
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 337

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NATIONAL TOXICOLOGY PROGRAM

The National Toxicology Program (NTP), established in 1978, develops and evaluates scientific information about potentially toxic and hazardous chemicals. This knowledge can be used for protecting the health of the American people and for the primary prevention of disease. By bringing together the relevant programs, staff, and resources from the U.S. Public Health Service, DHHS, the National Toxicology Program has centralized and strengthened activities relating to toxicology research, testing and test development/validation efforts, and the dissemination of toxicological information to the public and scientific communities and to the research and regulatory agencies.

The NTP is made up of four charter DHHS agencies: the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS.

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS STUDIES OF NITROFURAZONE

(CAS NO. 59-87-0)

IN F344/N RATS AND B6C3F1 MICE

(FEED STUDIES)

Frank Kari, Ph.D., Chemical Manager

NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

June 1988

NTP TR 337

NIH Publication No. 88-2593

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health

NOTE TO THE READER

This study was performed under the direction of the National Institute of Environmental Health Sciences as a function of the National Toxicology Program. The studies described in this Technical Report have been conducted in compliance with NTP chemical health and safety requirements and must meet or exceed all applicable Federal, state, and local health and safety regulations. Animal care and use were in accordance with the U.S. Public Health Service Policy on Humane Care and Use of Animals. All NTP toxicology and carcinogenesis studies are subjected to a data audit before being presented for public peer review.

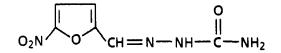
Although every effort is made to prepare the Technical Reports as accurately as possible, mistakes may occur. Readers are requested to identify any mistakes so that corrective action may be taken. Further, anyone who is aware of related ongoing or published studies not mentioned in this report is encouraged to make this information known to the NTP. Comments and questions about the National Toxicology Program Technical Reports on Toxicology and Carcinogenesis Studies should be directed to Dr. J.E. Huff, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709 (919-541-3780).

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.

CONTENTS

NOTE '	TO THE READER
ABSTR	ACT
EXPLA	NATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY
CONTR	ubutors
PEER	REVIEW PANEL
SUMM	ARY OF PEER REVIEW COMMENTS
I .	INTRODUCTION
п.	MATERIALS AND METHODS
	PROCUREMENT AND CHARACTERIZATION OF NITROFURAZONE
	PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	STUDY DESIGN
	SOURCE AND SPECIFICATIONS OF ANIMALS
	ANIMAL MAINTENANCE
	CLINICAL EXAMINATIONS AND PATHOLOGY
	STATISTICAL METHODS
ш.	RESULTS
	RATS
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS, FEED CONSUMPTION, AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS
	MICE
	FOURTEEN-DAY STUDIES
	THIRTEEN-WEEK STUDIES
	TWO-YEAR STUDIES
	BODY WEIGHTS, FEED CONSUMPTION, AND CLINICAL SIGNS
	SURVIVAL
	PATHOLOGY AND STATISTICAL ANALYSES OF RESULTS

PAGE


CONTENTS (Continued)

PAGE

IV.	DISCUSSION AND CONCLUSIONS	1
v.	REFERENCES	3

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE
APPENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE
APPENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE
APPENDIX E	GENETIC TOXICOLOGY OF NITROFURAZONE
APPENDIX F	SENTINEL ANIMAL PROGRAM
APPENDIX G	FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE
	TWO-YEAR FEED STUDIES OF NITROFURAZONE
APPENDIX H	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN
	NIH 07 RAT AND MOUSE RATION175
APPENDIX I	AUDIT SUMMARY

NITROFURAZONE

CAS No. 59-87-0

$C_6H_6N_4O_4$

Molecular weight 198.1

Synonyms or Trade Names: 5-Nitro-2-furaldehyde semicarbazone; 2-[(5-Nitro-2-furanyl)methylene]hydrazine carboxamide; Aldomycin; Amifur; Chemfuran; Coxistat; Furacin; Furacinetten; Furaplast; Furazol W; Furesol; Furracoccid; Mammex; Nefco; Nifuzon; Nitrofural; Vabrocid

ABSTRACT

Nitrofurazone is a synthetic furan derivative, active against a broad spectrum of bacteria, which has been widely used in veterinary and human medicine. Toxicology and carcinogenesis studies were conducted by feeding diets containing nitrofurazone (99% pure) to groups of F344/N rats and B6C3F₁ mice of each sex for 14 days, 13 weeks, or 2 years.

Fourteen-Day and Thirteen-Week Studies: Groups of five males and five females of each species were fed diets containing 0, 630, 1,250, 2,500, 5,000, or 10,000 ppm for 14 consecutive days. Early deaths occurred in all groups of rats receiving 5,000 or 10,000 ppm nitrofurazone. The surviving rats in the lower two dose groups gained weight, but weight gain was decreased as the dose of nitrofurazone was increased. Feed consumption by rats of each sex was decreased at all doses above 630 ppm. In all dosed groups, clinical signs of toxicity included rough hair coats and lethargy. At doses of 2,500 ppm and above, rats of each sex exhibited intermittent episodes of seizures and lethargy.

All mice that received 2,500, 5,000, or 10,000 ppm nitrofurazone and 3/5 males that received 1,250 ppm died before the end of the 14-day studies; the surviving dosed mice (except females at 630 ppm) lost weight. A dose-related decrease in feed consumption was observed at all doses above 630 ppm. Clinical signs included rough hair coats and convulsive seizures.

In the 13-week studies, groups of 10 rats of each sex were given diets containing 0, 150, 310, 620, 1,250, or 2,500 ppm nitrofurazone. No deaths were observed and all animals gained weight, but the magnitude of weight gain was dose dependent with decrements in final mean body weight for the highest dose group reaching 55% in males and 36% in females. Other evidence of chemically related toxicity included convulsive seizures, osteoporosis, degenerative arthropathy, and gonadal hypoplasia in both sexes at the two highest doses.

Groups of 10 mice of each sex were given diets containing 0, 70, 150, 310, 620, or 1,250 ppm nitrofurazone for 13 weeks. Early deaths were observed in the two highest dose groups of each sex. The final mean body weights of male and female mice in the 1,250-ppm groups were about 20% lower than those of the controls; weight gains of the other dosed mice were comparable to those of the controls. Stimulus-induced convulsive seizures were observed for all mice in the two highest dose groups. Testicular hypoplasia was observed in the two highest dose groups of male mice.

Body Weight and Survival in the Two-Year Studies: Dietary concentrations for the 2-year studies were 0, 310, or 620 ppm for rats and 0, 150, or 310 ppm for mice (50 animals per dose group). Mean

body weights of high dose male rats were lower than those of the controls after week 39; mean body weights of low dose male rats and of the controls were comparable throughout the study. Final mean body weights of low and high dose female rats were 9% and 21% lower than those of the controls. Dosed rats consumed less feed than did the controls. The average amount of nitrofurazone consumed per day was approximately 11-12 or 24-26 mg/kg by low or high dose male and female rats. The survival of the high dose group of male rats was lower than that of the controls after week 92 (final survival-male: control, 33/50; low dose, 30/50; high dose, 20/50; female: 28/50; 37/50; 31/50).

Mean body weights of dosed mice were similar to or somewhat greater than those of the controls throughout most of the studies. The average daily feed consumption by dosed mice was similar to that of controls. The average amount of nitrofurazone consumed per day was approximately 14-16 or 29-33 mg/kg for low or high dose male and female mice. The survival of the high dose group of male mice was lower than that of the controls after week 88 (final survival--male: 39/50; 31/50; 27/50; female: 39/50; 40/50; 35/50).

In mice of each sex, nitrofurazone administration induced stimulus-sensitive convulsive seizures beginning at week 4 or 5 for high dose mice and week 24 for low dose female mice. These seizures were observed primarily in the first year of the study.

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: Degenerative changes involving the vertebral and femoro-tibial (knee) joints were observed at increased incidences in dosed rats. The degenerative changes primarily affected the articular cartilage and were similar to those seen in the 13-week studies. Degeneration of the sternal synchondroses was increased in high dose female rats. The osteoporosis seen in the 13-week studies was not observed in the 2-year studies. Testicular degeneration, characterized by atrophy of the germinal epithelium and aspermatogenesis, was observed at increased incidences in dosed male rats (control, 12/50; low dose, 49/50; high dose, 47/50).

Adenomas of the sebaceous glands and trichoepitheliomas or sebaceous adenomas (combined) of the skin were observed in high dose male rats (0/50; 0/50; 5/50). Carcinomas of the preputial gland were increased in dosed male rats (1/50; 8/50; 5/50). The incidences of preputial gland adenomas or carcinomas (combined) in dosed male rats were not statistically greater than that in the controls (9/50; 16/50; 7/50). However, in the low dose group, the incidence is greater than the highest incidence observed in historical untreated control groups (9/50). In addition, hyperplasia of the preputial gland was observed in six low dose male rats in which neither adenomas nor carcinomas occurred. The incidence of mesotheliomas of the tunica vaginalis in low dose male rats was greater than that in the controls (0/50; 7/50).

Fibroadenomas of the mammary gland occurred at markedly increased incidences in dosed female rats (8/49; 36/50; 36/50). Three adenocarcinomas were also observed (1/49; 0/50; 2/50).

Ovarian atrophy (7/47; 44/50; 38/50) and tubular cell hyperplasia of the ovary (1/47; 23/50; 21/50) were observed at markedly increased incidences in dosed female mice. The incidences of benign mixed tumors (0/47; 17/50; 20/50), granulosa cell tumors (1/47; 4/50; 9/50), and granulosa cell tumors or luteomas (combined) (3/47; 6/50; 9/50) of the ovary were increased in exposed female mice.

Mononuclear cell leukemia in rats occurred with negative trends (male: 21/50; 23/50; 6/50; female: 15/49; 2/50; 2/50). In female mice, the incidences of adenomas or carcinomas (combined) of the anterior pituitary gland occurred with a negative trend (10/50; 7/50; 2/49). The incidences of testicular interstitial cell tumors were decreased in dosed male rats (45/50; 30/50; 28/50).

Genetic Toxicology: Nitrofurazone was mutagenic in Salmonella typhimurium strains TA98 and TA100 both with and without exogenous metabolic activation. The responses in strains TA1535 and

TA1537 were more varied: nitrofurazone was mutagenic in strain TA1535 only in the presence of S9 and produced no consistent increase in gene reversions in strain TA1537 with or without S9. In the absence of metabolic activation, nitrofurazone induced forward mutations at the $TK^{+/-}$ locus of mouse L5178Y lymphoma cells; the chemical was not tested with S9. Treatment of cultured Chinese hamster ovary cells with nitrofurazone in the absence of S9 produced a dose-related increase in sister chromatid exchanges and chromosomal aberrations; with S9, sister chromatid exchanges were increased, but no induction of chromosomal aberrations was observed.

Audit: The data, documents, and pathology materials from the 2-year studies of nitrofurazone were audited at the NTP Archives. The audit findings show that the conduct of the studies is documented adequately and support the data and results given in this Technical Report.

Conclusions: Under the conditions of these 2-year feed studies, there was equivocal evidence of carcinogenic activity^{*} of nitrofurazone for male F344/N rats as shown by the occurrence of sebaceous gland adenomas and trichoepitheliomas of the skin, mesotheliomas of the tunica vaginalis, and preputial gland tumors. There was clear evidence of carcinogenic activity of nitrofurazone for female F344/N rats as shown by a markedly increased incidence of fibroadenomas of the mammary gland. There was no evidence of carcinogenic activity for male $B6C3F_1$ mice fed diets containing nitrofurazone at concentrations of 150 or 310 ppm. There was clear evidence of carcinogenic activity of nitrofurazone for female $B6C3F_1$ mice as shown by increased incidences of benign mixed tumors and granulosa cell tumors of the ovary.

Administration of nitrofurazone was associated with decreased incidences of mononuclear cell leukemia in male and female rats, testicular interstitial cell tumors in male rats, and pituitary gland neoplasms in female mice. Convulsive seizures in mice of each sex, ovarian atrophy in female mice, testicular degeneration in rats, and degeneration of articular cartilage in rats were all associated with the administration of nitrofurazone.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 9.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 12-13.

SUMMARY OF THE TWO-YEAR FEED AND GENETIC TOXICOLOGY STUDIES OF NITROFURAZONE

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female $B6C3F_1$ Mice
Dietary concentrations 310 or 620 ppm nitrofurazone	310 or 620 ppm nitrofurazone	150 or 310 ppm nitrofurazone	150 or 310 ppm nitrofurazone
Survival rates in the 2-year 33/50; 30/50; 20/50	study 28/50; 37/50; 31/50	39/50; 31/50; 27/50	39/50; 40/50; 35/50
Body weights in the 2-year High dose lower than controls	study Dosed lower than controls	Dosed and controls comparable	Dosed and controls comparable
Nonneoplastic effects Degeneration of articular cartilage; gonadal atrophy	Degeneration of articular cartilage	Convulsive seizures	Convulsive seizures; gonadal atrophy
Neoplastic effects Sebaceous gland adenomas and trichoepitheliomas of the skin; mesotheliomas of the tunica vaginalis; preputial gland tumors	Mammary gland fibro- adenomas	None	Ovarian granulosa cell and benign mixed tumors
Level of evidence of carcino Equivocal evidence	o genic activity Clear evidence	No evidence	Clear evidence
Other considerations Decreased incidences of mononuclear cell leukemia and testicular interstitial cell tumors	Decreased incidence of mononuclear cell leukemia	None	Decreased incidence of anterior pituitary gland neoplasms
Genetic toxicology			

Genetic toxicology Mutagenic in S. typhimurium TA98 and TA100 with and without S9; mutagenic in S. typhimurium TA1535 with S9. Mutagenic in L5178Y lymphoma cells without S9; caused increased frequency of sister chromatid exchanges in cultured CHO cells in the absence and presence of S9; caused increase in chromosomal aberrations in CHO cells in the absence but not the presence of S9.

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

These studies are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected chemicals in laboratory animals (usually two species, rats and mice). Chemicals selected for NTP toxicology and carcinogenesis studies are chosen primarily on the bases of human exposure, level of production, and chemical structure. Selection per se is not an indicator of a chemical's carcinogenic potential.

Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans.

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases;
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase;
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

These considerations together with the definitions as written should be used as composite guidelines for selecting one of the five categories. Additionally, the following concepts (as patterned from the International Agency for Research on Cancer Monographs) have been adopted by the NTP to give further clarification of these issues:

The term *chemical carcinogenesis* generally means the induction by chemicals of neoplasms not usually observed, the induction by chemicals of more neoplasms than are generally found, or the earlier induction by chemicals of neoplasms that are commonly observed. Different mechanisms may be involved in these situations. Etymologically, the term *carcinogenesis* means induction of cancer, that is, of malignant neoplasms; however, the commonly accepted meaning is the induction of various types of neoplasms or of a combination of malignant and benign neoplasms. In the Technical Reports, the words *tumor* and *neoplasm* are used interchangeably.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Nitrofurazone is based on the 13-week studies that began in July 1980 and ended in October 1980 and on the 2-year studies that began in June 1981 and ended in June 1983 at Physiological Research Laboratories.

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Frank Kari, Ph.D., Chemical Manager

John Bucher, Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D. Douglas W. Bristol, Ph.D. R. Chhabra, Ph.D. C.W. Jameson, Ph.D. E.E. McConnell, D.V.M. G.N. Rao, D.V.M., Ph.D. B.A. Schwetz, D.V.M., Ph.D. Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 8/28/86)

Dawn Goodman, V.M.D. (Chair) (PATHCO) Michael Elwell, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) Micheal Jokinen, D.V.M. (Experimental Pathology Laboratories, Inc.) Joel Leininger, D.V.M., Ph.D. (Physiological Research Laboratories) Robert R. Maronpot, D.V.M. (NTP) Charles Montgomery, D.V.M. (NTP) James Woodard, D.V.M., Ph.D. University of Florida

(Evaluated Slides and Prepared Pathology Report for Mice on 7/24/86)

Linda Uraih, D.V.M. (Chair) (NTP) Roger Alison, B.V.Sc., M.R.C.V.S. (NTP) Bill Bullock, D.V.M. (Bowman Gray Medical School) Michael Elwell, D.V.M., Ph.D. (NTP) Scot L. Eustis, D.V.M., Ph.D. (NTP) Micheal Jokinen, D.V.M. (Experimental Pathology Laboratories, Inc.) Charles Montgomery, D.V.M. (NTP)

Principal Contributors at Physiological Research Laboratories (Conducted Studies and Evaluated Tissues)

M. Cowan, M.S. D. Elsberry, D.V.M., Ph.D. A. Hall, D.V.M. R. Pieper, M.S. J. Leininger, D.V.M., Ph.D.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

J. Gauchat

Micheal Jokinen, D.V.M.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D. John Warner, M.S.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on nitrofurazone on July 14, 1987, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division, Exxon Corporation East Millstone, New Jersey

Michael A. Gallo, Ph.D. Associate Professor, Director of Toxicology Department of Environmental and Community Medicine, UMDNJ - Rutgers Medical School Piscataway, New Jersey Frederica Perera, Dr. P.H.* Division of Environmental Sciences School of Public Health, Columbia University New York, New York

Ad Hoc Subcommittee Panel of Experts

- John Ashby, Ph.D. (Principal Reviewer) Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England
- Charles C. Capen, D.V.M., Ph.D. Department of Veterinary Pathobiology Ohio State University Columbus, Ohio
- Vernon M. Chinchilli, Ph.D. (Principal Reviewer) Department of Biostatistics Medical College of Virginia Virginia Commonwealth University Richmond, Virginia
- Kim Hooper, Ph.D. (Principal Reviewer) Hazard Evaluation System and Information Services Department of Health Services State of California Berkeley, California
- Donald H. Hughes, Ph.D. Scientific Coordinator, Regulatory Services Division, The Procter and Gamble Company Cincinnati, Ohio

William Lijinsky, Ph.D.* Director, Chemical Carcinogenesis Frederick Cancer Research Facility Frederick, Maryland

Franklin E. Mirer, Ph.D. Director, Health and Safety Department International Union, United Auto Workers, Detroit, Michigan

James A. Popp, D.V.M., Ph.D. Head, Department of Experimental Pathology and Toxicology Chemical Industry Institute of Toxicology Research Triangle Park, North Carolina

Andrew Sivak, Ph.D. Vice President, Biomedical Science Arthur D. Little, Inc. Cambridge, Massachusetts

^{*}Unable to attend

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF NITROFURAZONE

On July 14, 1987, the draft Technical Report on the toxicology and carcinogenesis studies of nitrofurazone received peer review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina.

Dr. F. Kari, NIEHS, introduced the studies by reviewing the experimental design, results, and proposed conclusions (equivocal evidence of carcinogenic activity for male rats; clear evidence of carcinogenic activity for female rats; no evidence of carcinogenic activity for male mice; clear evidence of carcinogenic activity for female mice).

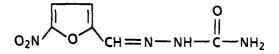
Dr. Chinchilli, a principal reviewer, agreed with the conclusions. He suggested that a sentence might be added to the conclusion for male rats to emphasize the uncertainty as to whether the increased tumor incidences were chemically related. Dr. Kari indicated that the definition of equivocal evidence of carcinogenic activity already emphasized this uncertainty.

As a second principal reviewer, Dr. Hooper agreed with the conclusions for male and female rats and female mice. He stated that the conclusion for male mice should be equivocal evidence of carcinogenic activity, based on marginal increases of subcutaneous tissue fibromas, sarcomas, fibrosarcomas, or neurofibrosarcomas (combined) in high dose animals. Further, he felt that reduced survival in the high dose animals limited the sensitivity of the assay to detect carcinogenic effects. Dr. Kari explained that the large variability in the historical control data base for subcutaneous tumors was a prime reason for not associating these tumors with chemical exposure. Dr. Hooper asked if there was any mechanistic explanation for the decreases in incidence of several tumors in dosed rats and mice. Dr. Kari said he could only speculate that there is some relationship between body weight differences and incidences of certain endocrine-associated tumors.

As a third principal reviewer, Dr. Ashby agreed with the conclusion for male mice. For male rats, he asked whether the incidences of preputial gland adenomas and carcinomas should be analyzed separately, in which case the incidence of carcinomas in exposed groups supported a conclusion of some evidence of carcinogenic activity. Dr. Kari said the progression from adenomas to carcinomas was an established continuum and thus evaluating them combined is more appropriate (although the incidences for benign and malignant tumors are also shown separately). Dr. J. Huff, NIEHS, indicated this was a routine analysis procedure adopted for all tumor sites. Dr. Ashby continued that the conclusion for female rats should be some evidence of carcinogenic activity unless data can be cited that confirm the ability of fibroadenomas to progress to malignancy. Dr. Kari noted that the Discussion section of the Technical Report cited other authors who have shown this progression to occur in a small percentage of observations and that the NTP also has compiled evidence for progression, about which a manuscript is being prepared. Dr. S. Eustis, NIEHS, commented that whether a tumor remains benign or becomes malignant depends on both the intrinsic properties of the tumor and on host factors. He further stated that fibroadenomas have been demonstrated to progress to malignant tumors when transplanted into suitable hosts. Dr. Hooper said that this made it most important that appropriate documentation be provided supporting the potential for progression to malignancy. For female mice, Dr. Ashby thought the conclusion should be some evidence of carcinogenic activity unless progression to malignancy could be shown for the ovarian granuloma cell tumors. Dr. Kari remarked that in the study of nitrofurantoin, malignant granulosa cell tumors were observed. Dr. Ashby emphasized the importance of good data and exact citations in which the distinction between

SUMMARY OF PEER REVIEW COMMENTS (Continued)

some evidence and clear evidence is supported by evidence of progression from studies of other investigators. Dr. Ashby noted that semicarbazide, a known animal carcinogen which is a substructure of nitrofurazone, was not associated with the carcinogenic effects observed because different site-specific neoplasms occur.


Dr. Chinchilli moved that the Technical Report on nitrofurazone be accepted with revisions as discussed to contain more explanation about progression and with the conclusions as written for male rats, equivocal evidence of carcinogenic activity, for male mice, no evidence of carcinogenic activity, and for female rats and mice, clear evidence of carcinogenic activity. Dr. Hooper seconded the motion, which was approved by seven reviewers with two abstentions (Dr. Capen and Dr. Hughes).

Nitrofurazone, NTP TR 337

x

I. INTRODUCTION

Use and Production Absorption, Metabolism, and Excretion Toxicity in Animals Carcinogenicity Toxicity in Humans Genetic Toxicology Study Rationale

NITROFURAZONE

CAS No. 59-87-0

 $C_6H_6N_4O_4$

Molecular weight 198.1

Synonyms or Trade Names: 5-Nitro-2-furaldehyde semicarbazone; 2-[(5-Nitro-2-furanyl)methylene]hydrazine carboxamide; Aldomycin; Amifur; Chemfuran; Coxistat; Furacin; Furacinetten; Furaplast; Furazol W; Furesol; Furracoccid; Mammex; Nefco; Nifuzon; Nitrofural; Vabrocid

Use and Production

Nitrofurazone, a synthetic furan derivative active against a broad spectrum of bacteria, has been used widely in veterinary and human medicine. The chemical is available as a National Formulary Grade containing not less than 98% nor more than 102% nitrofurazone after drying at 105° C for 1 hour (National Formulary, 1975). It is available as a topical cream containing 0.2% nitrofurazone in a water-miscible base which is applied daily or several times weekly (PDR, 1984). The annual production of nitrofurazone has been estimated to be approximately $1.2 \times$ 104 kg (Chemical Information Services, 1973), most of which is thought to be used in veterinary medicine. Recent marketing surveys indicate that the total quantity of nitrofurazone represented by drug store and hospital purchases averaged about 27 kg in 1985 and 1986 (IMS America Ltd, 1987).

In human medicine, nitrofurazone is used primarily to treat surface infections that have become resistant to antibiotics. The bactericidal activity of nitrofurazone was first described by Dodd and Stillman (1944). The chemical has been used as a topical adjunct for patients who have second- and third-degree burns or who require skin grafts. Nitrofurazone is also used widely in veterinary medicine to treat surface lesions, infectious enteritis in small animals, and skin, eye, ear, and genital tract infections. Nitrofurazone has been used as a coccidiostat in poultry and in the treatment of bovine mastitis (Hayes, 1967).

Absorption, Metabolism, and Excretion

The disposition of nitrofurazone after oral administration to rats has been well studied. Within 24 hours after a single administration of ¹⁴C-labeled nitrofurazone (100 mg/kg), about two-thirds of the radioactivity appeared in the urine, 26% in feces, and approximately 1% in the expired carbon dioxide; complete recovery of the administered dose was observed in 96 hours. with less than 15% of the label being recovered as unchanged parent compound (Tatsumi et al., 1971). Major metabolites of nitrofurazone detected and identified in the urine from dosed Donryu rats included hydroxylaminofuraldehyde semicarbazone, aminofuraldehyde semicarbazone, and 4-cyano-2-oxobutyraldehyde semicarbazone (Paul et al., 1960). Nitrofurazone has been shown to bind to nucleic acids and proteins both in vivo and in vitro (Tatsumi et al., 1977).

It has been proposed that the cytotoxicity and DNA damage observed in animals after administration of nitrofurazone may result from the formation of toxic intermediates upon nitroreduction by mammalian and/or bacterial enzymes. For example, a positive correlation exists between the ability of several organs to reduce nitrofurazone and the DNA damage observed in the thymidine-labeled cells incubated with these tissues (Olive and McCalla, 1975; Olive, 1979). Recent research activity has focused on the relative roles of bacterial versus mammalian metabolism of this compound. Investigations with various in vitro preparations have shown that nitrofurazone can be metabolized by the liver (Mason and Holtzman, 1975; Peterson et al., 1979; Kutcher and McCalla, 1984), kidney (Hoener and Krueger, 1984), and testes (Hollinger and Davis, 1969) under both aerobic and anaerobic conditions. Furthermore, the small intestine has been shown to be a major site of nitrofurazone metabolism in vivo, and this activity is not dependent on enteric bacteria but can be attributed to xanthine oxidase activity located in intestinal mucosal cells (Tatsumi et al., 1973). Finally, reduced metabolites of nitrofurazone have been identified in the urine of germ-free animals (Yeung et al., 1983). Considered together, these findings suggest that microbial metabolism is not obligatory for the observed toxicity of nitrofurazone in animals.

Toxicity in Animals

Oral LD_{50} values of 590 mg/kg body weight for Donryu rats and 640 mg/kg for ICR/JCL mice have been reported (Miyaji, 1971). Clinical signs observed in mice and rats administered nitrofurazone at 300 mg/kg or more included hyperirritability, seizures and tremors, and death from respiratory insufficiency (Krantz and Evans, 1945; Dodd, 1946).

Administration of nitrofurazone in a high fat milk replacer (daily dose, 13.9 mg/kg) to male Holstein calves caused hyperirritability and convulsions after 3-5 weeks, and at higher doses (30.7 mg/kg) all six calves showed evidence of severe limb paralysis after several days (Lister and Fisher, 1970).

In rats, oral administration of nitrofurazone was shown to inhibit spermatogenesis at the spermatocyte or spermatid stage, resulting in testicular atrophy when dosing was prolonged. This was generally reversible when administration of the chemical was stopped. Hypertrophy of the adrenal glands was also reported. A similar effect was demonstrated in mice, and interstitial cell hyperplasia and seminal vesicle hypertrophy were also shown (Prior and Ferguson, 1950; Nissim, 1957; Montemurro, 1969).

Investigations of the mode of action of the antispermatogenic activity of nitrofurazone reveal

that under conditions where nitrofurazone completely inhibited spermatogenesis, functional and morphologic parameters of Leydig and Sertoli cells proved to be normal, but marked degeneration of germ cells was noted (Hagenas et al., 1978). These abnormalities were characterized by cell death during meiosis, occurrence of multinucleate spermatocytes and spermatids, and acrosomal derangements. All germ cells except spermatogonia and early primary spermatocytes were affected, and damage was shown to be most severe in cells staged from mid-prophase through meiotic division. Long-term administration of nitrofurazone to rats has been shown to inhibit the testicular oxidation of glucose (Hollinger and Davis, 1969). Spermatogonia are relatively independent of glucose oxidation for energy (Davis and Firlit, 1965), and this may partially explain the refractiveness of the undifferentiated germ cells to the morphologic damage observed in spermatids. However, direct effects of nitrofurazone on DNA in these cells cannot be precluded because nitrofurazone has been shown to be clastogenic toward single-stranded DNA (Olive and McCalla, 1975).

In a study of nitrofurazone conducted by the NTP, timed-pregnant CD-1 mice were fed dietary concentrations of nitrofurazone ranging from 38 to 500 ppm on days 6-15 of gestation, with observations continuing through day 17 (Price et al., 1985). No evidence of teratogenic effects was observed. Selective embryotoxicity, expressed as increased incidence of late fetal death and intrauterine growth retardation, was observed at doses that were only marginally toxic to the exposed dams.

Carcinogenicity

In two separate experiments, nitrofurazone was administered to female Holtzman rats in diets at a concentration of 1,000 ppm for 36 or 44 weeks (Morris et al., 1969). For the first experiment, the control and dosed groups initially contained 20 animals each; in the second experiment, control and dosed groups contained between 30 and 36 animals each. All gross lesions as well as tissue from liver, kidney, and spleen were evaluated histologically. Only mammary gland tumors were observed in these studies; incidences of mammary gland fibroadenomas in the control

groups were 0/5 and 3/16 in the two experiments. The remainder of the animals in these control groups did not survive to 36 weeks, presumably due to respiratory infections. In the dosed groups, the incidences of mammary gland tumors among nitrofurazone-dosed animals surviving to 36 weeks were 11/18 and 24/24. Both experiments were plagued by high mortality, reportedly due to chronic respiratory infections. Strict interpretations of these results must be tempered by the fact that known impurities accounted for at least 3% of the study material. Furthermore, in an effort to retard mortality caused by infections in their laboratory, the investigators treated study animals with various antibiotics and nematocides.

In a subsequent 46-week study, the same oral exposure to nitrofurazone, free of detectable impurities, resulted in an increased incidence of benign mammary gland tumors (Erturk et al., 1970). This same study reported the subcutaneous transplantability of mammary fibroadenoma tissue from nitrofurazone-dosed female rats to untreated male and female rats of the same strain.

In another investigation, 40-day-old female Sprague Dawley rats were given 10 equal doses (one every third day for 30 days) of nitrofurazone by gavage in sesame oil (Griswold et al., 1968). Animals in the three dosed groups received a total of 200, 350, or 500 mg of nitrofurazone per rat, and the initial size of these groups was 10, 10, and 20 rats, respectively. The control group contained 140 rats. After 9 months, all surviving animals were killed, and mammary gland tissue, intestinal tract, pituitary gland, liver, ovaries, and adrenal glands were evaluated, as were all gross lesions in additional tissues. Necropsies were performed on 132/140 control animals, and five of these had mammary gland lesions. (Three carcinomas, one fibroadenoma, and five hyperplastic lesions were characterized in these five animals.) Nine of 10 low dose, 10/10 mid dose, and 5/20 high dose animals survived the 9-month observation period, and one animal in each group was found to contain a mammary gland lesion. The lesions were reported as a carcinoma, a hyperplastic lesion, and a fibroadenomatous change.

Toxicity in Humans

Nitrofurazone causes contact or allergic dermatitis, which may be severe (Shipley and Dodd, 1947). Nitrofurazone is seldom administered orally to humans because of the frequent onset of a severe peripheral polyneuropathy at the doses required for effective therapy (Koch-Weser et al., 1971; Karol, 1960). Hemolytic anemia has also been observed and is thought to be due to decreased activity of glucose-6-phosphate dehydrogenase and to the oxidizing activity of the 5nitrofurans (Beutler, 1972).

Genetic Toxicology

The mutagenicity of nitrofurazone and other 5nitrofuran derivatives has been reviewed in comprehensive articles by Klemencic and Wang (1978) and McCalla (1983). In general, nitrofurazone has consistently exhibited mutagenic activity in vitro in a variety of bacterial and mammalian cell assays. It has not demonstrated mutagenic activity in vivo, but the number and variety of such assays in which it has been tested are limited.

Nitrofurazone induced gene reversion in numerous strains of *Escherichia coli* without metabolic activation (Yahagi et al., 1974; McCalla et al., 1975). Differential growth inhibition after exposure of *E. coli* to nitrofurazone was reported (Haveland-Smith et al., 1979; Ebringer and Bencova, 1980). Similarly, both gene reversion and growth inhibition were observed after treatment of *Bacillus subtilis* cultures with nitrofurazone (Tanooka, 1977).

Reverse gene mutation in Salmonella typhimurium, without S9 activation, was observed in strains TA98, TA100, TA1535, TA1537, and TA1538 after treatment with nitrofurazone with a variety of experimental configurations including plate incorporation procedures, spot tests, and fluctuation tests (Sugimura et al., 1976; Chin et al., 1978; Bruce and Heddle, 1979; Ebringer and Bencova, 1980). Results from NTP Salmonella studies that used preincubation protocols were generally similar to those reported in the literature. Nitrofurazone was mutagenic in strains TA98 and TA100 with and without Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9. However, S9 activation was required for a significant increase in revertant colonies with strain TA1535, and no consistent increase in gene reversions was observed in strain TA1537 (Zeiger et al., 1987; Appendix E, Table E1).

Although nitrofurazone consistently causes mutagenicity without mammalian activation in bacterial systems, there is evidence to suggest that this compound is not a direct-acting mutagen in bacteria. In the absence of S9 activation, nitrofurazone is nonmutagenic toward S. typhimurium strain TA100-FR1, a nitroreductasedeficient strain. However, this strain is responsive to nitrofurazone-induced mutagenicity if a mammalian source of enzymes is provided (Rosenkranz and Speck, 1976). Similarly, E. coli strain 343/113/R-9, which lacks nitroreductase activity and is therefore normally resistant to nitrofurans, can be mutated by nitrofurazone if exposure occurs in the presence of microsome extracts from Drosophila (Baars et al., 1980) or mouse liver (Olive and Durand, 1978). Considered together, these results indicate an obligatory role for metabolism in the nitrofurazone-induced mutagenicity in bacteria and demonstrate that eukaryotic enzyme preparations are able to activate nitrofurazone to a mutagenic form.

Generally, tests with cultured mammalian cells were also positive, but the role of metabolic activation is uncertain. At concentrations of 100-200 µg/ml, nitrofurazone induced 6-thioguanine resistance in Chinese hamster V79 cells in the absence of exogenous metabolic activation (Olive, 1981). Similarly, in an NTP mouse lymphoma assay, nitrofurazone induced forward mutations at the TK^{+/-} locus of L5178Y cells without S9 activation (Table E2).

Tonomura and Sasaki (1973) observed no induction of chromosomal aberrations or unscheduled DNA synthesis after human lymphocytes and fibroblasts were treated with nitrofurazone at concentrations up to 10 mM. Furthermore, no increase in the induction of chromosomal aberrations was observed in Chinese hamster fibroblasts exposed to nitrofurazone over a range of doses that included a 50% growth inhibition response (Ishidate and Odashima, 1977). However. Matsuoka and coworkers (1979) noted an increase in chromosomal aberrations when Chinese hamster fibroblasts were exposed to nitrofurazone at 0.1 mg/ml in the presence of S9. Results from NTP cytogenetic studies revealed that treatment of cultured Chinese hamster ovary cells with nitrofurazone in the absence of S9 produced a dose-related increase in sister chromatid exchanges (Table E3) and chromosomal aberrations (Table E4). With Aroclor 1254-induced male Sprague Dawley rat liver S9, sister chromatid exchanges were increased, but induction of chromosomal aberrations was not observed at doses up to 500 µg/ml.

In vivo assays for genetic damage resulting from exposure to nitrofurazone were uniformly negative. Feeding nitrofurazone (5-mM solution) to adult male Drosophila produced no significant increase in sex-linked recessive lethal mutations in their offspring (Kramers, 1982). No increases in micronuclei, chromosomal aberrations, or morphologically abnormal sperm were observed in rats or mice dosed with up to 60 mg nitrofurazone/kg body weight (Goodman et al., 1977; Bruce and Heddle, 1979).

Study Rationale

The National Toxicology Program undertook evaluation of nitrofurazone to gain insight into the potential carcinogenicity of chemicals representative of the furan class. The class study of furans was initiated by the National Cancer Institute and was predicated on high levels of human exposure or consumption and on structure-function considerations suggesting that furans may be carcinogenic in rodents. The scope of chemicals considered for carcinogenic evaluation included all furans, dihydrofurans, and nitrofurans.

Nitrofurazone was specifically selected for evaluation because of high levels of human exposure $(8.5 \times 10^4 \text{ g/year})$ (National Cancer Institute/ Stanford Research Institute Mark II Database) and evidence available in the open literature suggesting that long-term administration of nitrofurazone to rodents might cause cancer.

Nitrofurazone, NTP TR 337

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF NITROFURAZONE PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS FOURTEEN-DAY STUDIES THIRTEEN-WEEK STUDIES TWO-YEAR STUDIES Study Design Source and Specifications of Animals

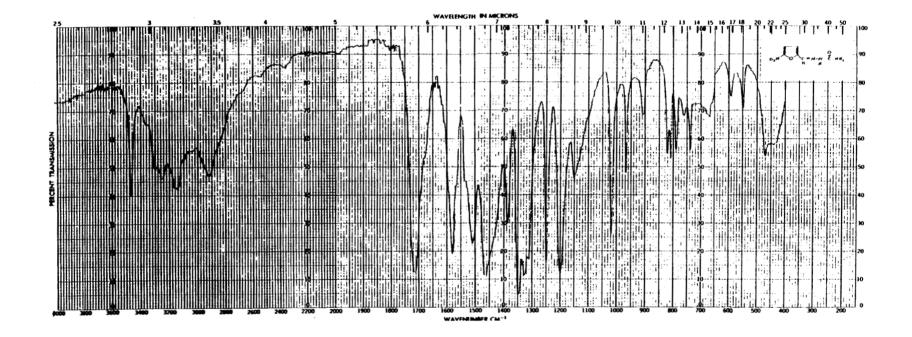
Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF NITROFURAZONE

Nitrofurazone was obtained in one lot (lot no. C1206) from Norwich Eaton Pharmaceuticals (Norwich, New York). Purity and identity analyses were conducted at Midwest Research Institute (MRI) (Kansas City, Missouri). (MRI reports on the analyses performed in support of the nitrofurazone studies are on file at NIEHS.)

The identity of lot no. C1206 was confirmed by infrared, ultraviolet/visible, and nuclear magnetic resonance spectroscopy; all spectra were consistent with literature spectra (Sadtler Pharmaceutical Spectra; Sadtler Standard Spectra) (Figures 1 and 2). Purity was determined by elemental analysis, Karl Fischer water analysis, thin-laver chromatography, and high-performance liquid chromatography. Cumulative data indicated that lot no. C1206 was approximately 99% pure. Results of elemental analysis agreed with the theoretical values. The water content was 0.69%. A minor impurity was detected by thin-layer chromatography with activated aluminum oxide plates and a chloroform:methanol:acetic acid (90:5:5) solvent system. One impurity with a relative area equal to 0.1% that of the major peak was detected by high-performance liquid chromatography and ultraviolet detection at 365 nm on a Varian Micropak MCH-10 column with a water: methanol (40:60) solvent system. One additional impurity was detected with this same system and a gradient of 0%-10% methanol; the relative area of this

impurity was less than 1%, but precise quantitation was difficult under the conditions used.


Nitrofurazone was shown to be stable when stored for 2 weeks at temperatures up to 60° C. The study material was stored at 25° C. Periodic characterization of the bulk chemical by infrared or ultraviolet spectroscopy and high-performance liquid chromatography indicated no deterioration over the course of the studies.

PREPARATION AND CHARACTERIZATION OF FORMULATED DIETS

Formulated diet mixtures were shown to be homogeneous by both the analytical chemistry and study laboratories. Nitrofurazone at 1,500 ppm in feed was shown to be stable for 2 weeks in the dark at temperatures up to 5° C, whereas a 3% reduction in concentration was observed at 25° C after 2 weeks. No decrease in concentration was observed during storage for 7 days under simulated cage conditions with open beakers maintained at normal animal room temperature and lighting conditions. Formulated diets were prepared by blending a premix of nitrofurazone and feed with the bulk feed; the premix was prepared by mixing the appropriate weight of the study material with feed in a beaker (Table 1). Formulated diets were analyzed for nitrofurazone content at the study and analytical chemistry laboratories by extraction of the feed with methanol and quantitation by high-performance liquid chromatography with a Waters uBondapak C₁₈ column, ultraviolet detection at 365 nm,

TABLE 1. PREPARATION AND STORAGE OF FORMULATED DIETS IN THE FEED STUDIES OF
NITROFURAZONE

Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Preparation Premix layered between equal quantities of feed in a Patterson-Kelly [®] 8-qt twin-shell blender and mixed with intensifier bar for 5 min and without intensifier bar for 10 min	Same as 14-d studies	Same as 14-d studies
Maximum Storage Time 14 d	10 d	14 d
Storage Conditions 5°C in the dark	4° C	5° C in the dark

and a water:acetonitrile (70:30) solvent system. Formulated diets were analyzed twice during the 13-week studies (Table 2). The nitrofurazone concentrations ranged from 76% to 105% of the target concentrations; results of 9/10 analyses were within specifications. Formulated diets were analyzed periodically during the 2-year studies with nitrofurazone concentrations ranging from 95.5% to 118.0% of the target concentrations (Table 3). Because 40/43 formulated diets analyzed were within $\pm 10\%$ of the target concentrations, the diets were estimated to have been formulated within specifications 93% of the time during the 2-year studies. Referee analyses were also performed periodically by the analytical chemistry laboratory (Table 4). Generally good agreement was found between the results from the two laboratories. In the 2-year studies, the formulated diets were stored at 5° C for no longer than 14 days.

 TABLE 2. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE THIRTEEN-WEEK FEED

 STUDIES OF NITROFURAZONE

	Concentration of Ni	trofurazone in Feed (ppm) (a)	Determined as a
Date Mixed	Target	Determined	Percent of Target
08/06/80	70	(b) 65	93
	150	150	100
	310	290	94
	620	580	94
	1,250	1,200	96
	2,500	(c) 2,300	92
09/10/80	70	70	100
	150	140	93
	(d) 150	100	67
	310	280	90
	620	470	(e) 76
	1,250	1,310	105
	2,500	2,570	103

(a) Results of duplicate analysis

(b) Samples taken from three other locations within the blender had concentrations of 65, 65, and 67 ppm.

(c) Three other samples from different locations within the blender all had concentrations of 2,400 ppm.

(d) Referee analysis by MRI; result of triplicate analysis.

(e) Out of specifications; used in the studies.

	Concentration of Nitrofurazone in Feed for Target Concentration (ppm) (a)			
Date Mixed	150	310	620	
06/05/81	160	320	630	
07/03/81	157	331	648	
09/11/81	151	303	625	
10/09/81	148	302	592	
01/01/82	160	317	637	
03/05/82	150	309	650	
04/02/82	150	300	644	
06/25/82	148	307	605	
07/16/82	147	324	677	
08/27/82	160	309	631	
12/03/82	(b) 177	(b) 344	(b) 70 4	
12/07/82	(c) 159	(c) 306	(c) 624	
01/28/83	157	309	624	
03/29/83	154	300	606	
04/12/83	163	303	610	
06/01/83		303		
fean (ppm)	155.9	312.1	634.5	
tandard deviation	8.1	12.8	29.7	
oefficient of variation (percent)	5.2	4.1	4.7	
Lange (ppm)	147-177	300-344	592-704	
Number of samples	14	15	14	

TABLE 3. RESULTS OF ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

(a) Results of duplicate analysis

(b) Out of specifications; not used in studies.

(c) Remix; not included in the mean.

TABLE 4. RESULTS OF REFEREE ANALYSIS OF FORMULATED DIETS IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

		Determined Con	Determined Concentration (ppm)		
Date Mixed	Target Concentration (ppm)	Study Laboratory (a)	Referee Laboratory (b)		
06/05/81	150	160	150		
10/09/81	620	592	610		
03/05/82	310	309	322		
12/03/82	150	177	152		
01/28/83	620	624	660		
06/01/83	310	303	310		

(a) Results of duplicate analysis

(b) Results of triplicate analysis

FOURTEEN-DAY STUDIES

Male and female F344/N rats and $B6C3F_1$ mice were obtained from Charles River Breeding Laboratories and held for 18 days before the studies began. Rats were 6-7 weeks old and mice were 6-8 weeks old when placed on study. Groups of five males and five females of each species were fed diets containing 0, 630, 1,250, 2,500, 5,000, or 10,000 ppm nitrofurazone for 14 consecutive days. Rats and mice were observed twice daily and were weighed once per week. A necropsy was performed on all animals. Details of animal maintenance are presented in Table 5.

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF NITROFURAZONE

Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies		
EXPERIMENTAL DESIGN				
Size of Study Groups 5 males and 5 females of each species	10 males and 10 females of each species	50 males and 50 females of each species		
Doses 0, 630, 1,250, 2,500, 5,000, or 10,000 ppm nitrofurazone in feed	Rats0, 150, 310, 620, 1,250, or 2,500 ppm nitrofurazone in feed; mice0, 70, 150, 310, 620, or 1,250 ppm	Rats0, 310, or 620 ppm nitrofurazone in feed; mice0, 150, or 310 ppm		
Date of First Dose 9/30/79	7/28/80	Rats6/24/81; mice6/8/81		
Date of Last Dose 10/13/79	10/25/80	Rats6/13/83; mice5/31/83		
Duration of Dosing 14 consecutive d	13 wk	103 wk		
Type and Frequency of Observation Observed $2 \times d$; weighed initially and $1 \times wk$ thereafter	Same as 14-d studies	Observed 2 \times d; weighed initially, 1 \times wk for 12 wk (rats) or 13 wk (mice), and monthly thereafter		
Necropsy and Histologic Examination Necropsy performed on all animals; histologic exam performed on 10% of rats and mice	Necropsy performed on all animals; histologic exam performed on all con- trols, all animals in the highest dose group with at least 60% survival at the end of the studies, and all animals with gross lesions. Tissues examined: adrenal glands, brain, colon, esophagus, eyes (if grossly abnormal), gallbladder (mice), gross lesions, heart, kidneys, liver, lungs and mainstem bronchi, mammary gland, mandibular or mesenteric lymph nodes, pancreas, parathyroid glands, peripheral nerve, pituitary gland, prostate/testes or ovaries/uterus, regional lymph nodes, salivary glands, small intestine, spinal cord, spleen, sternebrae or femur or vertebrae including marrow, stomach, thymus, thyroid gland, tissue masses, trachea, and urinary bladder. Tissues examined for all rats in the other dose groups: femur, muscles, testes or uterus/ ovaries, tibia. Liver weighed at necropsy	Necropsy performed on all animals; histologic exams performed on all controls, all high dose animals, low dose male rats, and low dose male mice. Tissues examined: same as those in the 13-wk studies; tissues examined for low dose female rats: adrenal glands, femur, liver, pituitary gland, spleen, and vertebrae; tissues examined for low dose female mice: liver, lung, ovaries, pituitary gland, and spleen; neurologic exam performed during wk 100 included visual response to threat, righting reflexes, gait, extensor postural thrust, placing response, strength of grasp, flexor reflexes, and muscle atrophy		
ANIMALS AND ANIMAL MAINTEN	ANCE			
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F1 mice		
Animal Source Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Portage, MI)	Charles River Breeding Laboratories (Kingston, NY)		
Study Laboratory Physiological Research Laboratories	Physiological Research Laboratories	Physiological Research Laboratories		

Method of Animal Identification Rats--tail mark; mice--ear punch

Toe clip

Toe and ear clip

TABLE 5. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE FEED STUDIES OF NITROFURAZONE (Continued)

Fourteen-Day Studies	Thirteen-Week Studies	Two-Year Studies		
ANIMALS AND ANIMAL MAINTEN	ANCE (Continued)			
Time Held Before Study 18 d	Rats14 d; mice20 d	Rats14 d; mice13 d		
Age When Placed on Study Rats6-7 wk; mice6-8 wk	Rats6-8 wk; mice8 wk	Rats6-7 wk; mice7-8 wk		
Age When Killed Rats8-9 wk; mice8-10 wk	Rats19-21 wk; mice21-22 wk	Rats111 wk; mice112 wk		
Necropsy Dates Rats10/16/79-10/17/79; mice10/15/79	10/27/80-10/28/80	Rats6/20/83-6/24/83; mice6/6/83-6/9/83		
Method of Animal Distribution Animals distributed to weight classes and assigned to cages according to a table of random numbers	Same as 14-d studies	According to tables of random numbers		
Feed Rodent Laboratory Chow 5001 [®] meal (Ralston Purina Co., St. Louis, MO); available ad libitum	Same as 14-d studies	NIH 07 Rat and Mouse Ration (Zeigler Bros., Gardners, PA); available ad libitum		
Bedding Aspen wood chips (Minnesota Sawdust and Shavings Co., Anoka, MN)	Same as 14-d studies	Same as 14-d studies		
Water Automatic watering system (Edstrom Industries, Waterford, WI); softened; available ad libitum	Same as 14-d studies	Same as 14-d studies; softened to <1 grain/gal hardness through sodium zeolite, then filtered		
Cages Polycarbonate (Hazleton Systems, Inc., Aberdeen, MD)	Same as 14-d studies	Same as 14-d studies		
Cage Filters (Snow Filtration, Cincinnati, OH)	Same as 14-d studies	Spun-bonded polyester, Dupont 2024 (Snow Filtration, Cincinnati, OH)		
Animals per Cage 5	5	5		
Other Chemicals on Study in the Sa None	me Room None	None		
Animal Room Environment Temp22.2°-24.4° C; hum35%-45%; fluorescent light 12 h/d	Temp21.1°-26.6° C; hum33%-74%; fluorescent light 12 h/d	Temp21.7°-26.1° C; hum30%-74%; fluorescent light 12 h/d; 5-17 room air changes/h		

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated exposure to nitrofurazone and to determine the concentrations to be used in the 2-year studies.

