)	< 0.01		24
'elodrin (a)	< 0.01		24
Chlordane (a)	< 0.05		24
'oxaphene (a) Estimated PCB's (a)	<0.1		24
connel (a)	<0.2 <0.01		24 24
Cthion (a)	<0.01 <0.02		24 24
rithion (a)	< 0.02		24 24
Pithion (a) Piazinon (a,m)	<0.05 <0.1	0.2 (4/27/81)	24 24
Methyl parathion (a)	< 0.02	U.2 (4/2(/O1)	24 24
Cthyl parathion (a)	<0.02		24 24
Malathion (n)	0.09 ± 0.06	< 0.05-0.27	24 24
Indosulfan I (a)	< 0.03	~0.00-0.21	24 24
Indosulfan II (a)	<0.01		24 24
Indosulfan fi (a) Indosulfan sulfate (a)	~ 0.0 T		47

TABLE M4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

- (a) All values were less than the detection limit, given in the table as the mean.
- (b) Detection limit reduced from 10 ppb to 5 ppb after 7/81
- (c) Source of contamination: Alfalfa, grains, and fish meal
- (d) Source of contamination: Soy oil and fish meal
- (e) Two batches contained less than 0.5 ppm.
- (f) Excludes one very high value of 1,100 obtained in batch produced on 12/16/80
- (g) Includes the high value listed in footnote f
 (h) All values were less than 3 MPN/g. MPN = most probable number.
- (i) All values were corrected for percent recovery.
- (j) Mean, standard deviation, and range exclude three very high values in the range of 115-273.2 ppb
- in batches produced on 1/26/81, 2/23/81, and 4/27/81.
- (k) Mean, standard deviation, and range include the very high values given in footnote j.
- (1) BHC = hexachlorocyclohexane or benzene hexachloride
- (m) One observation was above the detection limit. The value and the date it was obtained are listed under the range.
- (n) Eleven batches contained more than 0.05 ppm.

APPENDIX N

DATA AUDIT SUMMARY

APPENDIX N. DATA AUDIT SUMMARY

The data from the 2-year toxicology and carcinogenesis studies of 3-chloro-2-methylpropene in F344/N rats and B6C3F₁ mice were audited for accuracy, completeness, and procedures consistent with Good Laboratory Practice regulations by personnel from ImmuQuest Laboratory, Inc., from August 20 to September 7, 1984, at the NTP Repository, Rockville, Maryland. The studies were begun at Litton Bionetics, Inc., Kensington, Maryland, before the NTP required full compliance with Good Laboratory Practice procedures in October 1981. The members of the audit team were: P. Errico, C. Reese, K. Witkin, L. Brennecke, and D. Haynes. The full audit report is on file at the National Toxicology Program, NIEHS.

The records were reviewed for body weights, clinical observations, correlation between gross and microscopic observations, animal identification, and wet tissue examinations from a randomly selected 10% of the animals in each group. All the chemistry, environmental, and mortality records were examined. Slide and block matches were performed on all high dose and vehicle control animals.

The inlife data included the study protocol, animal shipment receipts, method of randomization of animals, method of animal identification, condition of the animals during and at the end of the quarantine period, dosing records (animal weights, volume administered, date of mix used, dose volume calculation), clinical observations, mortality, and environmental conditions. Sera collection and viral data were recorded at regular intervals during the 2-year period. The data were found to have been appropriately and completely recorded.

The pathology records from a randomly selected 10% of the rats and mice were reviewed. Most of the animals were identifiable by the method indicated (toe clips, ear punch/tab). One rat and three mice were unidentifiable because of missing ear tag or missing ears. Some tissues/organs were missing from the wet tissue bags. A number of tissues for which gross observations had been notated were apparently not examined microscopically. Most of these grossly described masses were recorded for the nontarget organs. However, grossly observed masses in the forestomach not examined microscopically were found in one high dose male rat, one low dose male mouse, two high dose male mice, one low dose female mouse, and three high dose female mice. No errors were noted in slide/block match, data entry, or disposition code for the tissues that were trimmed and examined microscopically. The untrimmed masses in the forestomach were examined histologically, and the final Technical Report reflects the revised diagnoses. No additional gross lesions were observed in the forestomachs of vehicle control rats and mice.

In conclusion, no discrepancies that might have affected the final interpretations of the 2-year studies of 3-chloro-2-methylpropene were noted. The data examined in the audit are considered adequate to meet the objectives of the study.