Four- to six-week-old male and female F344/N rats and 5-week-old male and female B6C3F₁ mice were obtained from Charles River Breeding Laboratories. Animals were observed for 14 days (rats) or 20 days (mice) and then distributed to weight classes. Animals were assigned to cages and groups according to a table of random numbers. Diets containing 0, 150, 310, 620, 1,250, or 2,500 ppm nitrofurazone were fed to groups of 10 rats of each sex. Diets containing 0, 70, 150, 310, 620, or 1,250 ppm nitrofurazone were fed to groups of 10 mice of each sex.

Animals were housed five per cage. Formulated or control diets and water were available ad libitum. Animals were checked two times per day; moribund animals were killed. Feed consumption was measured weekly by cage. Individual animal weights were recorded weekly.

At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Tissues and groups examined are listed in Table 5.

TWO-YEAR STUDIES

Study Design

Diets containing 0, 310, or 620 ppm nitrofurazone were fed to groups of 50 male and 50 female rats for 103 weeks. Diets containing 0, 150, or 310 ppm nitrofurazone were fed to groups of 50 male and 50 female mice on the same schedule.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F₁ (C57BL/6N, female \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Charles River

Breeding Laboratories under a contract to the Carcinogenesis Program. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barriermaintained rooms. Rats were shipped to the study laboratory at 4-5 weeks of age and mice, at 5-6 weeks of age. The rats were guarantined at the study laboratory for 14 days and the mice. for 13 days. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were 47 days old and the mice were 51 days old when placed on study. The health of the animals was monitored during the course of the studies according to the protocols of the NTP Sentinel Animal Program (Appendix F).

A quality control skin grafting program has been in effect since early 1978 to monitor the genetic integrity of the inbred mice used to produce the hybrid $B6C3F_1$ study animal. In mid-1981, data were obtained that showed incompatibility between the NIH C3H reference colony and the C3H colony from a Program supplier. In August 1981, inbred parental lines of mice were further tested for genetic integrity via isozyme and protein electrophoresis profiles that demonstrate phenotype expressions of known genetic loci.

The C57BL/6N mice were homogeneous at all loci tested. Eighty-five percent of the C3H mice monitored were variant at one to three loci, indicating some heterogeneity in the C3H line from this supplier. Nevertheless, the genome of this line is more homogeneous than that of randomly bred stocks.

Male mice from the C3H colony and female mice from the C57BL/6N colony were used as parents for the hybrid $B6C3F_1$ mice used in these studies. The influence of the potential genetic nonuniformity in the hybrid mice on these results is not known, but results of the studies are not affected because concurrent controls were included in each study.

Animal Maintenance

Animals were housed five per cage and the cages were not rotated within cage racks during the studies. Feed and water were available ad libitum. Further details of animal maintenance are given in Table 5.

Clinical Examinations and Pathology

All animals were observed two times per day, and clinical signs were recorded at least once per month. Body weights by cage were recorded once per week for the first 12 or 13 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals including those found dead, unless they were excessively autolyzed or cannibalized, missexed, or found missing. Thus, the number of animals from which particular organs or tissues were examined microscopically varies and is not necessarily equal to the number of animals that were placed on study.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 5) were performed on all high dose and control animals and on low dose animals dying before the end of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. Potential target organs for chemically related neoplastic and nonneoplastic effects were identified from the short-term studies or the literature and were determined by examination of the pathology data; these target organs/tissues in the lower dose group were examined histopathologically. If mortality in the highest dose group exceeded that in the control group by 15%, complete histopathologic examinations were performed on all animals in the second highest dose group in addition to those in the high dose group.

When the pathology evaluation was completed. the slides, paraffin blocks, and residual wet tissues were sent to the NTP Archives for inventory, slide/block match, and wet tissue audit. The slides, individual animal data records, and pathology tables were sent to an independent quality assessment laboratory. The individual animal records and tables were compared for accuracy. slides and tissue counts were verified, and histotechnique was evaluated. All tumor diagnoses, all target tissues, and all tissues from a randomly selected 10% of the animals were evaluated by a quality assessment pathologist. The quality assessment report and slides were submitted to the Pathology Working Group (PWG) Chairperson, who reviewed all target tissues and those about which there was a disagreement between the laboratory and quality assessment pathologists.

Representative slides selected by the Chairperson were reviewed by the PWG, which includes the laboratory pathologist, without knowledge of previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the laboratory pathologist was asked to reconsider the original diagnosis. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final diagnoses represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Slides/tissues are generally not evaluated in a blind fashion (i.e., without knowledge of dose group) unless lesions in question are subtle or unless there is an inconsistent diagnosis of lesions by the laboratory pathologist. Nonneoplastic lesions are not examined routinely by the quality assessment pathologist or PWG unless they are considered part of the toxic effect of the chemical.

Statistical Methods

Data Recording: Data on this experiment were recorded in the Carcinogenesis Bioassay Data System (Linhart et al., 1974). The data elements include descriptive information on the chemicals, animals, experimental design, survival, body weight, and individual pathology results, as recommended by the International Union Against Cancer (Berenblum, 1969).

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be missing or dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a doserelated trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: Three statistical methods are used to analyze tumor incidence data: life table tests, incidental tumor analysis, and Fisher exact/Cochran-Armitage trend analyses. Tests of significance include pairwise comparisons of each dosed group with controls and tests for overall dose-response trends. For studies in which administration of the study compound has little effect on survival, the results of the three alternative analyses will generally be similar. When differing results are obtained by the three methods, the final interpretation of the data will depend on the extent to which the tumor under consideration is regarded as being the cause of death. Continuity-corrected tests are used in the analysis of tumor incidence, and reported P values are one-sided. The procedures described below also were used to evaluate selected nonneoplastic lesions.

Life Table Analyses--The first method of analysis assumed that all tumors of a given type observed in animals dying before the end of the study were "fatal"; i.e., they either directly or indirectly caused the death of the animal. According to this approach, the proportions of tumorbearing animals in the dosed and control groups were compared at each point in time at which an animal died with a tumor of interest. The denominators of these proportions were the total number of animals at risk in each group. These results, including the data from animals killed at the end of the study, were then combined by the Mantel-Haenszel method (1959) to obtain an overall P value. This method of adjusting for intercurrent mortality is the life table method of Cox (1972) and of Tarone (1975). The underlying variable considered by this analysis is time to death due to tumor. If the tumor is rapidly lethal, then time to death due to tumor closely approximates time to tumor onset. In this case, the life table test also provides a comparison of the time-specific tumor incidences.

Incidental Tumor Analyses--The second method of analysis assumed that all tumors of a given type observed in animals that died before the end of the study were "incidental"; i.e., they were merely observed at necropsy in animals dying of an unrelated cause. According to this approach, the proportions of tumor-bearing animals in dosed and control groups were compared in each of five time intervals: weeks 0-52, weeks 53-78, weeks 79-92, week 93 to the week before the terminal-kill period, and the terminal-kill period. The denominators of these proportions were the number of animals actually examined for tumors during the time interval. The individual time interval comparisons were then combined by the previously described method to obtain a single overall result. (See Haseman, 1984, for the computational details of both methods.)

Fisher Exact/Cochran-Armitage Trend Analyses--In addition to survival-adjusted methods, the results of the Fisher exact test for pairwise comparisons and the Cochran-Armitage linear trend test (Armitage, 1971; Gart et al., 1979) are given in the appendixes containing the analyses of tumor incidence. These two tests are based on the overall proportion of tumor-bearing animals and do not adjust for survival differences. Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights, Feed Consumption, and Clinical Signs Survival

Pathology and Statistical Analyses of Results

MICE

FOURTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights, Feed Consumption, and Clinical Signs Survival

Pathology and Statistical Analyses of Results

FOURTEEN-DAY STUDIES

All rats receiving 5,000 or 10,000 ppm nitrofurazone died (Table 6). Surviving animals in the lower two dose groups all gained weight, but the degree of weight gain was dose dependent. Feed consumption was decreased at all doses above 630 ppm. In all dosed groups, clinical signs of toxicity included rough hair coats and evidence of lethargy. At doses of 2,500 ppm and above, rats of each sex exhibited intermittent episodes of seizures and lethargy. Histopathologic examinations indicated that dosed male rats were aspermatogenic.

THIRTEEN-WEEK STUDIES

All rats lived to the end of the studies (Table 7). Final mean body weights of rats that received 620, 1,250, or 2,500 ppm nitrofurazone were 11%, 32%, or 55% lower, respectively, than that of the controls for males and 2%, 12%, or 36% lower for females. With the exception of the highest dose group, feed consumption by dosed and control groups was comparable. Liver weight to body weight ratios for dosed rats were significantly greater than those for the controls (Table 8). Stimulus-induced convulsive seizures were observed in males at 2,500 ppm. Females that received 1,250 or 2,500 ppm and males that received 1,250 ppm were hyperexcitable. Atrophy constricture of the hind quarters was seen in males and females that received 2,500 ppm. Moderate to severe degeneration of the seminiferous epithelium in the testis was observed in all male rats in the four highest dose groups. Testes of males that received 150 ppm were normal.

TABLE 6. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE FOURTEEN-DAY FEED STUDIES OF NITROFURAZONE

Concentration	Survival (a)	<u>Mean Body Weights (grams)</u> Initial (b) Final Change (c)		Final Weight Relative to Controls	Feed Con- sumption (d)		
(ppm)	Sul vival (a)		rmai	Change (C)	(percent)	Week 1	
MALE			<u>_</u>				
0	5/5	136 ± 5	197 ± 5	$+61 \pm 2$		16.1	16.2
630	5/5	135 ± 6	200 ± 7	$+65 \pm 2$	102	14.6	16.3
1,250	5/5	135 ± 3	183 ± 5	$+48 \pm 2$	93	11.6	13.3
2,500	(e) 4/5	133 ± 6	140 ± 5	$+2 \pm 4$	71	6.5	7.3
5,000	(f) 0/5	124 ± 9	(g)	(g)	(g)	4.5	2.5
10,000	(h) 0/5	137 ± 6	(g)	(g)	(g)	3.9	0.4
FEMALE							
0	5/5	97 ± 5	133 ± 3	$+36 \pm 2$		10.9	13.3
630	5/5	99 ± 4	132 ± 2	$+33 \pm 3$	99	11.6	11.2
1,250	5/5	110 ± 8	132 ± 6	$+22 \pm 2$	99	8.4	5.9
2,500	5/5	103 ± 2	110 ± 4	$+7 \pm 3$	83	5.7	6.0
5,000	(i) 0/5	101 ± 4	(g)	(g)	(g)	3.9	2.8
10,000	(j) 0/5	95 ± 3	(g)	(g)	(g)	1.5	1.6

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Grams per animal per day; not corrected for scatter.

(e) Day of death: 11

(f) Day of death: 10,11,11,11,11

(g) No data are reported due to 100% mortality in this group.

(h) Day of death: 9,10,10,10,11

(i) Day of death: 11,11,12,12,12

(j) Day of death: 7,7,9,9,11

			Body Weigh	its (grams)	Final Weight Relative	Feed	l Con-
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)		<u>tion (d)</u> Week 13
MALE							
0	10/10	109 ± 3	349 ± 6	$+240 \pm 4$		16	10
150	10/10	105 ± 2	346 ± 5	$+241 \pm 5$	99	16	10
310	10/10	104 ± 2	332 ± 4	$+228 \pm 4$	95	16	10
620	10/10	106 ± 3	310 ± 5	$+204 \pm 3$	89	16	11
1,250	10/10	104 ± 2	239 ± 4	$+135 \pm 3$	68	13	9 7
2,500	10/10	106 ± 3	158 ± 3	$+52 \pm 3$	45	9	7
FEMALE							
0	10/10	90 ± 2	195 ± 3	$+105 \pm 2$		15	10
150	10/10	92 ± 2	200 ± 3	$+108 \pm 4$	103	16	10
310	10/10	89 ± 1	195 ± 3	$+106 \pm 3$	100	15	9
620	10/10	92 ± 2	191 ± 3	$+99 \pm 2$	98	14	10
1,250	10/10	90 ± 2	172 ± 4	$+82 \pm 3$	88	11	9
2,500	10/10	90 ± 2	125 ± 3	$+35 \pm 2$	64	8	9 6

TABLE 7. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF RATS IN THE THIRTEEN-WEEK FEED STUDIES OF NITROFURAZONE

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean

(c) Mean body weight change of the group \pm standard error of the mean

(d) Grams per animal per day; not corrected for scatter.

TABLE 8. ANALYSIS OF LIVER WEIGHTS OF RATS IN THE THIRTEEN-WEEK FEED STUDIES OF NITROFURAZONE (a)

Concentration (ppm)	No. of Animals Examined	Final Body Weight (grams)	Liver Weight (mg)	Liver Weight/Final Body Weight (mg/g)
MALE				
0	10	348.9 ± 2.95	$14,469 \pm 814$	41.5 ± 2.33
150	10	345.9 ± 4.53	(b) 18.664 ± 303	(b) 54.0 ± 0.63
310	10	332.0 ± 4.41	(c) 16.609 ± 409	(b) 50.1 ± 1.21
620	10	(b) 309.5 ± 4.83	(b) 18.167 ± 536	(b) 58.6 ± 1.23
1,250	10	(b) 238.8 ± 4.13	$12,662 \pm 405$	(b) 53.0 ± 1.33
2,500	10	(b) 158.2 ± 3.30	(b) 9,041 \pm 370	(b) 57.0 \pm 1.28
FEMALE				
0	10	195.3 ± 2.89	$7,272 \pm 514$	37.2 ± 2.59
150	10	199.9 ± 2.61	(b) 9.578 ± 258	(b) 47.9 ± 1.10
310	10	195.0 ± 3.40	(b) 9,511 \pm 312	(b) 48.8 ± 1.42
620	10	191.0 ± 3.02	(b) 9,599 \pm 221	(b) 50.3 ± 0.76
1,250	10	(b) 172.1 ± 3.64	(b) 10,148 \pm 149	(b) 59.1 \pm 1.17
2,500	10	(b) 124.7 ± 2.65	6.743 ± 203	(b) 54.1 \pm 1.29

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955). (b) P < 0.01 (c) P < 0.05

Chemical-related histopathologic effects were observed in the long bones of male and female rats and in the testis of males. Male and female rats receiving 1,250 or 2,500 ppm had reduced amounts of trabecular bone in the metaphyseal region (osteoporosis) (Table 9). Subsequent to

	Concentration (ppm)							
Site/Lesion	0	150	310	620	1,250	2,500		
MALE			- <u> </u>					
Bone								
Osteoporosis (b)	0		0	2	5	9		
Festis								
Degeneration	0	0	10	10	10	10		
Seminal vesicle								
Hypoplasia	0				2	10		
FEMALE								
Bone								
Osteoporosis (b)	0			0	3	10		
Jterus				-	-			
Hypoplasia	0			0	2	10		

TABLE 9. NUMBER OF RATS WITH SELECTED LESIONS IN THE THIRTEEN-WEEK FEED STUDIES OF NITROFURAZONE (a)

(a) Ten rats were examined for each group.

(b) A study pathologist used the less exact term osteomalacia for this lesion.

the completion of the 2-year studies, degenerative changes in the articular cartilage were characterized by the formation of subchondral cysts and irregularly thickened cartilage containing numerous chondrocyte clones (degenerative arthropathy).

Dose Selection Rationale: Based on the lower weight gain and skeletal lesions observed at high doses, dietary concentrations of 310 and 620 ppm nitrofurazone were selected for rats for the 2-year studies.

TWO-YEAR STUDIES

Body Weights, Feed Consumption, and Clinical Signs

Mean body weights of high dose male and female rats were progressively lower than those of the controls throughout the studies (Table 10 and Figure 3). Mean body weights of low dose male and female rats were 4%-9% lower than those of the controls from week 39 to the end of the studies. The average daily feed consumption per rat by low and high dose rats was 95% and 90% that of the controls for males and 92% and 91% for females (Appendix G, Tables G1 and G2). The average amount of nitrofurazone consumed per day was approximately 11 or 24 mg/kg for low or high dose male rats and 12 or 26 mg/kg for low or high dose female rats.

Musculoskeletal impairment of the hind limbs, reported as "bowlegged" or occasionally as "immobile legs," occurred in high dose male and female rats. Rats were subjected to a neurologic evaluation, and in both male and female rats, nitrofurazone was found to cause abnormal posture and pelvic limp gait with atrophy of external pelvic muscles and flexor muscles of the knee. Contracture of the semimembranous and semitendinous muscles, the muscles subserving knee flexion, was also noted. This effect was dose related and by month 21 affected nearly 100% of high dose male and female rats and 44% and 62% of low dose males and females. Further examination revealed preserved strength of grasp of the pelvic limbs with intact sensation to deep painful stimuli and intact position sense. (Full methods and details of these studies are on file at the NTP.)

Weeks	Co	ntrol		<u>310 ppm</u>			620 ppm	
on	Av. Wt.	No. of	Av. Wt.	Wt. (percent	No. of	Av. Wt.	Wt. (percent	No. of
Study	(grams)	Survivors	(grams)	of controls)	Survivors	(grams)	of controls)	Survivors
MALE	· · · · · · · · · · · · · · · · · · ·						· · ·	
0	122	50	123	101	50	124	102	50
1	166	50	164	99	50	167	101	50
2 3	199 213	50 50	186 209	93 98	50 50	190 202	95 95	50 50
4	231	50	203	98	50	220	95	50
5	255	50	253	99	50	241	95	50
6	276	50	271	98	50	260	94	50
7 8	278 291	50 50	276 292	99 100	50 50	264 278	95 96	50 50
9	299	50	303	100	50	286	96	50
10	306	50	310	101	50	292	95	50
11	315	50	318	101	50	302	96	50
12 17	326 361	50 50	328 357	101 99	50 50	308 334	94 93	50 50
21	386	50	372	96	50	355	92	50
25	401	50	387	97	50	365	91	50
30	410	50	396	97	50	370	90	50
34	416	50	405	97	50	376	90	50
39 43	428 438	50 50	412 417	96 95	50 50	377 385	88 88	50 49
47	437	50	412	94	50	381	87	49
52	440	50	415	94	50	378	86	49
56	439	50	414	94	50	380	87	48
61	438	49	419	96	48	376	86	46
66 70	441 441	49 48	422 419	96 95	48 46	381 377	86 85	45 42
74	441	48	412	93	46	374	85	42
78	441	47	417	95	46	370	84	40
82	445	47	422	95	45	369	83	38
87	433	45	410	95	44	353	82	37
91 96	427 429	42 39	407 407	95 95	42 37	346 340	81 79	33 25
100	431	37	404	93 94	36	323	75	25
103	422	33	398	94	31	319	76	21
FEMALE								
0	111	50	109	98	50	111	100	50
1 2	135 145	50 50	133 144	99	50	133	99	50 50
3	151	50	149	99 99	50 50	142 146	98 97	50
4	162	50	158	98	50	156	96	50
5	170	50	164	96	50	164	96	50
6	178	50	171	96	50	169	95 94	50 50
7 8	176 179	50 50	168 175	95 98	50 50	166 171	96	50
9	182	50	176	97	50	172	95	50
10	183	50	179	98	50	174	95	50
11	188	50	184	98	50	179	95	50
12 17	190 204	50 50	187 198	98 97	50 50	180 190	95 93	50 50
21	218	50	208	95	50	199	91	50
25	222	50	213	96	50	204	92	50
30	229	50	218	95	50	209	91	49
34	234 239	50 50	223 227	95	50	213 217	91 91	49 49
39 43	239	50	233	95 95	50 50	223	91	49
47	253	50	239	94	50	226	89	49
52 56	263	49	250	95 95	50	233	89	49 49
56	269	47	255	95	50	235	87	49 48 46
61 68	280 290	47 46	265 273	95 94	49 49	242 246	86 85	48 46
66 70	290	40 44	273	94 95	49 47	246 247	84	46
74	302	41	285	94	46	253	84	46 45 44
78 82	313	38	290	93 94	44	253	81	44
82	318	38	298	94	44	261	82	44 42 41
87 91	319 325	38 34	302 301	95 93	43 41	262 263	82 81	42
96	325 329	34 31	301	93 92	41 40	263	80	38
100	333	29	304	91	40	265	80	37 33
	331	28	301	91		263	79	

TABLE 10. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

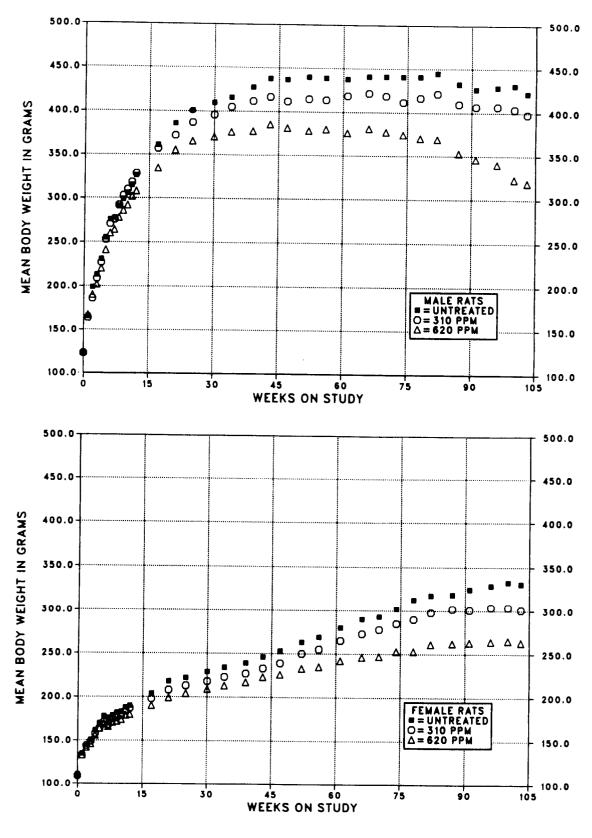


FIGURE 3. GROWTH CURVES FOR RATS FED DIETS CONTAINING NITROFURAZONE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats fed diets containing nitrofurazone at the concentrations used in these studies and for controls are shown in Table 11 and in the Kaplan and Meier curves in Figure 4. The survival of the high dose group of male rats was significantly lower than that of the controls after week 92. No other significant differences in survival were observed between any groups of either sex.

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the mammary gland, joints, tunica vaginalis, skin, preputial gland, testis, and hematopoietic system.

Lesions in male rats are summarized in Appendix A. Histopathologic findings on neoplasms are summarized in Table A1. Table A2 gives the survival and tumor status for individual male rats. Table A3 contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Table A3 (footnotes). Historical incidences of tumors in control male rats are listed in Table A4. Findings on nonneoplastic lesions are summarized in Table A5.

Lesions in female rats are summarized in Appendix B. Histopathologic findings on neoplasms are summarized in Table B1. Table B2 gives the survival and tumor status for individual female rats. Table B3 contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Table B3 (footnotes). Historical incidences of tumors in control female rats are listed in Table B4. Findings on nonneoplastic lesions are summarized in Table B5.

TABLE II.	SURVIVAL OF	RATS IN THE	TWO-YEAR FEEL	D STUDIES OF	NITROFURAZONE

	Control	310 ppm	620 ppm
MALE (a)	<u> </u>	······································	
Animals initially in study Nonaccidental deaths before termination (b) Killed at termination Survival P values (c)	50 17 33 0.005	50 20 30 0.672	50 30 20 0.008
FEMALE (a)			
Animals initially in study Nonaccidental deaths before termination (b) Killed at termination Survival P values (c)	50 22 28 0.448	50 13 37 0.078	50 19 31 0.496

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

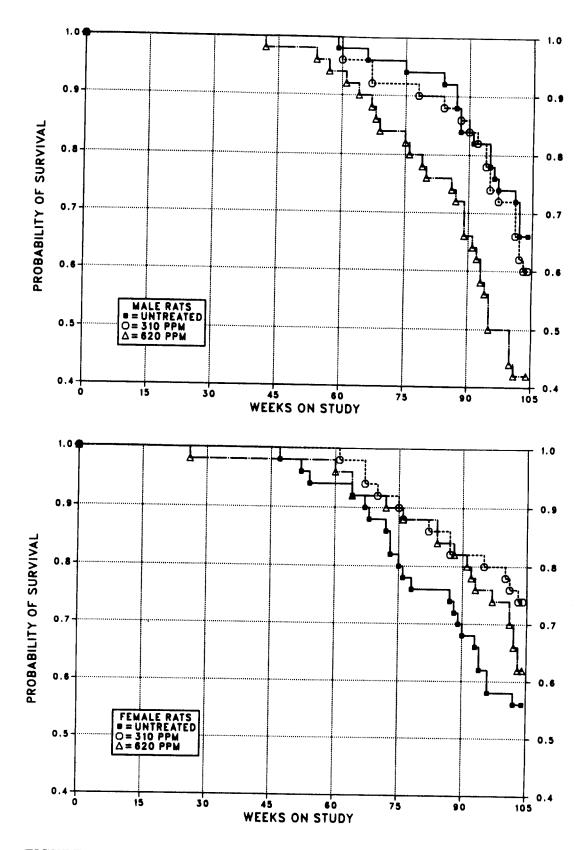


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR RATS FED DIETS CONTAINING NITROFURAZONE FOR TWO YEARS

Mammary Gland: Fibroadenomas in female rats occurred with a significant positive trend; the incidences in the dosed groups were significantly greater than that in the controls (Table 12). Fibroadenomas consisted of varying proportions of epithelium and fibrous connective tissue. In smaller tumors, the epithelial component was quite prominent, whereas in larger tumors, the fibrous connective component almost completely obliterated the epithelium. Three adenocarcinomas were also observed.

Joints (Articular Cartilage): Degenerative changes involving the vertebral and knee (femoro-tibial) joints occurred at increased incidences in dosed rats of each sex relative to those

of controls (Table 13). These lesions were characterized by a spectrum of changes that varied in extent and severity from animal to animal. There was fibrillation of the surface cartilage with degeneration of the cartilage matrix. The articular cartilage was irregularly or focally thickened and contained multiple chondrocyte clones or daughter cell nests. Occasional subchondral cysts and exostoses at the edge of the joint were also noted. Degeneration of the sternal synchondrosis was also increased in high dose female rats and was characterized by granular or fibrillar degeneration of the cartilage matrix with proliferation of the cartilage and formation of chondrocyte clones at the margins of the degenerative changes.

 TABLE 12. ANALYSIS OF MAMMARY GLAND TUMORS IN FEMALE RATS IN THE TWO-YEAR

 FEED STUDY OF NITROFURAZONE (a,b)

	Control	310 ppm (c)	620 ppm (c	
 Fibroadenoma	······			
Overall Rates	8/49 (16%)	36/50 (72%)	36/50 (72%)	
Adjusted Rates	24.8%	81.6%	85.6%	
Terminal Rates	5/28 (18%)	29/37 (78%)	25/31 (81%)	
Week of First Observation	67	67	60	
Life Table Tests	P<0.001	P<0.001	P<0.001	
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001	
Adenocarcinoma				
Overall Rates	1/49 (2%)	0/50 (0%)	2/50 (4%)	

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix B, Table B3 (footnotes). (b) Historical incidence at study laboratory (mean \pm SD): 42/149 (28% \pm 12%); historical incidence in NTP studies: 550/1,984 (28% \pm 11%)

(c) The estimated dose in milligrams per kilograms per day is given in Chapter III (Body Weights, Feed Consumption, and Clinical Signs) and in Appendix G.

TABLE 13. NUMBER OF RATS WITH DEGENERATION OF JOINT ARTICULAR CARTILAGE IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

		Male			Female			
Site	Control	310 ppm	620 ppm	Control	310 ppm	620 ppm		
No. of rats examined grossly	50	50	50	49	50	50		
Vertebral joint	10	31	23	3	39	36		
Knee joint	5	32	48	4	30	39		
Sternal synchondrosis	24	26	21	15	(a) 1	32		

(a) There was incomplete histopathologic sampling of the costochondral junction in low dose female rats.

Tunica Vaginalis: The incidence of mesotheliomas in low dose male rats was significantly greater than that in the controls (Table 14). Mesotheliomas are derived from the mesothelium that lines the body cavities and frequently begin in the tunica vaginalis. The more extensive tumors extend into the peritoneal cavity and involve the mesothelium overlying the gastrointestinal tract, mesentery, and urogenital tract. The mesotheliomas consisted of cuboidal to columnar epithelial cells arranged in complex papillary or pseudoglandular formations with an interspersed collagenous stroma. The tumors sometimes invaded the soft tissues underlying the mesothelium.

Skin: The incidence of trichoepitheliomas or sebaceous adenomas (combined) in high dose male rats was significantly greater than that in controls (Table 15). These tumors were observed in 0/50 control, 0/50 low dose, and 2/50 high dose female rats.

Sebaceous adenomas and trichoepitheliomas arise from cells in the epidermis or adnexal structures. Pluripotential cells in the epidermis or adnexa are capable of differentiating into any of several different cell types including sebaceous cells, cells composing hair follicles, and squamous cells. Epithelial tumors of the skin frequently contain varying proportions of basal

 TABLE 14. ANALYSIS OF MESOTHELIOMAS IN THE TUNICA VAGINALIS OF MALE RATS IN THE

 TWO-YEAR FEED STUDY OF NITROFURAZONE (a)

	Control	310 ppm	620 ppm
Overall Rates	0/50 (0%)	7/50 (14%)	2/50 (4%)
Adjusted Rates	0.0%	17.4%	6.6%
Terminal Rates	0/33 (0%)	2/30 (7%)	0/20 (0%)
Week of First Observation		67	93
Life Table Tests	P = 0.149	P = 0.010	P = 0.174
Incidental Tumor Tests	P = 0.363	P = 0.014	P = 0.307

(a) Historical incidence of mesotheliomas (all sites) at study laboratory (mean \pm SD): 5/150 (3% \pm 3%); historical incidence in NTP studies: 52/1,937 (3% \pm 2%)

TABLE 15. ANALYSIS OF SKIN TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Control	310 ppm	620 ppm
		····· .	
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)
Sebaceous Adenoma			
Overall Rates	0/50 (0%)	0/50 (0%)	4/50 (8%)
Adjusted Rates	0.0%	0.0%	15.2%
Terminal Rates	0/33 (0%)	0/30 (0%)	2/20 (10%)
Week of First Observation			69
Life Table Tests	P=0.006	(a)	P = 0.028
Incidental Tumor Tests	P=0.015	(a)	P = 0.067
Trichoepithelioma or Sebaceous Ade	noma (b)		
Overall Rates	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates	0.0%	0.0%	17.4%
Terminal Rates	0/33 (0%)	0/30 (0%)	2/20 (10%)
Week of First Observation	()	X - · · · /	69
Life Table Tests	P = 0.002	(a)	P = 0.014
Incidental Tumor Tests	P = 0.009	(a)	P = 0.044

(a) No P value recorded because no tumors were observed in the 310-ppm and control groups.

(b) Historical incidence of sebaceous adenomas, basal cell tumors, trichoepitheliomas, or adnexal adenomas (combined) at study laboratory (mean \pm SD): 2/150 (1% \pm 1%); historical incidence in NTP studies: 32/1,937 (2% \pm 2%)

cells, sebaceous cells, and hair follicle-like structures; therefore, classification is usually based on the predominant component.

Preputial Gland: The incidence of carcinomas in low dose male rats was significantly greater than that in the controls (Table 16). The incidences of adenomas or carcinomas (combined) in dosed rats were not significantly greater than that in the controls. However, the incidence of adenomas or carcinomas (combined) in low dose rats is greater than the highest incidence observed in historical control groups (9/50). Hyperplasia was observed in six low dose male rats in which neither adenomas nor carcinomas were diagnosed. In females, the incidences of adenomas, adenocarcinomas, or carcinomas (combined) in the clitoral gland were not increased in dosed groups (control, 8/49; low dose, 7/50; high dose, 7/50).

Hyperplasia of the preputial gland consisted of expansile foci of enlarged cells with abundant

granular cytoplasm and vesicular nuclei containing prominent nucleoli. The cells retained relatively normal arrangement in small packets or nests separated by a delicate fibrovascular stroma. Ducts present in the hyperplastic foci had increased numbers of cell lavers showing variable degrees of squamous differentiation. The adenomas were circumscribed masses exhibiting loss of normal cellular arrangement. The tumor cells were similar to those in foci of hyperplasia but formed large aggregates and solid clusters. Remnants of the duct system were still apparent. Preputial gland carcinomas showed complete effacement of normal architectural features. The tumor cells were arranged in solid clusters or trabecular cords and showed greater pleomorphism and anaplasia than did the adenomas. The carcinomas showed only minimal invasion of adjacent soft tissue. There was a clear morphologic continuum from lesions classified as hyperplasia to those classified as carcinoma.

	Control	310 ppm	620 ppm
Hyperplasia			
Overall Rates	0/50 (0)%	6/50 (12%)	1/50 (2%)
Adenoma (a)			
Overall Rates	8/50 (16%)	8/50 (16%)	2/50 (4%)
Carcinoma (b)			
Overall Rates	1/50 (2%)	8/50 (16%)	5/50 (10%)
Adjusted Rates	3.0%	22.2%	16.0%
Terminal Rates	1/33 (3%)	5/30 (17%)	2/20 (10%)
Week of First Observation	104	60	42
Life Table Tests	P = 0.041	P = 0.016	P = 0.053
Incidental Tumor Tests	P = 0.171	P=0.018	P = 0.166
Adenoma or Carcinoma (c)			
Overall Rates	9/50 (18%)	16/50 (32%)	7/50 (14%)
Adjusted Rates	25.2%	43.6%	22.5%
Terminal Rates	7/33 (21%)	11/30 (37%)	3/20 (15%)
Week of First Observation	95	60	42
Life Table Tests	P = 0.356	P = 0.062	P = 0.496
Incidental Tumor Tests	P = 0.366N	P = 0.086	P = 0.379N

TABLE 16. ANALYSIS OF PREPUTIAL GLAND LESIONS IN MALE RATS IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE

(a) Historical incidence at study laboratory (mean): 2/150 (1%); historical incidence in NTP studies: 57/1,937 (3%)
(b) Historical incidence of carcinomas or adenocarcinomas (combined) at study laboratory (mean): 3/150 (2%); historical incidence in NTP studies: 66/1,937 (3%)

(c) Historical incidence of adenomas, adenocarcinomas, or carcinomas (combined) at study laboratory (mean): 5/150 (3%); historical incidence in NTP studies: 123/1,937 (6%)

Testis: Degeneration was observed at increased incidences in dosed male rats (control, 12/50; low dose, 49/50; high dose, 47/50; P < 0.001). The lesion was usually bilateral and diffuse in dosed male rats; the lesion in control rats was often unilateral and associated with interstitial cell tumors. The degeneration was characterized by variable atrophy of the germinal epithelium and lack of spermatogenesis within the seminiferous tubules. Multinucleated giant cells were sometimes present in the lumina of seminiferous tubules. The administration of nitrofurazone was also associated with a significant decrease in the incidence of testicular interstitial cell tumors (Table 17).

Hematopoietic System: Mononuclear cell leukemia in male and female rats occurred with significant negative trends; the incidences of leukemia in high dose males and dosed females were significantly lower than those in controls (Table 18).

TABLE 17.	ANALYSIS OF	TESTICULAR	LESIONS IN	MALE RA	ATS IN '	THE T	WO-YEAR	FEED	STUDY
			OF NITROF	URAZONE	5				

	Control	310 ppm	620 ppm
Interstitial Cell Hyperplasia			<u> </u>
Overall Rates	2/50 (4%)	2/50 (4%)	7/50 (14%)
Interstitial Cell Tumor (a)			
Overall Rates	45/50 (90%)	30/50 (60%)	28/50 (56%)
Adjusted Rates	100.0%	74.4%	86.8%
Terminal Rates	33/33 (100%)	20/30 (67%)	16/20 (80%)
Week of First Observation	75	67	75
Life Table Tests	P = 0.352N	P = 0.022N	P = 0.495N
Incidental Tumor Tests	P = 0.005N	P<0.001N	P = 0.007 N

(a) Historical incidence at study laboratory (mean \pm SD): 133/150 (89% \pm 6%); historical incidence in NTP studies: 1,681/1,909 (88% \pm 7%)

TABLE 18. ANALYSIS OF MONONUCLEAR CELL LEUKEMIA IN RATS IN THE TWO-YEAR FEEDSTUDIES OF NITROFURAZONE

	Control	310 ppm	620 ppm
MALE (a)	-,		<u></u>
Overall Rates	21/50 (42%)	23/50 (46%)	6/50 (12%)
Adjusted Rates	50.8%	55.5%	21.2%
Terminal Rates	13/33 (39%)	12/30 (40%)	1/20 (5%)
Week of First Observation	88	88	92
Life Table Tests	P = 0.068N	P=0.334	P = 0.041 N
Incidental Tumor Tests	P = 0.001 N	P = 0.388	P = 0.001 N
FEMALE (b)			
Overall Rates	15/49 (31%)	2/50 (4%)	2/50 (4%)
Adjusted Rates	40.8%	4.5%	6.5%
Terminal Rates	7/28 (25%)	0/37 (0%)	2/31 (6%)
Week of First Observation	87	67	104
Life Table Tests	P<0.001N	P<0.001N	P<0.001N
Incidental Tumor Tests	P<0.001N	P<0.001N	P<0.001N

(a) Historical incidence of leukemia at study laboratory (mean \pm SD): 71/150 (47% \pm 3%); historical incidence in NTP studies: 586/1,937 (30% \pm 12%)

(b) Historical incidence of leukemia at study laboratory (mean \pm SD): 41/149 (28% \pm 2%); historical incidence in NTP studies: 378/1,984 (19% \pm 7%)

FOURTEEN-DAY STUDIES

All mice that received 2,500, 5,000, or 10,000 ppm nitrofurazone and 3/5 males that received 1,250 ppm died before the end of the studies (Table 19). All dosed groups except the 630-ppm female group lost weight. Feed consumption

relative to that of the controls was reduced in all but the two lowest dose male groups and the lowest dose female group. All dosed animals had rough hair coats and convulsive seizures. No compound-related histopathologic effects were observed.

TABLE 19. SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE FOURTEEN-DAY FEED STUDIES OF NITROFURAZONE

		Mean l	Body Weights	(grams)	Final Weight Relative	Fee	d Con-
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)		tion (d) Week 2
MALE						·	
0	5/5	24.5 ± 0.9	25.4 ± 1.0	$+0.9 \pm 0.3$		2.9	3.1
630	5/5	25.9 ± 1.2	24.4 ± 1.1	-1.5 ± 1.1	96.1	3.4	3.0
1,250	(e) 2/5	26.3 ± 1.3	24.9 ± 0.4	-2.5 ± 0.2	98.0	2.9	3.3
2,500	(f) 0/5	25.9 ± 0.9	(g)	(g)	(g)	1.9	1.9
5,000	(h) 0/5	26.3 ± 0.3	(g)	(g)	(g)	0.9	0.9
10,000	(i) 0/5	25.2 ± 0.5	(g)	(g)	(g)	0.6	(g)
FEMALE							
0	5/5	20.7 ± 0.7	21.7 ± 0.7	$+1.0 \pm 0.1$		3.1	3.0
630	5/5	21.7 ± 0.6	22.1 ± 0.5	$+0.4 \pm 0.2$	101.8	3.1	2.9
1,250	5/5	20.3 ± 0.4	16.7 ± 1.1	-3.6 ± 0.9	77.0	2.7	1.8
2,500	(j) 0/5	21.0 ± 0.5	(g)	(g)	(g)	1.6	1.4
5,000	(k) 0/5	19.9 ± 0.5	(g)	(g)	(g)	0.8	0.3
10,000	(1) 0/5	20.9 ± 0.4	(g)	(g)	(g)	0.3	(g)

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Grams per animal per day; not corrected for scatter.

(e) Day of death: 8,8,12

(f) Day of death: 10,12,12,12,12

(g) No data are reported due to 100% mortality in this group.

(h) Day of death: 7,7,9,10,10

(i) Day of death: all 5

(j) Day of death: 6,7,10,10,11

(k) Day of death: 6,7,7,8,9

(1) Day of death: all 6

THIRTEEN-WEEK STUDIES

Six of 10 males and 9/10 females that received 1,250 ppm and 3/10 males and 5/10 females that received 620 ppm died before the end of the studies (Table 20). The final mean body weight of the 5/20 surviving mice that received 1,250 ppm was 21% lower than that of the controls. The liver weight to body weight ratio for male mice that received 620 or 1,250 mg/kg was significantly greater than that for the controls (Table 21). The liver weight to body weight ratios for male and female mice that received 70 mg/kg and for female mice that received 150 mg/kg were significantly lower than those for controls. Hyperexcitability and convulsive seizures were observed for all mice that received at least 620 ppm nitrofurazone. Testicular hypoplasia of mild to moderate severity was observed in 8/10 males that received 1,250 ppm and in 9/10 that received 620 ppm.

Dose Selection Rationale: Because of the incidence of deaths, lower weight gain, and seizures at higher concentrations, dietary concentrations of nitrofurazone selected for mice for the 2-year studies were 150 and 310 ppm.

 TABLE 20.
 SURVIVAL, MEAN BODY WEIGHTS, AND FEED CONSUMPTION OF MICE IN THE

 THIRTEEN-WEEK FEED STUDIES OF NITROFURAZONE

			Body Weight	s (grams)	Final Weight Relative	e Feed	l Con-
Concentration (ppm)	Survival (a)	Initial (b)	Final	Change (c)	to Controls (percent)		tion (d) Week 13
MALE							
0	10/10	19.5 ± 0.3	31.7 ± 0.8	$+12.2 \pm 0.6$		3.4	2.9
70	10/10	19.2 ± 0.3	30.9 ± 1.0	$+11.7 \pm 1.0$	97.5	3.5	3.1
150	10/10	19.8 ± 0.3	30.9 ± 0.6	$+11.1 \pm 0.5$	97.5	3.5	3.1
310	10/10	19.9 ± 0.3	32.8 ± 1.0	$+12.9 \pm 0.8$	103.5	3.8	3.4
620	(e)7/10	19.9 ± 0.3	29.9 ± 1.1	$+10.1 \pm 1.2$	94.3	3.3	3.6
1,250	(f) 4/10	19.7 ± 0.3	24.9 ± 1.6	$+4.7 \pm 1.6$	78.5	2.9	2.4
FEMALE							
0	10/10	16.3 ± 0.3	25.3 ± 0.6	$+9.0 \pm 0.4$		3.2	3.0
70	10/10	16.8 ± 0.3	25.1 ± 0.6	$+8.3 \pm 0.6$	99.2	3.0	3.1
150	10/10	16.2 ± 0.4	25.2 ± 0.7	$+9.0 \pm 0.9$	99.6	2.9	3.1
310	10/10	16.6 ± 0.3	23.3 ± 0.4	$+6.7 \pm 0.3$	92.1	3.4	3.2
620	(g) 5/10	15.9 ± 0.3	25.1 ± 1.3	$+9.1 \pm 1.4$	99.2	2.6	3.2
1,250	(h) 1/10	16.3 ± 0.5	20.1	+2.6	79.4	3.2	3.2

(a) Number surviving/number initially in the group

(b) Initial mean group body weight \pm standard error of the mean. Subsequent calculations are based on those animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Grams per animal per day; not corrected for scatter.

(e) Week of death: 3,11,12

(f) Week of death: 3,3,3,3,3,4

(g) Week of death: 4,7,9,10,12

(h) Week of death: 2,3,3,4,4,4,4,6,9

Concentration (ppm)	No. of Animals Examined	Final Body Weight (grams)	Liver Weight (mg)	Liver Weight/Final Body Weight (mg/g)
MALE		<u> </u>		
0	10	31.7 ± 0.8	$1,306 \pm 74$	41.5 ± 2.61
70	10	30.9 ± 1.0	(b) $1,071 \pm 34$	(b) 34.7 ± 0.61
150	10	30.9 ± 0.6	1.145 ± 28	37.0 ± 0.33
310	10	32.8 ± 1.0	$1,488 \pm 46$	45.4 ± 0.76
620	7	29.9 ± 1.1	(c) $1,647 \pm 90$	(c) 55.2 ± 2.86
1,250	(d) 4	(c) 24.9 ± 1.6	$1,523 \pm 29$	(c) 57.6 ± 0.44
FEMALE				
0	10	25.3 ± 0.6	$1,179 \pm 74$	46.9 ± 2.97
70	10	25.1 ± 0.6	(c) 891 ± 28	(c) 35.5 ± 1.01
150	10	25.2 ± 0.7	(b) 998 ± 48	(b) 39.5 ± 1.48
310	10	23.3 ± 0.4	$1,204 \pm 36$	51.6 ± 1.25
620	5	25.1 ± 1.3	$1,240 \pm 50$	49.9 ± 2.68
1,250	(e) 1	20.1	1,220	60.7

TABLE 21.	ANALYSIS OF LIVER	WEIGHTS OF MICE IN	N THE THIRTEEN-WEEK FEED STUDIES OF
		NITROFURAZO	ONE (a)

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955).

(b) P < 0.05

(c) P < 0.01

(d) One liver weight not taken; ratio is based on the remaining three animals.

(e) Not included in statistical analysis

TWO-YEAR STUDIES

Body Weights, Feed Consumption, and Clinical Signs

Mean body weights of dosed mice were comparable to or greater than those of the controls throughout most of the studies (Table 22 and Figure 5). The average daily feed consumption by low dose and high dose male mice was 100% and 105% that of the controls and by low dose and high dose female mice, 97% that of the controls (Appendix G, Tables G3 and G4). The average amount of nitrofurazone consumed per day was approximately 16 or 33 mg/kg for low or high dose female mice.

Stimulus-sensitive seizures of short duration

were seen primarily during the first year, beginning at weeks 4 and 5 for high dose male and female mice and at week 24 for low dose female mice. The seizures were usually initiated by the auditory and tactile stimuli created by cage changing and weighing activities. The episodes were characterized by about 10 seconds of convulsive seizures that began with the animal either sitting or lying down and with eyes partially closed. When animals were in the sitting position, some facial preening motions were noted which faded into a steady, tense stance followed by trembling that became severe enough to cause the animal to fall over. Seizure episodes averaged 10 seconds and lasted up to 34 seconds. Episodes ended as the tremulous activity subsided and righting reflexes began. Postseizure signs usually included a lethargic period followed by a prolonged period of hyperexcitability.

on Av. Wt. Study (grams) S 1 23.0 2 25.0 3 25.5 4 27.0 6 28.7 7 29.8 7 29.8 8 29.5 9 29.4 10 30.3 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 22 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 37.1 93 38.5 989 37.1 93 38.5 98 102 39.4 104 39.6 FEEMALE 1 17.7 2 19.5 102 39.4 104 39.6 7 </th <th>No. of</th> <th></th> <th>1<u>50 ppm</u></th> <th></th> <th></th> <th>310 ppm</th> <th></th>	No. of		1 <u>50 ppm</u>			310 ppm	
1 23.0 2 25.0 3 25.5 4 27.0 5 27.0 6 28.7 7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 36.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5	Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors	Av. Wt. (grams)	Wt. (percent of controls)	No. of Survivors
2 25.0 3 25.5 4 27.0 5 27.0 6 28.7 7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 4 20.9 5 21.5 6 22.6 7 23.3							
3 25.5 4 27.0 5 27.0 6 28.7 7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 72 37.9 77 39.1 80 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8	50	22.3	97	50	23.2	101	50
4 27.0 5 27.0 6 28.7 7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 <td>50</td> <td>24.6</td> <td>98</td> <td>50</td> <td>25.1</td> <td>100</td> <td>50</td>	50	24.6	98	50	25.1	100	50
5 27.0 6 28.7 7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 <td>50 50</td> <td>25.6 27.5</td> <td>100 102</td> <td>50 50</td> <td>26.1 26.9</td> <td>102 100</td> <td>50 50</td>	50 50	25.6 27.5	100 102	50 50	26.1 26.9	102 100	50 50
7 29.8 8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEEMALEE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 </td <td>50</td> <td>27.3</td> <td>101</td> <td>48</td> <td>28.2</td> <td>104</td> <td>50</td>	50	27.3	101	48	28.2	104	50
8 29.5 9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.7	50	29.0	101	44	29.2	102	50
9 29.4 10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8	50	30.5 29.7	102 101	44	30.9	104 101	50
10 30.3 11 30.7 12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEEMALEE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.7 10 23.4 11 24.2<	50 50	30.7	101	44 44	29.8 31.0	101	50 50
12 31.7 13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 <t< td=""><td>49</td><td>30.7</td><td>101</td><td>44</td><td>30.8</td><td>102</td><td>50</td></t<>	49	30.7	101	44	30.8	102	50
13 32.3 20 33.0 23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 <td>49</td> <td>31.0</td> <td>101</td> <td>44</td> <td>31.5</td> <td>103</td> <td>50</td>	49	31.0	101	44	31.5	103	50
20 33.0 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 84 39.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FFEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11	49 49	32.1 31.5	101 98	44 44	32.3 32.1	102 99	50 49
23 34.3 28 35.9 33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 <td>49</td> <td>33.1</td> <td>100</td> <td>44</td> <td>33.1</td> <td>100</td> <td>45</td>	49	33.1	100	44	33.1	100	45
33 36.4 37 37.3 42 37.1 46 38.6 49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 24.33.6 46 45 37.1<	49	34.3	100	43	35.2	103	44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	35.7	99	43	36.8	103	44
42 37.1 46 38.6 49 36.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 46 34.9 <td>49 49</td> <td>35.8 36.4</td> <td>98 98</td> <td>42 42</td> <td>37.0 38.2</td> <td>102 102</td> <td>43 43</td>	49 49	35.8 36.4	98 98	42 42	37.0 38.2	102 102	43 43
49 38.3 54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 <td>49</td> <td>36.4</td> <td>98</td> <td>42</td> <td>38.3</td> <td>103</td> <td>42</td>	49	36.4	98	42	38.3	103	42
54 39.2 58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 46 34.9 49 35.7 54 37.1 58 37.3 <td>49</td> <td>38.1</td> <td>99</td> <td>42</td> <td>39.6</td> <td>103</td> <td>41</td>	49	38.1	99	42	39.6	103	41
58 39.0 64 38.7 68 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 24.8 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 24.8 37.1 58 37.3	49 49	38.8 38.8	101 99	41 40	40.4 39.5	105 101	41 40
64 38.7 66 38.3 72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 39.2 <td>49</td> <td>39.1</td> <td>100</td> <td>40</td> <td>39.9</td> <td>101</td> <td>40</td>	49	39.1	100	40	39.9	101	40
72 37.9 77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.8 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 28 31.0 33 31.1 37 32.3 44 38.6 46 34.9 49 35.7 <td>49</td> <td>38.7</td> <td>100</td> <td>40</td> <td>40.0</td> <td>103</td> <td>40</td>	49	38.7	100	40	40.0	103	40
77 39.1 80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 <td>47</td> <td>38.6</td> <td>101</td> <td>40</td> <td>39.1</td> <td>102</td> <td>40</td>	47	38.6	101	40	39.1	102	40
80 38.9 84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 <td>47 47</td> <td>39.0 39.6</td> <td>103 101</td> <td>40 40</td> <td>40.2 40.2</td> <td>106 103</td> <td>40 40</td>	47 47	39.0 39.6	103 101	40 40	40.2 40.2	106 103	40 40
84 39.9 89 37.1 93 38.5 98 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4 <td>46</td> <td>39.0</td> <td>101</td> <td>40</td> <td>39.2</td> <td>103</td> <td>40</td>	46	39.0	101	40	39.2	103	40
93 38.5 96 39.1 102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	45	39.2	98	38	40.0	100	40
96 39.1 102 39.4 104 39.6 FEMALE	45	37.6	101	36	38.0	102	36
102 39.4 104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	44 42	37.7 36.7	98 94	36 35	37.6 38.2	98 98	33 29
104 39.6 FEMALE 1 1 17.7 2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	40	37.6	95	32	38.6	98	23
	39	38.1	96	31	38.6	97	27
2 19.5 3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 24 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4							
3 19.9 4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 39.0 72 39.0 77 39.6 80 39.2 84 40.4	50 50	17.9 19.6	101 101	50 50	17.6 18.9	99 97	50 50
4 20.9 5 21.5 6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	19.5	98	50	19.9	100	50
6 22.6 7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	20.5	98	50	21.1	101	50
7 23.3 8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 28 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	21.5	100	50	21.1	98	50
8 23.5 9 23.7 10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50 50	22.8 23.1	101 99	50 50	22.5 22.8	100 98	50 50
10 23.4 11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	23.9	102	50	23.2	99	50
11 24.2 12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	24.3	103	50	23.9	101	50
12 24.8 13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50 50	24.5 24.4	105 101	50 50	23.9 24,2	102 100	49 49
13 25.7 20 27.3 23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	24.4	101	50	24.2	98	49
23 28.6 28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	25.8	100	50	25.3	98	49
28 31.0 33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	27.1	99	50	26.5	97	49
33 31.1 37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50 50	28.1 29.6	98 95	50 50	27.7 29.4	97 95	49 47
37 32.3 42 33.6 46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	29.8 30.7	96	50	29.4	95	47
46 34.9 49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	30.7	95	50	31.4	97	47
49 35.7 54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50 50	32.6 32.8	97 94	50 49	32.8 34.1	98 98	46 46
54 37.1 58 37.3 64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	34.8	97	49	35.9	101	46
64 37.9 68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	50	35.7	96	49	37.2	100	46
68 38.2 72 39.0 77 39.6 80 39.2 84 40.4	49 49	36.6 37.4	98 99	49 49	35.9 37.2 38.4 39.7	103 105	46 46
72 39.0 77 39.6 80 39.2 84 40.4	49	38,6	101	49	40.5	106	46
77 39.6 80 39.2 84 40.4	49	39.3	101	49	41.5	106	46
84 40.4	49	41.1	104	49	42.1	106	46
	49 49	41.5 42.1	106 104	49 48	42.3 43.5	108 108	46 44
	43	41.3	104	48	41.9	106	42
93 40.3	44	41.8	104	45	41.9 42.5	105	41
98 41.7	42	42.5	102	42	44.1	106 102	36 36
102 42.7 104 42.7	39 39	43.0 42.6	101 100	40 40	43.5 43.3	102	35

TABLE 22. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

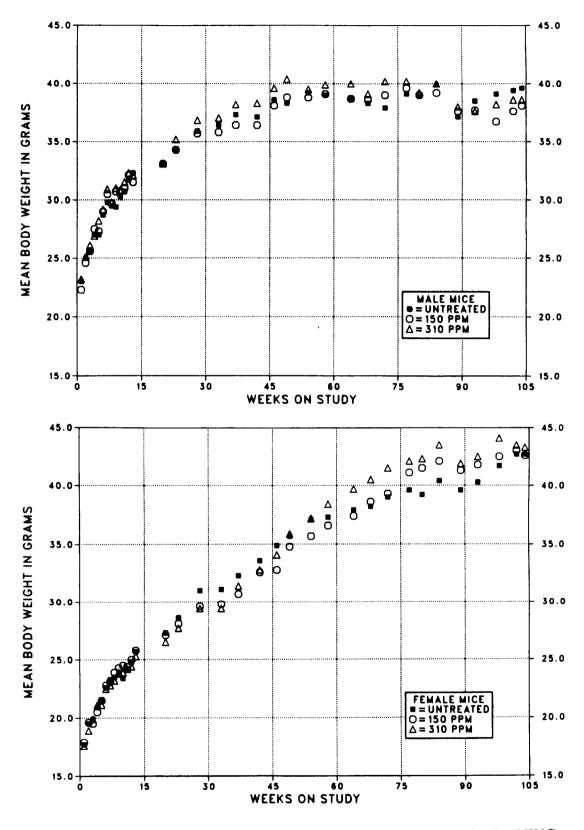


FIGURE 5. GROWTH CURVES FOR MICE FED DIETS CONTAINING NITROFURAZONE FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice fed diets containing nitrofurazone at the concentrations used in these studies and for controls are shown in Table 23 and in the Kaplan and Meier curves in Figure 6. The survival of the high dose group of male mice was significantly lower than that of the controls after week 88. No other significant differences in survival were observed between any groups of either sex. Three low dose males in each of two separate cages died during weeks 5 and 6, probably as a result of fighting.

TABLE 23. SURVIVAL OF MICE IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE

	Control	150 ppm	310 ppm
MALE (a)	**************************************		
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	10	19	23
Accidentally killed	1	0	0
Killed at termination	39	31	27
Survival P values (c)	0.008	0.057	0.007
FEMALE (a)			
Animals initially in study	50	50	50
Nonaccidental deaths before termination (b)	11	10	14
Accidentally killed	0	0	1
Killed at termination	39	40	35
Survival P values (c)	0.448	0.974	0.529

(a) Terminal-kill period: week 104

(b) Includes animals killed in a moribund condition

(c) The result of the life table trend test is in the control column, and the results of the life table pairwise comparisons with the controls are in the dosed columns.

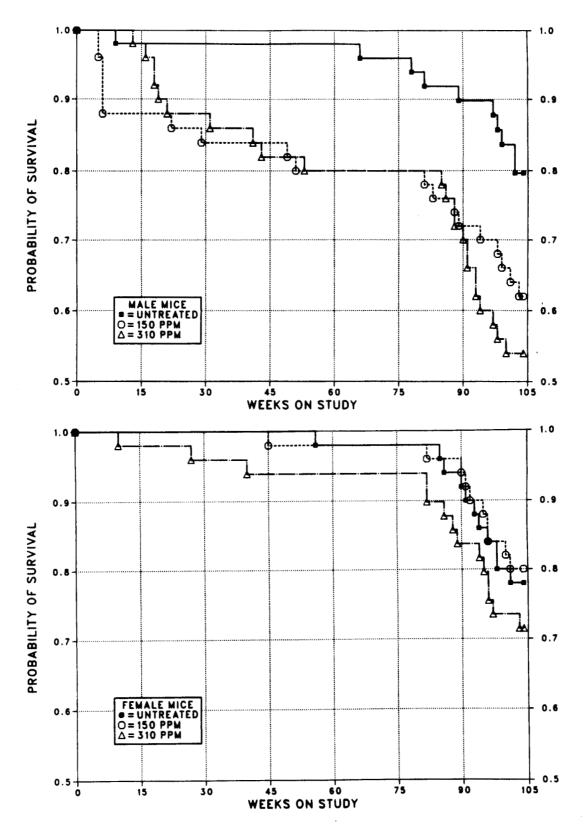


FIGURE 6. KAPLAN-MEIER SURVIVAL CURVES FOR MICE FED DIETS CONTAINING NITROFURAZONE FOR TWO YEARS

Pathology and Statistical Analyses of Results

This section describes the significant or noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions of the ovary, circulatory system, integumentary system, liver, anterior pituitary gland, and kidney.

Lesions in male mice are summarized in Appendix C. Histopathologic findings on neoplasms are summarized in Table C1. Table C2 gives the survival and tumor status for individual male mice. Table C3 contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Table C3 (footnotes). Historical incidences of tumors in control male mice are listed in Table C4. Findings on nonneoplastic lesions are summarized in Table C5.

Lesions in female mice are summarized in Appendix D. Histopathologic findings on neoplasms are summarized in Table D1. Table D2 gives the survival and tumor status for individual female mice. Table D3 contains the statistical analyses of those primary tumors that occurred with an incidence of at least 5% in one of the three groups. The statistical analyses used are discussed in Chapter II (Statistical Methods) and Table D3 (footnotes). Historical incidences of tumors in control female mice are listed in Table D4. Findings on nonneoplastic lesions are summarized in Table D5.

Ovary: Ovarian atrophy and tubular cell hyperplasia were observed at increased incidences (P < 0.001) in dosed female mice (ovarian atrophy: control, 7/47; low dose, 44/50; high dose, 38/50; tubular cell hyperplasia: 1/47; 23/50; 21/50). Benign mixed tumors, granulosa cell tumors, and granulosa cell tumors or luteomas (combined) occurred with significant positive trends; the incidences of benign mixed tumors in dosed female mice and granulosa cell tumors in high dose female mice were significantly greater than those in the controls (Table 24).

The ovarian atrophy and tubular cell hyperplasia were characterized by variable reduction in size of the ovaries, loss of graafian follicles and associated theca cells, and branching tubular downgrowth of the cuboidal cells lining the surface of the ovary (modified mesothelium).

Tumors classified as benign mixed tumors consisted of variable amounts of cuboidal cells arranged in complex branching tubular structures. apparently arising from the surface mesothelium, and interspersed stroma. The stromal cells had scant cytoplasm and contained fusiform or round nuclei with dense chromatin patterns. In some tumors, the stromal cells contained fine cytoplasmic vacuoles characteristic of lipid accumulation. The few tumors classified as tubular cell adenomas consisted primarily of the branching tubular component seen in the mixed tumors. Mixed tumors and tubular adenomas constitute a morphologic spectrum and are classified according to the extent of stromal proliferation.

The granulosa cell tumors consisted predominantly of granulosa cells arranged in follicular, glandular, or tubular patterns. Enlargement of granulosa cells with the accumulation of pale eosinophilic vacuoles (luteinization) occurred in some tumors. The luteomas were composed primarily of similarly luteinized cells and may be derived from granulosa or theca cells.

Circulatory System: Hemangiomas or hemangiosarcomas (combined) in male mice occurred with a significant positive trend (control, 1/50; low dose, 0/50; high dose, 4/50; P=0.049, life table test); the incidences in the dosed groups were not significantly greater than that in the controls.

	Control	150 ppm (b)	310 ppm (b)
Granulosa Cell Hyperplasia			<u>,</u>
Overall Rates	1/47 (2%)	0/50 (0%)	1/50 (2%)
Franulosa Cell Tumor			
Overall Rates	1/47 (2%)	4/50 (8%)	9/50 (18%)
Adjusted Rates	2.6%	10.0%	23.9%
Terminal Rates	1/39 (3%)	4/40 (10%)	7/35 (20%)
Week of First Observation	104	104	88
Life Table Tests	P = 0.003	P = 0.187	P = 0.007
Incidental Tumor Tests	P = 0.004	P = 0.187	P=0.009
Luteoma			
Overall Rates	2/47 (4%)	2/50 (4%)	0/50 (0%)
Granulosa Cell Tumor or Luteoma (c))		
Overall Rates	3/47 (6%)	6/50 (12%)	9/50 (18%)
Adjusted Rates	7.7%	14.5%	23.9%
Terminal Rates	3/39 (8%)	5/40 (13%)	7/35 (20%)
Week of First Observation	104	96	88
Life Table Tests	P = 0.030	P = 0.257	P = 0.043
Incidental Tumor Tests	P=0.039	P = 0.267	P=0.055
Fubular Cell Hyperplasia			
Overall Rates	1/47 (2%)	23/50 (46%)	21/50 (42%)
Fubular Cell Adenoma			
Overall Rates	0/47 (0%)	2/50 (4%)	0/50 (0%)
Benign Mixed Tumor			
Overall Rates	0/47 (0%)	17/50 (34%)	20/50 (40%)
Adjusted Rates	0.0%	41.4%	55.5%
Terminal Rates	0/39 (0%)	16/40 (40%)	19/35 (54%)
Week of First Observation		96	97
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001
Fubular Cell Adenoma or Benign Miz			
Overall Rates	0/47 (0%)	18/50 (36%)	20/50 (40%)
Adjusted Rates	0.0%	43.8%	55.5%
Terminal Rates	0/39 (0%)	17/40 (43%)	19/35 (54%)
Week of First Observation	• •	96	97
Life Table Tests	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests	P<0.001	P<0.001	P<0.001

TABLE 24. ANALYSIS OF OVARIAN LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (a)

(a) The statistical analyses used are discussed in Chapter II (Statistical Methods) and Appendix D, Table D3 (footnotes).
(b) The estimated dose in milligrams per kilograms per day is given in Chapter III (Body Weights, Feed Consumption, and Clinical Signs) and in Appendix G.

(c) Historical incidence of granulosa cell tumors or luteomas (combined) at study laboratory (mean): 0/134; historical incidence in NTP studies: 8/1,858 (0.4%)

(d) Historical incidence of benign mixed tumors or tubular cell adenomas (combined) at study laboratory (mean): 0/134; historical incidence in NTP studies: 5/1,858 (0.3%)

Integumentary System: Subcutaneous tissue fibromas, sarcomas, fibrosarcomas, and neurofibrosarcomas in male mice occurred with significant positive trends by the life table test (Table 25). The incidence of fibromas, sarcomas, fibrosarcomas, or neurofibrosarcomas (combined) in high dose male mice was significantly greater than that in the controls by the life table test. However, neither of these increases was significant by the incidental tumor test, which is the more appropriate test for these generally nonfatal neoplasms.

Liver: The incidence of hepatocellular adenomas or carcinomas (combined) in high dose male mice

was significantly lower than that in the controls by the incidental tumor test (Table 26).

Anterior Pituitary Gland: Adenomas and adenomas or carcinomas (combined) in female mice occurred with significant negative trends; the incidences in the high dose group were significantly lower than those in the controls (Table 27).

Kidney: Mineralization was observed at increased incidences in dosed male mice (male: control, 1/50; low dose, 3/49; high dose, 8/50; female: 2/50; 0/7; 3/50).

TABLE 25.	ANALYSIS OF SUBCUTANEOUS TISSUE TUMORS IN MALE MICE IN THE TWO-YEAR
	FEED STUDY OF NITROFURAZONE

	Control	150 ppm	310 ppm
Fibroma	<u></u>		
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)
Fibrosarcoma			
Overall Rates	2/50 (4%)	3/50 (6%)	5/50 (10%)
Fibroma or Fibrosarcoma			
Overall Rates	2/50 (4%)	3/50 (6%)	6/50 (12%)
Adjusted Rates	4.7%	8.9%	18.5%
Terminal Rates	0/39 (0%)	2/31 (6%)	2/27 (7%)
Week of First Observation	97	88	86
Life Table Tests	P = 0.039	P = 0.402	P = 0.057
Incidental Tumor Tests	P=0.119	P=0.519	P=0.159
Sarcoma			
Overall Rates	1/50 (2%)	0/50 (0%)	1/50 (2%)
Neurofibrosarcoma			
Overall Rates	0/50 (0%)	0/50 (0%)	1/50 (2%)
Sarcoma, Fibrosarcoma, or Neurofibr	rosarcoma		
Overall Rates	3/50 (6%)	3/50 (6%)	7/50 (14%)
Adjusted Rates	6.9%	8.9%	20.8%
Terminal Rates	0/39 (0%)	2/31 (6%)	1/27 (4%)
Week of First Observation	97	88	86
Life Table Tests	P = 0.044	P = 0.557	P = 0.064
Incidental Tumor Tests	P = 0.140	P = 0.653N	P = 0.172
Fibroma, Sarcoma, Fibrosarcoma, or	Neurofibrosarcoma (a)		
Overall Rates	3/50 (6%)	3/50 (6%)	8/50 (16%)
Adjusted Rates	6.9%	8.9%	23.8%
Terminal Rates	0/39 (0%)	2/31 (6%)	2/27 (7%)
Week of First Observation	97	88	86
Life Table Tests	P = 0.021	P = 0.557	P = 0.034
Incidental Tumor Tests	P = 0.070	P = 0.653N	P=0.084

(a) Historical incidence of fibromas, neurofibromas, sarcomas, fibrosarcomas, or neurofibrosarcomas (combined) at study laboratory (mean \pm SD): 16/150 (11% \pm 14%); historical incidence in NTP studies: 160/2,040 (8% \pm 8%)

	Control	150 ppm	310 ppm
Adenoma			
Overall Rates	9/50 (18%)	6/49 (12%)	2/50 (4%)
Carcinoma			
Overall Rates	8/50 (16%)	9/49 (18%)	4/50 (8%)
Adenoma or Carcinoma (a)			
Overall Rates	16/50 (32%)	15/49 (31%)	5/50 (10%)
Adjusted Rates	36.8%	43.8%	17.7%
Terminal Rates	12/39 (31%)	12/31 (39%)	4/27 (15%)
Week of First Observation	66	83	97
Life Table Tests	P = 0.072N	P = 0.380	P = 0.062N
Incidental Tumor Tests	P = 0.007 N	P = 0.382	P = 0.031 N

TABLE 26. ANALYSIS OF HEPATOCELLULAR TUMORS IN MALE MICE IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE

(a) Historical incidence at study laboratory (mean \pm SD): 52/150 (35% \pm 4%); historical incidence in NTP studies: 609/2,032 (30% \pm 8%)

TABLE 27. ANALYSIS OF ANTERIOR PITUITARY GLAND TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Control	150 ppm	310 ppm
Adenoma			
Overall Rates	9/50 (18%)	5/50 (10%)	2/49 (4%)
Adjusted Rates	22.4%	12.5%	5.7%
Terminal Rates	8/39 (21%)	5/40 (13%)	2/35 (6%)
Week of First Observation	96	104	104
Life Table Tests	P = 0.025N	P = 0.180N	P = 0.041 N
Incidental Tumor Tests	P = 0.026N	P = 0.187N	P = 0.043 N
Carcinoma			
Overall Rates	1/50 (2%)	2/50 (4%)	0/49 (0%)
Adenoma or Carcinoma (a)			
Overall Rates	10/50 (20%)	7/50 (14%)	2/49 (4%)
Adjusted Rates	24.1%	17.5%	5.7%
Terminal Rates	8/39 (21%)	7/40 (18%)	2/35 (6%)
Week of First Observation	93	104	104
Life Table Tests	P = 0.019N	P = 0.280N	P = 0.026N
Incidental Tumor Tests	P = 0.019N	P = 0.296N	P = 0.027 N

(a) Historical incidence at study laboratory (mean \pm SD): 26/146 (18% \pm 16%); historical incidence in NTP studies: 204/1,764 (12% \pm 10%)

Nitrofurazone, NTP TR 337

IV. DISCUSSION AND CONCLUSIONS

Studies of the toxicity and carcinogenicity of nitrofurazone were conducted in F344/N rats and B6C3F₁ mice of each sex. For the 2-year studies, nitrofurazone was administered in the diet at concentrations of 0, 310, or 620 ppm to rats and 0, 150, or 310 ppm to mice. The selection of these doses was based on results of 14-day and 13week studies.

In the 13-week studies, doses for rats of each sex were 0, 150, 310, 620, 1,250, or 2,500 ppm. None of the rats died, all animals gained weight, and decreases in weight gain and feed consumption were evident only at the two doses above 620 ppm. At the two highest doses, nitrofurazone produced hyperexcitability and seizures. Thus, for rats of each sex, nitrofurazone at 620 ppm and below had negligible effects on weight gain and feed intake and, with the exception of moderate testicular degeneration, did not show evidence of overt toxicity. Based on these findings, 310 ppm and 620 ppm were chosen as the dietary concentrations for the 2-year evaluation of nitrofurazone in rats of each sex.

The survival of male rats after 103 weeks of exposure to nitrofurazone at 620 ppm was twothirds that of controls and low dose animals. Feed consumption in the high dose group decreased throughout most of the study, and this was accompanied by lower body weights. The survival among all groups of female rats was comparable, but there was a dose-related decrease in body weight gain. In retrospect, somewhat lower doses might have been chosen for male rats. However, the doses for the 2-year studies were based primarily on chemical-associated convulsive seizures, weight gain, and survival in the 13-week studies. Furthermore, the depressed weight gain of dosed groups in the 2year studies did not become evident until after 4 months. Since survival of dosed females was not decreased and since 80% of high dose male rats survived for at least 90 weeks of exposure, these studies were considered to be adequate assessments of the long-term toxicity and carcinogenicity of nitrofurazone in male and female rats.

The long bones of male and female rats were observed for histopathologic effects in both the 13week and 2-year studies. It is uncertain if the osteoporosis observed in the 13-week studies was directly related to the administration of nitrofurazone. Since it was not observed in the 2-year studies in which weight gain was not depressed as severely as in the 13-week studies, it is possible that the osteoporosis occurred secondarily to the severe decrease in weight gain of the high dose groups in the 13-week studies.

Degenerative lesions of articular cartilage were also observed in the 2-year studies in rats. These lesions were microscopically evaluated at three sites: the vertebral and knee joints and the sternal synchondrosis. Although the arthropathy was observed in the control groups, increased incidences of the site-specific lesions of the vertebral and knee joints (see Table 13) indicate that these lesions were the result of nitrofurazone administration. Since examinations did not provide neurologic bases for the observed disturbed gait and muscle atrophy, it is likely that these were secondary to the degenerative lesions in the articular cartilage. The etiology of these lesions is unknown. They have been described as occurring in untreated F344 rats, but not as early as 90 days, and they were not severe enough to cause gait or motor disturbances (Yamasaki and Inui, 1985). Similar arthropathies have been described in young dogs after administration of nalidixic, oxolinic, or pipemidic acids. Although structurally unrelated to nitrofurazone, these three chemicals (fused ring Nalkyl-4-pyridone-3-carboxylic acids) are also used as antibiotics (Ingham et al., 1977; Gough et al., 1979).

Gonadal degeneration and atrophy were prominent findings in the 13-week and 2-year studies of nitrofurazone in rats. Testicular degeneration was characteristically bilateral and diffuse and accompanied by a lack of spermatogenesis. These lesions were reported previously by other investigators studying the toxicity of nitrofurazone (Montemurro, 1969; Miyaji, 1971; Hagenas et al., 1978), but the mechanism responsible for these findings is unknown.

The range of nitrofurazone doses used in the 13week studies in $B6C3F_1$ mice of each sex encompassed a no-apparent-effect level as well as levels that produced overt signs of toxicity, as evidenced by the occurrence of seizures, microscopic evidence of gonadal hypoplasia, and chemically related deaths. Feed consumption for mice was decreased only at the highest dose in males, and decreases in body weight were observed at the 620-ppm (males only) and 1,250-ppm doses. Gross lesions observed at necropsy did not provide evidence of any chemically affected organs. Testicular hypoplasia, judged not to be life threatening, was observed only at doses above 310 ppm. Although clinical signs of hyperexcitability and convulsive seizures were noted in both sexes at doses of 620 ppm and above, no histopathologic lesions were found which would account for this behavior. Thus, in the 13-week studies, the effects of nitrofurazone on mortality rate, clinical signs, feed consumption, and weight gain depression were comparable for male and female mice. Considered together, these observations indicated that doses of nitrofurazone not exceeding 310 ppm would be appropriate and compatible with long-term survival in the 2-year studies in $B6C3F_1$ mice of each sex.

Throughout most of the 2-year studies in mice, body weights and feed consumption of dosed and control animals were comparable. Convulsive seizures, seen in these studies, were reported in other toxicologic investigations of nitrofurazone in rodents (Krantz and Evans, 1945; Dodd, 1946). Furthermore, peripheral sensorimotor polyneuropathies were observed after administration of nitrofurazone and other nitrofurans to humans and animals (Karol, 1960; Lister and Fisher, 1970; Toole and Parrish, 1973). No histopathologic lesions were found to explain the seizures observed in the studies reported here.

Neoplastic Lesions

Results from the 2-year study provide substantial evidence that administration of nitrofurazone induces mammary gland fibroadenomas in female rats. Marked increases in incidence were seen in both dosed groups, although chemical exposure did not hasten the time to appearance of this neoplasm. The control incidence in this study (16%) was somewhat lower than the historical laboratory and NTP average (28%), but the incidences in both dosed groups were about 50% greater than the highest incidences observed in untreated historical control groups (Appendix B, Table B4a). This interpretation that nitrofurazone induced mammary gland neoplasms is consistent with observations reported by other investigators. Erturk et al. (1970) reported mammary gland fibroadenoma incidences of 2/29 and 22/29 in the control and dosed groups, respectively, in a study in which 30 female Sprague Dawley rats were fed diets containing 1,000 ppm of pure nitrofurazone for 46 weeks followed by 20 weeks of a control diet. Concurrent evaluation of equimolar concentrations of 2-furaldehyde semicarbazone revealed no difference in the incidences of mammary gland fibroadenomas in dosed groups compared with that in controls. Except for the absence of the nitro group, 2-furaldehyde is structurally identical to nitrofurazone. Therefore, this observation leads to the speculation that the nitro group is required for the induction of fibroadenomas by nitrofurazone.

Fibroadenomas are benign tumors that can progress to malignant epithelial or mesenchymal tumors. In observations from at least 1,100 rats of each strain, Van Zwieten (1984) reported carcinomas arising in mammary gland fibroadenomas at rates of 2.3% for WAG/Rij rats, 0.5% for BN/BiRij rats, and 2.1% for Sprague Dawley rats. Furthermore, a low incidence of carcinomas arising from fibroadenomas has also been observed in F344/N rats (Boorman et al., unpublished observations). Evidence of malignancy was also observed in mammary tissue from studies reported here. Therefore, these studies provide strong evidence of a marked increase in the incidence of benign tumors that can progress to malignancy.

Cells showing sebaceous differentiation predominated in four skin neoplasms found in high dose male rats and diagnosed as sebaceous adenomas; an additional neoplasm showing differentiation toward hair follicles was diagnosed as a trichoepithelioma. Because of their similar histogenesis, these were combined for evaluation. Since these neoplasms were not observed in the low dose groups (see Table 15), there was not a clear dose response, but the incidence of these neoplasms in the high dose male rats (5/50) exceeds the highest observed incidence in historical controls for studies at this laboratory (1/50) or at all NTP laboratories (4/50). The incidence of preputial gland carcinomas in low dose male rats, a group having a survival rate comparable to that of controls, was increased above that of concurrent and historical controls (see Table 16). Furthermore, 3/8 carcinomas were seen in the early-death low dose animals beginning at week 60. In high dose males, 3/5 carcinomas were observed earlier than week 80. In contrast, no preputial gland carcinomas were observed in the 17 early-death control animals. Considered together, these results suggest that nitrofurazone administration may have shortened the time to appearance of this neoplasm. Evidence supporting the conclusion that nitrofurazone caused the preputial gland neoplasms is lessened when the incidence of male rats with adenomas is considered. The combined incidence is the most appropriate value to use when comparing the incidences of preputial gland neoplasms in dosed and control groups because both lesions are derived from the same cell type: adenomas and carcinomas of the preputial gland represent a morphologic continuum, and distinctions between them are not easily quantifiable. The incidence of adenomas in the control group (16%) is well above the mean historical rate (3%) and, when combined with the carcinomas, does not strongly support an association between chemical exposure and these lesions in the dosed groups. Inflammation of the preputial gland was observed at incidences of 75% in all groups (Appendix A, Table A5), but the incidence of hyperplasia was increased above that of controls only in the low dose group. Nitrofurazone administration did not cause a response in the corresponding (clitoral) gland of female rats.

In view of the marginal responses in the sebaceous glands of the skin and preputial glands (modified sebaceous glands) observed in male rats in this study, it is of interest that the toxicologic assessment of a variety of nitrofurans showed an apparent positive correlation between their reported carcinogenicity in rodents (regardless of topography) and their ability to destroy sebaceous glands in mouse skin (Takizawa et al., 1975). Evidence of nitrofurazone-induced neoplasia in sebaceous glands has not been described in the literature.

The incidence of mesotheliomas of the tunica vaginalis in low dose male rats was increased

above the control incidence and exceeded the incidence in historical controls. The incidence of this neoplasm was not increased in the high dose group, possibly because of poor survival.

Results of the 2-year studies also included considerable evidence of nitrofurazone-induced atrophy, hyperplasia, and neoplasia in the ovaries of female mice. The incidences in both dosed groups were dose related and markedly above the historical control rates observed in NTP studies (Appendix D, Table D4a). Except for two neoplasms in the high dose group, all of these lesions were observed at week 104. Overall, the results indicate that nitrofurazone increased the incidence of granulosa cell tumors. No evidence of malignancy was observed in ovarian tissue from studies reported here; however, malignant granulosa cell tumors have been observed in this and other strains of mice (NTP, 1988; Beamer et al., 1985).

The ovaries of mice also exhibited a dose-dependent increase in the incidence of benign mixed tumors. This neoplasm has a low (0.3%) incidence in NTP studies and was absent in control animals, but it was observed at rates of 34% and 40% in the low and high dose groups (see Table 24). Most of these neoplasms were found in animals that lived to the end of the study. Tubular cell hyperplasia was observed in ovaries from almost half of the nitrofurazone-exposed mice but was seen in only one control animal. NTP data and observations of others (Lemon and Gubareva, 1979) support the view that tumors of the ovary are comparatively rare in untreated mice.

The ovarian neoplasms were observed at doses that were also associated with ovarian atrophy. Since the biologic behavior of ovarian tumors is thought to be influenced by pituitary gonadotropic hormones (Biskind and Biskind, 1944), it can be questioned whether the ovarian tumors were caused directly by the nitrofurazone or were influenced indirectly by alterations in hormonal status resulting from diminished follicle production. A negative trend in pituitary gland neoplasms was observed in female mice, and this trend may conceivably be an indication of a chemical-related interaction with the ovary/pituitary gland axis. At present, the role for gonadotropin involvement in the causation of ovarian tumors is unclear. Recent experimental evidence obtained with mice indicates that the presence of gonadotropins is necessary for normal follicular atresia processes including stromal luteinization after oocyte death, but the mere presence of gonadotropins was insufficient to stimulate adenoma formation (Tennent and Beamer, 1986; Beamer and Tennent, 1986).

The incidences of mesenchymal neoplasms (fibromas, fibrosarcomas, sarcomas, or neurofibrosarcomas) of subcutaneous tissue in male mice occurred with a positive trend. These neoplasms are combined for evaluation because of probable similar histogenesis and their common origin from fibroblasts. The incidence in high dose male mice was marginally increased compared with that in concurrent controls, and the incidence was within the range seen in historical controls for studies both at this laboratory and for all NTP studies (Appendix C, Table C4b). For these reasons, the increase in mesenchymal neoplasms of subcutaneous tissue is not considered to be chemical related.

Vascular neoplasms (hemangioma or hemangiosarcoma) in male mice occurred with a positive trend; the lesions were observed at different organ sites (Table C1). The incidence of these neoplasms in the high dose group (4/50) exceeded the highest incidence observed in historical controls from studies conducted by this laboratory but was within the overall range for historical controls at all NTP laboratories (Table C4a). Thus, the increased incidence of vascular neoplasms was not considered to be clearly related to chemical exposure.

The incidences of some neoplasms were decreased in these studies. The incidence of mononuclear cell leukemia was lower in high dose male rats and in dosed female rats than in controls (see Table 18). The decreased incidence in the high dose males is probably not due entirely to the poor survival of this group because a decreased incidence was also observed in high dose females, which had survival rates comparable to control values. The combined incidence of hepatocellular adenomas and carcinomas (10%) in high dose male mice was lower than the concurrent control value (30%) and was below the lowest incidence observed in historical controls (16%). Although the survival rate of the high

dose group at week 104 was lower than that of the controls (78% vs. 54%), hepatocellular neoplasms were first observed in the control group 31 weeks earlier than in the high dose group. These findings suggest that the decreased incidence of hepatocellular neoplasms may be related to chemical exposure. The incidences of testicular interstitial cell tumors were decreased in dosed male rats. Although survival was decreased in the high dose group, it is conceivable that the decreased tumor incidences may be chemically related because a similar decrease was also observed in dosed male rats in a study of the structurally related nitrofuran, nitrofurantoin (NTP, 1988). Survival of dosed rats was not decreased in that study.

Nitrofurazone is a gene mutagen in bacteria, requiring metabolism by either a bacterial nitroreductase or a eukaryotic cell enzyme system for expression of this mutagenic activity. In cultured mammalian cells, nitrofurazone is a clastogen as well as a gene mutagen in the absence of exogenous metabolic activation and is, therefore, either direct acting or is activated by enzymes functioning in established cell lines. Nitrofurazone has not been demonstrated to be mutagenic in vivo; however, these negative studies are limited to a sex-linked lethal study in Drosophila, a test for morphologically abnormal sperm in mice, and micronuclei studies in two rodent species (one rat and one mouse). Both micronuclei studies used doses of 30 mg/kg per day; mice were injected on 5 consecutive days (Bruce and Heddle, 1979), and rats were dosed twice (Goodman et al., 1977). In both studies, bone marrow sampling occurred within 6 hours of the final dosing, which effectively decreased the total dose by 30 mg/kg. The in vivo mutagenicity data are insufficient to assess whether the observed carcinogenicity of this chemical is related to its mutagenicity in vitro.

The experimental and tabulated data for the NTP Technical Report on nitrofurazone were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix I, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Conclusions: Under the conditions of these 2year feed studies, there was equivocal evidence of carcinogenic activity* of nitrofurazone for male F344/N rats as shown by the occurrence of sebaceous gland adenomas and trichoepitheliomas of the skin, mesotheliomas of the tunica vaginalis, and preputial gland tumors. There was clear evidence of carcinogenic activity of nitrofurazone for female F344/N rats as shown by a markedly increased incidence of fibroadenomas of the mammary gland. There was no evidence of carcinogenic activity for male B6C3F₁ mice fed diets containing nitrofurazone at concentrations of 150 or 310 ppm. There was clear evidence of carcinogenic activity of nitrofurazone for female $B6C3F_1$ mice as shown by increased incidences of benign mixed tumors and granulosa cell tumors of the ovary.

Administration of nitrofurazone was associated with decreased incidences of mononuclear cell leukemia in male and female rats, testicular interstitial cell tumors in male rats, and pituitary gland neoplasms in female mice. Convulsive seizures in mice of each sex, ovarian atrophy in female mice, testicular degeneration in rats, and degeneration of articular cartilage in rats were all associated with the administration of nitrofurazone.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 9.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on pages 12-13.

V. REFERENCES

1. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons Inc., pp. 362-365.

2. Baars, A.J.; Blijleven, W.G.H.; Mohn, G.R.; Nataragan, A.T.; Breimer, D.D. (1980) Preliminary studies on the ability of Drosophila microsomal preparations to activate mutagens and carcinogens. Mutat. Res. 72:257-264.

3. Beamer, W.; Tennent, B. (1986) Gonadotropin uptake in genetic and irradiation models of ovarian tumorigenesis. Biol. Reprod. 34:761-770.

4. Beamer, W.G.; Hoppe, P.C.; Whitten, W.K. (1985) Spontaneous malignant granulosa cell tumors in ovaries of young SWR mice. Cancer Res. 45:5575-5581.

5. Berenblum, I., Ed. (1969) Carcinogenicity Testing: A Report of the Panel on Carcinogenicity of the Cancer Research Commission of UICC, Vol. 2. Geneva: International Union Against Cancer.

6. Beutler, E. (1972) Glucose 6-phosphate dehydrogenase deficiency. Williams, W.; Beutler, E.; Erslev, A.; Rundles, R., Eds.: Hematology. New York: McGraw-Hill, pp. 391-399.

7. Biskind, M.; Biskind, G. (1944) Development of tumors in the rat ovary after transplantation into the spleen. Proc. Soc. Exp. Biol. Med. 55:176-179.

8. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

9. Bruce, W.R.; Heddle, J.A. (1979) The mutagenic activity of 61 agents as determined by the micronucleus, *Salmonella*, and sperm abnormality assays. Can. J. Genet. Cytol. 21:319-334.

10. Chemical Information Services, Ltd. (1973) Directory of West European Producers. Oceanside, New York. 11. Chin, J.B.; Sheinin, D.M.K.; Rauth, A.M. (1978) Screening for the mutagenicity of nitrogroup containing hypoxic cell radiosensitizers using *Salmonella typhimurium* strains TA 100 and TA 98. Mutat. Res. 58:1-10.

12. Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

13. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

14. Davis, J.R.; Firlit, C.F. (1965) Effect of glucose uptake of L-lysine-³H in cells of the seminiferous epithelium. Am. J. Physiol. 209:425.

15. Dodd, M.C. (1946) The chemotherapeutic properties of 5-nitro-2-furaldehyde semicarbazone (Furacin). J. Pharmacol. Exp. Ther. 86:311-323.

16. Dodd, M.C.; Stillman, W.B. (1944) The in vitro bacteriostatic action of some simple furan derivatives. J. Pharmacol. Exp. Ther. 82:11-18.

17. Dunnett, C.W. (1955) A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50:1096-1122.

18. Ebringer, L.; Bencova, M. (1980) Mutagenicity of nitrofuran drugs in bacterial systems. Folia Microbiol. 25:388-396.

19. Erturk, E.; Morris, J.E.; Cohen, S.M.; Price, J.M.; Bryan, G.T. (1970) Transplantable rat mammary tumors induced by 5-nitro-2-furaldehyde semicarbazone and by formic acid 2-[4-(5-nitro-2-furyl)-2-thiazolyl]hydrazide. Cancer Res. 30:1409-1412.

20. Galloway, S.M.; Bloom, A.D.; Resnick, M.; Margolin, B.H.; Nakamura, F.; Archer, P.; Zeiger, E. (1985) Development of a standard protocol for in vitro cytogenetic testing with Chinese hamster ovary cells: Comparison of results for 22 compounds in two laboratories. Environ. Mutagen. 7:1-51. 21. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

22. Goodman, D.R.; Hakkinen, P.J.; Nemenzo, J.H.; Vore, M. (1977) Mutagenicity evaluation of nitrofuran derivatives in *Salmonella typhimurium*, by the micronucleus test, and by in vivo cytogenetics. Mutat. Res. 48:295-306.

23. Gough, A.; Barsoum, N.J.; Mitchell, L.; McGuire, E.J.; de la Iglesia, F. (1979) Juvenile canine drug-induced arthropathy: Clinicopathological studies on articular lesions caused by oxolinic and pipemidic acids. Toxicol. Appl. Pharmacol. 51:177-187.

24. Griswold, D.P.; Casey, A.E.; Weisburger, E.K.; Weisburger, J.H. (1968) The carcinogenicity of multiple intragastric doses of aromatic and heterocyclic nitro or amino derivatives in young female Sprague-Dawley rats. Cancer Res. 28:924-933.

25. Hagenas, L.; Ploen, L.; Ritzen, E.M. (1978) The effect of nitrofurazone on the endocrine, secretory and spermatogenic functions of the rat testis. Andrologia 10:107-126.

26. Haseman, J.K. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

27. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12:126-135.

28. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

29. Haveland-Smith, R.B.; Combes, R.D.; Bridges, B.A. (1979) Methodology for the testing of food dyes for genotoxic activity: Experiments with Red 2G (C.I. 18050). Mutat. Res. 64:241-248. 30. Hayes, K.J. (1967) Nitrofurans. Kirk, R.E.; Othmer, D.F., Eds.: Encyclopedia of Chemical Technology, 2nd ed., Vol. 13. New York: John Wiley & Sons Inc., p. 854.

31. Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W.; Zeiger, E. (1983) Salmonella mutagenicity test results for 250 chemicals. Environ. Mutagen. Suppl. 1:3-142.

32. Hoener, B.-A.; Krueger, T.R. (1984) Disposition of nitrofurantoin and nitrofurazone in the isolated perfused rat kidney. J. Pharm. Sci. 73:1669-1671.

33. Hollinger, M.A.; Davis, J.R. (1969) Effect of nitrofurazone on the aerobic metabolism of uniformly labelled [14C]glucose in tissue slices of rat testis. J. Reprod. Fertil. 19:585-589.

34. IMS (1987) Database search, April 7. IMS America Ltd., Plymouth Meeting, PA 19462.

35. Ingham, B.; Brentall, D.W.; Dale, E.A.; McFadzean, J.A. (1977) Arthropathy induced by antibacterial fused N-alkyl-4-pyridone-3-carboxylic acids. Toxicol. Lett. 1:21-26.

36. Ishidate, M., Jr.; Odashima, S. (1977) Chromosome tests with 134 compounds on Chinese hamster cells in vitro--a screening for chemical carcinogens. Mutat. Res. 48:337-354.

37. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.

38. Karol, H.J. (1960) Nitrofurans in treatment of malignant testicular tumors. J. Urol. 84:120-122.

39. Klemencic, J.M.; Wang, C.Y. (1978) Mutagenicity of nitrofurans. Bryan, G.T., Ed.: Carcinogenesis, Vol. 4: Nitrofurans. New York: Raven Press, pp. 99-130.

40. Koch-Weser, J.; Sidel, V.W.; Dexter, M.; Parish, C.; Finer, D.C.; Kanarek, P. (1971) Adverse reactions to sulfisoxazole, sulfamethoxazole, and nitrofurantoin. Arch. Intern. Med. 128:399-404.

V. REFERENCES

41. Kramers, P.G.N. (1982) Studies on the induction of sex-linked recessive lethal mutations in *Drosophila melanogaster* by nitroheterocyclic compounds. Mutat. Res. 101:209-236.

42. Krantz, J.C.; Evans, W.E. (1945) A contribution to the pharmacology of 5-nitro-2-furaldehyde semicarbazone. J. Pharmacol. Exp. Ther. 85:324-331.

43. Kutcher, W.W.; McCalla, D.R. (1984) Aerobic reduction of 5-nitro-2-furaldehyde semicarbazone by rat liver xanthine dehydrogenase. Biochem. Pharmacol. 33:799-805.

44. Lemon, P.S.; Gubareva, A.V. (1979) Tumors of the ovary. Pathology of Tumours in Laboratory Animals. Vol. II: Tumors of the Mouse. IARC Scientific Publication No. 23. Lyon: IARC, pp. 385-397.

45. Linhart, M.S.; Cooper, J.; Martin, R.L.; Page, N.; Peters, J. (1974) Carcinogenesis Bioassay Data System. Comput. Biomed. Res. 7:230-248.

46. Lister, E.E.; Fisher, L.J. (1970) Establishment of the toxic level of nitrofurazone for young liquid-fed calves. J. Dairy Sci. 53:1490-1495.

47. Mantel, N.; Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 22:719-748.

48. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80.

49. Mason, R.P.; Holtzman, J.L. (1975) The mechanism of microsomal and mitochondrial nitroreductase. Electron spin resonance evidence for nitroaromatic free radical intermediates. Biochemistry 14:1626-1632.

50. Matsuoka, A.; Hayashi, M.; Ishidate, M., Jr. (1979) Chromosomal aberration tests on 29 chemicals combined with S9 mix in vitro. Mutat. Res. 66:277-290. 51. McCalla, D.R. (1983) Mutagenicity of nitrofuran derivatives: Review. Environ. Mutagen. 5:745-765.

52. McCalla, D.R.; Voutsinos, D.; Olive, P.L. (1975) Mutagen screening with bacteria: Niridazole and nitrofurans. Mutat. Res. 31:31-37.

53. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.

54. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.

55. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

56. Miyaji, T. (1971) Acute and chronic toxicity of furylfuramide in rats and mice. Tohoku J. Exp. Med. 103:331-369.

57. Montemurro, D.G. (1969) The effect of nitrofurazone on the testes and accessory sex organs of normal rats and rats bearing the Walker carcinoma 256. Br. J. Cancer 14:319-326.

58. Morris, J.E.; Price, J.M.; Lalich, J.J.; Stein, R.J. (1969) The carcinogenic activity of some 5nitrofuran derivatives in the rat. Cancer Res. 29:2145-2156.

59. Myhr, B.; Bowers, L.; Caspary, W.J. (1985) Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. Prog. Mutat. Res. 5:555-568.

60. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health. 61. The National Formulary (1975) 14th ed. Washington, DC: United States Pharmacopeial Convention, Inc., p. 487.

62. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

63. National Toxicology Program (NTP) (1988) Toxicology and Carcinogenesis Studies of Nitrofurantoin in F344/N Rats and B6C3F₁ Mice. NTP Technical Report No. 341. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health (in preparation).

64. Nissim, J.A. (1957) Increased pituitary gonadotropin activity after degeneration of seminiferous tubules produced by nitrofurazone. Lancet 1:304-305.

65. Olive, P.L. (1979) Inhibition of DNA synthesis by nitroheterocycles. II. Mechanisms of cytotoxicity. Br. J. Cancer 40:94-104.

66. Olive, P.L. (1981) Correlation between the half-wave reduction potentials of nitroheterocycles and their mutagenicity in Chinese hamster V79 spheroids. Mutat. Res. 82:137-145.

67. Olive, P.L.; Durand, R.E. (1978) Activation of radiosensitizers by hypoxic cells. Br. J. Cancer 37(Suppl. III):124-128.

68. Olive, P.L.; McCalla, D.R. (1975) Damage to mammalian cell DNA by nitrofurans. Cancer Res. 35:781-784.

69. Paul, H.E.; Ells, V.R.; Kopko, F.; Bender, R.C. (1960) Metabolic degradation of the nitro-furans. J. Med. Pharm. Chem. 2:563-584.

70. Peterson, F.J.; Mason, R.P.; Hovsepian, J.; Holtzman, J.L. (1979) Oxygen-sensitive and -insensitive nitroreduction by *Escherichia coli* and rat hepatic microsomes. J. Biol. Chem. 254:4009-4014. 71. Physicians' Desk Reference (PDR) (1984) 38th ed. Oradell, NJ: Medical Economics Company Inc.

72. Price, C.; George, J.; Marr, M. (1985) Teratologic Evaluation of Nitrofurazone Administered to CD-1 Mice on Gestational Days 6-15. National Toxicology Program/Research Triangle Institute Report NTP-85-335.

73. Prior, J.T.; Ferguson, J.H. (1950) Cytotoxic effects of a nitrofuran on the rat testes. Cancer 3:1062-1072.

74. Rosenkranz, H.S.; Speck, W.T. (1976) Activation of nitrofurantoin to a mutagen by rat liver nitroreductase. Biochem. Pharmacol. 25:1555-1556.

75. Sadtler Pharmaceutical Spectra, IR No. R448. Philadelphia: Sadtler Research Laboratories.

76. Sadtler Standard Spectra, NMR No. 6416M. Philadelphia: Sadtler Research Laboratories.

77. Shipley, E.R.; Dodd, M.C. (1947) Clinical observations on furacin soluble dressing in the treatment of surface infections. Surg. Gynecol. Obstet. 84:366-372.

78. Sugimura, T.; Sato, S.; Nagao, M.; Yahagi, T.; Matsushima, T.; Seino, Y.; Takeuchi, M.; Kawachi, T. (1976) Overlapping of carcinogens and mutagens. Magee, P.N.; et al., Eds.: Fundamentals in Cancer Prevention. Tokyo: University of Tokyo Press, pp. 191-215.

79. Takizawa, H.; Hozumi, M.; Sugimura, T.; Bryan, G.T. (1975) Correlation between the carcinogenicities of nitrofuran derivatives and their destructive actions on sebaceous glands in mouse skin. J. Natl. Cancer Inst. 54:487-489.

80. Tanooka, H. (1977) Development and applications of *Bacillus subtilis* test systems for mutagens, involving DNA-repair deficiency and suppressible auxotrophic mutations. Mutat. Res. 42:19-31.

81. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

V. REFERENCES

82. Tatsumi, K.; Ou, T.; Yoshimura, H.; Tsukamoto, H. (1971) Metabolism of drugs. LXXIII. The metabolic fate of nitrofuran derivatives. (1) Studies on the absorption and excretion. Chem. Pharm. Bull. 19:330-334.

83. Tatsumi, K.; Yamaguchi, T.; Yoshimura, H. (1973) Metabolism of Drugs. LXXX. The metabolic fate of nitrofuran derivatives. (3). Studies on enzymes in small intestinal mucosa of rat catalyzing degradation of nitrofuran derivatives. Chem. Pharm. Bull. 21:622-628.

84. Tatsumi, K.; Kitamura, S.; Yoshimura, H. (1977) Binding of nitrofuran derivatives to nucleic acids and protein. Chem. Pharm. Bull. 25:2948-2952.

85. Tennent, B.; Beamer, W. (1986) Ovarian tumors not induced by irradiation and gonadotropins in hypogonadal (hpg) mice. Biol. Reprod. 34:751-760.

86. Tonomura, A.; Sasaki, M.S. (1973) Chromosome aberrations and DNA repair synthesis in cultured human cells exposed to nitrofurans. Jpn. J. Genet. 48:291-294. 87. Toole, J.F.; Parrish, M.L. (1973) Nitrofurantoin polyneuropathy. Neurology 23:554-559.

88. Van Zwieten, M. (1984) The Rat as Animal Model in Breast Cancer Research. The Netherlands: Martinus Nijhoff Publishers, pp. 135-158.

89. Yahagi, T.; Nagao, M.; Hara, K.; Matsushima, T.; Sugimura, T.; Bryan, G.T. (1974) Relationships between the carcinogenic and mutagenic or DNA-modifying effects of nitrofuran derivatives, including 2-(2-furyl)-3-(5-nitro-2furyl)acrylamide, a food additive. Cancer Res. 34:2266-2273.

90. Yamasaki, K.; Inui, S. (1985) Lesions of articular, sternal and growth plate cartilage in rats. Vet. Pathol. 22:46-50.

91. Yeung, T.-C.; Sudlow, G.; Koch, R.L.; Goldman, P. (1983) Reduction of nitroheterocyclic compounds by mammalian tissues *in vivo*. Biochem. Pharmacol. 32:2249-2253.

92. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W. (1987) Salmonella mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9(Suppl. 9):1-110.

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

		PAGE
TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	71
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO- YEAR FEED STUDY OF NITROFURAZONE	74
TABLE A3	ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	80
TABLE A4a	HISTORICAL INCIDENCE OF MESOTHELIOMAS IN MALE F344/N RATS RECEIVING NO TREATMENT	84
TABLE A4b	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	84
TABLE A4c	HISTORICAL INCIDENCE OF PREPUTIAL GLAND TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	85
TABLE A4d	HISTORICAL INCIDENCE OF TESTICULAR INTERSTITIAL CELL TUMORS IN MALE F344/N RATS RECEIVING NO TREATMENT	85
TABLE A4e	HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS RECEIVING NO TREATMENT	86
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	87

Nitrofurazone, NTP TR 337

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Untreat	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY			50		50	
ANIMALS NECROPSIED	50		. 50		50	
ANIMALS EXAMINED HISTOPATHOLOGICA			50		50	
INTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Papilloma, NOS			1	(2%)		
Trichoepithelioma						(2%)
Sebaceous adenoma	(50)		(50)		4 (50)	(8%)
*Subcutaneous tissue Fibroma	(50)	(6%)	(50)	(8%)		(12%)
Fibrosarcoma		(2%)		(4%)		(12%) (2%)
Fibrous histiocytoma, malignant		(2%)		(10)	1	(2,10)
Neurilemoma, malignant	•	(2,0)			1	(2%)
RESPIRATORY SYSTEM				<u> </u>		
#Lung	(50)		(46)		(50)	
Alveolar/bronchiolar carcinoma			3	(7%)		
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Leukemia, mononuclear cell		(42%)	-	(46%)		(12%)
#Spleen	(48)	(2%)	(46)		(50)	
Sarcoma, NOS #Thymus	(29)	(270)	(28)		(35)	
Thymoma, benign	(23)		(20)			(3%)
CIRCULATORY SYSTEM						
#Spleen	(48)		(46)		(50)	
Hemangioma	1	(2%)				
Hemangiosarcoma					1	(2%)
DIGESTIVE SYSTEM	-					
*Intestinal tract	(50)		(50)	(07)	(50)	
Sarcoma, NOS #Liver	(50)		1 (49)	(2%)	(50)	
#Liver Neoplastic nodule	((12%)		(8%)		(6%)
Hepatocellular carcinoma		(12%)	-		5	(0,0)
Fibrosarcoma, metastatic		(2%)				
#Pancreas	(48)	<u> </u>	(49)		(49)	
Adenoma, NOS		(2%)	/			
#Jejunum	(50)		(50)		(49)	
Leiomyoma		(2%)				
Leiomyosarcoma		(2%)				
#Ileum	(50)	(07)	(50)		(49)	
Mucinous adenocarcinoma	1	(2%)				
URINARY SYSTEM						
#Kidney	(50)		(50)		(50)	(00)
Tubular cell adenocarcinoma Nephroblastoma						(2%)
Nephroblastoma			(50)		1 (50)	(2%)
#Kidney/cortex	(50)					

	Untreat	ed Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM						
#Anterior pituitary	(48)		(49)		(45)	
Adenoma, NOS		(23%)	7	(14%)	8	(18%)
#Adrenal	(50)		(50)		(50)	
Cortical adenoma	1	(2%)				
#Adrenal medulla	(50)		(50)		(50)	
Pheochromocytoma	12	(24%)	15	(30%)		(24%)
Pheochromocytoma, malignant	2	(4%)	1	(2%)	2	(4%)
#Thyroid	(49)		(49)		(50)	
Follicular cell carcinoma	1	(2%)	1	(2%)	1	(2%)
C-cell adenoma	11	(22%)	7	(14%)	8	(16%)
#Parathyroid	(38)		(38)		(39)	
Adenoma, NOS					1	(3%)
#Pancreatic islets	(48)		(49)		(49)	
Islet cell adenoma			1	(2%)		
REPRODUCTIVE SYSTEM				i		
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS					2	(4%)
Fibroadenoma	2	(4%)	1	(2%)	1	(2%)
*Preputial gland	(50)		(50)		(50)	
Carcinoma, NOS		(2%)		(16%)		(10%)
Adenoma, NOS	8	(16%)	8	(16%)	2	(4%)
#Testis	(50)		(50)		(50)	
Interstitial cell tumor	45	(90%)	30	(60%)	28	(56%)
NERVOUS SYSTEM						
#Brain	(50)		(50)		(50)	
Astrocytoma			1	(2%)		
SPECIAL SENSE ORGANS						
*Zymbal gland	(50)		(50)		(50)	
Squamous cell carcinoma	1	(2%)	2	(4%)	1	(2%)
MUSCULOSKELETAL SYSTEM				<u>.</u>		
*Vertebra	(50)		(50)		(50)	
Chordoma			1	(2%)		
BODY CAVITIES			<u> </u>			
*Mesentery	(50)		(50)		(50)	
Fibrosarcoma		(2%)				
*Tunica vaginalis	(50)		(50)		(50)	
Mesothelioma, NOS				(12%)	-	
Mesothelioma, malignant			1	(2%)	2	(4%)
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Fibrosarcoma					1	(2%)
Fibrous histiocytoma, metastatic	1	(2%)				
Mesothelioma, metastatic			1	(2%)		(4%)
Osteosarcoma, metastatic					1	(2%)
Shoulder						
Osteosarcoma					1	

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreated Control	Low Dose	High Dose
ANIMAL DISPOSITION SUMMARY		· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	50	50	50
Natural death	2	1	3
Moribund sacrifice	15	19	27
Terminal sacrifice	33	30	20
TUMOR SUMMARY			
Total animals with primary tumors**	49	47	46
Total primary tumors	135	129	101
Total animals with benign tumors	48	40	40
Total benign tumors	96	75	72
Total animals with malignant tumors	27	34	21
Total malignant tumors	33	44	26
Total animals with secondary tumors##	2	1	3
Total secondary tumors	2	1	3
Total animals with tumors uncertain			_
benign or malignant	6	10	3
Total uncertain tumors	6	10	3

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site

Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

															· 71-									
1 2 1	1 1 6	$\frac{1}{3}$	1 2 5	1 0 1	1 4 6	1 3 8	1 4 1	1 0 4	$\frac{1}{7}$	1 2 8	1 1 5	1 3 1	1 4 9	1 0 3	1 0 5	1 3 6	$1 \\ 0 \\ 2$	1 0 6	1 0 7	1 0 8	1 0 9	1 1 0	1 1 1	$\frac{1}{2}$
0 5 9	0 6 6	0 7 5	0 8 4	0 8 7	0 8 7	0 8 8	0 8 8	0 9 1	0 9 5	0 9 5	0 9 6	0 9 7	1 0 1	1 0 2	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
+	+	+	+ X	+	* X	+	+	*	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+
++++	+++++++++++++++++++++++++++++++++++++++	+++	+++++	+	+++	++	++	+++	++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	++	+++	+
+++++	++++	+ +	++++	++++	+ + +	++++	+++	+++	++++	+++	+++	++++	+++	++++	++++	+++	++++	+++	+++	+++	+	+++	++++	+
X + -	+ +	+ -	+ +	+ -	+ -	+	+ +	+ +	+	+ -	+ -	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+	+ -	+ +	+ +	++
 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
++++	+ +	+++	+ +	- +	+ + X	+++	+ +	+ + X	+ +	+ + X	+++	+++	+ +	+ +	++++	+ +	+ +	+++	+ +	+++	++++	++++	+ + X	+ +
++++	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	+
+++++	+ + +	+ + + X	+++	- + +	+ + +	+++	+++	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	+ + +	++++	-
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+
-+	+	+++	++	+++	+++	++	+++	+	++	++	* *	* *	+ +	* *	+ X +	+ +	++	* *	* x +	* X +	+++	* X +	* *	
+	+	+	+	-	+	+	+	+	+	+	+	+	+	X +	+	+	х +	+	+	+	+	х +	+	
+	+	+	+	-	-	+	+	+	-	x_	X +	-	-	+	+	х +	+	+	+	X +	-	+	÷	-
+	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	2
+ + N	+ + N	+ X + N	+ X + N	+ + N	+ + N	+ X + N	+ X + N	+ X + N	+ X + N X + N	+ X + N	+ X + N	+ + N X	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N N	* - N	+ X + N	+ X + N X	+ x + N X	1
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
N	* x	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N]
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	1
N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	1
	+ ++ ++ + ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ N N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>0 0 0<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>S O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si Gi Si Si Si Gi Si Si Gi Si Si</td><td>3 6 7 8 8 8 9 9<td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si Si Si</td><td>S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td></td></td></td>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>0 0 0<td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>S O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si Gi Si Si Si Gi Si Si Gi Si Si</td><td>3 6 7 8 8 8 9 9<td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si Si Si</td><td>S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td></td></td>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>S O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td> <td>Si Gi Si Si Si Gi Si Si Gi Si Si</td> <td>3 6 7 8 8 8 9 9<td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td><td>Si Si Si</td><td>S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td><td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td></td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	Si Gi Si Si Si Gi Si Si Gi Si Si	3 6 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td> <td>Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O</td> <td>Si Si Si</td> <td>S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S</td> <td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td> <td>$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td>	Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	Si O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O	Si Si	S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S S	$\begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE: UNTREATED CONTROL

Tissue examined microscopically
 Required tissue not examined microscopically
 X: Tumor incidence
 Necropsy, no autolysis, no microscopic examination
 Animal missexed

No tissue information submitted C Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

								• -	/011	•		-/														
ANIMAL NUMBER	1 1 4	1 1 8	1 1 9	1 2 0	$\frac{1}{2}$	123	$\frac{1}{2}{4}$	1 2 6	1 2 7	1 2 9	1 3 0	$\frac{1}{3}$ 2	1 3 3	1 3 4	1 3 5	1 3 7	1 3 9	1 4 0	1 4 2	1 4 3	1 4 4	1 4 5	1 4 7	1 4 8	1 5 0	
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibroma Fibrosarcoma Fibrosa histiocytoma, malignant	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 3 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++++	++	++++	+ +	+ +	+ +	+++	+ +	+++	++++	++++	+++	+ +	++++	+ +	+ +	+++	+ +	+ +	+++	++++	+++	++++	++++	+ +	50 49
HEMATOPOIETIC SYSTEM Bone marrow Spleen Sarcoma, NOS Hemangioma Lymph nodes	++++++	+++++	+++++	+++++	+++++	+ - +	++++++	+++++	+ + +	++++++	+++++	+ + +	+++++	++++	+++++	+ + +	+ + X +	+++++	+++++	++++++	+++++	+ + +	+++++	+++++	+++++	50 48 1 1 50
Thymus CIRCULATORY SYSTEM	+	-		+	+	+	+		+	+	+	+	-	+	+	-	+	-	+	-		-	+		+	29
Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary gland Liver Neoplastic nodule Hepatocellular carcinoma Fibrosarcoma, metastatic	+++	+ +	+++	+ +	+ +	+ + X	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ + X	+++	+ +	49 50 6 1 1
Bile duct Pancreas Adenoma, NOS Esophagus Stomach	++++++	++++	+ + + + +	+++++	+++++	++++	+ + + +	++ ++	++++	+ + + +	+++++	++++	+++++	+++++	++ ++	+++++	++ +++	++++++	+++++	+ + X + + +	+ + +	+++++	+++++	+++++	+++++	50 48 1 49 50
Small intestine Mucinous adenocarcinoma Leiomyoma Large intestine	+	+	++	+	+ +	++	++	++	+ X +	+	++	++	++	++	++	++	+	++	++	++	++	+	++	+++	+ X +	50 1 1 1 49
URINARY SYSTEM Kidney Urinary bladder	+++	++	+++	+++	++	+ +	+++	+	++++	+++	++++	++++	+ +	+++	+++	+ +	+++	+++	++++	+++	+++	+++	+++	+++	+++	50 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma Pheochromocytoma	+ + X X	+ + X	+ + X	+ X +	+ +	+ +	+ +	+ + X	+ + X	++	++	+ +	+ + X	+ + X	+ + X	- +	++	+ + X	++	+ +	+ +	+ X +	+ + X	+ +	+ +	48 11 50 1 12 2
Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-cell adenoma Parathyroid	+ X +	+ X +	+	+	+	+ X +	+	+	+	+ X +	+	+	+	+ X +	+	+ X +	+	+	X + +	+	+	+	+	+ X	* * +	49 1 11 38
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	N	N	+	+	+ x	+	+	÷	+	+	+	+	+	+	+	+	+	*50
Protocoletiona Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ X + N	+ X + N	+ X + N	+ X + N N	+ X + N	+ X + N N	+ X + N X	+ X + N N	+ X + X N	+ X + N	+ X + N	+ X + N	x + x + x + N X	+ X + N	+ X + N N	+ X + N N X	+ X + N N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + X + N	+ X + N N X	+ x + x N	+ X + N X	50 45 49 *50 1 8
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Mesentery Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Fibrous histicoytoma, metastatic Leukemia, mononuclear cell	N	N	N	N	N	N X	N	N			N X				N	N	N X	N	N	N	N	N	N X	N	N X	*50 1 21

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: UNTREATED CONTROL (Continued)

* Animals necropsied

	02.				LUC	JFU		-14	014		LU				-										
ANIMAL NUMBER	0 1 2	0 1 6	0 3 4	0 3 9	0 0 7	0 0 8	0 2 7	0 4 6	0 3 1	0 1 8	0 3 7	0 0 1	0 4 7	0 1 5	0 2 1	0 4 0	0 4 1	0 0 3	0 3 2	0 2 8	0 0 2	0 0 4	0 0 5	0 0 6	0 0 9
WEEKS ON STUDY	0 6 0	0 6 0	0 6 7	0 6 7	0 7 8	0 8 4	0 8 8	0 9 0	0 9 2	0 9 4	0 9 4	0 9 5	0 9 5	0 9 7	1 0 1	1 0 1	1 0 1	1 0 2	1 0 2	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Papilloma, NOS Subcutaneous tissue Fibroma Fibrosarcoma	++	+	+ +	++	+ + X	+	+ +	++	+ +	++	+ +	++	+ +	+ + X	+ +	++	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	* *	+ + X
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	- + +	+	++	 + +	- +	+++	+++	+ -	+ +	+ +	+++	+++	+++	++	+ +	+ +	+++	+++	+ +	++	 +	 +	+ X +	* *	+ x +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++	++++	+++++	++++	++++	+ + + -	++++	+++++	++++++	+++++	+ + + + +	++++-	+++++	+ + + +	++++-	++++++	+ - + +	+++1	++++	+++	+++++	+ - + + +	++++	+++-	+++++
CIRCULATORY SYSTEM Heart	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++++	++ ++++++	++ +++++	++ ++++++	- + + + + + + + + + + + + + + + + + + +	++ ++++++	++ ++++++	11 1+1+++	++ ++++++++++++++++++++++++++++++++++++	++X+++++++	++ +1++++	++ ++++++	++ ++++++	++ +++++	++ ++ +++++	++ ++++++	++X++++++	++ +++++	++ ++++++	++ +++++	++X++++++	++ ++++++	++ ++++++	++ ++++++	++ +++++
URINARY SYSTEM Kidney Lipoma Urinary bladder	++++	+++	++	+++	+	++	+++	+++	+	+++	+++	+ +	+++	+ +	+++	+++	+++	+++	+++	+++	+++	+ +	+++	+++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-ceil adenoma Parathyroid Pancreatic islets Islet cell adenoma	+++++++++++++++++++++++++++++++++++++++	+++++	- + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + - + + + + + + + + + + + + + + + + +	+ + + + x++	+ + + + + + + + + + + + + + + + + + + +	+ + + + *	+ + x + -+	+ + XX + + + X	+ + + + + + + + + + + + + + + + + + +	+ + + +	+ + * + + + + -+	+ + + + + + + + + + + + + + + + + + + +	+ + x + x + x +	+ + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+x + + x++	+ + + +	+ + + X + +
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	·	N	N	+	+	+	N	N	+	+	N	+	+	+	+	+	+	+	N	+	+	+	+	+	+
Fibroadenoma Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ + N X	+ +z	+ + X	+x+ N X	+ x + N	+ 7+ X	+ + Z	+ 7+ 2	+ + X	+ + Z	+ x + N x	+ x + n x + x	+ x + N	+ x + x	+ x + N	+ X + N	+ x + n	+ - N	+ X + N	+ + N	+ X + N N X	+ X + N X	+ x + x	+ X + N X	+ x + N X
NERVOUS SYSTEM Brain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N
MUSCULOSKELETAL SYSTEM Bone Chordoma	N	N	N	N	N	N	N	N	+	N	+	+	+	+	+	+	+	+	+	+	N	+	+	+	+
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS Mesothelioma, malignant	+	+	*	+	+	+	+	+	*	+ X	+	* X	*	+	+	+	+	+	+	+	+	+	* X	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, metastatic Leukemia, mononuclear cell Intestinal tract Sarcoma, NOS	N	N	N X	N	N	N		N X		х	N	N X		N		N X			И	N X	N	N X	N	N	N X

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE: LOW DOSE

ANIMAL NUMBER	0	0	0	0	0	0	02	0	0	0 2	0 2	0	0	0	0	0	0	03	0	0	0	0	0	0	0 5	1
WEEKS ON	1 0	i) T	3) 	4	7) - 11	9) -11	2 0	2	2	4	5	2 6	2 9	0	3	5	3	8	2	3	4	4 5	8	9 - 11	ŏ	TOTAL: TISSUES
STUDY	0 4	0 4	0 4	04	0 4	0 4	04	0 4	04	04	04	04	04	04	04	0	04	0 4	0 4	04	0 4	0 4	0	0 4	0 4	TUMORS
INTEGUMENTARY SYSTEM Skin	+	+	+	+	+	+	+	+	+	+	 +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50
Papilloma, NOS Subcutaneous tissue Fibroma Fibrosarcoma	* X	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 *50 4 2
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	 +	++	++	++	+++	++	+++	++++	+ +	++	++	+	++	++	+++	+	++	++	+	++	+++	++	+	+++	+++	46 3 49
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++	 + + + + +	++++++	+++-	+ + + +	+ + + -	++++++	++++-	++++++	++++	+ + + +	+ + + -	++++	++++	++++	+++++	+++++	+ -+ +	+ - + -	+++-	+++++	+ + + +	+++	+++++	++++	50 46 50 28
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver	+++	+++	++++	+++	++++	+++	+++	++++	 + +	+++	++++	+++	++	+++	+++++	+++	+++	++	+++	+++	++++	++++	+++	+++	+ + +	48 49
Neoplastic nodule Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++	+ + + + + +	+ + + + + +	X + + + + + + + + + + + + + + + + + + +	+++++	+ + + + + +	+ + + + +	+ + + + +	+ + + + + +	+++++	+++++	+ + + + +	+ + + + + +	+ + + + + +	+ + + + +	+ + + + + +	+++++	+++++	+ + + + +	+ + + + +	+++++	+++++	+++++	+ + + + + +	+ + + + +	4 49 49 48 50 50 50
URINARY SYSTEM Kidney Lipoma	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
Urinary bladder ENDOCRINE SYSTEM	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Pituitary Adenoma, NOS Adrenal	+ +	+ X + X	+ +	+ + X	+ +	* *	+ + X	+ +	+ +	* *	+ +	+ +	+ + X	+ X +	+ X +	+ + x	+ +	* *	+ + X	+ +	+ + X	+ + X	+ + X	+ +	+ + X	49 7 50
Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma	+	л +	+	л +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	л +	л +	•	+	А +	15 1 49 1
C-ceil adenoma Parathyroid Pancreatic islets Islet cell adenoma	+ +	- +	+ +	- +	+ +	+ +	+ +	- +	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	- +	+ +	X + +	+ +	X + +	+ +	+ +	+ +	+ +	7 38 49 1
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma	+	+	+	+	+	+	+	+	N	+	+	+	+	N	+	+	+	+	+	 x	+	+	+	N	+	*50 1
Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS	+ + N	+ + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	+ + N	+ X + N	+ X + N	+ + N	+ + N X	+ + N	+ + N X	+ X + N	+ X + N X	+ X + N	+ X + N	+ X + N	+ + N	+ + N	+ X + + N	+ x + N	+ + N	50 30 49 *50 8
Adenoma, NOS NERVOUS SYSTEM		X				X														X				X		8
Brain Astrocytoma	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
MUSCULOSKELETAL SYSTEM Bone Chordoma	N	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	N	+	+	+	N	+	N	+	+	*50 1
BODY CAVITIES Tunica vaginalis Mesothelioma, NOS Mesothelioma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* X	*50 6 1
ALL OTHER SYSTEMS Multiple organs, NOS Mesothelioma, metastatic Leukemia, mononuclear cell Intestinal tract Sarcoma, NOS	N X	N	N	N X	N	N X		N	N X	N	N X	N	N	N	N	N	N X		N	N X	N	N	N X	N	N	*50 1 23 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: LOW DOSE (Continued)

* Animals necropsied

TABLE A2.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE: HIGH DOSE

ANIMAL NUMBER	0 5 1	0 5 3	0 6 4	0 7 6	0 7 3	0 6 2	0 5 2	0 8 7	0 8 3	0 9 4	0 6 5	0 8 5	0 9 7	0 9 8	0 5 9	0 6 0	0 8 0	0 7 4	0 8 1	0 8 8	0 8 9	0 7 8	0 6 3	0 6 8	0 9 1
WEEKS ON STUDY	0 4 2	0 5 4	0 5 7	0 6 1	0 6 4	0 6 7	0 6 8	0 6 9	0 7 5	0 7 6	0 7 9	0 8 0	0 8 6	0 8 7	0 8 9	0 8 9	0 8 9	0 9 1	0 9 2	0 9 3	0 9 3	0 9 4	0 9 5	0 9 5	0 9 5
INTEGUMENTARY SYSTEM	_																								
Skin Trichoepithelioma Sebaceous adenoma Subcutaneous tissue Fibroma Fibrosarcoma Neurilemoma, malignant	+	+	+	+	+	+	+	+ X +	+	+	+	+ +	+	+ * X	+ * X	+ + X	+	+	+	+	+	+ * X	+ X +	+	+
RESPIRATORY SYSTEM Lungs and bronchi Trachea	+++	+ + +	++	++	++	++	+++	+++	+ + +	+++	++++	++	+++	++	+ -	+ +	++++	+++	+	+++	+++	+++	+ +	++	+ +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Hemangiosarcoma Lymph nodes Thymus Thymos benign	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++	+ + X + +	++++++	+++++	+ + + +	+ + + +	++++++	+ + + -	+ + + -	+++++	+ + +	++++++	+ + +	+ + + -	+ + +	++++++	++ ++	+ + + +	+ + + -	++++-	+ + +	++++++	+ + + X
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Esophagus Stomach Small intestine	+++++++++++++++++++++++++++++++++++++++	++ +++++	++ +++++	+++++++++++++++++++++++++++++++++++++++	++ +++++	++ +++++	++++++	+++++++	+++++++	++++++	+++++++	++++++	++ +++++	++++++	++++++	++++++	++ +++++	++ +++++	++ +++++	+++++++	+++++++	++++++	+ + + + + + + + +	++ ++++++	+++++++++++++++++++++++++++++++++++++++
Large intestine URINARY SYSTEM Kidney Tubular cell adenocarcinoma Nephroblastoma Urinary bladder	+	++++	++++	+++	+++++	++++	++	+++++	+++	+++	+	++++	+++	+++++	+++	+++	+ x +	++++	+ + +	+++	+++	+++	+++	++++	+ + +
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-cell adenoma	+++	++++	++++	+ + +	- + +	+++++	+ + +	- + +	+ + + X	+ + +	* * +	- + +	* * * * *	+ + +	+ + +	+ + +	+ + *	+ X + +	+ + + X	+ + +	+ + x +	+ + + X	* * +	+ X + + X	+ + X +
Parathyroid Adenoma, NOS	+	+	-	+	+	-	+	+	÷	-	-	+	+	-	+	+	+	+	÷	-	+	÷	-	-	+
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma	+	+	+	+	+	+	+	N	+	+	+	+	+	N	+	+	N	+	N	+	+	+	+	+	+
Prostate Testis Interstitial cell tumor Prostate Preputial/clitoral gland Carcinoma, NOS Adenoma, NOS	+ + N X	+ + N	+ + Z	+ + N	+ + N	+ + NX	+ + N	+ + N	+ X + N X	+ + N	+ + N	+ + N X	+ + N	+ x + N	+ x + n	+ + N	+ X + N	+ x + N	+ + N	+ + N	+ x + n	+ x + n	+ + N	+ + N	+ x + x N
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	+	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	+	N	N	N
BODY CAVITIES Tunica vaginalis Mesothelioma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x	* x	+	+	+
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma Mesothelioma, metastatic Osteosarcoma, metastatic Leukemia, mononuclear cell Shoulder, NOS Osteosarcoma	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N X X	N	N	N	N X		N X		N	N	N

										un	ucu	.,														
ANIMAL NUMBER	0 5 4	0 5 6	0 6 6	0 9 5	0 5 7	0 5 5	0 5 8	0 6 1	0 6 7	0 6 9	0 7 0	0 7 1	0 7 2	0 7 5	0 7 7	0 7 9	0 8 2	0 8 4	0 8 6	0 9 0	0 9 2	0 9 3	0 9 6	0 9 9	1 0 0	TOTAL
WEEKS ON STUDY	1 0 0	1 0 0	1 0 0	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	104	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL: TISSUES TUMORS
INTEGUMENTARY SYSTEM																										
Skin Trichoepithelioma Sebaceous adenoma Subcutaneous tissue Fibrosarcoma Neurilemoma, malignant	+	+	+	+	+ * X	+ *	+	+	+	+ X +	+	+	+ *	+ *	+	+	+	+	+	+	+	+ X +	+	+	+	*50 1 4 *50 6 1 1
RESPIRATORY SYSTEM Lungs and bronchi Trachea	++++	+ +	++++	++++	+ +	++++	+++	+ + +	+++	+++	÷	++++	++++	++++	+ +	+ + +	+ +	+ +	+++	++++	++++	+++	+ +	++++	+++++	50 49
HEMATOPOIETIC SYSTEM Bone marrow Spisen Hemangiosarcoma Lymph nodes Thymus	+++++	+++++	++ ++	+++++	++++-	++++	++ ++ ++	+++++	+++++	 + + + +	+ + + +	+++++	++ ++	++ +1	+++++	++ ++	++ ++	++ +1	++ +1	++ ++	++++++	++++	++ +1	++ ++	++++++	50 50 1 50 35
Thymoma, benign CIRCULATORY SYSTEM								 .																		
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Esophagus Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	++ +++++	++ ++++++	++ +++++	++X+++++	++ ++++++	++ +++++	++ +++++	++ ++++++	++ ++++++	++ ++++++	++ +++++++	 + x + + + + + + +	++ ++++++	++ +++++	++ ++++++	++ +++++	++ ++++++	+++++++++++++++++++++++++++++++++++++++	++ ++++++	++ +++++	++ ++++++	++ ++++++	++ ++++++	++ ++++++	48 50 3 50 50 50 49 47
URINARY SYSTEM Kidney Tubular cell adenocarcinoma Nephroblastoma Urinary bladder	+	+ X +	+	+	+	+	+	+	+	++	+	+	++	+	+	+	++	+	+	++	+	+	+	++	+	50 1 1 48
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Pheochromocytoma Pheochromocytoma, malignant Thyroid Follicular cell carcinoma C-cell adenoma Parathyroid Adenoma, NOS	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+++++	+ + X + X +	+ + + +	+ + +	+ + X + -	- + x + x +	+ + + X	++++-	+ x + x + +	+ + X + X +	+ + + +	+ + * * * + +	+ + X + +	+x + x + + +	+ + X + +	+ + x + + x	+ + +	+ + +	+ + +	+ * * +	+ + +	45 8 50 12 2 50 1 8 39 1
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	N	+	N	+	+ *	+	+ x	+	+	+	+	+	+	+	N	+	+	+	+	+	+	+	*50
Resolutional ross Fibroadenoma Testis Interstitial cell tumor Prostate Preputial/citoral gland Carcinoma, NOS Adenoma, NOS	+ X + N	+ X + X	+ X + X	Z+X+	+ + X	+ X + X X	+ + Z	X X + + N	+ X + N	4 + + N	+ X + N	+ X + N	+ X + N	+ + Z	+ X + X	+ X + N	+ X + N X + N X	+ X + N	+ X + N	+ X + N + N X	+ X + N	+ X + N	+ X + N	+ X + N	+ X + N	1 50 28 50 *50 5 2
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Tunica vaginalis Mesothelioma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Fibrosarcoma Mesothelioma, metastatic Osteosarcoma, metastatic Leukamia, mononuclear cell Shoulder, NOS Osteosarcoma	N X		N	N X		N X		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 2 1 6 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Control	310 ppm	620 ppm
Skin: Sebaceous Adenoma		······································	
Overall Rates (a)	0/50 (0%)	0/50 (0%)	4/50 (8%)
Adjusted Rates (b)	0.0%	0.0%	15.2%
Terminal Rates (c)	0/33 (0%)	0/30 (0%)	2/20 (10%)
Week of First Observation	0/33 (0%)	0/30(0%)	69
Life Table Tests (d)	P = 0.006	(e)	P = 0.028
Incidental Tumor Tests (d)	P = 0.000 P = 0.015	(e)	P = 0.023 P = 0.067
Cochran-Armitage Trend Test (d)	P = 0.015 P = 0.015	(e)	F = 0.007
Fisher Exact Test (d)	P=0.015	(e)	P=0.059
Skin: Trichoepithelioma or Sebaceous A	lenoma		
Overall Rates (a)	0/50 (0%)	0/50 (0%)	5/50 (10%)
Adjusted Rates (b)	0.0%	0.0%	17.4%
Terminal Rates (c)	0/33 (0%)	0/30 (0%)	2/20 (10%)
Week of First Observation	0/00 (0 /0)		69
Life Table Tests (d)	P = 0.002	(e)	P = 0.014
Incidental Tumor Tests (d)	P = 0.002 P = 0.009	(e) (e)	P = 0.014 P = 0.044
		(e)	r V.V44
Cochran-Armitage Trend Test (d)	P = 0.006	()	D 0.022
Fisher Exact Test (d)		(e)	P = 0.028
Subcutaneous Tissue: Fibroma			
Overall Rates (a)	3/50 (6%)	4/50 (8%)	6/50 (12%)
Adjusted Rates (b)	7.4%	12.4%	23.4%
Terminal Rates (c)	1/33 (3%)	3/30 (10%)	3/20 (15%)
Week of First Observation	87	97	87
Life Table Tests (d)	P = 0.069	P = 0.465	P = 0.106
Incidental Tumor Tests (d)	P = 0.160	P = 0.433	P = 0.231
Cochran-Armitage Trend Test (d)	P = 0.187		
Fisher Exact Test (d)		P = 0.500	P = 0.243
Subcutaneous Tissue: Fibroma or Fibros	arcoma		
Overall Rates (a)	4/50 (8%)	6/50 (12%)	7/50 (14%)
Adjusted Rates (b)	9.4%	16.9%	26.1%
Terminal Rates (c)	1/33 (3%)	3/30 (10%)	3/20 (15%)
Week of First Observation	84	78	87
Life Table Tests (d)	P = 0.079	P = 0.339	P = 0.113
Incidental Tumor Tests (d)	P = 0.075 P = 0.256	P = 0.339 P = 0.340	P = 0.287
Cochran-Armitage Trend Test (d)	P = 0.230 P = 0.215	1 -0.040	1 - 0.201
Fisher Exact Test (d)	1 - 0.210	P = 0.370	P = 0.262
		r - 0.0 (V	F - 0.202
ung: Alveolar/Bronchiolar Carcinoma Overall Rates (a)	0/50 (0%)	3/46 (7%)	0/50 (0%)
Adjusted Rates (b)	0.0%	3/40 (<i>1%)</i> 11.1%	0.0%
Terminal Rates (c)		3/27(11%)	0/20 (0%)
Week of First Observation	0/33 (0%)		0/20 (0%)
		104	(-)
Life Table Tests (d)	P = 0.504	P = 0.087	(e)
Incidental Tumor Tests (d)	P = 0.504	P = 0.087	(e)
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.638	P=0.106	(e)
	T ou hour io		·
Iematopoietic System: Mononuclear Cell Overall Rates (a)	Leukemia 21/50 (42%)	23/50 (46%)	6/50 (12%)
Adjusted Rates (b)	50.8%	55.5%	21.2%
Terminal Rates (c)	13/33 (39%)	12/30 (40%)	$\frac{21.2\%}{1/20(5\%)}$
Week of First Observation	13/33 (39%) 88		92
Life Table Tests (d)		88 D-0 224	
	P = 0.068N	P = 0.334	P = 0.041N
Incidental Tumor Tests (d)	P = 0.001 N	P=0.388	P = 0.001 N
Cochran-Armitage Trend Test (d)	P = 0.001 N	P = 0.420	P<0.001N
Fisher Exact Test (d)			

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

•

	Control	310 ppm	620 ppm
Liver: Neoplastic Nodule		<u></u>	<u></u>
Overall Rates (a)	6/50 (12%)	4/49 (8%)	3/50 (6%)
Adjusted Rates (b)	15.3%	11.5%	14.3%
Terminal Rates (c)	3/33 (9%)	2/30 (7%)	2/20 (10%)
Week of First Observation	87	94	103
Life Table Tests (d)			
	P = 0.397N	P = 0.411 N	P = 0.481N
Incidental Tumor Tests (d)	P = 0.221N	P = 0.424N	P = 0.299N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	$P = 0.188 N_{\odot}$	P = 0.384N	P = 0.244N
iven Neoplectic Nedule on Henetecellul	an Canalmama		
Liver: Neoplastic Nodule or Hepatocellul		1/10 (8/1)	9/50 (00)
Overall Rates (a)	7/50 (14%)	4/49 (8%)	3/50 (6%)
Adjusted Rates (b)	18.1%	11.5%	14.3%
Terminal Rates (c)	4/33 (12%)	2/30 (7%)	2/20 (10%)
Week of First Observation	87	94	103
Life Table Tests (d)	P = 0.292N	P = 0.305N	P = 0.383N
Incidental Tumor Tests (d)	P = 0.150N	P = 0.312N	P = 0.224N
Cochran-Armitage Trend Test (d)	P = 0.115N		
Fisher Exact Test (d)		P = 0.274N	P = 0.159N
Anterior Pituitary Gland: Adenoma			
Overall Rates (a)	11/48 (23%)	7/49 (14%)	8/45 (18%)
Adjusted Rates (b)	30.0%	23.3%	28.0%
Terminal Rates (c)	7/32 (22%)	7/30 (23%)	3/19 (16%)
Week of First Observation	96	104	79
Life Table Tests (d)	P = 0.472	P = 0.266N	P = 0.483
Incidental Tumor Tests (d)			
	P = 0.443N	P = 0.200N	P = 0.443N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.300N	P = 0.203N	P = 0.362N
		1 -0.20011	1 - 0.00211
Adrenal Gland: Pheochromocytoma			
Overall Rates (a)	12/50 (24%)	15/50 (30%)	12/50 (24%)
Adjusted Rates (b)	36.4%	42.0%	52.9%
Terminal Rates (c)	12/33 (36%)	10/30 (33%)	10/20 (50%)
Week of First Observation	104	95	86
Life Table Tests (d)	P = 0.094	P = 0.236	P = 0.110
Incidental Tumor Tests (d)	P = 0.175	P = 0.299	P = 0.142
Cochran-Armitage Trend Test (d)	P = 0.545		
Fisher Exact Test (d)		P=0.326	P = 0.592N
Adrenal Gland: Pheochromocytoma or M	alignant Pheochromocy	vtoma	
Overall Rates (a)	14/50 (28%)	15/50 (30%)	14/50 (28%)
Adjusted Rates (b)	41.1%	42.0%	59.1%
Terminal Rates (c)	13/33 (39%)	10/30 (33%)	11/20 (55%)
Week of First Observation	102	95	86
Life Table Tests (d)	P = 0.080	P = 0.391	P = 0.085
Incidental Tumor Tests (d)	P = 0.080 P = 0.174	P = 0.391 P = 0.486	P = 0.085 P = 0.147
	P = 0.174 P = 0.544	r - 0.400	r 0.14/
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	r=0.044	P = 0.500	P=0.588N
Thyroid Gland: C-Cell Adenoma	11/10/0000	B / A A A A A A A	0/50 (1 27)
Overall Rates (a)	11/49 (22%)	7/49 (14%)	8/50 (16%)
Adjusted Rates (b)	30.0%	20.0%	29.6%
	8/33 (24%)	4/30 (13%)	4/20 (20%)
Terminal Rates (c)	05	92	75
Week of First Observation	95	<i>V4</i>	
	P = 0.486	P = 0.281N	P = 0.484
Week of First Observation	P = 0.486		
Week of First Observation Life Table Tests (d)	-	P = 0.281 N	P = 0.484

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Control	310 ppm	620 ppm
Preputial Gland: Adenoma		= =	
Overall Rates (a)	8/50 (16%)	8/50 (16%)	2/50 (4%)
Adjusted Rates (b)	22.3%	23.7%	7.3%
Terminal Rates (c)	6/33 (18%)	6/30 (20%)	1/20 (5%)
Week of First Observation	95	67	75
Life Table Tests (d)	P = 0.169N	P = 0.539	P = 0.170N
Incidental Tumor Tests (d)	P = 0.075N	P = 0.592N	P = 0.079N
Cochran-Armitage Trend Test (d)	P = 0.045N		
Fisher Exact Test (d)		P = 0.607 N	P = 0.046 N
Preputial Gland: Carcinoma			
Overall Rates (a)	1/50 (2%)	8/50 (16%)	5/50 (10%)
Adjusted Rates (b)	3.0%	22.2%	16.0%
Terminal Rates (c)	1/33 (3%)	5/30 (17%)	2/20 (10%)
Week of First Observation	104	60	42
Life Table Tests (d)	P = 0.041	P = 0.016	P = 0.053
Incidental Tumor Tests (d)	P = 0.171	P = 0.018	P = 0.166
Cochran-Armitage Trend Test (d)	P = 0.114		
Fisher Exact Test (d)		P = 0.015	P = 0.102
Preputial Gland: Adenoma or Carcinoma			
Överall Rates (a)	9/50 (18%)	16/50 (32%)	7/50 (14%)
Adjusted Rates (b)	25.2%	43.6%	22.5%
Terminal Rates (c)	7/33 (21%)	11/30 (37%)	3/20 (15%)
Week of First Observation	95	60	42
Life Table Tests (d)	P = 0.356	P = 0.062	P = 0.496
Incidental Tumor Tests (d)	P = 0.366N	P = 0.086	P = 0.379N
Cochran-Armitage Trend Test (d)	P = 0.357N	1 0.000	
Fisher Exact Test (d)	1 -0.00110	P = 0.083	P = 0.393N
Testis: Interstitial Cell Tumor			
Overall Rates (a)	45/50 (90%)	30/50 (60%)	28/50 (56%)
Adjusted Rates (b)	100.0%	74.4%	86.8%
Terminal Rates (c)	33/33 (100%)	20/30 (67%)	16/20 (80%)
Week of First Observation	75	67	75
Life Table Tests (d)	P = 0.352N	P = 0.022N	P=0.495N
Incidental Tumor Tests (d)	P = 0.005N	P<0.001N	P = 0.007N
Cochran-Armitage Trend Test (d)	P<0.001N	1 (0.00111	1 = 0.00111
Fisher Exact Test (d)	1 < 0.00110	P<0.001N	P<0.001N
All Sites: Mesothelioma			
Overall Rates (a)	0/50 (0%)	7/50 (14%)	2/50 (4%)
Adjusted Rates (b)	0.0%	17.4%	6.6%
Terminal Rates (c)	0/33 (0%)	2/30 (7%)	0/20 (0%)
Week of First Observation		67	93
Life Table Tests (d)	P=0.149	P = 0.010	P = 0.174
Incidental Tumor Tests (d)	P = 0.363	P = 0.010 P = 0.014	P = 0.307
Cochran-Armitage Trend Test (d)	P = 0.363 P = 0.264	r — 0.014	r - 0.307
Fisher Exact Test (d)	F - 0.204	P=0.006	P = 0.247
All Sites: Benign Tumors			
Overall Rates (a)	19/50 (06%)	10/50 (900)	10/50 (200)
Adjusted Rates (b)	48/50 (96%)	40/50 (80%)	40/50 (80%)
	100.0%	95.2%	100.0%
Terminal Rates (c)	33/33 (100%)	28/30 (93%)	20/20 (100%)
Week of First Observation	59 D-0.050	67 D - 0 940N	69 D - 0.054
Life Table Tests (d)	P = 0.050	P = 0.249N	P = 0.054
Incidental Tumor Tests (d)	P = 0.262N	P = 0.012N	P = 0.258N
Cochran-Armitage Trend Test (d)	P = 0.017 N		D 001431
Fisher Exact Test (d)		P = 0.014N	P = 0.014N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Control	310 ppm	620 ppm
All Sites: Malignant Tumors	······································		
Overall Rates (a)	27/50 (54%)	34/50 (68%)	21/50 (42%)
Adjusted Rates (b)	59.6%	73.7%	54.6%
Terminal Rates (c)	15/33 (45%)	18/30 (60%)	5/20 (25%)
Week of First Observation	66	60	42
Life Table Tests (d)	P = 0.285	P = 0.112	P=0.391
Incidental Tumor Tests (d)	P = 0.055N	P = 0.138	P = 0.057N
Cochran-Armitage Trend Test (d)	P = 0.135N		
Fisher Exact Test (d)		P = 0.109	P = 0.159N
All Sites: All Tumors			
Overall Rates (a)	49/50 (98%)	47/50 (94%)	46/50 (92%)
Adjusted Rates (b)	100.0%	97. 9%	100.0%
Terminal Rates (c)	33/33 (100%)	29/30 (97%)	20/20 (100%)
Week of First Observation	59	60	42
Life Table Tests (d)	P = 0.008	P = 0.469	P = 0.010
Incidental Tumor Tests (d)	P = 0.390N	P = 0.265N	P = 0.545N
Cochran-Armitage Trend Test (d)	P = 0.133N		
Fisher Exact Test (d)		P = 0.309N	P = 0.182N

TABLE A3. ANALYSIS OF PRIMARY TUMORS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site
(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the dosed and control groups.

.

.

TABLE A4a. HISTORICAL INCIDENCE OF MESOTHELIOMAS IN MALE F344/N RATS RECEIVING NO TREATMENT (a,b)

Study	Incidence in Controls					
Historical Incidence at Physiological Research Laboratories						
Ephedrine sulfate Phenylephrine hydrochloride Oxytetracycline hydrochloride	3/50 2/50 0/50					
TOTAL SD (c)	5/150 (3.3%) 3.06%					
Range (d) High Low	3/50 0/50					
Overall Historical Incidence						
TOTAL SD (c)	52/1,937 (2.7%) 2.39%					
Range (d) High Low	5/50 0/50					

(a) Data as of August 7, 1986, for studies of at least 104 weeks

(b) Includes mesotheliomas designated as NOS, benign, or malignant

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

TABLE A4b. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE F344/N RATS **RECEIVING NO TREATMENT (a)**

		Incidence in Controls				
Study	Benign	Malignant	Benign or Malignan			
Historical Incidence at Physio	logical Research Laborato	ries				
Ephedrine sulfate	1/50	0/50	1/50			
Phenylephrine hydrochloride	1/50	0/50	1/50			
Oxytetracycline hydrochloride	0/50	0/50	0/50			
TOTAL	(b) 2/150 (1.3%)	0/150 (0.0%)	(b) 2/150 (1.3%)			
SD (c)	1.15%	0.00%	1.15%			
Range (d)						
High	1/50	0/50	1/50			
Low	0/50	0/50	0/50			
Overall Historical Incidence						
TOTAL	(e) 18/1,937 (0.9%)	(f) 14/1,937 (0.7%)	(e,f) 32/1,937 (1.7%)			
SD (c)	1.45%	1.19%	1.90%			
Range (d)						
High	3/50	2/50	4/50			
Low	0/50	0/50	0/50			

(a) Data as of August 7, 1986, for studies of at least 104 weeks

(b) Basal cell tumors

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.
(e) Includes nine basal cell tumors, five trichoepitheliomas, one adnexal adenoma, and three sebaceous adenomas

(f) Basal cell carcinomas; no other malignant sebaceous gland tumors have been observed.

.

Study	No. Examined	No. of Tumors	Diagnosis
Historical Incidence at Physiol	ogical Research Labor	ratories	
Ephedrine sulfate	50	2	Adenoma, NOS
Phenylephrine hydrochloride	50	2	Carcinoma, NOS
Oxytetracycline hydrochloride	50	1	Adenocarcinoma, NOS
TOTAL	150	5 (3.3%)	
Overall Historical Incidence			
		55	Adenoma, NOS
		1	Papillary adenoma
		1	Cystadenoma
		55	Carcinoma, NOS
		2	Squamous cell carcinoma
		8	Adenocarcinoma, NOS
		1	Sebaceous adenocarcinom
TOTAL	1,937	123 (6.4%)	

TABLE A4c. HISTORICAL INCIDENCE OF PREPUTIAL GLAND TUMORS IN MALE F344/N RATS **RECEIVING NO TREATMENT (a)**

(a) Data as of August 7, 1986, for studies of at least 104 weeks; greatest incidence observed in any untreated control group is 9/50.

TABLE A4d. HISTORICAL INCIDENCE OF TESTICULAR INTERSTITIAL CELL TUMORS IN MALE F344/N **RATS RECEIVING NO TREATMENT (a)**

Study	Incidence in Controls					
Historical Incidence at Physiological Research Laboratories						
Ephedrine sulfate Phenylephrine hydrochloride Oxytetracycline hydrochloride	45/50 47/50 41/50					
TOTAL SD (b)	133/150 (88.7%) 6.11%					
Range (c) High Low	47/50 41/50					
Overall Historical Incidence						
TOTAL SD(b)	1,681/1,909 (88.1%) 7.32%					
Range (c) High Low	49/50 35/49					

(a) Data as of August 7, 1986, for studies of at least 104 weeks; no malignant tumors have been observed. (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

Study	Incidence in Controls			
Historical Incidence at Physiological Re	esearch Laboratories			
Ephedrine sulfate	25/50			
Phenylephrine hydrochloride	24/50			
Oxytetracycline hydrochloride	22/50			
TOTAL	71/150 (47.3%)			
SD (b)	3.06%			
Range (c)				
High	25/50			
Low	22/50			
Overall Historical Incidence				
TOTAL	586/1,937 (30.3%)			
SD (b)	11.97%			
Range (c)				
High	30/50			
Low	5/50			

TABLE A4e. HISTORICAL INCIDENCE OF LEUKEMIA IN MALE F344/N RATS RECEIVING NO TREATMENT (a)

(a) Data as of August 7, 1986, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.

	Untreat	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50	4150 A	50			
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICAI	LLY 50		50		50	
NTEGUMENTARY SYSTEM		•••• <u>•</u> •••••••••••••••••••••••••••••••				
*Skin	(50)		(50)		(50)	
Epidermal inclusion cyst	2	(4%)	3	(6%)	2	(4%)
RESPIRATORY SYSTEM		<u> </u>		<u></u>		
*Nasal cavity	(50)		(50)		(50)	
Inflammation, NOS	8	(16%)		(8%)	14	(28%)
Inflammation, suppurative				(2%)		
Infection, fungal				(2%)		
Foreign material, NOS	(50)			(4%)	(50)	
*Nasal turbinate	(50)		(50)		(50)	(0~)
Exostosis #Tracheal submucosa	(40)		(40)			(2%)
<i>#</i> Tracneal submucosa Cyst, NOS	(49)		(49)		(49)	(00)
Tracheal cartilage	(49)		(49)		(49)	(2%)
Degeneration, NOS	(43)		(49)			(2%)
#Lung	(50)		(46)		(50)	(290)
Congestion, NOS	1 2	(2%)	(40)			(2%)
Inflammation, NOS		(6%)	1	(2%)		(10%)
Hyperplasia, alveolar epithelium	Ŭ	(0,0)		(4%)		(2%)
#Lung/alveoli	(50)		(46)	(4,0)	(50)	(22 /0)
Edema, NOS		(2%)	(10)			(2%)
Histiocytosis	1	(2%)				
 #Bone marrow Hypoplasia, NOS Hyperplasia, reticulum cell #Spleen Inflammation, acute Fibrosis Scar Hematopoiesis #Lymph node Cyst, NOS Hemorrhage Granulation tissue Hyperplasia, NOS Histiocytosis Plasmacytosis 	12 1 (48) 1 1 2 1 (50) 2 1 2	(4%) (24%) (2%) (2%) (4%) (2%) (4%) (2%) (4%)	18 (46) 5 (50) 1 2 1	(2%) (36%) (11%) (2%) (4%)	6 1 (50) 5 (50) 4 1 2 2	(10%) (12%) (2%) (10%) (8%) (2%) (4%) (4%)
*Intestinal tract	(50)		(50)	(0~)	(50)	
Hyperplasia, lymphoid #Glandular stomach	(50)			(2%)	(EO)	
	(50)	(90)	(50)	(10)	(50)	
Hyperplasia, lymphoid #Thymus	(29)	(2%)		(4%)	(35)	
Cyst, NOS		(3%)	(28)		(33)	
Hyperplasia, lymphoid	1				1	(3%)
DIRCULATORY SYSTEM	<u></u>					
#Heart/atrium	(50)		(50)		(50)	
		(0 ~)				
Thrombosis, NOS		(2%)				
Thrombosis, NOS #Myocardium Degeneration, NOS	(50)	(2%)	(50)	(94%)	(50)	(100%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Untreat	ted Control	Low	Dose	High	Dose
*Artery	(50)		(50)		(50)	
Periarteritis	1	(2%)		(4%)		(6%)
DIGESTIVE SYSTEM						
#Salivary gland	(49)		(48)		(48)	
Cyst. NOS		(2%)	(,		(10)	
Nuclear alteration		(4%)	3	(6%)	2	(4%)
Atrophy, focal		(8%)	•	(0.07)		(6%)
Hyperplasia, focal		(2)				(2%)
Metaplasia, squamous						(2%)
#Liver	(50)		(49)		(50)	(=)
Accessory structure		(6%)		(8%)		(6%)
Inflammation, NOS	-	(2.17)		(2%)		(4%)
Granuloma, NOS	1	(2%)		(2%)		(4%)
Cystic degeneration	1			(2%)		(2%)
Necrosis, NOS	-	(2%)		(2%)		(4%)
Angiectasis	-		•			(2%)
#Intrahepatic bile duct	(50)		(49)		(50)	,
Hyperplasia, NOS		(94%)	,	(96%)		(92%)
#Liver/hepatocytes	(50)	(••••)	(49)		(50)	(•••/
Degeneration, NOS		(2%)	((6%)
Focal cellular change		(70%)	34	(69%)		(58%)
Nodular regeneration		(4%)		(2%)		(2%)
#Pancreas	(48)	(,	(49)	(=,	(49)	(= /• /
Atrophy, focal		(63%)		(61%)	(,	(45%)
Atrophy, diffuse		(2%)		(•••)		(2%)
#Glandular stomach	(50)	(=,0)	(50)		(50)	(2,0)
Cyst, NOS		(16%)		(24%)		(12%)
Erosion	•	(20,0)		(= = 10)		(2%)
#Forestomach	(50)		(50)		(50)	(=)
Ulcer, NOS		(2%)	,		(
#Colon	(49)		(50)		(47)	
Inflammation, chronic focal					1	(2%)
JRINARY SYSTEM			<u></u>			
#Kidney	(50)		(50)		(50)	
Nephropathy		(96%)	x = = 7	(100%)	(- ·)	(94%)
#Kidney/cortex	(50)		(50)		(50)	(0-10)
Cyst, NOS	(00)			(6%)		(4%)
#Kidney/tubule	(50)		(50)		(50)	(=//)
Hyperplasia, focal		(2%)	(00)			(2%)
ENDOCRINE SYSTEM	·	<u></u>				
#Pituitary intermedia	(48)		(49)		(45)	
Hyperplasia, focal		(2%)			()	
#Anterior pituitary	(48)		(49)		(45)	
Hemorrhage		(2%)	()		()	
Hyperplasia, focal		(13%)	13	(27%)	10	(22%)
Hyperplasia, cystic		(6%)		(4%)	- •	,
Angiectasis	·	-		(2%)		
#Adrenal cortex	(50)		(50)		(50)	
Accessory structure		(2%)		(2%)		(2%)
Cytoplasmic vacuolization		(8%)		(14%)		(8%)
Hypertrophy, focal		(12%)		(8%)		(6%)
Hyperplasia, focal		(32%)		(42%)		(20%)
#Adrenal medulla	(50)		(50)		(50)	/
#Adrenal medulla						
Hyperplasia, NOS		(2%)				

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ted Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM (Continued)						
#Thyroid	(49)		(49)		(50)	
Follicular cyst, NOS		(4%)	(40)			(4%)
Hemorrhage	4	(11/0)				(2%)
Inflammation, chronic necrotizing						(2%)
Hyperplasia, C-cell	4	(8%)	3	(6%)		(10%)
#Thyroid follicle	(49)		(49)	(0,0)	(50)	(10,0)
Mineralization		(2%)	(43)		(00)	
Degeneration, NOS	1	(270)	1	(2%)	1	(2%)
Necrosis, NOS				(2%)	1	(270)
Atrophy, NOS			1	(270)	1	(2%)
Hyperplasia, cystic				(2%)	1	(270)
#Parathyroid	(38)			(270)	(20)	
	(30)		(38)	((39)	(00)
Hyperplasia, NOS #Pancreatic islets	(40)			(5%)		(3%)
	(48)		(49)	(00)	(49)	
Hypertrophy, NOS		(2%)		(2%)		
Hyperplasia, NOS	2	(4%)	1	(2%)		
REPRODUCTIVE SYSTEM				<u></u>		
*Mammary gland	(50)		(50)		(50)	
Hyperplasia, cystic	7	(14%)	8	(16%)		(10%)
*Preputial gland	(50)		(50)		(50)	< <i>,</i>
Inflammation, NOS	1 ,	(74%)		(74%)	,	(76%)
Hyperplasia, NOS	•••	(*****		(12%)		(2%)
#Prostate	(49)		(49)		(50)	(2,0)
Cyst, NOS	()		(10)			(2%)
Inflammation, NOS	32	(65%)	30	(61%)		(60%)
Inflammation, acute/chronic		(2%)	00	(01 /0)	50	(00%)
Inflammation, chronic	-	(470)			1	(2%)
Inflammation, chronic suppurative						(2%)
Atrophy, NOS	1	(2%)				
Hyperplasia, cystic					2	(4%)
*Seminal vesicle		(2%)	(50)		(50)	
	(50)	(97)	(50)	(90)	(50)	
Dilatation, NOS		(2%)	1	(2%)		
Cyst, NOS		(2%)				
Hemorrhage		(2%)				
Inflammation, chronic suppurative		(2%)			_	
Atrophy, NOS	8	(16%)			3	(6%)
Hyperplasia, epithelial				(8%)		
Hyperplasia, cystic				(2%)		
#Testis	(50)		(50)		(50)	
Degeneration, NOS	12	(24%)	49	(98%)	47	(94%)
Hyperplasia, interstitial cell		(4%)		(4%)		(14%)
*Epididymis	(50)		(50)		(50)	
Dilatation, NOS				(2%)		
Inflammation, chronic		(2%)				
Basophilic cyto change	1	(2%)				
Atrophy, NOS	15	(30%)	14	(28%)	18	(36%)
IERVOUS SYSTEM				· · · · · · · · · · · · · · · · · · ·		<u></u>
	(20)		(FA)		(FA)	
#Brain/meninges	(50)	(07)	(50)		(50)	(00)
Hemorrhage		(2%)				(2%)
#Cerebral cortex	(50)		(50)		(50)	(0.5)
Atrophy, focal						(2%)
#Brain stem	(50)		(50)		(50)	
Atrophy, pressure		(6%)				(8%)
*Spinal cord	(50)		(50)		(50)	
Cyst, NOS					1	(2%)
Atrophy, pressure	1					(2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ed Control	Low	Dose	High	Dose
NERVOUS SYSTEM (Continued)						
*White matter spinal	(50)		(50)		(50)	
Degeneration, NOS	3	(6%)	6	(12%)	4	(8%)
SPECIAL SENSE ORGANS						
*Eye	(50)		(50)		(50)	
Phthisis bulbi				(2%)		(2%)
*Eye/crystalline lens	(50)		(50)		(50)	(0.21)
Cataract			/ # ^ .			(2%)
*Nasolacrimal duct	(50)		(50)		(50)	(00)
Inflammation, NOS	(50)		(50)			(2%)
*Harderian gland	(50)		(50)	(2%)	(50)	
Lymphocytic inflammatory infiltrate	(50)		(50)	(270)	(50)	
*Ear canal Hemorrhage	(60)		(00)			(2%)
				. <u></u>	• 	(<i>2</i> /0)
MUSCULOSKELETAL SYSTEM	(50)		(50)		(50)	
*Bone	(00)		(00)			(2%)
Deformity, NOS Fibrous osteodystrophy			1	(2%)	1	(270)
*Maxilla	(50)		(50)	(2/0)	(50)	
Exostosis	(00)		(++)	(2%)	(00)	
*Vertebra	(50)		(50)	<u> </u>	(50)	
Exostosis	(++)	(2%)	(,		, , , ,	
*Joint	(50)		(50)		(50)	
Degeneration, NOS			1	(2%)	3	(6%)
*Vertebral joint	(50)		(50)		(50)	
Degeneration, NOS	10	(20%)	31	(62%)	23	(46%)
*Sternal synchondrosis	(50)		(50)		(50)	
Degeneration, NOS		(48%)		(52%)		(42%)
*Knee joint	(50)		(50)		(50)	
Degeneration, NOS		(10%)		(64%)		(96%)
*Intervertebral disc	(50)		(50)		(50)	(0.67)
Prolapse	1	(2%)			1	(2%)
BODY CAVITIES						
*Mesentery	(50)		(50)		(50)	
Necrosis, fat		(10%)		(4%)		(2%)
*Tunica vaginalis	(50)		(50)		(50)	
Hyperplasia, mesothelial	1	(2%)	1	(2%)		
ALL OTHER SYSTEMS						
*Multiple organs	(50)		(50)		(50)	
Mineralization					1	(2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

SPECIAL MORPHOLOGY SUMMARY None

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

		PAGE
TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	93
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO- YEAR FEED STUDY OF NITROFURAZONE	96
TABLE B3	ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	102
TABLE B4a	HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT	105
TABLE B4b	HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS RECEIVING NO TREATMENT	105
TABLE B5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	106

Nitrofurazone, NTP TR 337

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Untreat	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	49		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICA	LLY 49		50	•	50	
INTEGUMENTARY SYSTEM			(5 .0.)		(20)	
*Skin	(49)		(50)		(50)	(40)
Trichoepithelioma	(40)		(50)		2 (50)	(4%)
*Subcutaneous tissue Fibrosarcoma	(49) 1	(2%)	(50)		(50)	
RESPIRATORY SYSTEM	<u> </u>		<u>.</u>		<u></u>	
#Lung	(48)		(15)		(49)	
Alveolar/bronchiolar adenoma		(2%)				
Alveolar/bronchiolar carcinoma			1	(7%)	1	(2%)
HEMATOPOIETIC SYSTEM						
*Multiple organs	(49)	(0107)	(50)	(40)	(50)	(10)
Leukemia, mononuclear cell	15	(31%)	2	(4%)	2	(4%)
CIRCULATORY SYSTEM						
#Heart/atrium	(48)	(07)	(11)		(50)	
Neurilemoma, malignant	1	(2%)				
DIGESTIVE SYSTEM	(10)		(50)		(50)	
*Tongue	(49)		(50)		(50)	(2%)
Squamous cell carcinoma #Liver	(49)		(50)		(50)	(270)
Neoplastic nodule	(43)			(4%)		(4%)
#Forestomach	(49)		(12)		(50)	(-/-/
Squamous cell papilloma	()			(8%)	•	
#Duodenum	(49)		(10)		(50)	
Leiomyosarcoma			1	(10%)		
URINARY SYSTEM None						
ENDOCRINE SYSTEM					·····	
#Pituitary intermedia	(48)		(50)		(48)	
Adenoma, NOS		(2%)	()			
#Anterior pituitary	(48)		(50)		(48)	
Carcinoma, NOS				(8%)		
Adenoma, NOS		(38%)		(34%)		(31%)
#Adrenal	(49)	(1~)	(50)		(49)	(00)
Cortical adenoma		(4%)	(20)			(2%)
#Adrenal medulla	(49)	(90)	(50)	(99)	(49)	(8%)
Pheochromocytoma #Thyroid	4 (48)	(8%)	(14)	(2%)	4 (49)	(070)
	(40)	(13%)		(7%)		(18%)

	Untreat	ed Control	Low	Dose	High	Dose
REPRODUCTIVE SYSTEM						
*Mammary gland	(49)		(50)		(50)	
Adenocarcinoma, NOS		(2%)	(,			(4%)
Fibroadenoma	8	(16%)	36	(72%)	36	(72%)
*Clitoral gland	(49)		(50)	() =,	(50)	
Carcinoma, NOS		(10%)		(12%)	(
Adenoma, NOS		(6%)	-	,	7	(14%)
Adenocarcinoma, NOS			1	(2%)		
#Uterus	(49)		(20)	,	(50)	
Endometrial stromal polyp		(22%)		(45%)	15	(30%)
Endometrial stromal sarcoma		(,		(5%)		
Neurilemoma, malignant			-	(2.27	2	(4%)
#Cervix uteri	(49)		(20)		(50)	
Neurilemoma, malignant	,	(2%)	(=0)			
#Ovary	(49)		(12)		(50)	
Granulosa cell tumor			,	(8%)	(,	
Granulosa cell carcinoma	1	(2%)	-	,		
NERVOUS SYSTEM		<u></u>	······			
#Brain	(48)		(9)		(50)	
Astrocytoma	(10)		(•)			(2%)
	·					
SPECIAL SENSE ORGANS						
*Zymbal gland	(49)		(50)		(50)	
Squamous cell carcinoma	1	(2%)	1	(2%)		
MUSCULOSKELETAL SYSTEM None						
BODY CAVITIES						
*Mesentery	(49)		(50)		(50)	
Neurilemoma, invasive					1	(2%)
ALL OTHER SYSTEMS		· · · · · · · · · · · · · · · · · · ·			<u></u>	
*Multiple organs	(49)		(50)		(50)	
Granulosa cell carcinoma, metastatic		(2%)	(-•)			
		(_ , / ,				
ANIMAL DISPOSITION SUMMARY					-	
Animals initially in study	50		50		50	
Natural death	3		1		2	
Moribund sacrifice	19		12		17	
Terminal sacrifice	28		37		31	

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

1

	Untreated Control	Low Dose	High Dose
rumor summary		····	
Total animals with primary tumors**	44	47	46
Total primary tumors	80	85	100
Total animals with benign tumors	37	40	43
Total benign tumors	54	65	89 ·
Total animals with malignant tumors	23	17	9
Total malignant tumors	26	17	9
Total animals with secondary tumors##	1		1
Total secondary tumors	1		1
Total animals with tumors uncertain			
benign or malignant		3	2
Total uncertain tumors		3	2

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 # Number of animals examined microscopically at this site
 ## Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

ANIMAL NUMBER	1 3 0	1 1 9	1 0 8	1 4 4	1 4 9	1 4 3	1 3 9	1 1 7	1 2 6	1 3 4	1 0 1	1 2 7	1 3 3	1 1	$\frac{1}{2}$	1 4 7	1 3 8	$1 \\ 2 \\ 0$	1 4 2	1 2 5	1 3 7	1 0 6	1 0 2	1 0 3	1 0
WEEKS ON STUDY	0 4 7	0 5 2	0 5 4	0 6 4	0 6 7	0 6 8	0 7 2	0 7 3	0 7 3	0 7 5	0 7 6	0 7 8	0 8 7	0 8 8	0 8 9	0 9 0	0 9 3	0 9 4	0 9 4	0 9 6	0 9 6	1 0 2	104	104	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	в	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+++	+++	+++	+ +	++	+	+++	+++	++	+++	B B	+ +	+ +	+++	++	+++	++	++	+++	+ +	+++	+++	+++	+++	+++
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	++++	++++	+++++	+++++	++++++		+++++	+++++	+++++	+++++	B B B B B B B B	++++	++++	++++	+++++	+++-	++++++	++++	+ + + + +	+ + + + + +	++++	++++++	+++1	++++	+++
CIRCULATORY SYSTEM Heart Neurilemoma, malignant	+	+	+	+	+	+	+	+	-	+	в	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	++++++	+++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	1++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	88888888888888888888888888888888888888	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++	++++++++		+++++++	+++++++	+++++++	++++++++	+++++++++	+++++++	+++++++	+++++++
URINARY SYSTEM Kidney Urinary bladder	+++++	++++	+++	+ + +	+ +	+++	++++	+++	+++	+++	B B	++++	+++	+++	++	+++	+	++	+++	+++	+++	+++	+++	+++	+++
ENDOCRINE SYSTEM Pituitary Adenoma, NOS Adrenal Cortical adenoma	++++	+ +	+ X +	++	+ +	+ +	+ X +	+ +	+ X +	+ +	B B	* *	++	* *	+ +	+ +	+ X +	+++	++	+ X +	+ +	* *	* *	++	+ + X
Pheochromocytoma Thyroid C-ceil adenoma Parathyroid	+	+ -	+ +	+ X +	+ +	-	+ +	+ -	+ +	+ +	B B	+ +	+ +	+ -	+ -	x + -	+ +	x + +	+ +	+ +	+ +	+ +	+ +	+ +	+ -
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS Fibroadenoma Prepuțial/clitoral gland	N N	* x N	+ N	+ N	+ X N	+ N	+ N	+ N	+ N	+ N	B	+ N	+ N	+ N	+ N	+ N	+ N	+ X N	+ N	+ N	+ N	+ X N	+ X N	+ N	+ N
Carvinoma, NOS Adenoma, NOS Uterus Endometrial stromal polyp Neurilemoma, malignant	+ x	+	N X +	+ x	+	+ x	+	+	N X +	+	в	+	+	+	+	+	+	+	 *	* *	+	+	+	X +	+
Ovary Granulosa cell carcinoma	+	+	+	+	+	+	+	+	+	X +	в	+	+	+	+	+	÷	+	+	+	*	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	в	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Zymbal glaad Squamous cell carcinoma	N	N	N	N	Ń	N	N	N	N	N	в	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Granulosa cell carcinoma, metastatic Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	B	N	N X	N X	N X	N X		N X	N X	N X	N X	N	N	N	N

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE: UNTREATED CONTROL

+: Tissue examined microscopically
 -: Required tissue not examined microscopically
 X: Tumor incidence
 N: Necropsy, no autolysis, no microscopic examination
 S: Animal missexed

: No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

									.011		ueo	" /														
ANIMAL NUMBER	1 0 5	1 0 7	1 0 9	1 1 0	1 1 2	1 1 3	1 1 4	1 1 5	1 1 6	1 1 8	1 2 1	$\frac{1}{2}$	1 2 3	1 2 8	1 2 9	1 3 1	1 3 2	1 3 5	1 3 6	1 4 0	1 4 1	1 4 5	1 4 6	1 4 8	1 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
NTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	*49
RESPIRATORY SYSTEM Jungs and bronchi Alveolar/bronchiolar adenoma Trachea	++++	+++	++	++	* *	++	+	++	++	- +	++	++	+++	++	++	++	+++	++	++	++	++	+++	++	+ +	++	48 1 48
TEMATOPOIETIC SYSTEM Sone marrow Spleen yymph nodes Thymus	+++	+++++	++++	++++	++++++	+ + + +	+++++	+++++	++++-	+++++	++++	+++++	++++++	++++++	++++	+++++	+++++	++++	+++++	+++1	+++-	 + + + + +	+++	+++	++++	48 49 49 36
IRCULATORY SYSTEM Jeart Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	48 1
DIGESTIVE SYSTEM Salivary gland Livar Bile duct Pancreas Scophagus Stomach Small intestine Large intestine	++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	++++++	++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++	47 49 48 47 49 49 49 49
JRINARY SYSTEM Sidney Jrinary bladder	+++	++++	+++	+++	+++	++	+++	+++	++	+++	+++	+ +	+++	+++	+ +	+ +	+ +	++	+++	+ +	+ +	+++	+++	+++	++++	49 48
NDOCRINE SYSTEM Yuuitary Adenoma, NOS Adrenal Cortical adenoma Development	+++	+ +	+ X +	+ +	- +	+ +	+ X +	+ +	+ + x	+ +	+ +	* *	++	+ +	+ +	+ X +	++	+ X +	+ X +	+ X +	* * +	+++	+ X +	+ X +	+ +	48 19 49 2 4
Phaochromocytoma 'hyroid C-cell adenoma 'arathyroid	+ -	+	+ x +	+ +	+ +	+ +	+ -	+ +	+ +	+ +	+ +	+ +	* *	+ +	* * +	+ +	+ +	+ +	x + +	+ +	+ +	* -	x + -	* *	+ +	48 6 36
EPRODUCTIVE SYSTEM Iammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*49
Fibroadenoma reputia/clitoral gland Carcinoma, NOS Adenoma, NOS	N	N	N	N	N	N	N X	X N	N	N	N	N	N	N X	X N	X N	N X	N X	X N	N X	N	N	N	N	N	8 *49 5 3
Iterus Endometrial stromal polyp Neurilemoma, malignant	x x	+	+	*	* X	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	*	+	* X	+	+	+	49 11 1
vary Granulosa cell carcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1
ERVOUS SYSTEM	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
PECIAL SENSE ORGANS ymbai gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	*	N	N	N	N	N	N	N	N	N	N	N	N	*49 1
LL OTHER SYSTEMS Aultiple organs, NOS Granulosa cell carcinoma, metastatic Leukemia, mononuclear cell	N	N	N	N	N X	N	N	N	N	N X	N	N	N X		N X	N	N X	N X	N	N	N	N	N	N	N	*49 1 15

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: UNTREATED CONTROL (Continued)

* Animals necropsied

ANIMAL NUMBER	0 2 9	0 3 4	0 4 9	0 4 7	0 1 5	0 3 0	0 2 3	0 1 3	0 5 0	0 1 7	0 0 9	0 1 4	0 0 2	0 0 1	0 0 3	0 0 4	0 0 5	0 0 6	0 0 7	0 0 8	0 1 0	0 1 1	0 1 2	0 1 6	0 1 8
WEEKS ON STUDY	0 6 1	0 6 7	0 6 7	0 7 0	0 7 5	0 7 6	0 8 2	0 8 7	0 8 7	0 9 5	1 0 0	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	104	1 0 4							
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	+++	+ +	+	+ +	++	+ +	+++	++	+++	+	+ -	-	-	-	-	-	-	-	-	* *	-+	-	-	-	-
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	++++	++++	+++++	++++	++++	+++++	+++++	+++++	+++	++	++	++	++	++	++11	++	+++	+++	++	++	++	++	++	++
CIRCULATORY SYSTEM Heart	- +	+	+	+	+	+	+	+	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-
DIGESTIVE SYSTEM Salivary gland Liver	- ++++	+++	+++	++++	+++	++++	+++	+++	++	- +	-		 - +	 - +		 	-+	 	-+	-+	- +	-+	-+	- +	 - +
Neoplastic nodule Bile duct Pancreas Esophagus Stomach Squamous cell papilloma	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + +	+++++	++++	++++	++++	+++++	++++	+ - -	+	+	+	+	+	+	+	+	+	+ 1 + 1	X + + +	+	+	+ - -	+ - -
Småll intestine Leiomyosarcoma Large intestine	+++	+	++	+ +	+	+ +	++	+ +	+ +	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
URINARY SYSTEM Kidney Urinary bladder	+++	++++	+++	+++	+++	+++	+++	+++	+++	-	-	-	-	-	-	-	-	-	-	-	-	=	=	=	+
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenai Pheochromocytoma	++++	+	+	+	++	+ X +	++	+ +	+	+	+	+	+ X +	+ X +	+	+ X +	* *	+ X +	* * +	+ X +	+	+ X +	* * +	++	+ X +
Thyroid C-cell adenoma Parathyroid	+++	++	+	+ -	+ -	+ -	+ +	+ +	+ +	-	-	-	-	-	-	-	-	-	-	+ +	+ +	-	-	-	-
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Adencearcinoma, NOS	- + N	+ N	+ X N	+ X N	+ N	*x N	+ N X	+ X N	+ x N	N N	+ x N	+XNX	N N X	+ x N	+ X N	+ X N	+ x N	+ X N X	+ X N	+ X N	+ X N	+ X N	+ X N	+xNx	N N
Adsnocarcinoma, NOS Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary Granulosa cell tumor	+++	+ +	+ +	+	+ X +	+	+ +	+	* *	-	+	-	-	-	-	-	-	-	-	+	-	-	-	-	-
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	-	-	-	-		-		-	-	-	-	_	-	-	-	-
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N X	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE: LOW DOSE

ANIMAL NUMBER	0 1 9	0 2 0	0 2 1	0 2 2	0 2 4	0 2 5	0 2 6	0 2 7	0 2 8	0 3 1	0 3 2	0 3 3	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 2	0 4 3	0 4 4	0 4 5	0 4 6	0 4 8	TOTAL:
WEEKS ON STUDY		1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Traches		++	- +	-	-	-	-	+	-	++	-	-	-	-	-	-	-	-	-			-	-	-		15 1 14
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Thymus	+++	+++	+++1	++	++	++	+++ + +	+++	+++++++++++++++++++++++++++++++++++++++	++ 1 1	+++	++	++	+++	++	++	++	++	++ 1 1	++	++	++	+++-	++	++ + 1	50 50 10 8
CIRCULATORY SYSTEM Heart		-	-	-	_	-	-		-	_	_		-	-	-	_	-	+	-		-	-	-	-		11
DIGESTIVE SYSTEM Salivary gland Liver Neoplastic nodule Bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Leiomyosarcoma Large intestine	-++	-++++++++++++++++++++++++++++++++++++++	1++++1 1 1		1++1-1	++	-+ ++ +x-	1++1=+X= -	1++111 1	1+ +1++ 1 1	1++111 1	-+x+		-++	-++	-++	1+ +111 1 1	-++	+++++++++++++++++++++++++++++++++++++++	1++111	1+ +111 1 1		++ +		-++	10 50 2 50 10 14 12 1 1 9
URINARY SYSTEM Kidney Urinary bladder				-		-			-	-					-	-	2		-			-	-		-	10 9
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adenoma Pheochromocytoma Thyroid C-ceil adenoma Parathyroid	+ X +	+ X + + +	++++++	+ + -	+ + -	++	++	+ + -	+ + -	+ X + + X +	+ X+ -	+ + + -	+ +	++	+ +	+ X+ -	++	++	+ X + -	++	+ + -	+ X + -	++	+ X + -	+ X + -	50 4 17 50 1 14 10
REPRODUCTIVE SYSTEM Mammary gland Fibroadenoma Preputial/clitoral gland Carcinoma, NOS Adenocarcinoma, NOS	N N	+ X N	+ X N	* X N	* N	N N	N N	+ X N	+ X N	+ X N	* X N X	N N	+ X N	+ X N	+xN	+ X N	+XN	+ X N	+ X N	* X N	N N	N N	N N X	* X N	* N	*50 36 *50 6 1
Uterus Endometrial stromal polyp Endometrial stromal sarcoma Ovary Granulosa cell tumor	-	* -	-	- +	-	-	-	-	-	-	x + x -	+	-	+	* -	* -	* -	+ x -	-	* -	-	- + X	+	-	* -	21 9 1 12 1
NERVOUS SYSTEM Brain	-	-	-		_	_				-	-	-	-	-	-		_	-	_				-		-	9
SPECIAL SENSE ORGANS Zymbal gland Squamous cell carcinoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: LOW DOSE (Continued)

* Animals necropsied

ANIMAL NUMBER	0 6 9	057	0 7 6	0 7 9	0 8 5	0 6 4	0 6 0	0 8 7	0 9 0	0 8 8	0 5 2	0 6 3	0 5 8	0 8 1	0 9 2	0 5 5	0 7 4	0 7 5	0 9 3	0 5 1	0 5 3	0 5 4	0 5 6	0 5 9	0 6 1
WEEKS ON STUDY	0 2 6	0 6 0	0 6 4	0 6 4	0 7 2	0 7 6	0 8 4	0 8 4	0 8 8	0 9 1	0 9 2	0 9 3	0 9 7	1 0 1	1 0 1	1 0 2	1 0 2	1 0 3	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Skin Trichospithelioma	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	* x
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar carcinoma Trachea	++++	+++	+++	++	++	+++	+++	+++	+++	+++	+++	++	+ + +	+++	+++	+++	++	+ +	+ +	+++	++	+++	+++	+++	++
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + +	+ + + + +	+++++	++++++	++++++	+++++	++++++	+++++	+++++	+++++	++++-	++++	++++	+++++	+++1	++++	++++-	+ + + +	++++	++++	+ + + +	++++	++++-
CIRCULATORY SYSTEM Heart	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Oral cavity Squamous cell carcinoma Salivary gland Liver Neopiastic nodule Bile duct Pancreas Esophagus Stomach Small intestine Large intestine	N + + + + + + + + + + + + + + + + + + +	X ++ +++++	N ++ +++++	N ++ +++++	N ++ +++++	N ++ +++++	N ++ +++++	NX++ +++++	Z ++ +++++	Z ++ ++++1	Z ++ +++++	Z ++ +++++	Z 1+ +++++	N ++ +++++	Z ++ +++++	N ++ +++++	Z ++ +++++	Z ++ +++++	Z ++ +++++	N ++ +++++	Z ++ +++++	Z ++ +++++	Z ++ +++++	N ++ +++++	Z ++ +++++
URINARY SYSTEM Kidney Urinary bladder	-	++++	++++	 + +	++++	+++	++++	 + +	++++	++++	 + +	++++	++	++++	++++	++++	++	+ + +	++++	+++	++++	+++	++++	+++	++
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid C-cell adenoma Parathyroid	++++++	++++++	++++	+ + + X	++++++	++++++	++++	+++++	++	++++	+++	++++	+ X + +	+ X + + X -	++++	* * + +	++++++	+ X + +	+ X + +	 + +	++++++	+++++++	+++++++	+++++	+ + + X+
REPRODUCTIVE SYSTEM Mammary gland																- -			т 						+
Adencercinoma, NOS Fibroadenoma Preputal/Citoral gland Adenoma, NOS Uterus Endometrial stromal polyp	N +	X N +	N + X	ч N +	¥ N +	N +	N +	N + X	т N +	* X N +	N +	т Х N +	* X N +	* X N X + X	X N +	X N +	* X N +	x N +	× N + X	X N + X	ч И +	* X N +	* X N +	+	+ N X +
Neurilemoma, malignant Ovary	+	+	+	+	+	+	X +	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Astrocytoma	- +	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
BODY CAVITIES Mesentery Neurilemoma, invasive	- N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Leukemia, mononuclear cell	-	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE: HIGH DOSE

ANIMAL NUMBER	0 6 2	0 6 5	0 6 6	0 8 7	0 6 8	0 7 0	0 7 1	0 7 2	0 7 3	0 7 7	0 7 8	0 8 0	0 8 2	8 3	0 8 4	0 8 6	0 8 9	0 9 1	0 9 4	9 5	9 6	0 9 7	9 8	9 9	1 0 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
NTEGUMENTARY SYSTEM kin Trichoepithelioma	-	+	+	+	+	+	N	+	+	+	+	+	+	*	N	+	+	+	+	+	+	+	+	+	+	*50 2
ESPIRATORY SYSTEM ungs and bronchi Alveolar/bronchiolar carcinoma rachea	+++++	+	++	+ +	+ +	+ +	++	++	++	* *	++	-+	+	+ +	++	++	+++	++	+++	+++	++	+++	++	+ +	+++	49 1 50
IEMATOPOIETIC SYSTEM Ione marrow plean ymph nodes hymus	+ ++ ++ ++	+++++	++++	+++++	++++	++++	+++++	+++++	++++-	+++-	+++++	+++1	++++	++++	++++-	++++	++++	++++	++++	+++++	++++	+ + + +	++++	+++++	++++	50 50 50 36
CIRCULATORY SYSTEM	- +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Draicavity Squamous cell carcinoma Jelivery gland Liver Neoplastic nodule Bile duct Pancreas Seophagus Stomach Small intestine Large intestine	- N + + + + + + + + + +	Z ++ +++++	X ++ ++++++	N ++ ++++++	Z ++ ++++++	N ++ ++++++	N ++ +++++	N ++ +++++	N ++ +++++	X ++×+++++	N I+ ++++++	X ++ +++++	X ++ ++++++	Z ++ +++++	N ++ +++++	N ++ +++++	X ++ ++++++	X ++X++++++	Z ++ ++++++	Z ++ +1++++	X ++ ++++++	X ++ ++++++	X ++ +++++	Z ++ ++++++	N ++ +++++	*50 1 48 50 2 50 49 50 50 50 50 47
J RINARY SYSTEM Sidney Jrinary bladder	+	++++	++++	+ +	+++	++++	+++	+++	++++	++++	+++++	++++	+++	++++	+ +	+++++	+++	+ +	+ +	+ +	+++	+ +	+++	+ +	+++	50 50
NDOCRINE SYSTEM Tituitary Adenoma, NOS direnai Cortical adenoma Pheochromocytoma Thyroid C-ceil adenoma	++++++	+ + *	+ + + X +	+ + *	+ + x+x	+ + *	+ + + +	+++++	+ + +	* * +	+ + +	+x + x + x	* * +	+ x + x + +	+ + +	+ + +	* * + +	+++++	+ +	+ + X +	+ + + + X	+++++	+ + + +	+ + + + +	+++++	48 15 49 1 4 49 9
Parathyroid REPRODUCTIVE SYSTEM		+	+	+	+	+	+	+	+	+	+	+	_	+	+	_	+	+		+		+	+	_	+	37
fammary gland Adenocarcinoma, NOS Fibroadenoma reputial/clitoral gland Adenoma, NOS Jterus Endometrial stromal polyp Neurilemoma, malignant	+ N + X	+ xnx+x	+ XN +X	+ х *+ х	+ XN +	+ XN +	+ XNX + X	+ XN +	+ XN +	+ XN +	+ XN +	+ XN +	+ X X N +	+ x N +	+ XN + X + X	+ XN +	+ XNX+	+ XN +X	+ XN N + X	+ X N + X	+ XN +	+ XN +	+ XNX+X	+ XNX+	+ X N +	*50 2 36 *50 7 50 15 2
NERVOUS SYSTEM	_ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ervous sistem rain Astrocytoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
ODY CAVITIES Iesentery Neurilemoma, invasive	N	N	N	N	N	N	N	N	N	N	N	N	N	Ň	N	N	N	N	N	N	N	N	N	N	N	*50 1
LL OTHER SYSTEMS Iultiple organs, NOS Leukemia, mononuclear cell	- N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: HIGH DOSE (Continued)

* Animals necropsied

	Control	310 ppm	620 ppm
Hematopoietic System: Mononuclear Cel	l Leukemia		
Overall Rates (a)	15/49 (31%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	40.8%	4.5%	6.5%
Terminal Rates (c)	7/28 (25%)	0/37 (0%)	2/31 (6%)
Week of First Observation	87	67	104
Life Table Tests (d)	P<0.001N	P<0.001N	P<0.001N
Incidental Tumor Tests (d)	P<0.001N	P<0.001N	P<0.001N
Cochran-Armitage Trend Test (d)	P<0.001N		
Fisher Exact Test (d)		P<0.001N	P<0.001N
Anterior Pituitary Gland: Adenoma			
Overall Rates (a)	18/48 (38%)	17/50 (34%)	15/48 (31%)
Adjusted Rates (b)	51.2%	43,4%	42.4%
Terminal Rates (c)	11/27(41%)	15/37 (41%)	10/30 (33%)
Week of First Observation	54	76	97
Life Table Tests (d)	P = 0.180N	P = 0.165N	P = 0.212N
Incidental Tumor Tests (d)	P = 0.219N	P = 0.310N	P = 0.253N
Cochran-Armitage Trend Test (d)	P = 0.219N P = 0.295N	1 -0.31014	I - 0.2001
Fisher Exact Test (d)	r - 0.2901	D-0 440N	R-0.224N
FISHEL DAGU TESUU/		P = 0.440N	P = 0.334N
Anterior Pituitary Gland: Carcinoma Overall Rates (a)	0/48 (0%)	1/50 (90)	0/48 (0%)
Adjusted Rates (b)		4/50 (8%)	
Terminal Rates (c)	0.0%	10.8%	0.0%
Week of First Observation	0/27 (0%)	4/37 (11%)	0/30 (0%)
	D 0 50001	104	
Life Table Tests (d)	P = 0.596N	P = 0.109	(e)
Incidental Tumor Tests (d)	P = 0.596N	P = 0.109	(e)
Cochran-Armitage Trend Test (d)	P = 0.623	D 0.004	(-)
Fisher Exact Test (d)		P = 0.064	(e)
Anterior Pituitary Gland: Adenoma or C			
Overall Rates (a)	18/48 (38%)	21/50 (42%)	15/48 (31%)
Adjusted Rates (b)	51.2%	53.7%	42.4%
Terminal Rates (c)	11/27 (41%)	19/37 (51%)	10/30 (33%)
Week of First Observation	54	76	97
Life Table Tests (d)	P = 0.176N	P = 0.388N	P = 0.212N
Incidental Tumor Tests (d)	P = 0.214N	P = 0.579	P = 0.253N
Cochran-Armitage Trend Test (d)	P = 0.299N	B 0 (00	D 000437
Fisher Exact Test (d)		P = 0.402	P = 0.334N
Adrenal Gland: Pheochromocytoma	1110 (07)		440.00
Overall Rates (a)	4/49 (8%)	1/50 (2%)	4/49 (8%)
Adjusted Rates (b)	12.5%	2.6%	12.9%
Terminal Rates (c)	2/28 (7%)	0/37 (0%)	4/31 (13%)
Week of First Observation	90	103	104
Life Table Tests (d)	P = 0.529N	P = 0.118N	P = 0.579N
Incidental Tumor Tests (d)	P = 0.519N	P = 0.210N	P = 0.574N
Cochran-Armitage Trend Test (d)	P = 0.584		D
Fisher Exact Test (d)		P = 0.175N	P = 0.643
Thyroid Gland: C-Cell Adenoma		(0. 4 / 4 ·	
Overall Rates (a)	6/48 (13%)	(f) 1/14 (7%)	9/49 (18%)
Adjusted Rates (b)	19.6%		26.2%
Terminal Rates (c)	5/28 (18%)		7/31 (23%)
Week of First Observation	64		64
Life Table Test (d)			P = 0.363
Incidental Tumor Test (d)			P = 0.314
Fisher Exact Test (d)			P = 0.303

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Control	310 ppm	620 ppm
Mammary Gland: Fibroadenoma	<u>,</u>		
Overall Rates (a)	8/49 (16%)	36/50 (72%)	36/50 (72%)
Adjusted Rates (b)	24.8%	81.6%	85.6%
Terminal Rates (c)	5/28 (18%)	29/37 (78%)	25/31 (81%)
Week of First Observation	67	67	60
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001		1 401001
Fisher Exact Test (d)	1 (0.001	P<0.001	P<0.001
terus: Endometrial Stromal Polyp			
Overall Rates (a)	11/49 (22%)	9/21 (43%)	15/50 (30%)
Adjusted Rates (b)	30.9%	73.4%	41.8%
Terminal Rates (c)	6/28 (21%)	8/11 (73%)	11/31 (35%)
Week of First Observation	47	87	64
Life Table Tests (d)	P = 0.320	P = 0.225	P = 0.359
Incidental Tumor Tests (d)	P = 0.320 P = 0.279	P = 0.034	P = 0.303 P = 0.275
Cochran-Armitage Trend Test (d)	P = 0.239	1 - 0,004	1 - 0.210
Fisher Exact Test (d)	1 - 0.437	P = 0.076	P=0.266
litoral Gland: Adenoma			
Overall Rates (a)	3/49 (6%)	0/50 (0%)	7/50 (14%)
Adjusted Rates (b)	10.7%	0.0%	21.5%
Terminal Rates (c)	3/28 (11%)	0/37 (0%)	6/31 (19%)
Week of First Observation	104		101
Life Table Tests (d)	P = 0.094	P = 0.076N	P = 0.206
Incidental Tumor Tests (d)	P = 0.099	P = 0.076N	P = 0.208
Cochran-Armitage Trend Test (d)	P = 0.084		
Fisher Exact Test (d)	1 - 0.004	P = 0.117N	P = 0.167
litoral Gland: Carcinoma			
Overall Rates (a)	5/49 (10%)	6/50 (12%)	0/50 (0%)
	14.6%		
Adjusted Rates (b)		14.8%	0.0%
Terminal Rates (c)	3/28 (11%)	3/37 (8%)	0/31 (0%)
Week of First Observation	54	82 D 0 501 N	D 0.0001
Life Table Tests (d)	P = 0.029N	P = 0.591N	P = 0.029N
Incidental Tumor Tests (d)	P = 0.040N	P = 0.486	P = 0.047N
Cochran-Armitage Trend Test (d)	P=0.039N	D. 0714	D. 0.00731
Fisher Exact Test (d)		P = 0.514	P = 0.027N
litoral Gland: Adenocarcinoma or Carcir			0/50/00
Overall Rates (a)	5/49 (10%)	7/50 (14%)	0/50 (0%)
Adjusted Rates (b)	14.6%	17.3%	0.0%
Terminal Rates (c)	3/28 (11%)	4/37 (11%)	0/31 (0%)
Week of First Observation	54	82	D 0 00011
Life Table Tests (d)	P = 0.034N	P = 0.547	P = 0.029N
Incidental Tumor Tests (d)	P = 0.045N	P=0.383	P = 0.047 N
Cochran-Armitage Trend Test (d)	P = 0.045N		
Fisher Exact Test (d)		P = 0.394	P = 0.027 N
litoral Gland: Adenoma, Adenocarcinom			
Overall Rates (a)	8/49 (16%)	7/50 (14%)	7/50 (14%)
Adjusted Rates (b)	24.9%	17.3%	21.5%
Terminal Rates (c)	6/28 (21%)	4/37 (11%)	6/31 (19%)
Week of First Observation	54	82	101
Life Table Tests (d)	P = 0.357N	P = 0.310N	P = 0.415N
Incidental Tumor Tests (d)	P = 0.386N	P = 0.451N	P = 0.479N
Cochran-Armitage Trend Test (d)	P = 0.427 N		

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Control	310 ppm	620 ppm
All Sites: Malignant Tumors		· · · · · · · · · · · · · · · · · · ·	
Overall Rates (a)	23/49 (47%)	17/50 (34%)	9/50 (18%)
Adjusted Rates (b)	55.2%	38.0%	23.7%
Terminal Rates (c)	10/28 (36%)	10/37 (27%)	5/31 (16%)
Week of First Observation	52	61	76
Life Table Tests (d)	P = 0.002N	P = 0.053 N	P = 0.003 N
Incidental Tumor Tests (d)	P = 0.001 N	P = 0.238N	P = 0.001 N
Cochran-Armitage Trend Test (d)	P = 0.002N		
Fisher Exact Test (d)		P=0.134N	P = 0.002N
All Sites: All Tumors			
Overall Rates (a)	44/49 (90%)	47/50 (94%)	46/50 (92%)
Adjusted Rates (b)	91.6%	95.9%	95.8%
Terminal Rates (c)	24/28 (86%)	35/37 (95%)	29/31 (94%)
Week of First Observation	47	61	60
Life Table Tests (d)	P = 0.365 N	P = 0.150N	P = 0.386N
Incidental Tumor Tests (d)	P = 0.441	P = 0.299	P = 0.528
Cochran-Armitage Trend Test (d)	P = 0.415		
Fisher Exact Test (d)		P = 0.346	P = 0.487

TABLE B3. ANALYSIS OF PRIMARY TUMORS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

(e) No P value is reported because no tumors were observed in the 620-ppm and control groups.

(f) Incomplete sampling of tissues

TABLE B4a. HISTORICAL INCIDENCE OF MAMMARY GLAND TUMORS IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	Incidence of Fibroadenomas in Controls							
Historical Incidence at Physiological Research Laboratories								
Ephedrine sulfate Phenylephrine hydrochloride Oxytetracycline hydrochloride	10/49 11/50 21/50							
TOTAL SD (c)	42/149 (28.2%) 12.03%							
Range (d) High Low	21/50 10/49							
Overall Historical Incidence								
TOTAL SD (c)	(d) 550/1,984 (27.7%) 11.07%							
Range (d) High Low	24/49 5/50							

(a) Data as of August 7, 1986, for studies of at least 104 weeks(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) Four cystfibroadenomas were also observed.

TABLE B4b. HISTORICAL INCIDENCE OF LEUKEMIA IN FEMALE F344/N RATS RECEIVING NO TREATMENT (a)

Study	Incidence in Controls							
Historical Incidence at Physiological Research Laboratories								
Ephedrine sulfate Phenylephrine hydrochloride Oxytetracycline hydrochloride	13/49 15/50 13/50							
TOTAL SD (b)	41/149 (27.5%) 2.17%							
Range (c) High Low	15/50 13/50							
Overall Historical Incidence								
TOTAL SD (b)	378/1,984 (19.1%) 6.94%							
Range (c) High Low	19/50 3/50							

(a) Data as of August 7, 1986, for studies of at least 104 weeks
(b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.

· ·

U	Untreated Control		Low Dose		High Dose	
ANIMALS INITIALLY IN STUDY	50		-50		50	
ANIMALS NECROPSIED	49		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY			50		50	
NTEGUMENTARY SYSTEM				<u></u>	······································	
*Skin	(49)		(50)		(50)	
Epidermal inclusion cyst	1	(2%)				
RESPIRATORY SYSTEM						
*Nasal cavity	(49)		(50)		(50)	
Inflammation, NOS	12	(24%)			8	(16%)
Inflammation, suppurative					1	(2%)
Parasitism	-	(2%)				
Infection, fungal	-	(2%)				
#Lung	(48)		(15)		(49)	
Edema, NOS					1	(2%)
Hemorrhage				(7%)		
Inflammation, NOS	5	(10%)		(13%)	1	(2%)
Inflammation, focal		(0.0)	. 1	(7%)		
Inflammation, chronic focal	1	(2%)				
Infection, protozoan	•	(00)	1	(7%)		
Hyperplasia, alveolar epithelium		(6%)	(* *)			(4%)
#Lung/alveoli Histiocytosis	(48)	(2%)	(15)		(49)	
11180009 00818	-	(2,0)				
HEMATOPOIETIC SYSTEM					· · · · · · · · · · · · · · · · · · ·	
#Bone marrow	(48)		(50)		(50)	
Fibrosis, diffuse		(2%)				
Hypoplasia, NOS		(2%)			6	(12%)
Hyperplasia, NOS	12	(25%)	8	(16%)	4	(8%)
Histiocytosis				(2%)		
Hyperplasia, reticulum cell		(4%)	6	(12%)	5	(10%)
#Megakaryocytes	(48)		(50)		(50)	
Hyperplasia, NOS		(2%)				
#Spleen	(49)	(07)	(50)		(50)	
Scar		(2%)	1	(2%)	2	(4%)
Metamorphosis, fatty		(2%)	(10)			
#Lymph node	(49)	(00)	(10)		(50)	
Cyst, NOS Hemorrhage		(2%) (2%)				
Inflammation, acute		(2%)				
Hyperplasia, NOS	T	(470)			3	(6%)
#Mandibular lymph node	(49)		(10)		(50)	(070)
Hemorrhagic cyst	(47)		(10)			(2%)
#Mesenteric lymph node	(49)		(10)		(50)	
Inflammation, granulomatous	,		(20)			(2%)
Histiocytosis	1	(2%)	2	(20%)	-	
*Bone	(49)		(50)	<u>,</u>	(50)	
Myelofibrosis	/			(2%)		
#Ileum	(49)		(10)		(50)	
Hyperplasia, lymphoid		(2%)				
#Thymus	(36)		(8)		(36)	
•• • • • • • •	0	(6%)				
Hyperplasia, epithelial Hyperplasia, lymphoid	2	(070)				(3%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Untreat	ed Control	Low	Dose	High	Dose
CIRCULATORY SYSTEM				,		
#Heart/ventricle	(48)		(11)		(50)	
Dilatation, NOS	,		(==)		1	(2%)
#Myocardium	(48)		(11)		(50)	
Degeneration, NOS	35	(73%)	10	(91%)	37	(74%)
#Mitral valve	(48)		(11)		(50)	
Degeneration, mucoid					1	(2%)
*Artery	(49)		(50)		(50)	
Inflammation, chronic					1	(2%)
DIGESTIVE SYSTEM		·····			<u></u>	
*Tongue	(49)		(50)		(50)	
Hyperplasia, epithelial	(-,			(2%)		
#Salivary gland	(47)		(10)		(48)	
Inflammation, NOS		(2%)	1	(10%)		(2%)
Atrophy, focal		(2%)			2	(4%)
#Liver	(49)		(50)		(50)	
Accessory structure		(12%)		(14%)		(8%)
Inflammation, NOS		(4%)		(2%)		(2%)
Granuloma, NOS		(27%)	23	(46%)		(42%)
Necrosis, NOS		(2%)			1	(2%)
Necrosis, coagulative	1	(2%)				
Angiectasis	(10)			(2%)	(50)	
#Intrahepatic bile duct	(49)		(50)	(00 %)	(50)	(
Hyperplasia, NOS #Liver/hepatocytes		(55%)		(68%)		(50%)
Cytoplasmic vacuolization	(49)	(2%)	(50)	(2%)	(50)	(2%)
Focal cellular change		(2%)		(2%)		(2%) (82%)
#Pancreas	(48)	(10%)	(10)	(34%)	(49)	(0470)
Inflammation, NOS		(2%)		(10%)		(2%)
Atrophy, focal		(29%)		(10%)		(31%)
Atrophy, diffuse		(4%)	-	(10)0)		(01/0)
Hypertrophy, focal		(1	(2%)
#Glandular stomach	(49)		(12)		(50)	
Cyst, NOS	14	(29%)		(17%)	16	(32%)
Hyperplasia, epithelial				(8%)		
#Stomach wall	(49)		(12)		(50)	
Granuloma, NOS		(2%)				
#Forestomach	(49)		(12)		(50)	
Inflammation, chronic						(2%)
Hyperkeratosis	1	(2%)			2	(4%)
JRINARY SYSTEM						
#Kidney	(49)		(10)		. (50)	
Mineralization					4	(8%)
Cyst, NOS						(2%)
Nephropathy		(67%)		(90%)		(48%)
#Kidney/cortex	(49)		(10)		(50)	
Inflammation, chronic focal		(2%)				
#Urinary bladder	(48)		(9)		(50)	
Hyperplasia, epithelial	1	(2%)				

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

`

.

	Untreat	ed Control	Low	Dose	High	Dose
ENDOCRINE SYSTEM					,	
#Anterior pituitary	(48)		(50)		(48)	
Cyst, NOS		(2%)	(00)		(
Multiple cysts		(4%)			1	(2%)
Hyperplasia, NOS		(2%)			-	
Hyperplasia, focal		(15%)	7	(14%)	6	(13%)
Hyperplasia, cystic		(33%)		(34%)		(33%)
#Adrenal/capsule	(49)		(50)	(01/0)	(49)	(00 /0)
Accessory structure	(10)		(00)		• • •	(4%)
#Adrenal cortex	(49)		(50)		(49)	(=/0)
Accessory structure	(40)			(2%)	(40)	
Cyst, NOS				(2%)		
Necrosis, focal	1	(2%)	•	(270)		
Cytoplasmic vacuolization		(8%)	5	(10%)	3	(6%)
Hypertrophy, focal		(29%)		(16%)		(2%)
Hyperplasia, focal		(31%)		(42%)		(20%)
Angiectasis		(2%)		(4%)		(23 %)
#Adrenal medulla	(49)	(- / v /	(50)		(49)	
Hyperplasia, focal	(40)			(2%)		(2%)
#Thyroid	(48)		(14)		(49)	(= /0)
Hyperplasia, C-cell		(17%)		(7%)		(16%)
#Thyroid follicle	(48)	(11,0)	(14)	(1,0)	(49)	(10%)
Degeneration, NOS	(40)		(1-)			(2%)
#Pancreatic islets	(48)		(10)		(49)	(270)
Hypertrophy, NOS		(4%)	(10)		(45)	
Inflammation, chronic Atrophy, NOS Hyperplasia, cystic *Clitoral gland Inflammation, NOS *Vagina Cyst, NOS Inflammation, chronic suppurative #Uterus Hydrometra Inflammation, NOS #Cervix uteri Cyst, NOS Inflammation, NOS Fibrosis #Endometrial gland Cyst, NOS	21 (49) 3 (49) 1 (49) 2 (49) 2 (49) 4	(8%)	11 (50) 3 (50) (21) 4 2 (21) (21) (21) 2	(2%) (22%) (6%) (19%) (10%)	1 20 (50) 7 (50) (50) 1 3 (50) 1 1 1 (50) 4	(2%) (2%) (40%) (14%) (2%) (6%) (2%) (2%) (2%) (8%)
Hyperplasia, NOS		(4%)		(5%)		(4%)
#Ovary	(49)	(69)	(12)	(1796)	(50)	(8%)
Cyst, NOS Parovarian cyst		(6%) (2%)		(17%) (8%)	4	(070)
	1 	(270)		(0%)	•, • <u>•, -</u> •	
ERVOUS SYSTEM					.==	
#Brain/meninges	(48)		(9)		(50)	
Congestion, NOS	1	(2%)			-	(0
Inflammation, acute						(2%)
#Cerebral ventricle	(48)		(9)	(4 4 A	(50)	
			1	(11%)		
Dilatation, NOS				•		
Dilatation, NOS #Brain Gliosis	(48)		(9)	(11%)	(50)	(4%)

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ed Control	Low	Dose	High	Dose
NERVOUS SYSTEM (Continued)			<u></u>			
#Brain stem	(48)		(9)		(50)	
Atrophy, pressure		(17%)	(-,			(14%)
*White matter spinal	(49)		(50)		(50)	(==:;;
Cyst, NOS	1	(2%)				
SPECIAL SENSE ORGANS		<u></u>				
*Eye/iris	(49)		(50)		(50)	
Synechia, anterior		(2%)				
Synechia, posterior	1	(2%)	1	(2%)		
*Eye/crystalline lens	(49)		(50)		(50)	
Cataract		(2%)		(10%)		
*Nasolacrimal duct	(49)		(50)		(50)	
Foreign body, NOS	1	(2%)				
Inflammation, NOS						(2%)
*Harderian gland	(49)	(0 <i>M</i>)	(50)	(0~)	(50)	
Inflammation, focal	1	(2%)	1	(2%)		
MUSCULOSKELETAL SYSTEM						
*Joint	(49)		(50)		(50)	
Degeneration, NOS						(8%)
*Synovial tissue	(49)		(50)		(50)	
Inflammation, chronic						(2%)
*Vertebral joint	(49)	(00)	(50)	(500)	(50)	(700)
Degeneration, NOS	•	(6%)		(78%)		(72%)
*Sternal synchondrosis	(49)	(010)	(50)	(0~)	(50)	(0.401)
Degeneration, NOS		(31%)		(2%)		(64%)
*Knee joint	(49)	(00)	(50)	(60%)	(50)	(700)
Degeneration, NOS *Skeletal muscle		(8%)		(60%)		(78%)
Mineralization	(49)		(50)		(50)	(901)
			1	(2%)	1	(2%)
Hemorrhage *Cartilage, NOS	(49)		(50)	(470)	(50)	
Necrosis, focal		(2%)	(00)		(50)	
BODY CAVITIES					·	
*Mesentery	(49)		(50)		(50)	
Steatitis		(2%)	(00)		(00)	
Inflammation, chronic	-	<u></u>			1	(2%)
Necrosis, fat	4	(8%)	6	(12%)		(4%)
ALL OTHER SYSTEMS		<u></u>		<u></u>	<u></u>	
*Multiple organs	(49)		(50)		(50)	
Inflammation, granulomatous			1	(2%)		
SPECIAL MORPHOLOGY SUMMARY						
No necropsy performed	1					

TABLE B5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

Nitrofurazone, NTP TR 337

110

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

		PAGE
TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	113
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO- YEAR FEED STUDY OF NITROFURAZONE	116
TABLE C3	ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	122
TABLE C4a	HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE RECEIVING NO TREATMENT	125
TABLE C4b	HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE RECEIVING NO TREATMENT	125
TABLE C4c	HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE $B6C3F_1$ MICE RECEIVING NO TREATMENT	126
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	127

Nitrofurazone, NTP 337

.

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	o nei eau	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50 50	
NIMALS EXAMINED HISTOPATHOLOGICALL			49		50	
NTEGUMENTARY SYSTEM						
*Subcutaneous tissue	(50)	×	(50)		(50)	
Sarcoma, NOS	1	(2%)				(2%)
Fibroma	•	(19)	•	(07)		(2%)
Fibrosarcoma Neurofibrosarcoma	2	(4%)	3	(6%)		(10%) (2%)
Neurilemoma						(4%)
Neurilemoma, malignant			†1	(2%)	-	(1,0)
LESPIRATORY SYSTEM		<u></u>				
#Lung	(50)		(49)		(50)	
Hepatocellular carcinoma, metastatic	-	(10~)				(2%)
Alveolar/bronchiolar adenoma		(12%)		(10%)		(8%)
Alveolar/bronchiolar carcinoma	1	(2%)		(4%)	2	(4%)
Sarcoma, NOS, metastatic			1	(2%)		
IEMATOPOIETIC SYSTEM *Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, undifferentiated type	(50)		(50)	(4%)	(50)	
Malignant lymphoma, lymphocytic type				(2%)		
Malignant lymphoma, mixed type	4	(8%)		(2%)	1	(2%)
#Spleen	(49)		(48)		(50)	
Malignant lymphoma, undifferentiated type				(2%)		
Malignant lymphoma, mixed type				(2%)		
#Peyer's patch Malignant lymphoma, mixed type	(47)		(44)		(45)	(2%)
				· ·	*	(2 %)
IRCULATORY SYSTEM	(50)		(20)			
*Multiple organs Hemangiosarcoma	(50)		(50)		(50)	(4%)
*Subcutaneous tissue	(50)		(50)		(50)	(4170)
Hemangiosarcoma	(,	(2%)	(00)		(00)	
#Liver	(50)		(49)		(50)	
Hemangioma						(2%)
*Preputial gland	(50)		(50)		(50)	(00)
Hemangioma						(2%)
IGESTIVE SYSTEM	(50)		(40)		(50)	
#Liver Hepatocellular adenoma	(50) 9	(18%)	(49)	(12%)	(50)	(4%)
Hepatocellular carcinoma		(16%)		(12%)		(8%)
#Forestomach	(49)		(46)		(48)	. =
Squamous cell papilloma	2	(4%)				
Squamous cell carcinoma						(2%)
#Duodenum	(47)	(97)	(44)		(45)	
Carcinoma, NOS	1 (47)	(2%)	(44)		(45)	
# lojunum	(47)		(44)			(2%)
#Jejunum Carcinoma, NOS					1	A

	Untreated Control	Low Dose	High Dose
ENDOCRINE SYSTEM		i an	·····
#Pituitary intermedia	(44)	(48)	(49)
Adenoma, NOS	1 (2%)		
#Adrenal	(48)	(49)	(49)
Cortical adenoma	3 (6%)	1 (2%)	1 (2%)
#Adrenal medulla	(48)	(49)	(49)
Pheochromocytoma #Thyroid	2 (4%) (49)	(48)	1 (2%) (50)
Follicular cell adenoma	1 (2%)	(40)	(50)
Follicular cell carcinoma	1 (2%)		1 (2%)
#Pancreatic islets	(49)	(48)	(48)
Islet cell adenoma	1 (2%)	1 (2%)	1 (2%)
REPRODUCTIVE SYSTEM	· · · · · · · · · · · · · · · · · · ·	÷	
*Preputial gland	(50)	(50)	(50)
Squamous cell carcinoma	(50)	1 (2%)	(50)
		I (270)	
NERVOUS SYSTEM			
None			
SPECIAL SENSE ORGANS			
*Eye/lacrimal gland	(50)	(50)	(50)
Carcinoma, NOS		1 (2%)	
*Harderian gland	(50)	(50)	(50)
Carcinoma, NOS		2 (4%)	
Adenoma, NOS			2 (4%)
MUSCULOSKELETAL SYSTEM None			
BODY CAVITIES None			
ALL OTHER SYSTEMS			
*Multiple organs	(50)	(50)	(50)
Sarcoma, NOS	1 (2%)		
ANIMAL DISPOSITION SUMMARY	······································		
Animals initially in study	50	50	50
Natural death	4	12	10
Moribund sacrifice	6	7	13
Terminal sacrifice	39	31	27
Accidentally killed, nda	1		

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE (Continued)

/

TABLE C1.	SUMMARY	OF THE	INCIDENCE (OF NEOPL	ASMS IN	MALE N	AICE IN	THE TWO-YE	AR FEED
		1	STUDY OF NI	TROFURA	ZONE (Co	ontinued)	1		

	Untreated Control	Low Dose	High Dose
TUMOR SUMMARY			
Total animals with primary tumors**	28	25	26
Total primary tumors	45	39	38
Total animals with benign tumors	17	12	14
Total benign tumors	25	13	16
Total animals with malignant tumors	16	21	17
Total malignant tumors	20	26	22
Total animals with secondary tumors##		1	1
Total secondary tumors		ī	1

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically. **Primary tumors: all tumors except secondary tumors

Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ
† Multiple occurrence of morphology in same organ; tissue counted only once.

ANIMAL NUMBER	127	1 1 8	1 0 5	1 0 1	1 3 1	1 4 7	1 3 3	1 4 4	1 4 6	1 2 4	1 4 1	1 0 2	1 0 3	1 0 4	1 0 6	1 0 7	1 0 8	1 0 9	1 1 0	1 1 1	$\frac{1}{1}$	1 1 3	1 1 4	1 1 5	1 1 6
WEEKS ON STUDY	0 0 9	0 6 4	0 6 6	0 7 8	0 8 1	0 8 9	0 9 7	0 9 8	0 9 9	1 0 2	1 0 2	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Hemangiosarcoma	+	+	+	+	+	+	+ X	*	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	++	+	+	+	+	+	+	+	+	+	* * +	+	+	+	+ X +	++	+	* * +	++	++	++	+	* * +	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	 + + + + + +	+ + + +	+ + + -	+++++	+++-	++++-	++++	+ +	+ + + +	+++++	++++	+ + + +	++++-	++++-	+ + + +	+++-	+++++	+ + + + +	+++-	+ + + +	+++++	++++++	+++-	++++++	+++-
CIRCULATORY SYSTEM Heart		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell papilloma Small intestine Carcinoma, NOS Large intestine URINARY SYSTEM Kidney Urinary bladder ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+++ +X++++ ++ ++++++++++++++++++++++++	++ ++++ + + ++ ++ ++ ++ ++ ++ ++ ++ ++	++ X+N+++ + + + + + + + + + + + + + + +	++ ++++ +++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	++ X++++ +X+ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + X + + + + + + + + + + + + + + + + +	+ + + N - + + + +	++ + X+++ ++ +	++ ++++ + ++ ++	+++ X+++++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++	+ + X + + + + + + + + + + + + + + + + +	++ ++++ + ++ ++	++ x+N+++ + + + + + + + + + + + + + + +	++ ++++ + ++ ++ ++ ++ ++ ++ ++ ++ ++++++	++ ++++ + + + + + + X	++ ++++ + + ++ -	++ ++++ + ++ ++	++ ++++ + + ++ ++	++ + N+++ + + + + + + + + + + + + + + +	++ ++++ + + ++ -	++ ++++ + ++ ++	++ X++++ + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++ + + + + + + + + + + + + + + + + + +
Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell adenoma Parcteatic islets	+++++	++++	+ - +	+ + ++	+ + -+	+ + -+	+ + ++	- + + -	+ + +	+ + -+	++++	++++	+ + ++	+ + -+	+++++	A + + + + + + + + + + + + + + + + + + +	+++++	+ + + +	+ + + + +	++-+	+ + X +	+ x + ++	+ + +	++++	++++
Islet ceil adenoma REPRODUCTIVE SYSTEM Mammary gland Testis Prostate	N + +	N ++ +	N + +	N + +	N + +	N + +	N ++	N + +	N + +	N ++	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N ++
NERVOUS SYSTEM Brain ALL OTHER SYSTEMS Multiple organs, NOS Sarcoma, NOS Malignant lymphoma, mixed type	+ N	+ N	+ N	+ N	+ N X	+ N	+ N	+ N	+ N X	+ N	+ N	+ N	+ N	+ N	+ N	+ N	- N	+ N	+ N	- N	+ N	+ N	+ N X	+ N	+ N

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE: UNTREATED CONTROL

+: Tissue examined microscopically
-: Required tissue not examined microscopically
X: Tumor incidence
Nieropsy, no autolysis, no microscopic examination
Animal missexed
Multiple occurrence of morphology

- : No tissue information submitted C: Necropsy, no histology due to protocol A: Autolysis M: Animal missing B: No necropsy performed

ANIMAL NUMBER	1 1 7	1 1 9	1 2 0	1 2 1	$\frac{1}{2}$	1 2 3	1 2 5	1 2 6	1 2 8	1 2 9	1 3 0	1 3 2	1 9 4	1 3 5	1 3 6	1 3 7	1 3 8	1 3 9	1 4 0	1 4 2	1 4 3	1 4 5	1 4 8	1 4 9	1 5 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUE
NTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibrosarcoma Hemangiosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	*50 1 2 1
RESPIRATORY SYSTEM Jungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+	+	+	+	+	* *	+	+	+	+	* *	++	+	++	+	* *	+	+	+	+	+	+	+ X +	++	50 6 2 50
IEMATOPOIETIC SYSTEM Ione marrow jplean ymph nodes hymus	. + + + +	+ + + +	+ + + -	+ + + +	++++++	+++++++	+ + + +	+++-	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	++++	+ + + -	+ + + +	+ + + +	+ + + + +	+ + + -	++++-	++++-	+ + + +	+ + + -	+ + + -	+ + + +	50 49 49 30
CIRCULATORY SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
NGESTIVE SYSTEM alıvary gland ıver Hepatocellular adenoma Hepatocellular carcınoma	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ + X	+ + X	+++	+++	+ + x	+++	+ + X	+ +	+ +	+ + X	++	+ +	+ +	+ + X	+ +	50 50 9 8
ble duct iallbladder & common bile duct ?ancreas :sophagus tomach	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++	+ + + + +	+ + + +	+++++	+ + + + +	+ + + + +	+ + + + +	X + + + + + +	+++++	+ + + + +	X + + + + +	+++++	+++++	+++++	++++	+ + + + +	+++++	+++++	X + + + + +	+ + + + +	+ + + + +	+++++	+ + + + +	50 *50 49 50 49
Squamous cell papilloma mall intestine Carcinoma, NOS arge intestine	++	+ +	+ +	X + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	2 47 1 48
IRINARY SYSTEM Idney Irinary bladder	+++	+++	++++	++++	++++	+ +	+++	++	+ +	+ +	++++	++++	+++	++++	+++	++++	++++	+	++++	+++	++++	++++	++++	+++	+ +	50 48
NDOCRINE SYSTEM htuitary Adenoma, NOS	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	44
drenal Cortical adenoma Pheochromocytoma	+	+	*	* X	+	+	+ X	+	+	+	+	+	+	+	+	+	+ X	+	+	+	~	+	+	+	+	48 3 2
'hyroid Folhcular cell adenoma arathyroid 'ancreatic islets Islet cell adenoma	+++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ _ +	+ + +	+ + +	+ ++ *	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	49 1 43 49 1
EPRODUCTIVE SYSTEM Iammary gland estis rostate	N + +	N + +	N + +	N + -	N + +	N + + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	N + +	*50 50 49
FRINGER SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
LL OTHER SYSTEMS fultiple organs, NOS Sarcoma, NOS Malignant lymphoma, mixed type	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	*50 1 4

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: UNTREATED CONTROL (Continued)

* Animals necropsied

	~~	-	-											20												
ANIMAL NUMBER	0 3 3	0 3 5		0 1 3	0 1 4	0 1 5	0 3 4	0 4 8	0 4 5	0 2 8	0 4 7	0 1 7	0 0 8	0 1 9	0 2 7	0 3 1	0 4 0	0 1 2	0 1 8	0 3 7	0 0 1	0 0 2	0 0 3	0 0 4	0 0 5	0 0 6
WEEKS ON STUDY	0 0 5	0 0 5		0 0 6	0 0 6	0 0 6	0 0 6	0 2 2	0 2 9	0 4 9	0 5 1	0 8 1	0 8 3	0 8 8	0 8 9	0 9 4	0 9 8	0 9 9	1 0 1	1 0 3	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosareoma Neurilemoma, malignant	+	• •	-	+	N	+	+	+	+	+	+	+	N @X	* X	N	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma	+			+	+	+	+	+	+	+	+	+	+	+	A	+	*	* X	+	+	+	+	+	+	+	+
Sarcoma, NOS, metastatic Trachea	+		-	÷	+	+	+	+	+	+	+	X +	+	+	A	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, undifferentiated type		• •	-	+ +	+ +	+	+ +	+++	++++	+++	+++	+++	+++	++++	A A	+++	++++	++++	+++	+ +	+++	++++	+ +	++++	+++	++
Malignant lymphoma, mixed type Lymph nodes Thymus	+		+	 +	+ +	+ +	+ 	+ +	+ -	+ +	+ +	+ +		+ -	A A	+ +	+ -	+ -	+ -	+ -	+ +	+ +	+ ~	X + +	+ +	+ -
CIRCULATORY SYSTEM Heart	+		+	+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	 + +	-		+ +	+ +	+ +	+++	+ +	+++	+ +	+ +	+++	- +	+ +	A A	++++	+ +	+++	+ +	+ +	+ + X	+ +	++	++++	+ +	+ + X
Hepatocellular carcınoma Bile duct Gallbladder & common bile duct Pancreas	+ N +			+ N +	+ N +	+ N -	+ N +	+ N +	+ + +	+ + +	+ + +	+ N +	X + + +	+ + +	A N A	+ + +	X + +	+ + +	+ + +	X + + +	+ + +	+ + +	X + +	+ + +	+ + +	+ + +
Esophagus Stomach Small intestine Large intestine	+++++++++++++++++++++++++++++++++++++++	· +	-	++-++-++	+ + + +	+ 	+ + +	++++	+ + + +	+ + + +	+ + + +	+ - + +	++++	+ + + +	A A A A	+ + + +	+ + +	+ + + +	+ + + +	++	+ + +	++++	+ + + +	+ + + +	+ + +	+ + + +
URINARY SYSTEM Kidney Urinary bladder				++++	+	+	+ +	+++	++++	++++	+++	++++	+++	++++	A A	+++	++++	++++	++++	+	++++	++++	+++	++++	++++	+++
ENDOCRINE SYSTEM			 -		+	+	+	+	+	+	+	+	+	+	A	+	+	 +	+	+	+	+	+	+	+	+
Adrenal Cortical adenoma	+	4	-	+	+	+	+	+	+	+	+	+	+	+	Â	+	+	+	*	+	+	+	+	+	+	+
Thyroid Parathyroid Pancreatic islets Islet cell adenoma	+++++++++++++++++++++++++++++++++++++++	-	-	+ + +	+ +	+ -	+ - +	+ + +	+ + +	+ + +	+ + +	+ - +	- - +	+ + +	A A A	+ + +	+ + +	+ + +	++++	+ + +	+ +	+ + +	+ - +	+ + +	+ + +	+ + +
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate		H		N + +	N +	N + +	N + +	N + +	N + +	N + +	N +	N +	N + +	N +	N A	N +	N + +	N + +	N + +	N + +	N + +	N + +	N +	N +	N +	N + +
Prostate Preputial/chtoral gland Squamous cell carcinoma	Ň	N			+ N	Ň	Ň	Ň	Ň	Ň	n N	+ N	Ň	+ N	A N	Ñ	ň	ň	N X	n N	Ň	Ň	+ N	Ň	+ N	Ň
NERVOUS SYSTEM Brain				+	+	+	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Lacrimal gland Carcinoma, NOS	N	N	г :	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
Hardeman gland Carcinoma, NOS	N	N	[]	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, undifferentiated type Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	r]	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE: LOW DOSE

ANIMAL NUMBER	0 0 7	0 0 9	0 1 0	01	0 1 6	0 2 0	0 2 1	0 2 2	0 2 3	0 2 4	0 2 5	0 2 6	0 2 9	0 3 0	0 3 2	0 3 6	0 3 8	0 3 9	0 4 1	0 4 2	0 4 3	0 4 4	0 4 6	0 4 9	0 5 0	
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	+	+	+	+	*	+	+	+	+	*50 3 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Sarcoma, NOS, metastatic	+	+	+	+	+	+ X	+	+	+	*	*	+	+	+	+	+	+	* *	+	+	+	+	+ x	+	+	49 5 2 1
Trachea HEMATOPOIETIC SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Bone marrow Spleen Malignant lymphoma, undiffer type Malignant lymphoma, mixed type	++	++	++	++	++	++	++	++	++	++	+ * X	++	++	+++	++	++	++	++	++	+	+++	++	++	++	++	49 48 1 1
Lymph nodes Thymus	++	+	++	+	++	+	+ +	++	+ +	+ -	+	+	++	+ -	+ -	+ +	+ -	++	+	+	++	++	++	+ +	+ +	47 29
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
DIGESTIVE SYSTEM Salıvary gland Lıvər	++++	+++	+++	+++	+ + x	+ + * X	+++	+++	+ + x	+++	+++	+++	+++	+++	++++	++++	++++	++++	++++	+++	+++	+++	++++	+++	+++++	47 49
Hepatocellular adenoma Hepatocellular carcinoma Bile duct	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	X +	+	+	+	X +	х +	+	X +	X +	+	+	6 9 49
Gallbladder & common bile duct Pancreas Esophagus	+++++	++++++	++++	N + +	++++	+ + +	+++++	++++	++++	N + +	++++	++++	+++++	++++	++++++	+++++	+ + +	++++	++++	++++	++++++	+++++	++++	N + +	+ + +	*50 48 49
Stomach Small intestine Large intestine	++++++	+ + +	+ + +	+ + +		+++	+ + + +	+ + +	+ + +	+ + +	+ + +	+ + +	++++	+ + +	++++	+ + +	+ + +	+ + +	46 44 46							
URINARY SYSTEM Kidney Urinary bladder	++++	+++	++	++	+ +	+++	++	+++	+++	+++	+++	+++	+++	+++	+ +	+++	+++	+++	+ +	++++	+++	+++	+++	++	++++	49 45
ENDOCRINE SYSTEM Pituitary Adrenal	+++	+++	+++	++++	+++	+++	+++	+++	+++	+++	++	+++	++++	+++	++++	+++	+++	++++	+++	+++	+++	++++	+++	+++	++++	48 49
Cortical adenoma Thyroid Parathyroid Pancreatic islets Islet cell adenoma	++++++	+ + +	+ - +	+ + +	+ + + X	+ + + +	+ + +	+ + +	+ + +	+ + + +	+ + +	+ - +	+ + +	+++	+ + +	+ + +	+ + +	+ + +	+ +	1 48 38 48 1						
REPRODUCTIVE SYSTEM Mammary gland Testis	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	N +	+++	N +	N +	N +	N +	N +	N +	*50 49
Prostate Preputial/chtoral gland Squamous cell carcinoma	N N	+ N	n N	n N	* N	+ N	+ N	ň	,+ N	n N	ň	+ N	* N	+ N	n N	+ N	n N	+ N	+ N	n N	+ N	+ N	+ N	+ N	n+ N	46 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50
Carcinoma, NOS Harderian gland Carcinoma, NOS	N	N	N	N	N X	N	N	N	X N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, undiffer type Malig lymphoma, lymphocytic type Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N X	N	*50 2 1 1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: LOW DOSE (Continued)

* Animals necropsied

TABLE C2.	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR FEED
	STUDY OF NITROFURAZONE: HIGH DOSE

ANIMAL NUMBER	0 5 1	0 9 4	0 6 5	0 7 4	0 5 3	0 8 1	0 6 7	0 5 4	0 6 8	0 9 5	1 0 0	0 5 9	0 7 7	0 8 6	0 7 8	0 5 2	0 6 9	0 5 8	0 8 8	0 8 9	0 7 9	0 7 3	0 6 2	0 5 5	0 5 6
WEEKS ON STUDY	0 1 3	0 1 6	0 1 8	0 1 8	0 1 9	0 2 1	0 3 1	0 4 1	0 4 3	0 5 3	0 8 5	0 8 6	0 8 8	0 8 8	0 9 0	0 9 1	0 9 1	0 9 3	0 9 3	0 9 4	0 9 7	0 9 8	1 0 0	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma Neurofibrosarcoma Neurilemoma	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	+	+ x	+ x	+ X	+ x x	*	+	+
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	++	+	++	+	++	++	+	+	++	++	+	+	+	+	+	+++	++	++	+	+	+++	++	+ X +	++	+ X +
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++	+++++	+++++	+ + - +	+ + + +	+++++	++++	+++++	+++-	+++++	+++-++	++++++	++++-	+++++	++++	++++++	++++	+++-	+++-	+ + + +	+++++	+++-	++++-	++++	++++
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	+ +	+ +	+ +	+++	++++	++++	+++	++++	+++	+ + +	+++	+ +	+ +	+ +	+++	+ +	+ +	+++	+ +	+ +	+ + X	+ +	+ +	+ +	+ + *
Hemangioma Hemangioma Bile duct Galibladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinoma Small intestine Carcinoma, NOS Papillary carcinoma Malignant lymphoma, mixed type Large intestine	+z+++ +	+X+++ + -	+++++ + .	+ 2 + +	+z+++ +	+z+++ +	+z+++ +	+ 2 + + +	++++ + .	+++++	+ Z Z +	+++++ +	+ 7 + + 1	+++++ + .	+++++	+++++ + .	+++++ + .	+++++ +	++++ +	++++ +	A +++++ + ·	+z+++ +	++++ + .	++++ + ×	X +++++ +
URINARY SYSTEM Kidney Urinary bladder	 + +	+ +	+ +	+	+++	+ + +	+++	+	+++	+	+	+++	<u>+</u>	+++	+++	+++	++++	+++	++++	+++	++++	+++	+ + +	+++	+ + +
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	++ + + + + +	+ + + + + +	++ + ++	+ - +	++ + + + +	++ + + + +	+++++	++++-++	+++++	++++++	- + + +	++ + -+	+ + + + + ++	++++-+	+++++	+ + + + -+	+ + + +	+ + + + +	+ + + -+	+ + + + +	++++++	+ + + + + +	+ + + + +	++ ++ ++++	+++++
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate Preputial/clitoral gland Hemangioma	Z + + Z	Z + + Z	N + + N	N + 7 N	Z++Z	Z++Z	N + + N	N + + N	N + + N	Z++Z	N + + N	Z + + Z	N + + N	N + + N	N + + N	Z + + Z	Z + + Z	N + + N	X + + X	Z + + Z	Z++Z	Z + + Z	X + + X	Z++Z	Z + + Z
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	 +
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS Hemangiosarcoma Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N	N	N	N	N	N	N	N	N	N	N

TABLE C2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOG	Y OF	MALE	MICE:	HIGH	DOSE
				(Continu	ied)				

ANIMAL NUMBER	0	0 6	0	0	0	0	0	0	0	0	07	0	0	0	0 8	0 8	0	0	0	0	09	0	0	0 9	0 9	T
	5	6 0	6 1	6 3	4	6	ó	i	72	5	6	8 0	8	3	4	5	87	9 0	9	2	3	9 6	9 7	8	9	TOTAL:
WEEKS ON STUDY	0 4	1 0 4	1 0 4	1 0 4	0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Sarcoma, NOS Fibroma Fibrosarcoma Neurofibrosarcoma Neurofibrosarcoma Neurilemoma	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ @X	+	+	+	+	+	+	+	+	*50 1 5 1 2
RESPIRATORY SYSTEM Lungs and bronchi Hepatocellular carcinoma, metastatic Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	+ X +	+ +	++	++	+	+ +	+	+	* *	++	++	+	++	++	+	++	+ X +	+	++	++	++	+	++	+ X +	50 1 3 2 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	++++	+++ -	+++++	+++++	++++	+++-	+++++	++++	+++++	+++-	++++	++++	++++-	+++++	+++++	+++++	++++	++++	++++++	++++	+++++	+++-	++++	+++-	+ + + +	50 50 48 33
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma	++++	+ +	++++	++++	+++	+ +	++++	++++	+ +	+ + X	+ +	+ +	+ +	++++	+ + X	+ + X X	+ +	+++	+ +	++++	+ +	+ +	+ +	++++	+ +	50 50 2
Hepatocellular carcinoma Hemangioma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Squamous cell carcinoma Small intestine Carcinoma, NOS Papillary carcinoma Malignant lymphoma, mixed type Large intestine	+++++++++++++++++++++++++++++++++++++++	X+++++ + +	++++ + +	++++X+	++++ + +	+++++ + +	+++++++++++++++++++++++++++++++++++++++	++++ + +	+++++ + +	A ++++ + +	+++++ + +	+++++++++++++++++++++++++++++++++++++++	+++++ + +	++++ + +	+++++ + X +	A +++++ +X +	+++-+ + +	+++++ + +	+++++ + +	++++ + +	++++ + +	++++ + +	+++++ + +	++++ + +	++++ + +	4 1 50 *50 48 48 48 1 1 1 1 45 1 1 45
URINARY SYSTEM Kidney Urinary bladder	+++	+++	+++	++++	+++	+++	++++	+++	+++	+++	+++	++++	++++	+++	+++	+++	+++	+++	++++	+++	+++	++++	+++	+++	+ +	50 45
ENDOCRINE SYSTEM Pituitary Adrenal Cortical adenoma Pheochromocytoma Thyroid Follicular cell carcinoma Parathyroid Pancreatic islets Islet cell adenoma	++++++	++ +++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++x + ++	+++++	++ ++	++ + + + X	++ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++	++++++	+ + + + +	++ + ++	+++++	+++++	++ + ++	++++++	+ + + +	++ +++	++ ++	+ + + X + + +	++ + X + X + +	++ + ++	++ + + + +	49 49 1 1 50 1 37 48 1
REPRODUCTIVE SYSTEM Mammary gland Testis Prostate Preputial/clitoral gland Hemangioma	N + + N	N + + N	N + + N	N + + N	X + + X	Z++Z	X + + X	N + + N	N + + N	N + + N	X++X	Z++Z	N + + N	Z++Z	Z + + Z	Z++Z	X + + X	Z++ZX	N + + N	Z++Z	X + + X	Z + + Z	Z++Z	N + + N	х + + х х	*50 50 49 *50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Harderian gland Adenoma, NOS	N	N	N X	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2
ALL OTHER SYSTEMS Multiple organs, NOS Hemangiosarcoma Malignant lymphoma, mixed type	N	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 2 1

* Animals necropsied

	Control	150 ppm	310 ppm
Subcutaneous Tissue: Fibrosarcoma		<u> </u>	
Overall Rates (a)	2/50 (4%)	3/50 (6%)	5/50 (10%)
Adjusted Rates (b)	4.7%	8.9%	15.3%
Terminal Rates (c)	0/39 (0%)	2/31 (6%)	1/27(4%)
Week of First Observation	97	88	86
Life Table Tests (d)	P = 0.080	P≈0.402	P = 0.109
Incidental Tumor Tests (d)	P = 0.000 P = 0.224	P ≠ 0.402 P ≠ 0.519	P = 0.293
		F=0.515	F = 0.293
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.159	P=0.500	P = 0.218
Subcutaneous Tissue: Sarcoma, Fibrosarc	oma or Neurofibrosa	come	
Overall Rates (a)	3/50 (6%)	3/50 (6%)	7/50 (14%)
Adjusted Rates (b)	6.9%	•··• · /	
· · · · · · · · · · · · · · · · · · ·		8.9%	20.8%
Terminal Rates (c) Week of First Observation	0/39 (0%)	2/31 (6%)	1/27 (4%)
Week of First Observation	97 D. 0.044	88	86
Life Table Tests (d)	P = 0.044	P = 0.557	P = 0.064
Incidental Tumor Tests (d)	P = 0.140	P = 0.653N	P = 0.172
Cochran-Armitage Trend Test (d)	P = 0.105		
Fisher Exact Test(d)		P = 0.661	P = 0.159
Subcutaneous Tissue: Fibroma or Fibrosa			2 11 1 12 1 12
Overall Rates (a)	2/50 (4%)	3/50 (6%)	6/50 (12%)
Adjusted Rates (b)	4.7%	8.9%	18.5%
Terminal Rates (c)	0/39 (0%)	2/31 (6%)	2/27 (7%)
Week of First Observation	97	88	86
Life Table Tests (d)	P = 0.039	P = 0.402	P = 0.057
Incidental Tumor Tests (d)	P = 0.119	P = 0.519	P = 0.159
Cochran-Armitage Trend Test (d)	P = 0.089		
Fisher Exact Test (d)	1 - 0.000	P = 0.500	P = 0.134
Subcutaneous Tissue: Fibroma, Sarcoma,	Fibrosarcoma, or Neu	rofibrosarcoma	
Overall Rates (a)	3/50 (6%)	3/50 (6%)	8/50 (16%)
Adjusted Rates (b)	6.9%	8.9%	23.8%
Terminal Rates (c)			
	0/39(0%)	2/31 (6%)	2/27 (7%)
Week of First Observation	97	88	86
Life Table Tests (d)	P = 0.021	P = 0.557	P = 0.034
Incidental Tumor Tests (d)	P = 0.070	P = 0.653N	P = 0.084
Cochran-Armitage Trend Test (d)	P = 0.059		
Fisher Exact Test (d)		P = 0.661	P = 0.100
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	6/50 (12%)	5/49 (10%)	4/50 (8%)
Adjusted Rates (b)	15.4%	14.8%	13.5%
Terminal Rates (c)	6/39 (15%)	3/31 (10%)	3/27 (11%)
Week of First Observation	104	98	88
Life Table Tests (d)	P = 0.542N	P = 0.596	P = 0.597 N
Incidental Tumor Tests (d)	P = 0.427 N	P = 0.623	P = 0.511 N
Cochran-Armitage Trend Test (d)	P = 0.311N		
Fisher Exact Test (d)		P = 0.514N	P = 0.371N
Lung: Alveolar/Bronchiolar Adenoma or C	Carcinoma		
Overall Rates (a)	8/50 (16%)	7/49 (14%)	6/50 (12%)
Adjusted Rates (b)	20.5%	20.9%	20.0%
•	20.3% 8/39 (21%)	5/31 (16%)	4/27 (15%)
Terminal Rates (c)		98	88
Terminal Rates (c) Week of First Observation		20	00
Week of First Observation	104		
Week of First Observation Life Table Tests (d)	P = 0.497	P = 0.534	P = 0.564
Week of First Observation Life Table Tests (d) Incidental Tumor Tests (d)	P = 0.497 P = 0.500N		
Week of First Observation Life Table Tests (d)	P = 0.497	P = 0.534	P = 0.564

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Control	150 ppm	310 ppm
Hematopoietic System: Malignant Lymp	homa Undifferentiated 7	^r vne	#
Overall Rates (a)	0/50 (0%)	3/50 (6%)	0/50 (0%)
Adjusted Rates (b)	0.0%	9.1%	0.0%
•			
Terminal Rates (c) Week of First Observation	0/39 (0%)	2/31 (6%)	0/27 (0%)
	D 0 501	94 D 0.007	(-)
Life Table Tests (d)	P = 0.561	P = 0.087	(e)
Incidental Tumor Tests (d)	P = 0.611	P = 0.097	(e)
Cochran-Armitage Trend Test (d)	P = 0.626N		
Fisher Exact Test (d)		P = 0.121	(e)
Iematopoietic System: Malignant Lymp			
Overall Rates (a)	4/50 (8%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (b)	9.9%	6.5%	7.4%
Terminal Rates (c)	3/39 (8%)	2/31 (6%)	2/27 (7%)
Week of First Observation	99	104	104
Life Table Tests (d)	P = 0.418N	P = 0.446N	P = 0.519N
Incidental Tumor Tests (d)	P = 0.384N	P = 0.428N	P = 0.469N
Cochran-Armitage Trend Test (d)	P = 0.258N		
Fisher Exact Test (d)	1 - 0.20011	P = 0.339N	P = 0.339N
		1 - 0.00011	1 -0.0001
lematopoietic System: Lymphoma, All			
Overall Rates (a)	4/50 (8%)	6/50 (12%)	2/50 (4%)
Adjusted Rates (b)	9.9%	17.8%	7.4%
Terminal Rates (c)	3/39 (8%)	4/31 (13%)	2/27 (7%)
Week of First Observation	99	94	104
Life Table Tests (d)	P = 0.492N	P = 0.244	P = 0.519N
Incidental Tumor Tests (d)	P = 0.408N	P = 0.270	P = 0.469 N
Cochran-Armitage Trend Test (d)	P = 0.284N		
Fisher Exact Test (d)	2 0.20 11	P = 0.370	P = 0.339N
Circulatory System: Hemangioma or He	mangiosarcoma		
Overall Rates (a)	1/50 (2%)	0/50 (0%)	4/50 (8%)
Adjusted Rates (b)	2.6%	0.0%	12.2%
Terminal Rates (c)	1/39 (3%)	0/31 (0%)	2/27 (7%)
		0/31(0%)	
Week of First Observation	104	D OFACN	86 D - 0 100
Life Table Tests (d)	P = 0.049	P = 0.546N	P = 0.109
Incidental Tumor Tests (d)	P = 0.107	P = 0.546N	P = 0.237
Cochran-Armitage Trend Test (d)	P = 0.079		
Fisher Exact Test (d)		P = 0.500N	P=0.181
iver: Hepatocellular Adenoma			
Overall Rates (a)	9/50 (18%)	6/49 (12%)	2/50 (4%)
Adjusted Rates (b)	22.3%	19.4%	7.4%
Terminal Rates (c)	8/39 (21%)	6/31 (19%)	2/27 (7%)
Week of First Observation	97	104	104
Life Table Tests (d)	P = 0.078N	P = 0.467N	P = 0.095N
Incidental Tumor Tests (d)	P = 0.070N	P = 0.454N	P = 0.081N
	P = 0.070 N P = 0.021 N	1 -0.40411	1 - 0.00111
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	r = 0.021 N	P = 0.303 N	P = 0.026N
iver: Hepatocellular Carcinoma		0/40/1021	
Overall Rates (a)	8/50 (16%)	9/49 (18%)	4/50 (8%)
Adjusted Rates (b)	18.6%	26.1%	14.1%
	5/39 (13%)	6/31 (19%)	3/27 (11%)
Terminal Rates (c)		00	07
Terminal Rates (c) Week of First Observation	66	83	97
	66 P=0.376N	P = 0.317	P = 0.386N
Week of First Observation			
Week of First Observation Life Table Tests (d)	P = 0.376N	P = 0.317	P = 0.386N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Control	150 ppm	310 ppm
iver: Hepatocellular Adenoma or Carcin	oma		
Overall Rates (a)	16/50 (32%)	15/49 (31%)	5/50 (10%)
Adjusted Rates (b)	36.8%	43.8%	17.7%
Terminal Rates (c)	12/39 (31%)	12/31 (39%)	4/27 (15%)
Week of First Observation	66	83	97
Life Table Tests (d)	P = 0.072N	P = 0.380	P = 0.062N
Incidental Tumor Tests (d)	P = 0.032N	P = 0.382	P = 0.031N
Cochran-Armitage Trend Test (d)	P = 0.007N	1 - 0.002	1 = 0.00110
Fisher Exact Test (d)		P = 0.527N	P = 0.007 N
drenal Gland: Cortical Adenoma			
Overall Rates (a)	3/48 (6%)	1/49 (2%)	1/49 (2%)
Adjusted Rates (b)	7.9%	3.0%	3.7%
Terminal Rates (c)	3/38 (8%)	0/31 (0%)	1/27 (4%)
Week of First Observation	104	101	104
Life Table Tests (d)	P = 0.314N	P = 0.383N	P = 0.433N
Incidental Tumor Tests (d)	P = 0.263N	P = 0.341N	P = 0.433N
Cochran-Armitage Trend Test (d)	P = 0.202N	1 -0.04111	1 - 0.40011
Fisher Exact Test (d)	1 -0.2021	P = 0.301 N	P = 0.301 N
All Sites: Benign Tumors			
Overall Rates (a)	17/50 (34%)	12/50 (24%)	14/50 (28%)
Adjusted Rates (b)	42.4%	35.1%	45.9%
Terminal Rates (c)	16/39 (41%)	9/31 (29%)	11/27 (41%)
Week of First Observation	97	98	88
Life Table Tests (d)	P = 0.343	P = 0.437N	P=0.368
Incidental Tumor Tests (d)	P = 0.508	P = 0.396N	P = 0.535
Cochran-Armitage Trend Test (d)	P = 0.297N		
Fisher Exact Test (d)	1 - 0.20111	P = 0.189N	P=0.333N
Ill Sites: Malignant Tumors			
Overall Rates (a)	16/50 (32%)	21/50 (42%)	17/50 (34%)
Adjusted Rates (b)	34.5%	55.2%	49.6%
Terminal Rates (c)	9/39 (23%)	14/31 (45%)	10/27 (37%)
Week of First Observation	66 D = 0.107	83	86 D-0140
Life Table Tests (d)	P = 0.107	P = 0.070	P = 0.142
Incidental Tumor Tests (d)	P = 0.342	P = 0.068	P=0.414
Cochran-Armitage Trend Test (d)	P = 0.468	5	D 0 500
Fisher Exact Test (d)		P = 0.204	P = 0.500
All Sites: All Tumors	001501700	0E/E01/F041	00/20 (20%)
Overall Rates (a)	28/50 (56%)	25/50 [°] (50%)	26/50 (52%)
Adjusted Rates (b)	60.7%	65.7%	72.0%
Terminal Rates (c)	21/39 (54%)	18/31 (58%)	17/27 (63%)
Week of First Observation	66	83	86
Life Table Tests (d)	P=0.114	P = 0.371	P = 0.134
Incidental Tumor Tests (d)	P=0.415	P = 0.489	P = 0.477
Cochran-Armitage Trend Test (d)	P = 0.386N	D	D 0 10133
Fisher Exact Test (d)		P = 0.345N	P = 0.421 N

TABLE C3. ANALYSIS OF PRIMARY TUMORS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

(a) Number of tumor-bearing animals/number of animals examined at the site

(b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(c) Observed tumor incidence at terminal kill

(e) No P value is reported because no tumors were observed in the 310-ppm and control groups.

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

		Incidence in Controls		
Study	Hemangioma	Hemangiosarcoma	Hemangioma or Hemangiosarcoma	
Historical Incidence at Phy	siological Research	Laboratories	<u></u>	
Ephedrine sulfate	0/50	2/50	2/50	
Phenylephrine hydrochloride	0/50	0/50	0/50	
Oxytetracycline hydrochloride	1/50	2/50	3/50	
TOTAL	1/150 (0.7%)	4/150 (2.7%)	5/150 (3.3%)	
SD(b)	1.15%	2.31%	3.06%	
Range (c)				
High	1/50	2/50	3/50	
Low	0/50	0/50	0/50	
Overall Historical Incidence	e			
TOTAL	26/2,040 (1.3%)	(d) 69/2,040 (3.4%)	(d) 94/2,040 (4.6%)	
SD (b)	2.64%	2.58%	4.03%	
Range (c)				
High	7/50	5/49	10/50	
Low	0/50	0/50	0/50	

TABLE C4a. HISTORICAL INCIDENCE OF CIRCULATORY SYSTEM TUMORS IN MALE $B6C3F_1\,MICE$ RECEIVING NO TREATMENT (a)

(a) Data as of August 7, 1986, for studies of at least 104 weeks (b) Standard deviation

(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes 12 angiosarcomas

TABLE C4b. HISTORICAL INCIDENCE OF INTEGUMENTARY SYSTEM TUMORS IN MALE $B6C3F_1$ MICE RECEIVING NO TREATMENT (a)

		Incidence in Controls	
Study	Fibroma (b)	Fibrosarcoma (c)	Fibroma or Fibrosarcoma (b,c)
Historical Incidence at Phy	siological Research	Laboratories	<u>, , , , , , , , , , , , , , , , , , , </u>
Ephedrine sulfate Phenylephrine hydrochloride Oxytetracycline hydrochloride	0/50 2/50 2/50	0/50 1/50 11/50	0/50 3/50 13/50
TOTAL SD (d)	4/150 (2.7%) 2.31%	12/150 (8.0%) 12.17%	16/150 (10.7%) 13.61%
Range (e) High Low	2/50 0/50	11/50 0/50	13/50 0/50
Overall Historical Incidence	e		
TOTAL SD (d)	39/2,040 (1.9%) 2.79%	127/2,040 (6.2%) 6.66%	160/2,040 (7.8%) 7.80%
Range (e) High Low	6/50 0/50	15/50 0/50	19/50 0/50

(a) Data as of August 7, 1986, for studies of at least 104 weeks
(b) Includes neurofibromas
(c) Includes sarcomas, NOS, and neurofibrosarcomas

(d) Standard deviation

(e) Range and SD are presented for groups of 35 or more animals.

	Incidence in Controls								
Study	Adenoma	Carcinoma	Adenoma or Carcinoma						
listorical Incidence at Phy	siological Researcl	h Laboratories							
Ephedrine sulfate	10/50	13/50	19/50						
Phenylephrine hydrochloride	12/50	4/50	15/50						
Oxytetracycline hydrochloride	7/50	11/50	18/50						
TOTAL	29/150 (19.3%)	28/150 (18.7%)	52/150 (34.7%)						
SD(b)	5.03%	9.45%	4.16%						
Range (c)									
High	12/50	13/50	19/50						
Low	7/50	4/50	15/50						
Overall Historical Incidence	e								
TOTAL	242/2,032 (11.9%)	394/2,032 (19.4%)	609/2,032 (30.0%)						
SD(b)	7.44%	6.84%	7.90%						
Range (c)									
High	(d) 22/50	16/50	(e) 29/50						
Low	0/49	4/50	8/50						

TABLE C4c. HISTORICAL INCIDENCE OF HEPATOCELLULAR TUMORS IN MALE B6C3F1 MICERECEIVING NO TREATMENT (a)

,

(a) Data as of August 7, 1986, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Second highest: 12/50
(e) Second highest: 20/50

.

TABLE C5.	SUMMARY OF	F THE INCIDENCE	OF NONNEOPJ	LASTIC LESIC	ONS IN MALE	MICE IN THE
		TWO-YEAR FEE	D STUDY OF N	NITROFURAZ(ONE	

τ	Intreat	ed Control	Low I)ose	High Dos	se
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALL			49		50	
INTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Ectopia		(14%)	4	(8%)		
Ulcer, NOS	1	(2%)				
Inflammation, acute focal			1	(2%)		(2%)
Inflammation, granulomatous Necrosis, NOS			•	(6%)		(2%) (2%)
Hyperkeratosis			3	(070)		(2%)
*Subcutaneous tissue	(50)		(50)		(50)	
Hematoma, NOS		(2%)	(00)		(00)	
Lymphocytic inflammatory infiltrate	-		1	(2%)		
Inflammation, acute			1	(2%)		(2%)
Inflammation, acute/chronic					1	(2%)
Inflammation, chronic	1	(2%)				(0.07)
Perivascular cuffing					1	(2%)
RESPIRATORY SYSTEM						
*Nasal cavity	(50)		(50)	(07)	(50)	
Foreign body, NOS Hemorrhage				(2%)	0	(10)
nemorrhage Inflammation, pyogranulomatous				(2%) (2%)	z	(4%)
*Nasal mucosa	(50)		(50)	(470)	(50)	
Degeneration, hyaline	/	(2%)	· /	(2%)	(00)	
#Peritracheal tissue	(50)		(49)		(50)	
Multiple cysts	1	(2%)				
#Lung/bronchus	(50)		(49)		(50)	
Cyst, NOS						(2%)
#Lung/bronchiole	(50)		(49)		(50)	(1~)
Hyperplasia, epithelial	(50)		(40)			(4%)
#Lung Congestion, NOS	(50)	(16%)	(49)	(22%)	(50)	(12%)
Hemorrhage		(6%)		(22%)		(12%)
Inflammation, chronic focal		(20%)		(18%)		(16%)
Perivascular cuffing		(10%)	_		-	
Necrosis, NOS	1	(2%)				
Hemosiderosis			1	(2%)	_	
Alveolar macrophages		(2%)		(90)		(6%)
Hyperplasia, adenomatous		(2%)		(2%)		(4%)
#Lung/alveoli Edema, NOS	(50)		(49)	(2%)	(50)	
Crystals, NOS				(2%) (2%)	1	(2%)
					<u>-</u>	
HEMATOPOIETIC SYSTEM *Multiple organs	(50)		(50)		(50)	
Hyperplasia, lymphoid		(8%)		(2%)		(4%)
*Anterior mediastinum	(50)		(50)	(2.10)	(50)	(78/0)
Hyperplasia, lymphoid		(2%)	(00)		(00)	
*Blood	(50)		(50)		(50)	
Leukocytosis, NOS				(2%)		(2%)
*Subcutaneous tissue	(50)		(50)		(50)	
Mastocytosis	1	(2%)				

	Untreat	ed Control	Low	Dose	High	Dose	
EMATOPOIETIC SYSTEM (Continued)				<u></u> .		<u></u>	
#Bone marrow	(50)		(49)		(50)		
Congestion, NOS	(00)			(2%)	(00)		
Fibrosis			-	(= ,•,)	1	(2%)	
Necrosis, NOS	1	(2%)			-	(
Atrophy, NOS	-	x = <i>y</i>			1	(2%)	
Hyperplasia, NOS	8	(16%)	1	(2%)		(14%)	
Angiectasis	1			(2%)		(2%)	
Hyperplasia, granulocytic	12	(24%)		(24%)		(36%)	
Hyperplasia, lymphoid		. ,		(2%)		(2%)	
#Spleen	(49)		(48)		(50)	(=)	
Inflammation, suppurative		(2%)					
Necrosis, NOS			1	(2%)			
Atrophy, diffuse				(2%)			
Angiectasis	5	(10%)		(6%)			
Hyperplasia, granulocytic				(2%)			
Hyperplasia, reticulum cell	2	(4%)		(6%)	7	(14%)	
Hyperplasia, lymphoid		(51%)		(23%)	16	(32%)	
Hematopoiesis		(18%)	8	(17%)	13	(26%)	
#Splenic follicles	(49)		(48)		(50)		
Necrosis, NOS			1	(2%)			
#Lymph node	(49)		(47)		(48)		
Hemosiderosis						(2%)	
#Mandibular lymph node	(49)		(47)		(48)		
Hemosiderosis						(2%)	
Plasmacytosis						(2%)	
Hyperplasia, lymphoid	1	(2%)		(4%)	1	(2%)	
Mastocytosis				(2%)			
#Mesenteric lymph node	(49)		(47)		(48)		
Hemorrhage	1	(2%)			-		
Inflammation, acute						(4%)	
Cytomegaly		(2%)		(2%)		(4%)	
Angiectasis		(37%)		(23%)		(27%)	
Hyperplasia, lymphoid		(8%)		(2%)		(8%)	
#Lung	(50)	(00)	(49)	(00)	(50)		
Leukocytosis, NOS	1	(2%)	3	(6%)	1	(2%)	
Leukocytosis, neutrophilic			1	(2%)	1	(270)	
Hyperplasia, lymphoid	(50)			(2%)	(50)		
#Salivary gland	(50)	(00)	(47)	(10)		(10)	
Hyperplasia, lymphoid #Liver	4 (50)	(8%)	2 (49)	(4%)	(50)	(4%)	
Hematopoiesis		(99)		(6%)		(2%)	
#Pancreas	(49)	(2%)	(48)	(070)	(48)	(270)	
Hyperplasia, lymphoid		(2%)	(40)			(2%)	
#Peyer's patch	(47)		(44)		(45)	(2,0)	
Hyperplasia, lymphoid		(4%)	(44)		(40)		
#Duodenum	(47)	(~ <i>IV</i>)	(44)		(45)		
Hyperplasia, lymphoid		(2%)	(==)		(10)		
#Ileum	(47)	_/ ~ /	(44)		(45)		
Hyperplasia, lymphoid		(2%)		(2%)	(
#Cecum	(48)	<u></u>	(46)	()	(45)		
Hyperplasia, lymphoid		(6%)		(4%)		(4%)	
#Kidney	(50)		(49)		(50)		
Hyperplasia, lymphoid		(6%)		(4%)		(2%)	
#Urinary bladder	(48)	/	(45)	· · ·	(45)	,	
Hyperplasia, lymphoid		(4%)		(2%)		(7%)	
#Prostate	(49)	· - · - ·	(46)		(49)	,	
Hyperplasia, lymphoid		(6%)	()			(6%)	
#Testis	(50)		(49)		(50)	• /	
Hyperplasia, lymphoid			· · - /			(2%)	
#Thyroid	(49)		(48)		(50)		
Hyperplasia, lymphoid		(2%)		(2%)	/		

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ted Control	Low	Dose	High	Dose	
HEMATOPOIETIC SYSTEM (Continued)	<u></u>						
#Thymus	(30)		(29)		(33)		
Cyst, NOS		(7%)	(40)			(6%)	
Multiple cysts		(13%)	2	(7%)		(18%)	
Necrosis, NOS		(3%)		(14%)		(3%)	
Atrophy, NOS		(3%)		(21%)		(18%)	
Hyperplasia, epithelial		(7%)	Ŭ	(== 1,0)		(3%)	
Hyperplasia, lymphoid		(3%)			-	(0 /0 /	
URCULATORY SYSTEM							
#Lymph node	(49)		(47)		(48)		
Lymphangiectasis				(2%)	·/		
#Mandibular lymph node	(49)		(47)		(48)		
Lymphangiectasis			1	(2%)			
#Lung	(50)		(49)		(50)		
Thrombosis, NOS			1	(2%)	1	(2%)	
#Heart	(50)		(49)		(50)		
Inflammation, pyogranulomatous		(2%)					
#Myocardium	(50)		(49)		(50)		
Inflammation, chronic focal	2	(4%)					
Inflammation with fibrosis				(2%)			
Necrosis, focal			1	(2%)			
Calcification, NOS		(2%)					
Cytomegaly	1	(2%)					
*Artery	(50)		(50)		(50)		
Inflammation, chronic					1	(2%)	
IGESTIVE SYSTEM					<u></u>		
*Hard palate	(50)		(50)		(50)		
Inflammation, acute/chronic			(/			(2%)	
*Tongue	(50)		(50)		(50)	(= ///	
Hemoglobin pigment	• • •	(2%)	(,		(00)		
*Tooth	(50)		(50)		(50)		
Dysplasia, NOS		(8%)		(4%)		(6%)	
*Pulp of tooth	(50)		(50)	(-,-,-,	(50)	,	
Inflammation, acute		(2%)		(2%)	(
Inflammation, granulomatous	-				1	(2%)	
*Periodontal tissues	(50)		(50)		(50)		
Inflammation, acute/chronic			/			(2%)	
Granuloma, foreign body	1	(2%)					
Inflammation with fibrosis			2	(4%)			
Fibrosis		(4%)					
#Salivary gland	(50)		(47)		(50)		
Dilatation/ducts				(2%)			
Fibrosis			1	(2%)			
Degeneration, NOS					1	(2%)	
Calcification, focal				(2%)			
#Liver	(50)		(49)		(50)		
Inflammation, chronic focal						(2%)	
Degeneration, granular						(2%)	
Necrosis, NOS		(2%)		(0~)		(2%)	
Necrosis, focal		(8%)	4	(8%)		(6%)	
Necrosis, coagulative	1	(2%)				(2%)	
Metamorphosis, fatty						(2%)	
Basophilic cyto change					1	(2%)	
Focal cellular change			1	(2%)			
Hepatocytomegaly						(2%)	
Multinucleate giant cell						(2%)	
Syncytial alteration						(2%)	
Hyperplasia, focal						(2%)	
Angiectasis		(2%)		(2%)		(2%)	

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ted Control	Low	Dose	High	Dose	
DIGESTIVE SYSTEM (Continued)							
#Liver/centrilobular	(50)		(49)		(50)		
Congestion, NOS	(•••)		(,			(2%)	
#Liver/hepatocytes	(50)		(49)		(50)	(2,0)	
Inclusion, nuclear	(•••)		()			(4%)	
*Gallbladder	(50)		(50)		(50)	(470)	
Calculus, gross observation only	(00)		(00)			(2%)	
Cyst, NOS			1	(2%)	•	(2,0)	
Inflammation, acute/chronic			-	(2,0)	1	(2%)	
Hyperplasia, papillary			1	(2%)	-	(4%)	
*Gallbladder/mucosa	(50)		(50)		(50)	(= / • /	
Degeneration, hyaline	(00)			(2%)	(00)		
#Bile duct	(50)		(49)		(50)		
Multiple cysts	(00)			(2%)	(00)		
#Pancreas	(49)		(48)		(48)		
Cyst, NOS	(-0)		(10)			(2%)	
Multiple cysts			1	(2%)	1	(4 10)	
Inflammation, chronic				(2%) (2%)			
Inflammation, granulomatous			1	(270)	1	(2%)	
Atrophy, focal	1	(2%)	1	(994)	1	(270)	
#Pancreatic acinus	(49)		(48)	(2%)	(40)		
Degeneration, NOS	(49)				(48)	(90)	
		(901)		(2%)		(2%)	
Cytoplasmic vacuolization		(8%)		(4%)		(2%)	
*Esophageal lumen	(50)		(50)	(90)	(50)		
Inflammation, suppurative	(40)			(2%)	(10)		
#Glandular stomach	(49)		(46)		(48)		
Cyst, NOS	1	(2%)				(4%)	
Multiple cysts	0	(19)			2	(4%)	
Inflammation, acute		(4%)					
Inflammation, acute/chronic	2	(4%)					
Degeneration, hyaline					1	(2%)	
Dysplasia, NOS				(4%)			
#Forestomach	(49)		(46)		(48)		
Cyst, NOS	1	(2%)					
Inflammation, acute			1	(2%)			
Inflammation, acute/chronic					2	(4%)	
Inflammation, chronic focal			1	(2%)			
Hyperplasia, epithelial	1	(2%)				(2%)	
Hyperkeratosis			1	(2%)	1	(2%)	
#Peyer's patch	(47)		(44)		(45)		
Inflammation, acute	1	(2%)					
IRINARY SYSTEM							
#Kidney	(50)		(49)		(50)		
Mineralization	1	(2%)	3	(6%)	8	(16%)	
Cyst, NOS	1	(2%)	3	(6%)	4	(8%)	
Multiple cysts	2	(4%)					
Congestion, NOS	2	(4%)			2	(4%)	
Hemorrhage	1	(2%)					
Inflammation, acute necrotizing				(2%)			
Nephropathy	8	(16%)		(16%)	13	(26%)	
Nephrosis, NOS					1	(2%)	
Infarct, NOS	1	(2%)					
Amyloidosis					2	(4%)	
Atrophy, NOS	1	(2%)					
Metaplasia, osseous	3	(6%)			1	(2%)	
#Kidney/cortex	(50)		(49)		(50)		
Necrosis, NOS	•,			(2%)			
#Renal papilla	(50)		(49)		(50)		
Necrosis, NOS	,			(4%)			

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untrea	ted Control	Low	Dose	High	Dose
URINARY SYSTEM (Continued)			<u></u>			
#Perirenal tissue	(50)		(49)		(50)	
Inflammation, acute	(00)		(43)			(2%)
Calcification, NOS			1	(2%)	1	(4 10)
#Kidney/tubule	(50)		(49)	(270)	(50)	
Dilatation, NOS	(50)		(43)			(2%)
Degeneration, NOS						
	(50)		(40)			(2%)
#Convoluted tubules	(50)		(49)		(50)	
Dilatation, NOS			1	(2%)		(0.01)
Metamorphosis, fatty	(50)		(50)			(2%)
*Ureter	(50)		(50)		(50)	(00)
Inflammation, acute	(10)					(2%)
#Urinary bladder	(48)		(45)		(45)	(8.4)
Calculus, gross observation only		(2%)			1	(2%)
Edema, NOS	1	(2%)		(0~)		
Hemorrhage				(2%)		(0.57)
Inflammation, acute				(2%)	1	(2%)
Calcification, NOS				(2%)	-	(n <i>e</i>)
Hyperplasia, epithelial	1	(2%)	1	(2%)		(2%)
Angiectasis					2	(4%)
ENDOCRINE SYSTEM						
#Pituitary	(44)		(48)		(49)	
Congestion, NOS			3	(6%)	1	(2%)
#Anterior pituitary	(44)		(48)		(49)	
Cyst, NOS	2	(5%)		(2%)	2	(4%)
Multiple cysts			2	(4%)	1	(2%)
Angiectasis					1	(2%)
#Adrenal/capsule	(48)		(49)		(49)	
Hyperplasia, stromal		(50%)		(33%)		(35%)
#Adrenal cortex	(48)	(*****	(49)	,	(49)	(
Ectopia		(2%)		(2%)	(,	
Cyst, NOS		(2%)		(2%)		
Degeneration, lipoid	-	(=)		(2%)		
Necrosis, focal			-	(=/-)	1	(2%)
Metamorphosis, fatty					1	(2%)
Focal cellular change	3	(6%)	3	(6%)	-	
Hypertrophy, focal		(19%)		(18%)	8	(16%)
Hyperplasia, focal		(4%)		(2%)		(12%)
#Adrenal medulla	(48)	(-/)	(49)		(49)	(12.0)
Hyperplasia, focal	, - <i>,</i>	(6%)		(8%)		(8%)
#Thyroid	(49)		(48)		(50)	(0 10)
Follicular cyst. NOS		(2%)		(4%)		
Lymphocytic inflammatory infiltrate				(2%)		
Inflammation, granulomatous				(2%)		
Inflammation with fibrosis				(2%)		
Cholesterol deposit				(2%)		
Calcification, NOS				(2%)		
Hyperplasia, follicular cell	0	(4%)		(2%) (2%)	1	(2%)
#Thyroid follicle	(49)	(1 70)	(48)	(270)	(50)	(470)
Crystals, NOS	(47)			(996)	(00)	
#Parathyroid	(43)		(38)	(2%)	(37)	
	(40)			(50)		(90)
Cyst, NOS #Pancreatic islets	(40)			(5%)		(3%)
	(49)	(90)	(48)		(48)	
Hypertrophy, NOS Hyperplacia, NOS		(2%)				
Hyperplasia, NOS	1	(2%)				

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

 #Brain Congestion, NOS Hemorrhage #Brain/thalamus Calcification, NOS *Spinal cord Epidermal inclusion cyst Perivascular cuffing Demyelinization 	Untrea	ted Control	Low	Dose	High	Dose
REPRODUCTIVE SYSTEM						
	(50)		(50)		(50)	
	(00)		(50)			(2%)
	(50)		(50)		(50)	(270)
		(2%)	(30)			(2%)
	1	(2,0)	9	(4%)	1	(270)
			4	(470)	1	(2%)
						(2%)
			1	(2%)	1	(270)
	(50)		(50)	(270)	(50)	
	(00)			(2%)	(50)	
	1	(2%)	1	(270)		
	L	(270)	1	(2%)		
	E	(100)			-	(100)
		(10%) (6%)		(4%)		(10%)
	3	(6%)	1	(2%)		(4%)
	4	(90)			1	(2%)
		(2%)	~	(100)	~	(10~)
		(18%)		(18%)		(18%)
	(49)		(46)		(49)	
	1	(2%)	~	(10)	-	(0~)
			2	(4%)		(2%)
Inilammation, acute			-	(07)	1	(2%)
	(50)			(2%)		
	(50)		(50)		(50)	
			1	(2%)		
Inflammation, suppurative	(20)					(2%)
	(50)		(49)	(0~)	(50)	
				(2%)	1	(2%)
		(0 %)	1	(2%)		
		(8%)				(4%)
		(6%)	1	(2%)	4	(8%)
		(4%)				
		(2%)				
	(50)		(50)		(50)	
		(a a)	1	(2%)		
		(2%)				(2%)
		(2%)				(2%)
Calcification, NOS	1	(2%)			1	(2%)
NERVOUS SYSTEM						
	(48)		(49)		(50)	
			5	(10%)		(4%)
		(2%)				(2%)
	(48)		(49)		(50)	
	28	(58%)	26	(53%)		(54%)
	(50)		(50)		(50)	
						(2%)
					1	(2%)
Demyelinization	1	(2%)				
SPECIAL SENSE ORGANS	<u>— 24. 08</u>	<u></u>				
	(50)		(50)		(50)	
		(2%)	(00)		(00)	
Inflammation, suppurative	1					
Inflammation, chronic		(2%)				

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

*Pericardial cavity (50) Hemorrhage	ntrol Low Dose	High	Dose	
*Bone (50) Dyschondroplasia 1 (2%) Atrophy, NOS 1 (2%) Osteosclerosis 1 (2%) *Mandible (50) Osteosclerosis * *Ankle joint (50) Ankylosis 15 (30%) Fibrosis * *Skeletal muscle (50) Fibrosis (50) BODY CAVITIES * *Pericardial cavity (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle 1 Adipose tissue 5 Necrosis, fat 5	······································			
Atrophy, NOS Osteosclerosis 1 (2%) *Mandible (50) Osteosclerosis (50) Ankylosis 15 (30%) Fibrosis (50) Fibrosis (50) Fibrosis (50) Fibrosis (50) Fibrosis (50) Fibrosis (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	(50)	(50)		
Osteosclerosis 1 (2%) *Mandible (50) Osteosclerosis (50) Ankylosis 15 (30%) Fibrosis (50) (50) Fibrosis (50) (50) Fibrosis (50) (50) BODY CAVITIES (50) (50) Hemorrhage (50) (50) ALL OTHER SYSTEMS (50) (50) Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue 5 Necrosis, fat 5 5	1 (2%)		(2%)	
*Mandible (50) Osteosclerosis *Ankle joint (50) Ankylosis 15 (30%) Fibrosis *Skeletal muscle (50) Fibrosis BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity		1	(2%)	
Osteosclerosis *Ankle joint (50) Ankylosis 15 (30%) Fibrosis *Skeletal muscle (50) Fibrosis BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity		(
*Ankle joint (50) Ankylosis 15 (30%) Fibrosis (50) Fibrosis (50) Fibrosis (50) BODY CAVITIES *Pericardial cavity (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle 1 Dyschondroplasia 1 Adipose tissue 1 Necrosis, fat 5 Renal pelvic cavity	(50)	(50)		
Ankylosis 15 (30%) Fibrosis (50) *Skeletal muscle (50) Fibrosis (50) BODY CAVITIES (50) *Pericardial cavity (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle 1 Adipose tissue 5 Necrosis, fat 5			(2%)	
Fibrosis *Skeletal muscle (50) Fibrosis BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	(50)	(50)	(0~)	
*Skeletal muscle (50) Fibrosis BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	4 (8%)	4	(8%)	
Fibrosis BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	1 (2%)	(50)		
BODY CAVITIES *Pericardial cavity (50) Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	(50)	(50)		
*Pericardial cavity (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity		1	(2%)	
*Pericardial cavity (50) Hemorrhage (50) ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity				
Hemorrhage ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	(50)	(50)		
ALL OTHER SYSTEMS Periorbital region Inflammation, pyogranulomatous Knee Dyschondroplasia Adipose tissue Necrosis, fat Renal pelvic cavity		1	(2%)	
Dyschondroplasia 16 Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	1			
Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity				
Ankle Dyschondroplasia 1 Adipose tissue Necrosis, fat 5 Renal pelvic cavity	9	10		
Adipose tissue Necrosis, fat 5 Renal pelvic cavity				
Adipose tissue Necrosis, fat 5 Renal pelvic cavity				
Renal pelvic cavity				
	3	1		
Inflammation, suppurative				
		1		
SPECIAL MORPHOLOGY SUMMARY	<u></u>	<u></u>		
Auto/necropsy/no histo	1			

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 # Number of animals examined microscopically at this site

Nitrofurazone, NTP TR 337

.

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

		PAGE
TABLE D1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	137
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO- YEAR FEED STUDY OF NITROFURAZONE	140
TABLE D3	ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	146
TABLE D4a	HISTORICAL INCIDENCE OF OVARIAN TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING NO TREATMENT	150
TABLE D4b	HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING NO TREATMENT	151
TABLE D5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	152

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

U	ntreat	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50	<u></u>	50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGICALLY	50		50		50	
NTEGUMENTARY SYSTEM						
*Subcutaneous tissue	(50)		(50)		(50)	
Fibrosarcoma	1	(2%)	1	(2%)		
Neurilemoma, malignant					1	(2%)
RESPIRATORY SYSTEM						
#Lung	(50)		(49)		(49)	
Alveolar/bronchiolar adenoma		(4%)		(12%)	6	(12%)
Alveolar/bronchiolar carcinoma		(2%)	1	(2%)		
Osteosarcoma, metastatic	1	(2%)				
HEMATOPOIETIC SYSTEM						
*Multiple organs	(50)		(50)		(50)	
Malignant lymphoma, NOS	2	(4%)				(2%)
Malignant lymphoma, undifferentiated type						(2%)
Malignant lymphoma, lymphocytic type	1	(2%)	-		2	(4%)
Malignant lymphoma, histiocytic type				(6%)		
Malignant lymphoma, mixed type	16	(32%)		(26%)	9	(18%)
Plasma cell tumor	(40)			(2%)	(50)	
#Spleen	(49)	(00)	(50)		(50)	
Malignant lymphoma, lymphocytic type		(2%)	0	(60)		
Malignant lymphoma, mixed type #Mandibular lymph node	(49)	(4%)	(12)	(6%)	(49)	
Squamous cell carcinoma, metastatic	(45)		,	(8%)	(45)	
#Peyer's patch	(48)		(8)	(0.0)	(44)	
Malignant lymphoma, mixed type	(40)			(13%)	(**)	
#Duodenum	(48)		(8)	x	(44)	
Malignant lymphoma, mixed type	· -/				1	(2%)
#Jejunum	(48)		(8)		(44)	
Malignant lymphoma, mixed type	,		1	(13%)		
#Uterus	(50)		(40)		(50)	
Malignant lymphoma, histiocytic type			1	(3%)		
CIRCULATORY SYSTEM						
*Abdominal cavity	(50)		(50)		(50)	
Hemangiosarcoma	(m =)			(2%)		
#Liver	(50)		(50)		(50)	(901)
Hemangiosarcoma	(20)		(20)			(2%)
*Mesentery Hemangiosarcoma	(50)	(2%)	(50)		(50)	
#Urinary bladder	(48)	(470)	(3)		(47)	
Hemangioma		(2%)	(0)		(***)	
#Ovary	(47)	(2,10)	(50)		(50)	
Hemangioma		(2%)	(00)		(00)	
DIGESTIVE SYSTEM						
#Liver	(50)		(50)		(50)	
Hepatocellular adenoma		(4%)		(2%)		(2%)
Hepatocellular carcinoma		(2%)		(4%)	-	
nepatocentala carcinolita						
#Glandular stomach	(48)		(9)		(47)	(2%)

	Untreat	ed Control	Low	Dose	High	Dose
DIGESTIVE SYSTEM (Continued)	<u></u>			<u></u>		
#Forestomach	(48)		(9)		(47)	
Papilloma, NOS			1	(11%)	2	(4%)
Squamous cell carcinoma			1	(11%)		
JRINARY SYSTEM		<u></u>	<u></u>			
#Kidney	(50)		(7)		(50)	
Tubular cell adenoma	1	(2%)				
Tubular cell adenocarcinoma					1	(2%)
ENDOCRINE SYSTEM		****		······································		
#Anterior pituitary	(50)		(50)		(49)	
Carcinoma, NOS	1	(2%)		(4%)		
Adenoma, NOS	9	(18%)		(10%)	2	(4%)
Sarcoma, NOS	1	(2%)				
#Adrenal	(49)		(6)		(48)	
Sarcoma, NOS			1	(17%)		
#Adrenal/capsule	(49)		(6)		(48)	
Adenoma, NOS						(4%)
#Adrenal medulla	(49)	. .	(6)		(48)	
Pheochromocytoma		(2%)				(4%)
#Thyroid	(50)		(4)		(50)	
Follicular cell adenoma					2	(4%)
Fibrosarcoma, metastatic			1	(25%)		
REPRODUCTIVE SYSTEM						
*Mammary gland	(50)		(50)		(50)	
Adenocarcinoma, NOS			1	(2%)	2	(4%)
#Uterus	(50)		(42)		(50)	
Adenocarcinoma, NOS					1	(2%)
Endometrial stromal polyp	3	(6%)	3	(7%)		
#Ovary	(47)		(50)		(50)	
Cystadenoma, NOS		(4%)	2	(4%)	2	(4%)
Luteoma		(4%)		(4%)		
Granulosa cell tumor	1	(2%)		(8%)	9	(18%)
Tubular adenoma				(4%)	_ .	
Mixed tumor, benign			17	(34%)		(40%)
Teratoma, NOS					1	(2%)
NERVOUS SYSTEM None					_	
SPECIAL SENSE ORGANS						
*Eyelid	(50)		(50)		(50)	
Papilloma, NOS	(00)		()			(2%)
*Harderian gland	(50)		(50)		(50)	
Carcinoma, NOS		(2%)		(6%)		(2%)
*Ear	(50)		(50)		(50)	
Squamous cell carcinoma				(2%)		
MUSCULOSKELETAL SYSTEM None					<u></u>	

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEARFEED STUDY OF NITROFURAZONE (Continued)

	Untreated Control	Low Dose	High Dose
BODY CAVITIES		· · · · · · · · · · · · · · · · · · ·	······
*Pleura	(50)	(50)	(50)
Osteosarcoma	1 (2%)		
ALL OTHER SYSTEMS None	······································		
ANIMAL DISPOSITION SUMMARY	₩ <u>₩</u> ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	·····	<u></u>
Animals initially in study	50	50	50
Natural death	4	3	6
Moribund sacrifice	7	7	8
Terminal sacrifice	39	40	35
Accidentally killed, nda			1
TUMOR SUMMARY			·····
Total animals with primary tumors**	36	43	42
Total primary tumors	55	80.	72
Total animals with benign tumors	20	29	33
Total benign tumors	24	39	41
Total animals with malignant tumors	24	30	19
Total malignant tumors	30	36	21
Total animals with secondary tumors##	1	2	
Total secondary tumors	1	2	
Total animals with tumors uncertain			
benign or malignant	1	5	10
Total uncertain tumors	1	5	10

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

* Number of animals receiving complete necropsy examinations; all gross lesions including masses examined microscopically.
** Primary tumors: all tumors except secondary tumors
Number of animals examined microscopically at this site
Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE D2.	INDIVIDUAL	ANIMAL TUN	IOR PATHOLO	DGY OF FEMALE	MICE IN THE TWO-YE	AR
	FEE	D STUDY OF	NITROFURA2	ONE: UNTREAT	ED CONTROL	

ANIMAL NUMBER	1 2 1	1 3 1	1 1 8	1 3 0	1 1 6	1 1 5	1 4 1	1 0 8	1 1 2	1 3 9	1 0 4	1 0 1	1 0 2	1 0 3	1 0 5	1 0 6	1 0 7	1 0 9	1 1 0	1 1 1	1 1 3	1 1 4	1 1 7	1 1 9	1 2 0
WEEKS ON STUDY	0 5 6	0 8 5	0 8 6	0 9 0	0 9 1	0 9 3	0 9 4	0 9 6	0 9 8	0 9 8	1 0 1	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	N	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea	+	+	+	++	++	+ X +	++	++	++	+	++	++	+	++	+	++	++	+	+ X +	* *	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Spieen Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type Lymph nodes Thymus	+ - + -	+ + +	++++++	+++-	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++-	+++-	++++-	++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + X + +	+ + +	++++++	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+++++++	+++	++++++++++++++++++++++++++++++++++++++	+ + X + -
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salvary gland Liver Hepatocellular adenoma	++	+ +	++	+ +	+ +	+	+++	+ +	+ +	+ +	++++	++++	+ +	+ +	++++	+ + X	+ +	+ +	+ +	+++	+ + X	+	+++	++++	+ +
Hepatocellular carcinoma Bile duct Gallbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+ N - +	++++++	+ + + + + + +	+ + + + + +	++++++	+ N + +	+ N + + + + +	++++++	+ + + + + + +	+ N + + + + +	+ + + + + +	++++++	+ + + + + +	++++++	+ + + + + + +	+ + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + +	++++++	+ + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	++++++
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder Hemangioma	+	+ +	+ +	+ +	++	+ +	+ +	++	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	++	++	+ +	+ +	++	++	+++	+ +
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Sarcoma, NOS Adrenal Pheochromocytoma Thyroid	+	+++++	+++++	+++++	+++++	* * + +	+ + X +	+ X + +	++++	+++++	++++	++++	++++	+++++	++++	+ X + +	+++++	++++	++++	+ X + +	++++	+ + +	+++++	++++	+ X + +
Parathyroid REPRODUCTIVE SYSTEM Mammary gland Uterus Endometnal stromai polyp Ovary Cystadenoma, NOS Luteoma Granulosa cell tumor	- + + -	++++++	- N + +	- + + +	++++++	++++	- + + X	++++	++++++	- + + +	+ + + +	+ + + +	+ N + +	++++++	+ + + + +	+ + + + x	+ + + +	+++++	+++++	+ + + +	- + + +	+ + X +	+ + X +	+ + + +	+ + + +
Hemangtoma NERVOUS SYSTEM				X																			<u> </u>		
Brain SPECIAL SENSE ORGANS Hardenan gland Carcinoma, NOS	+ N	+ N	+ N	N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ N	+ X	+ 	+ N	+ N
BODY CAVITIES Pleura Osteosarcoma Mesentery Hemangiosarcoma	N N																		Х				N N		
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N X	N		N X	N	N X	N		N X		N	N	N	N	N	N	N	N	N	N	N	N X	N	N X	N

+ - XN S

Tissue examined microscopically Required tissue not examined microscopically Tumor incidence Necropsy, no autolysis, no microscopic examination Animal missexed

No tissue information submitted C Necropsy, no histology due to protocol A. Autolysis Animal missing B No necropsy performed

										•	uec	-/														
ANIMAL NUMBER		1 2 3	1 2 4	1 2 5	1 2 6	$\frac{1}{2}$ 7	1 2 8	1 2 9	1 3 2	1 3 3	1 3 4	1 3 5	1 3 6	1 3 7	1 3 8	1 4 0	1 4 2	1 4 3	1 4 4	1 4 5	1 4 6	1 4 7	1 4 8	1 4 9	1 5 0	TOTAL:
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Osteosarcoma, metastatic Trachea	+	+	+	+	+	+	+	* X +	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	50 2 1 1 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	+++	+ +	+ + +	+ +	+ +	+ +	+ +	+ + +	+ + +	++++	+ +	++++	+ +	+ +	+ +	+ +	++++	+ +	+ +	+ + X	++++	+ +	+++	+ +	+ + +	50 49 1 2
Lymph nodes Thymus	++	+ +	++	+ +	+ +	+	++	+ -	+++	+++	++++	+++	+++	+ +	++	+++	+ -	+	+++	++	++	++	+	+ +	++	49 37
CIRCULATORY SYSTEM Heart DIGESTIVE SYSTEM	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	++	+ + X	+ +	+ +	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	49 50 2 1
Bile duct Gailbladder & common bile duct Pancreas Esophagus Stomach Small intestine Large intestine	+++++	+++++++	+ + + + + + +	+ + + + + + +	+++++++	+ + + + + + +	+++++++	+ + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + +	++++++	+ + + + + + +	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + +	+ + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + +	+ + + + + + +	50 *50 48 50 48 48 48 49
URINARY SYSTEM Kidney Tubular cell adenoma Urinary bladder Hemangioma	++	+ +	++	+ +	+ +	+ + X	+ +	+	+ +	+	+	+ +	++	++	+ X +	+ +	+ +	+ +	+ +	+ +	++	+	++	+ +	+ +	50 1 48 1
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Sarcoma, NOS Adrenal Pheechromocytoma Thyroid Parathyroid	++++++	+++++	+ X + +	+ + + +	+++++	++++++	++++++	+ + +	+++-	+++	+ X + +	+ x + +	+++	+ X + +	+++	+ X + +	+++++	+++++	+++++	+++++	+++++	+++++	+ X + +	+++	+ + + + +	50 1 9 1 49 1 50 36
REPRODUCTIVE SYSTEM Mammary gland Uterus Endometrial stromal polyp Ovary Cystadenoma, NOS Luteoma Granulosa cell tumor Hemangioma	+ + + X	+ + +	+ + +	+ + + X	+++++	+ + + x	+++++	+ + +	+ + +	+ + X +	+ + +	++++++	+ + +	+++++	+ + +	+ + +	++++++	+++++++	+ + +	+ + +	+ + +	+ + +	+ + +	++++++	+++++	*50 50 3 47 2 2 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
SPECIAL SENSE ORGANS Harderian gland Carcinoma, NOS	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
BODY CAVITIES Pleura Osteosarcoma Mesentery Hemangnosarcoma	N N		N N		N N	N N	N N	N N	N N		N N	N N			N N	N N						N N		N N		*50 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type	N		N X		N	N	N X	N	N	N	N	N X	N	N X	N	N	N X		N	N	N X	N	N X	N	N	*50 2 1 16

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: UNTREATED CONTROL (Continued)

* Animals necropsied

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE: LOW DOSE

Fibrosarcoma X RESPIRATORY SYSTEM + + + + + + + + + + + + + + + + + + +	1 1 1 0 0 0 4 4 4 1 N N N		0 0 0 1 9 1 1 1 0 0 4 4 N N	4	0 1 3 1 0 4	0 1 5 1 0 4	0 1 6 1 0 4	0 1 8 1 0	0 1 9	0 2 0	0 2 1
STUDY4899990005201256601Subcutaneous tissue Fibrosarcoma $+$ + + NNNNNNNRESPIRATORY SYSTEM Lungs and bronch Alveolar/bronchiolar adenoma $+$ + + + + + + + + + + + + + + + + + +	4 4 4 1 N N N	4 4 N N	4 4	4	1 0 4	1 0 4		1	1		
Subcutaneous tissue + + + N N N N N N N Fibrosarcoma X RESPIRATORY SYSTEM + + + + + + + + + Lungs and bronchi + + + + + + + + + Aiveolar/bronchiolar adenoma X			N N	N N				4	0 4	0 4	1 0 4
Lungs and bronchi + + + + + + + + + - Alveolar/bronchiolar adenoma X	+ + + + X	+ +			N	N	N	N	N	N	N
Alveolar/bronchiolar carcinoma		л	+ +	+ +	-	+	+	+	+	*	+
Trachea + + + +											
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes	 + + + + X	 + +	+ +	 + + 	+	+	- + -	- + -	- + +	- + +	+
Squamous cell carcinoma, metastatic Thymus -+++	<u> </u>	- +			_	-	_	_	-	-	_
CIRCULATORY SYSTEM Heart + + + +								_	-	-	
DIGESTIVE SYSTEM Salıvary gland + + + + + Lıver	+	 + -						-	-		
Liver Hepatocellular adenoma Hepatocellular carcinoma Bile duct + + + + + + + + + + + + + + + + + + +	+ + + + X + + + + +	+ +	+ +	+ +	+	⊤ ⊥	+	+	+	+	+
Gallbladder & common bile duct + N <th< td=""><td></td><td>ŇŇ </td><td>N N</td><td></td><td></td><td>Ň</td><td>N -</td><td>N - -</td><td>N </td><td>Ň -</td><td>т Т Т</td></th<>		ŇŇ 	N N			Ň	N -	N - -	N 	Ň -	т Т Т
Papilloma, NOS Squamous cell carcinoma	+				+	-	* X	-	-	-	-
Small intestine + + + + + + Malignant lymphoma, mixed type + + Large intestine + + + + +	+ + +				+	-	-	-	-	-	_
URINARY SYSTEM Kidney Urnary bladder					-	+	-	-	-		-
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS	+ + + +	+ +	+ +	+ +	+	+	+	+ x	+	+	+
Adrenal + + + + + -	+				х -	-		-	-	-	
Sarcoma, NOS X Thyroid + + + +						-	-	-	-	-	_
Fibrosarcoma, metastatic X Parathyroid + +					-	-	-	-	-	-	-
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	I N N N	N N	N N	N N	N	N	N	N	N	N	N
Uterus + + + + - + - + + Endometrial stromal polyp X Malignant lymphoma, histocytic type X	+ + + - X	+ +	+ +	⁺ x	+	+	+	+		+	+
Ovary Cystadenoma, NOS Luteoma X	• + + +	+ +	+ +	+ +	+	+	+	+	+ X	+	+
Granulosa cell tumor Tubular ademona Mixed tumor, bengn X			x	х	x		x				
NERVOUS SYSTEM Brain + + + +						_		-	_		
SPECIAL SENSE ORGANS Harderian gland N N N N N N N N N N N N N N N N N N N	INNN	N N	N N	I N	N	N	N	N		N	N
Carcinoma, NOS Ear N N N N N N N N N N N N N N N X 4 Squamous cell carcinoma X	NNN	N N	N N	I N	N	N	N	N	X N	N	N
BODY CAVITIES Pertoneum N N N N N N N N N N N N N N N N N N N	NNN	N N	N N	IN	N	N	N	N	N	N	N
ALL OTHER SYSTEMS Multiple organs, NOS N N N N N N N N N N N Malignant lymphoma, histiocytic type X	I N N N		N N	N	N	N		N			N
Malignant lymphoma, mixed type X X X Plasma cell tumor X		х					x		x	X	

									/011	~~	uet	.,														
ANIMAL NUMBER	0 2 2	0 2 3	0 2 4	0 2 6	0 2 7	0 2 8	0 2 9	0 3 0	0 3 1	0 3 2	0 3 3	0 3 4	0 3 5	0 3 6	0 3 7	0 3 8	0 3 9	0 4 0	0 4 1	0 4 3	0 4 4	0 4 5	0 4 6	0 4 8	0 4 9	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TOTAL TISSUES TUMORS
INTEGUMENTARY SYSTEM Subcutaneous tissue Fibrosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Trachea	+	* *	+	+	+	+	+	+	+	+ X -	+	+	+	+	+	+	+	+	+ X -	+	+	+	+	+	+	49 6 1 4
HEMATOPOIETIC SYSTEM Bone marrow Spleen Malignant lymphoma, mixed type Lymph nodes Squamous cell carcinoma, metastatic Thymus	- + -	- + + +	+		- + -	- + -	- + -	+	 + -	- + X -	+	- + ~	+	+ - +	- + -		 + -	- + -	- + -	- + -	+ -	+	- + -	+		4 50 3 12 1 5
CIRCULATORY SYSTEM Heart	-	~	-	-		-	_	-			-		_			_	-	-	_	_	-	_	-	-	-	4
DIGESTIVE SYSTEM Salivary gland Liver Hepatocellular adenoma Hepatocellular carcinoma	- +	 +	- +	+	+	- +	 +	- +	- +	- +	- +	- +	- +	- +	- +	- + X	+	+	 +	- + x	- +	+	- +	 +	+	5 50 1 2
Gallbladder & common bile duct Pancreas Esophagus Stomach	+ 	+ N	+ N	+ - -	+ N 	+ 1 - 1 +	+ N -	+ N	+ N -	+ x -	+ N	+ N 	+ N -	+ N +	+ N 	+ N -	+ N -	+ N -	+ N -	A+N	+ N	+ N -	+ N 	+ - -	+z -	50 *50 4 4 9
Scomacn Papilloma, NOS Squamous cell carcinoma Small intestine Malignant lymphoma, mixed type Large intestine	-		~	-	 * ~	+ -	-	1 1	-	-	1 1	-	-	↑ X -	-	-	1 1	-	-	-	-	-	-	-	-	9 1 1 8 2 6
URINARY SYSTEM Kidney Urinary bladder				 				~	_	-	-		_	-			-			-			+	_	_	73
ENDOCRINE SYSTEM Pituitary Carcinoma, NOS Adenoma, NOS Adrenal Sarcoma, NOS Thyroid Fibrosarcoma, metastatic Parathyroid	+ x - -	+	+	+	+	+ X -	+	+	+	+	+ ~	+	+	+	+	+ X -	+	+	+ <u>x</u> -	+	+	+ X 	+	+	+	50 2 5 6 1 4 1 2
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	N	N	N	N	N	N	N	N	N	+ x	N	N	N	N	N	N	N	N	N	N	N	N	N	N	+	*50 1
Uterus Endometral stromal polyp Malıgnant lymphoma, hıstıocytic type Ovary Cystadenoma, NOS	- + x	+	-+	- +	+ +	+	+	+	- +	+	+	+ +	+	+	+	+	+ + X	+	+	+	+	+ x +	+	+	+	42 3 1 50 2
Luteoma Granulosa cell tumor Tubular adenoma Mixed tumor, benign	x		X X	x		x	x		x x			x		x	x			X X		X	x	x	x	x		2 4 2 17
NERVOUS SYSTEM Brain	-		-	_			_		-			-	_	 	-	-		_	-	~	-	-	-			4
SPECIAL SENSE ORGANS Hardenan gland Carcinoma, NOS Ear Squamous cell carcinoma	N X N	N N	N X N	N N	N N	N N	N N	N N			N N								N N	N N	N N			N N		*50 3 *50 1
BODY CAVITIES Pertoneum Hemangiosarcoma	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, histiocytic type Malignant lymphoma, mixed type Plasma cell tumor	N	N X	N	N X	N	N X	N	N X	N X	N	N	N	N	N	N	N	N	N	N X	N	N	N	N		N X	*50 3 13 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: LOW DOSE (Continued)

* Animals necropsied

																_									
ANIMAL NUMBER	0 7 7	0 5 4	0 5 9	0 6 4	0 7 8	0 9 8	0 7 3	0 7 6	0 8 0	0 9 0	0 9 2	0 7 2	0 8 4	0 8 8	0 9 1	0 5 1	0 5 2	0 5 3	0 5 5	0 5 6	0 5 7	0 5 8	0 6 0	0 6 1	0 6 2
WEEKS ON STUDY	0 1 0	0 2 4	0 2 7	0 4 0	0 8 2	0 8 2	0 8 6	0 8 8	0 8 9	0 9 4	0 9 5	0 9 6	0 9 6	0 9 7	1 0 3	1 0 4									
INTEGUMENTARY SYSTEM Subcutaneous tissue Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	++++	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+ +	+++	+++	* *	+++	+++	+++	++	+++	++	++	* *	+++	 +
HEMATOPOIETIC SYSTEM Bone marrow Spieen Lymph nodes Taymus	++++++	+++++	++	+++++	+++++	+++++	+ + + + + -	++++-	+++++	+++++	++++-	++++-	++++-	++++	++++-	+++++	++++	+++-	+++++	+++++	+++-	+++++	- + +	++++	++++-
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
DIGESTIVE SYSTEM Salivary gland Liver	++++	++++	++++	++	+++	+ + +	++++		+ + X	++++	++++	+ + +	++++	+++	++++	++++	++++	++++	++++	+ + +	++++	+++	++++	++++	+++++
Hepatocellular adenoma Hemanguosarcoma Bile duct Galibiadder & common bile duct Pancreas	+ N - +	+++,	+ z + +	++++	+++++	++++	++	+ N + +	+ + +	+++-	++++	+++-	++++	+ z + +	+ X + +	+++-	++++	+ + + +	++++	+++-	+++-	++++	++++	++++-	++++
Esophagus Stomach Papilloma, NOS Adematous polyp, NOS Small intestine Malignant lymphoma, mixed type	-	+ + +	- -	+ + +	+ + -	+ + +	+ + +	+	+ + +	+ + +	+ +	+ + +	+ + +	+	-	+ + +	+ + +	+ +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + X
Large intestine URINARY SYSTEM	-	+	-	+	-	+	+	+		+	+	+	+	-	-	+	+	+	+	+	+	+	+	+	+
Kidney Tubular cell adenocarcinoma Urinary bladder	+ -	+ +	+ +	++	+ +	+ _	+ +	+ +	+ +	+	++	++	* *	+ +	+ _	+ +									
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+
Adenona, NOS Adenoma, NOS Pheochromocytoma	+	+	+	+	+	+	-	+	+	+	+	+	+	-	+	+	+	+	+	+	+	+	+	+	+
Thyroid Follicular cell adenoma Parathyroid	+++	+ +	+ +	+ +	+	+ +	* -	+ -	+ -	+ +	+ -	+ +	+ +	+ +	+ -	+ +	+ +	+ +							
REPRODUCTIVE SYSTEM Mammary gland	N	+	N	+	+ x	N	N	+	+	N	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adenocarcinoma, NOS Uterus Adenocarcinoma, NOS Ovary	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ X +	+ +											
Cystadenoma, NOS Granulosa cell tumor Muxed tumor, benign Teratoma, NOS								x				x		x			x	x	x	x	x	x	x	x	x
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
SPECIAL SENSE ORGANS Eye appendages Papiloma, NOS Harderian gland Carcinoma, NOS	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N X	N N	N N	N N						
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, undifferentiated type	N	N	N	N X	N	N	N	N	N	N	N	N	N	N	N X	N	N	N	N	N	N	N	N	N	N
Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type							x			X			x	X			x		x				x	x	

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARFEED STUDY OF NITROFURAZONE: HIGH DOSE

TABLE D2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	FEMALE	MICE:	HIGH DO	SE
				(Continued	l)				

								•	/011																	
ANIMAL NUMBER	0 6 3	0 6 5	0 6 6	0 6 7	0 6 8	0 6 9	0 7 0	0 7 1	0 7 4	0 7 5	0 7 9	0 8 1	0 8 2	0 8 3	0 8 5	0 8 6	0 8 7	0 8 9	0 9 3	0 9 4	0 9 5	0 9 6	0 9 7	0 9 9	1 0 0	TOTAL
WEEKS ON STUDY	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	1 0 4	TISSUES
INTEGUMENTARY SYSTEM Subcutaneous tissue Neurilemoma, malignant	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	*50 1
RESPIRATORY SYSTEM Lungs and bronchi Alveolar/bronchiolar adenoma Trachea	+++	+++	* *	+++	++	+	* *	+	+ X +	+++	+++	+++	++	+++	* *	+++	++	+++	+++	+++	+	+	+ +	+++	+++	49 6 50
HEMATOPOIETIC SYSTEM Bone marrow Spleen Lymph nodes Thymus	+++++++	+++++	+++++	++++-	+++++	+++++	++++	++++	+++++	+++++	++++++	++++-	++++-	+++++	+++++	++++	+++++	++++++	++++	+++++	+++++++	+++++	+++++	++++-	++++++	49 50 49 33
CIRCULATORY SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
DIGESTIVE SYSTEM Salıvary gland	+	+	+++	+++	+++	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+++	+++	++++	49
Liver Hepatocellular adenoma Hemangiosarcoma Bile duct	++	++	+	+	++	+	++	+	+	+	+	+	+	++	+	++	+	+	+	+	+ X +	++	+	++	+	50 1 1 50
Gallbiadder & common bile duct Pancreas Esophagus	+++++++++++++++++++++++++++++++++++++++	++++-	++++-	+++++	++++	+++++	++++	+++++	++++-	+++++	+++++	++++	++++-	++++	+++++	++++	++++	++++	++++-	+++++	+++++++++++++++++++++++++++++++++++++++	++++++	++++	++++	+++++	*50 48 50
Stomach Papilloma, NOS Adematous polyp, NOS Small intestine	+	+	+	+	* *	+	+	+	++	+	+	++	* *	+ X +	+	+	+	+	+	+	+	+	+	+	+	47 2 1 44
Malignant lymphoma, mixed type Large intestine	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 44
URINARY SYSTEM Kıdney Tubular cell adenocarcınoma Urınary bladder	+++++++++++++++++++++++++++++++++++++++	+	+ +	+ +	+ +	+ +	+ +	50 1 47																		
ENDOCRINE SYSTEM Pituitary Adenoma, NOS	+	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	49 2
Adrenal Adenoma, NOS Pheochromocytoma	+	+	+	+	+	+	+	+	*	+	+	+	+	+ X	+	+	+	+	+	+ X	+	*	+	+	+	48 2 2
Thyroid Follicular ceil adenoma Parathyroid	+ +	+ +	++	+	+	+ +	* -	+ +	+ -	+ +	+ +	+ +	50 2 40													
REPRODUCTIVE SYSTEM Mammary gland Adenocarcinoma, NOS	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*50 2
Uterus Adenocarcinoma, NOS Ovary Curtodenome NOS	+++	+ +	+ +	+ +	+	+ + X	+	+ +	+ +	+	+ +	+	+ +	+ +	+ +	+ +	+ +	50 1 50 2								
Cystadenoma, NOS Granulosa cell tumor Muxed tumor, benign Teratoma, NOS		X				X	X	x	x		x	x	X	x	x	x	X	X X	x		x		x	x	x	9 20 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
SPECIAL SENSE ORGANS Eye appendages Papiloma, NOS Harderian gland Carcinoma, NOS	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N N	N X N	*50 1 *50 1
ALL OTHER SYSTEMS Multiple organs, NOS Malignant lymphoma, NOS Malignant lymphoma, undiffer type	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	*50 1 1
Malignant lymphoma, lymphocytic type Malignant lymphoma, mixed type																x			x				x			2 9

* Animals necropsied

	Control	150 ppm	310 ppm
Lung: Alveolar/Bronchiolar Adenoma			
Overall Rates (a)	2/50 (4%)	6/49 (12%)	6/49 (12%)
Adjusted Rates (b)	5.1%	14.7%	17.1%
Terminal Rates (c)	2/39 (5%)	5/39 (13%)	5/34 (15%)
Week of First Observation	104	91	103
Life Table Tests (d)	P = 0.056	P = 0.137N	P = 0.098
Incidental Tumor Tests (d)			
Cochran-Armitage Trend Test (d)	P = 0.064	P = 0.136	P = 0.100
Fisher Exact Test (d)	P = 0.075	P = 0.128	P = 0.128
ung: Alveolar/Bronchiolar Adenoma or	Carcinoma		
Overall Rates (a)	3/50 (6%)	7/49 (14%)	6/49 (12%)
Adjusted Rates (b)	7.2%	17.2%	17.1%
Terminal Rates (c)	2/39 (5%)		
		6/39 (15%)	5/34(15%)
Week of First Observation	93 D-0.122	91	103 D=0 188
Life Table Tests (d)	P = 0.133	P = 0.163N	P = 0.188
Incidental Tumor Tests (d)	P = 0.149	P = 0.155	P=0.193
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.170	P = 0.151	P = 0.233
		r - V.101	r 0.200
ematopoietic System: Malignant Lympl			A 18 A 18 A 19
Overall Rates (a)	0/50 (0%)	4/50 (8%)	0/50 (0%)
Adjusted Rates (b)	0.0%	9.8%	0.0%
Terminal Rates (c)	0/39 (0%)	3/40 (7%)	0/35(0%)
Week of First Observation		101	
Life Table Tests (d)	P = 0.613	P = 0.068	(e)
Incidental Tumor Tests (d)	P = 0.621	P = 0.061	(e)
Cochran-Armitage Trend Test (d)	P = 0.605 N		
Fisher Exact Test (d)		P=0.059	(e)
ematopoietic System: Malignant Lympl	homa. Mixed Type		
Overall Rates (a)	18/50 (36%)	18/50 (36%)	10/50 (20%)
Adjusted Rates (b)	40.6%	41.7%	26.5%
Terminal Rates (c)	13/39 (33%)	15/40 (38%)	8/35 (23%)
Week of First Observation	86	95	86
Life Table Tests (d)	P = 0.106N	P = 0.545N	P = 0.123N
Incidental Tumor Tests (d)	P = 0.077N	P=0.567	P = 0.085N
Cochran-Armitage Trend Test (d)	P = 0.050N	D 0 50031	
Fisher Exact Test (d)		P = 0.583N	P = 0.059N
lematopoietic System: Lymphoma, All N			
Overall Rates (a)	22/50 (44%)	22/50 (44%)	14/50 (28%)
Adjusted Rates (b)	47.4%	49.9%	33.7%
Terminal Rates (c)	15/39 (38%)	18/40 (45%)	8/35 (23%)
Week of First Observation	56	95	40
Life Table Tests (d)	P = 0.148N	P=0.537N	P = 0.172N
Incidental Tumor Tests (d)	P = 0.093 N	P = 0.475	P = 0.093 N
Cochran-Armitage Trend Test (d)	P = 0.060 N		
Fisher Exact Test (d)		P = 0.580N	P = 0.072N
irculatory System: Hemangioma or He	mangiosarcoma		
Overall Rates (a)	3/50 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (b)	7.1%	2.2%	2.9%
Terminal Rates (c)	2/39 (5%)	0/40 (0%)	1/35 (3%)
Week of First Observation	90	92	104
Life Table Tests (d)	P = 0.237N	P = 0.300N	P = 0.348N
Incidental Tumor Tests (d)	P = 0.198N	P = 0.297N	P = 0.315N
Cochran-Armitage Trend Test (d)	P = 0.208N		

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

.

	Control	150 ppm	310 ppm
Liver: Hepatocellular Adenoma or Carcino	ma	<u> </u>	
Overall Rates (a)	3/50 (6%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	7.7%	7.5%	2.4%
Terminal Rates (c)	3/39 (8%)	3/40 (7%)	0/35 (0%)
Week of First Observation	104	104	89
Life Table Tests (d)	P = 0.274N	P = 0.652N	P = 0.346N
Incidental Tumor Tests (d)	P = 0.257N	P = 0.652N	P = 0.315N
Cochran-Armitage Trend Test (d)	P = 0.238N	1 - 0.00211	1 = 0.51511
Fisher Exact Test (d)	1 = 0.23811	P = 0.661	P = 0.309N
Tisher Exact Test (d)		1 = 0.001	1 -0.00010
Anterior Pituitary Gland: Adenoma			
Overall Rates (a)	9/50 (18%)	5/50 (10%)	2/49 (4%)
Adjusted Rates (b)	22.4%	12.5%	5.7%
Terminal Rates (c)	8/39 (21%)	5/40 (13%)	2/35 (6%)
Week of First Observation	96	104	104
Life Table Tests (d)	P = 0.025N	P = 0.180N	P = 0.041N
Incidental Tumor Tests (d)	P = 0.026N	P = 0.187N	P = 0.043N
Cochran-Armitage Trend Test (d)	P = 0.019N	1 = 0.16/14	1 = 0.04011
Fisher Exact Test (d)	1 = 0.0131	P = 0.194N	P = 0.028N
FIGHEL BACK ICSU(U)		1 - 0.1341	r -0.02014
Anterior Pituitary Gland: Adenoma or Car	cinoma		
Overail Rates (a)	10/50 (20%)	7/50 (14%)	2/49 (4%)
Adjusted Rates (b)	24.1%	17.5%	5.7%
Terminal Rates (c)	24.1% 8/39 (21%)	7/40 (18%)	2/35 (6%)
Week of First Observation	93	104	104
Life Table Tests (d)	P = 0.019N	P = 0.280N	P = 0.026N
Incidental Tumor Tests (d)			
	P = 0.019N	P=0.296N	P = 0.027 N
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P = 0.013N	P = 0.298N	D-0.015N
risher Exact Test (d)		F = 0.2901	P = 0.015N
Uterus: Endometrial Stromal Polyp			
Overall Rates (a)	3/50 (6%)	3/42 (7%)	0/50 (0%)
	,	7.8%	0.0%
Adjusted Rates (b)	7.7%		
Terminal Rates (c)	3/39 (8%)	2/34 (6%)	0/35 (0%)
Week of First Observation	104	90	B 0141N
Life Table Tests (d)	P = 0.124N	P = 0.610	P = 0.141N
Incidental Tumor Tests (d)	P = 0.114N	P = 0.585	P = 0.141N
Cochran-Armitage Trend Test (d)	P = 0.105 N	D	-
Fisher Exact Test (d)		P = 0.575	P = 0.121 N
Querry Cuerryless Call Manual			
Ovary: Granulosa Cell Tumor	1/47 (00)	4/50 (00)	0/50 (100)
Overall Rates (a)	1/47 (2%)	4/50 (8%)	9/50 (18%)
Adjusted Rates (b)	2.6%	10.0%	23.9%
Terminal Rates (c)	1/39 (3%)	4/40 (10%)	7/35 (20%)
Week of First Observation	104	104	88
Life Table Tests (d)	P = 0.003	P = 0.187	P = 0.007
Incidental Tumor Tests (d)	P = 0.004	P=0.187	P = 0.009
Cochran-Armitage Trend Test (d)	P = 0.006	D 0.001	D 0.010
Fisher Exact Test (d)		P = 0.201	P = 0.010
Ovary: Granulosa Cell Tumor or Luteoma	0/48 (02)	0(5) (100)	0/50 (10%)
Overall Rates (a)	3/47 (6%)	6/50 (12%)	9/50 (18%)
Adjusted Rates (b)	7.7%	14.5%	23.9%
Terminal Rates (c)	3/39 (8%)	5/40 (13%)	7/35 (20%)
Week of First Observation	104	96	88
Life Table Tests (d)	P = 0.030	P = 0.257	P = 0.043
Incidental Tumor Tests (d)	P = 0.039	P = 0.267	P = 0.055
Cochran-Armitage Trend Test (d)	P = 0.056	D	D
Fisher Exact Test (d)		P = 0.275	P = 0.075

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

1....

	Control	150 ppm	310 ppm
Dvary: Mixed Tumor, Benign	<u>, , , , , , , , , , , , , , , , , , , </u>		
Overall Rates (a)	0/47 (0%)	17/50 (34%)	20/50 (40%)
Adjusted Rates (b)	0.0%	41.4%	55.5%
Terminal Rates (c)	0/39(0%)	16/40 (40%)	19/35 (54%)
Week of First Observation	0/39(0%)	16/40 (40%) 96	19/35 (5476) 97
Life Table Tests (d)	B~0.001		P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	
	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d) Fisher Exact Test (d)	P<0.001	P<0.001	P<0.001
vary: Tubular Cell Adenoma or Mixed T	umor Benign		
Overall Rates (a)	0/47 (0%)	19/50 (2004)	20/50 (100)
Adjusted Rates (b)	0.0%	18/50 (36%)	20/50 (40%)
•		43.8%	55.5%
Terminal Rates (c)	0/39 (0%)	17/40 (43%)	19/35 (54%)
Week of First Observation	D <0.001	96 D < 0.001	97 D < 0.001
Life Table Tests (d)	P<0.001	P<0.001	P<0.001
Incidental Tumor Tests (d)	P<0.001	P<0.001	P<0.001
Cochran-Armitage Trend Test (d)	P<0.001	_	
Fisher Exact Test (d)		P<0.001	P<0.001
arderian Gland: Carcinoma			
Overall Rates (a)	1/50 (2%)	3/50 (6%)	1/50 (2%)
Adjusted Rates (b)	2.6%	7.5%	2.9%
Terminal Rates (c)	1/39 (3%)	3/40 (7%)	1/35 (3%)
Week of First Observation	104	104	104
Life Table Tests (d)	P = 0.585	P = 0.314	P = 0.738
Incidental Tumor Tests (d)	P = 0.585	P = 0.314	P = 0.738
Cochran-Armitage Trend Test (d)	P = 0.604N		
Fisher Exact Test (d)		P = 0.309	P = 0.753
ll Sites: Benign Tumors			
Overall Rates (a)	20/50 (40%)	29/50 (58%)	33/50 (66%)
Adjusted Rates (b)	47.3%	67.2%	84.5%
Terminal Rates (c)	17/39 (44%)	26/40 (65%)	29/35 (83%)
Week of First Observation	90	90	86
Life Table Tests (d)	P<0.001	P = 0.073	P = 0.001
Incidental Tumor Tests (d)	P<0.001	P = 0.059	P=0.001
Cochran-Armitage Trend Test (d)	P = 0.006		
Fisher Exact Test (d)		P = 0.055	P=0.008
ll Sites: Malignant Tumors			
Overall Rates (a)	24/50 (48%)	30/50 (60%)	19/50 (38%)
Adjusted Rates (b)	50.7%	63.8%	43.7%
Terminal Rates (c)	16/39 (41%)	23/40 (58%)	11/35 (31%)
Week of First Observation	56	91	40
Life Table Tests (d)	P = 0.355N	P = 0.229	P = 0.381N
Incidental Tumor Tests (d)	P = 0.247N	P = 0.098	P = 0.256N
Cochran-Armitage Trend Test (d)	P = 0.175N		
Fisher Exact Test (d)		P = 0.158	P = 0.210N
l Sites: All Tumors			
Overall Rates (a)	36/50 (72%)	43/50 (86%)	42/50 (84%)
Adjusted Rates (b)	74.9%	87.8%	91.3%
Terminal Rates (c)	27/39(69%)	34/40 (85%)	31/35 (89%)
Week of First Observation	56	45	40
Life Table Tests (d)	P = 0.040	P=0.184	P = 0.055
THE TONE TERM (A)			P = 0.030 P = 0.030
Incidental Tumor Tests (d)			
Incidental Tumor Tests (d) Cochran-Armitage Trend Test (d)	P = 0.027 P = 0.086	P = 0.067	1 = 0.000

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

TABLE D3. ANALYSIS OF PRIMARY TUMORS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

(e) No P value is reported because no tumors were observed in the 310-ppm and control groups

⁽a) Number of tumor-bearing animals/number of animals examined at the site

⁽b) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

⁽c) Observed tumor incidence at terminal kill

⁽d) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group is indicated by (N).

Study	No. Examined	No. of Tumors	Diagnosis
Historical Incidence at Physiol	ogical Research Labor	atories	
Ephedrine sulfate	41	0	
Phenylephrine hydrochloride	49	0	
Oxytetracycline hydrochloride	44	2	Cystadenoma, NOS
TOTAL	134	2 (1.5%)	
Overall Historical Incidence			
		1	Adenoma, NOS
		2	Papillary adenoma
X		3	Cystadenoma, NOS
		8	Papillary cystadenoma, NOS
		1	Luteoma
		4	Tubular adenoma
		1	Mixed tumor, benign
		6	Granulosa cell tumor
		1	Carcinoma, NOS
		1	Adenocarcinoma, NOS
		1	Cystadenocarcinoma, NOS
		1	Papillary cystadenocarcinoma, NOS
		1	Mucinous adenocarcinoma
		1	Granulosa cell carcinoma
TOTAL	1,858	8 (0.4%)	Granulosa cell tumor or luteoma
		1 (<0.1%)	Mixed tumor, benign
		4 (0.2%)	Tubular cell adenoma
		32 (1.7%)	All tumors

TABLE D4a. HISTORICAL INCIDENCE OF OVARIAN TUMORS IN FEMALE B6C3F11 MICE RECEIVING
NO TREATMENT (a)

(a) Data as of August 7, 1986, for studies of at least 104 weeks

		Incidence in Contro	ls
Study	Adenoma (b)	Carcinoma (c)	Adenoma or Carcinoma (b,c)
listorical Incidence at Physiolo	gical Research Laborator	les	
Ephedrine sulfate	8/48	2/48	10/48
Phenylephrine hydrochloride	0/48	0/48	0/48
Oxytetracycline hydrochloride	13/50	3/50	16/50
TOTAL	21/146 (14.4%)	5/146 (3.4%)	26/146 (17.8%)
SD (d)	13,17%	3.07%	16.24%
Range (e)			
High	13/50	3/50	16/50
Low	0/48	0/48	0/48
Overall Historical Incidence			
TOTAL	192/1,764 (10.9%)	12/1,764 (0.7%)	204/1,764 (11.6%)
SD (d)	9.47%	1.44%	9.67%
Range (e)			
High	12/40	3/50	16/50
Low	0/48	0/49	0/48

TABLE D4b. HISTORICAL INCIDENCE OF PITUITARY GLAND TUMORS IN FEMALE $B6C3F_1$ MICE RECEIVING NO TREATMENT (a)

(a) Data as of August 7, 1986, for studies of at least 104 weeks
(b) Includes adenomas, NOS, and chromophobe adenomas
(c) Includes carcinomas, NOS, adenocarcinomas, NOS, and chromophobe carcinomas

(d) Standard deviation
(e) Range and SD are presented for groups of 35 or more animals.

	Untreat	ed Control	Low	Dose	High	Dose
ANIMALS INITIALLY IN STUDY	50		50		50	
ANIMALS NECROPSIED	50		50		50	
ANIMALS EXAMINED HISTOPATHOLOGIC.	ALLY 50		50		50	
INTEGUMENTARY SYSTEM						
*Skin	(50)		(50)		(50)	
Ectopia		(4%)			2	(4%)
Epidermal inclusion cyst		(2%)				
Ulcer, NOS		(2%)				
*Subcutaneous tissue	(50)		(50)	(0~)	(50)	
Inflammation, acute				(2%)		
Necrosis, fat			1	(2%)		
RESPIRATORY SYSTEM				·····		
*Nasal cavity	(50)		(50)		(50)	
Dermal inclusion cyst		(2%)				
Hemorrhage	2	(4%)				(2%)
Inflammation, acute						(2%)
*Nasal mucosa	(50)		(50)		(50)	
Cyst, NOS		(2%)				
Multiple cysts		(2%)			10	(000)
Degeneration, hyaline #Lung/bronchus	(50)	(58%)	(49)		(49)	(32%)
Hyperplasia, epithelial	(30)		(43)			(2%)
#Lung/bronchiole	(50)		(49)		(49)	(210)
Crystals, NOS	(00)		(,			(2%)
#Lung	(50)		(49)		(49)	(=)
Mineralization	2	(4%)			1	(2%)
Congestion, NOS	4	(8%)			2	(4%)
Hemorrhage	3	(6%)	2	(4%)		(4%)
Pneumonia, aspiration						(2%)
Inflammation, chronic focal		(12%)		(16%)		(12%)
Perivascular cuffing		(10%)	2	(4%)	1	(2%)
Calcification, NOS	1	(2%)		(07)		
Crystals, NOS		(00)		(2%)	•	(00)
Alveolar macrophages Hyperplasia, adenomatous	1	(2%)	3	(6%)		(6%) (2%)
HEMATOPOIETIC SYSTEM #Brain/thalamus	(49)		(4)		(50)	
# Branvinalanius Hyperplasia, lymphoid	(43)		(4)			(2%)
*Multiple organs	(50)		(50)		(50)	
Hyperplasia, lymphoid	_	(18%)	(00)			(10%)
*Blood	(50)	(- G / V /	(50)		(50)	
Leukocytosis, NOS		(2%)	()			(2%)
#Bone marrow	(50)		(4)		(49)	
Fibrosis, focal		(2%)				(2%)
Atrophy, NOS					1	(2%)
Hyperplasia, NOS		(8%)				
Hyperplasia, granulocytic	4	(8%)	9	(50%)	3	(6%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Untreat	ed Control	Low	Dose	High	Dose
HEMATOPOIETIC SYSTEM (Continued)	<u></u>	· · · · · · · · · · · · · · · · · · ·				
#Spleen	(49)		(50)		(50)	
Dilatation, NOS	(43)			(2%)		
Infarct, healed			-	(2,2)	1	(2%)
Amyloidosis	1	(2%)			-	(270)
Hemosiderosis	•	(2~)			4	(8%)
Hyperplasia, reticulum cell	3	(6%)	5	(10%)		(6%)
Hyperplasia, lymphoid		(33%)		(48%)		(38%)
Hematopoiesis		(10%)		(14%)		(8%)
#Mandibular lymph node	(49)	(20,0)	(12)		(49)	(0,0)
Hyperplasia, lymphoid		(4%)	()			(2%)
#Mesenteric lymph node	(49)	(1))	(12)		(49)	(= /•)
Angiectasis		(4%)		(8%)		(2%)
Hyperplasia, lymphoid		(4%)	-			(2%)
#Renal lymph node	(49)		(12)		(49)	,
Hyperplasia, lymphoid		(2%)	()		(
#Lung	(50)		(49)		(49)	
Leukocytosis, NOS			((2%)
Hyperplasia, lymphoid	1	(2%)	1	(2%)		(2%)
#Salivary gland	(49)		(5)	(<u> </u>	(49)	,
Hyperplasia, lymphoid		(6%)	(0)		(,	
#Liver	(50)	(0.0)	(50)		(50)	
Hyperplasia, lymphoid		(4%)		(2%)		(12%)
Hematopoiesis		(2%)	3	(6%)	•	(//
#Pancreas	(48)	12.007	(4)	(4.07	(48)	
Hyperplasia, lymphoid	()		(-/			(2%)
#Stomach	(48)		(9)		(47)	,
Hyperplasia, lymphoid				(11%)		
#Cecum	(49)		(6)		(44)	
Hyperplasia, lymphoid		(2%)	((2%)
#Kidney	(50)	,	(7)		(50)	
Hyperplasia, lymphoid	• •	(4%)		(14%)		(18%)
#Urinary bladder	(48)	, ,	(3)	((47)	(===;;
Hyperplasia, lymphoid	• •	(6%)	(0)		• • • •	(15%)
#Thymus	(37)	(****	(5)		(33)	
Cyst, NOS		(5%)	,			(3%)
Multiple cysts		(5%)				(3%)
Hemorrhage		(3%)			-	
Atrophy, NOS		(5%)				
Angiectasis		(3%)				
Hyperplasia, lymphoid		(11%)			1	(3%)
CIRCULATORY SYSTEM						
*Skeletal muscle	(50)		(50)		(50)	
Perivasculitis	(++)		(00)			(2%)
#Heart	(50)		(4)		(50)	(
Lymphocytic inflammatory infiltrate		(2%)	/		(30)	
#Myocardium	(50)		(4)		(50)	
Fibrosis, focal		(2%)	/			
Calcification, NOS		(6%)			1	(2%)
*Pulmonary vein	(50)		(50)		(50)	
Mineralization		(2%)				

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ed Control	Low	Dose	High	Dose
IGESTIVE SYSTEM	<u> </u>	<u></u>				
*Tooth	(50)		(50)		(50)	
Dysplasia, NOS	(50)		(50)			(2%)
#Salivary gland	(49)		(5)		(49)	(270)
Degeneration, NOS		(2%)	(0)		(45)	
#Liver	(50)		(50)		(50)	
Hemorrhage		(2%)	(00)			(4%)
Fibrosis, focal		(2%)			-	(4,0)
Necrosis, focal		(10%)	11	(22%)	12	(24%)
Necrosis, cytodegenerative	v	(10,0)	••	(22,0)		(2%)
Necrosis, coagulative	2	(4%)	1	(2%)		(2%)
Metamorphosis, fatty		(2%)		(4%)	-	(6%)
Basophilic cyto change		(2%)		(2%)		(2%)
Clear cell change	•	(2,70)	-	(2,0)		(2%)
Hepatocytomegaly						(2%) (2%)
Angiectasis	1	(2%)				(2%)
#Hepatic capsule	(50)		(50)		(50)	(270)
Calcification, NOS	(30)			(2%)		(2%)
#Liver/centrilobular	(50)		(50)	(470)	(50)	(470)
Pigmentation, NOS	(30)			(2%)	(00)	
Cytoplasmic vacuolization	1	(2%)	1	(470)		
#Liver/Kupffer cell	(50)	(470)	(50)		(50)	
Hyperplasia, NOS		(2%)	(00)			(4%)
*Gallbladder	(50)	(470)	(50)			(4170)
Cyst, NOS		(90)	(50)		(50)	
	1	(2%)				(00)
Degeneration, hyaline	(40)		(1)			(2%)
#Pancreas	(48)	(2.4)	(4)		(48)	
Cyst, NOS	1	(2%)			1	(2%)
Inflammation, acute			1	(25%)		
Inflammation, chronic focal		(4%)				
Fibrosis, focal		(2%)				
Atrophy, NOS		(4%)				(8%)
#Pancreatic duct	(48)		(4)		(48)	
Multiple cysts					1	(2%)
#Pancreatic acinus	(48)		(4)		(48)	
Cytoplasmic vacuolization		(6%)			6	(13%)
#Esophageal submucosa	(50)		(4)		(50)	
Inflammation, chronic focal	1	(2%)				
#Stomach	(48)		(9)		(47)	
Inflammation, acute			1	(11%)		
#Gastric mucosa	(48)		(9)		(47)	
Calcification, NOS					1	(2%)
#Glandular stomach	(48)		(9)		(47)	
Cyst, NOS	1	(2%)				
Multiple cysts		(6%)			5	(11%)
Inflammation, acute/chronic	2	(4%)				
Inflammation, chronic focal		(4%)				
Calcification, NOS		(6%)				
Hyperplasia, epithelial	1	(2%)				
Dysplasia, NOS		(2%)				
#Forestomach	(48)		(9)		(47)	
Mineralization			,			(2%)
Inflammation, acute/chronic			2	(22%)		(2%)
Hyperplasia, epithelial	1	(2%)		(22%)	•	
	-	· - · · · ·	-	·		

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ed Control	Low	Dose	High	Dose
URINARY SYSTEM						
#Kidney	(50)		(7)		(50)	
Mineralization	1	(4%)	(1)			(6%)
Cyst, NOS		(2%)				(2%)
Inflammation, suppurative						(2%)
Glomerulonephritis, chronic		(2%)				
Nephropathy	7	(14%)			10	(20%)
Nephrosis, NOS			1	(14%)		
Nephrosis, toxic			1	(14%)		
Amyloidosis						(2%)
#Perirenal tissue	(50)		(7)		(50)	
Hemorrhage		(2%)				
#Kidney/glomerulus	(50)		(7)		(50)	
Amyloidosis						(2%)
#Convoluted tubules	(50)		(7)	(1.4~)	(50)	(0)
Dilatation, NOS		(90)		(14%)	1	(2%)
Degeneration, hyaline Necrosis, focal	1	(2%)	1	(14%)		(0.01)
				(1401)	1	(2%)
Metamorphosis, fatty #Kidney/pelvis	(50)			(14%)	(50)	
Mineralization	(50)		(7)		(50)	(2%)
					1	(270)
CNDOCRINE SYSTEM						
#Pituitary	(50)		(50)		(49)	
Hemorrhage					1	(2%)
#Pituitary intermedia	(50)		(50)		(49)	
Hyperplasia, focal	1	(2%)				
#Anterior pituitary	(50)		(50)		(49)	
Cyst, NOS					1	(2%)
Multiple cysts	2	(4%)				
Focal cellular change						(2%)
Hyperplasia, focal	8	(16%)		(8%)	8	(16%)
Angiectasis	(10)			(2%)	(40)	
#Adrenal/capsule	(49)	(0.40)	(6)	(990)	(48)	(000)
Hyperplasia, stromal #Adrenal cortex	46 (49)	(94%)	о (6)	(83%)	42 (48)	(88%)
Ectopia		(2%)	(0)			(4%)
Degeneration, lipoid		(2%)			Z	(4270)
Hypertrophy, focal		(2%)	1	(17%)	0	(4%)
Hyperplasia, focal		(2%)	1	(1 (70)		(4.%) (2%)
Angiectasis		(2%)			1	(470)
#Adrenal medulla	(49)	(2,0)	(6)		(48)	
Hyperplasia, focal	,	(6%)	(0)		,	(2%)
#Thyroid	(50)		(4)		(50)	(10)
Multiple cysts	(00)		(*)			(2%)
Granuloma, NOS	1	(2%)			1	
Inflammation, pyogranulomatous	*				1	(2%)
Hyperplasia, follicular cell	2	(4%)				(2%)
#Parathyroid	(36)	(- · · ·)	(2)		(40)	(=)
Multiple cysts			(-/			(3%)
#Pancreatic islets	(48)		(4)		(48)	
Hyperplasia, focal		(2%)	(-)		(-3)	

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ted Control	Low	Dose	High	Dose
REPRODUCTIVE SYSTEM					<u> </u>	
*Mammary gland	(50)		(50)		(50)	
Dilatation/ducts		(2%)		(2%)		(4%)
Cyst, NOS	-	(2,0)	-	(2,0)		(2%)
*Clitoral gland	(50)		(50)		(50)	(2,0)
Inflammation, acute/chronic	(00)			(2%)	(00)	
Metaplasia, squamous				(2%)		
#Uterus	(50)		(42)	(2,0)	(50)	
Dilatation, NOS		(2%)		(5%)		(4%)
#Uterus/endometrium	(50)		(42)		(50)	(-,,,)
Multiple cysts		(6%)		(2%)		(2%)
Inflammation, suppurative	Ū		•	(2,0)		(2%)
Inflammation, acute/chronic						(2%)
Hyperplasia, cystic	44	(88%)	36	(86%)		(88%)
Hyperplasia, stromal	1					,
Angiectasis	-		2	(5%)	2	(4%)
Metaplasia, squamous	1	(2%)	-		-	/• /
#Fallopian tube	(50)		(40)		(50)	
Multiple cysts	(00)		(-0)			(2%)
#Ovary	(47)		(50)		(50)	(= /• /
Cyst, NOS		(28%)		(22%)		(14%)
Multiple cysts		(6%)		(6%)		(6%)
Hemorrhagic cyst		(21%)		(2%)	Ŭ	(0.0)
Inflammation, acute	-•	(== ///		(2%)		
Abscess, NOS	1	(2%)		(2%)		
Calcification, NOS	6	(13%)		(8%)	3	(6%)
Atrophy, NOS		(15%)		(88%)		(76%)
Hyperplasia, tubular cell		(2%)		(46%)		(42%)
Hyperplasia, granulosa cell		(2%)				(2%)
Angiectasis			2	(4%)		(2%)
#Germinal epithelium	(47)		(50)		(50)	
Hyperplasia, NOS			3	(6%)		
#Mesovarium	(47)		(50)		(50)	
Necrosis, fat			1	(2%)		
ERVOUS SYSTEM		<u></u>				
*Nerve tract	(50)		(50)		(50)	
Demyelinization			1	(2%)		
*Choroid plexus	(50)		(50)		(50)	
Calcification, NOS						(2%)
#Brain	(49)		(4)		(50)	
Hemorrhage					2	(4%)
Perivascular cuffing		(2%)				
#Brain/thalamus	(49)		(4)		(50)	
Calcification, NOS	25	(51%)	1	(25%)	25	(50%)
Cell shape alteration	1	(2%)				
#Cerebellum	(49)		(4)		(50)	
Hemorrhage	1	(2%)				
PECIAL SENSE ORGANS	·····					
*Nasolacrimal duct	(50)		(50)		(50)	
Cyst, NOS		(2%)				

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

	Untreat	ed Control	Low Dose	High	Dose
MUSCULOSKELETAL SYSTEM *Bone Malocclusion	(50) 1	(2%)	(50)	(50)	
Fibrous osteodystrophy Osteosclerosis	1 13	(2%) (26%)		17	(34%)
BODY CAVITIES	<u> </u>				
*Pericardium	(50)	(0~)	(50)	(50)	
Mineralization	1 (50)	(2%)	(50)	(50)	
*Epicardium Mineralization	(50)		(00)	(30)	(2%)
*Mesentery	(50)		(50)	(50)	
Cyst, NOS				1	(2%)
Perivascular cuffing	1	(2%)			
Necrosis, fat			1 (2%)		
ALL OTHER SYSTEMS					
Knee Druch and text logic	6			6	
Dyschondroplasia Adipose tissue	0			0	
Inflammation, acute			1		
Necrosis, fat	1		3	2	

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. # Number of animals examined microscopically at this site

.

158

,

APPENDIX E

GENETIC TOXICOLOGY OF

NITROFURAZONE

TABLE E1	MUTAGENICITY OF NITROFURAZONE IN SALMONELLA TYPHIMURIUM	160
TABLE E2	MUTAGENICITY OF NITROFURAZONE IN MOUSE L5178Y LYMPHOMA CELLS	162
TABLE E3	INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY NITROFURAZONE	163
TABLE E4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY NITROFURAZONE	164

PAGE

Strain	Dose		- 89	Revertan + S9 (ha	ts/plate (b) unster)	+9	9 (rat)
	(µg/plate)	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
ГА100	0	85 ± 3.7	150 ± 0.3	99 ± 13.0	133 ± 5.0	110 ± 9.9	128 ± 3.6
	0.03		171 ± 8.5	••			
	0.10	163 ± 12.2	212 ± 5.0		175 ± 5.5		164 ± 6.9
	0.30	383 ± 20.1	344 ± 34.1		241 ± 16.2		$204 \pm 16.$
	1	$1,091 \pm 43.2$	902 ± 28.8	302 ± 16.1	406 ± 6.6	253 ± 9.1	297 ± 3.3
	3	$1,791 \pm 26.0$	$1,650 \pm 85.8$	650 ± 103.5	787 ± 51.1	419 ± 7.5	555 ± 37.
	10	(c) 257 ± 53.7		$1,239 \pm 106.0$	$1,418 \pm 38.5$	868 ± 30.9	$1,008 \pm 19.0$
	33			(c) 58 ± 21.8		$1,242 \pm 71.3$	
	100			Toxic		(c) 101 ± 27.2	
Trial Posit	summary ive	Positive	Positive	Positive	Positive	Positive	Positive
cont	rol (d)	233 ± 6.2	507 ± 0.3	$2,649 \pm 40.4$	$1,901 \pm 61.3$	1,938 ± 66.0	820 ± 32.1
ra1535	0	5± 0.3	24 ± 1.5	5± 0.0	8 ± 2.0	9 ± 2.3	10 ± 2.9
	0.10	10 ± 2.8				••	
	0.30	11 ± 3.4	18 ± 3.1				
	1	16 ± 1.9	19 ± 0.3	6 ± 1.2	14 ± 0.9	8± 0.6	
	1.6		23 ± 4.0				
	3	34 ± 2.4	29 ± 2.2	9± 3.0	17 ± 2.2	10 ± 3.0	13 ± 2.3
	6		37 ± 3.5		23 ± 2.7		
	10	(c) 24 ± 3.2		25 ± 4.4	31 ± 1.9	13 ± 2.7	17 ± 1.9
	16				38 ± 11.1		20 ± 4.7
	33			(c) 3 ± 3.0		23 ± 3.8	26 ± 2.8
	66 100			 Toxic		(c) 24 ± 2.2	45 ± 4.4
Positi	summary ive	Positive	Negative	Equivocal	Positive	Equivocal	Positive
cont	rol (d)	154 ± 2.8	407 ± 1.2	530 ± 29.1	464 ± 22.8	542 ± 39.0	506 ± 17.9
A1537	0	3 ± 0.6	6 ± 1.0	5 ± 1.2	7± 0.9	4 ± 0.6	5 ± 0.7
	0.10	5 ± 1.9		••	••		
	0.30	5± 1.2	8 ± 1.9				
	1	6 ± 2.4	4 ± 0.3	5 ± 1.2	6 ± 1.2	5± 0.9	
	1.6		8± 3.2				
	3	17 ± 2.4	7 ± 0.6	4 ± 0.3	13 ± 2.6	3 ± 0.3	6± 0.6
	6		16 ± 0.6		11 ± 1.5		
	10	(c) 3 ± 0.0		12 ± 2.6	10 ± 2.0	6 ± 1.0	15 ± 3.8
	16				22 ± 3.1	••	11 ± 2.5
	33			(c) 5 ± 4.0		20 ± 0.9	11 ± 2.2
	66		••				9± 2.3
	100			Toxic		(c) 3 ± 0.9	
Positi		Equivocal	Negative	Negative	Equivocal	Negative	Negative
conti	rol (d)	216 ± 54.9	106 ± 16.8	89 ± 8.9	479 ± 40.9	231 ± 3.2	356 ± 8.3
'A98	0	25 ± 4.2	22 ± 2.1	29 ± 3.5	28 ± 2.1	25 ± 2.6	29 ± 2.3
	0.10	21 ± 3.4	••				
	0.30	23 ± 4.3	24 ± 4.0				
	1	35 ± 2.7	24 ± 4.0	27 ± 6.0	32 ± 7.8	25 ± 2.0	
	1.6		32 ± 4.7				
	3	80 ± 2.3	58 ± 2.3	34 ± 2.9	46 ± 3.0	24 ± 1.7	31 ± 3.8
	6		126 ± 10.1		53 ± 5.2	···	
	10	96 ± 14.0		63 ± 5.5	76 ± 2.6	40 ± 5.6	42 ± 5.8
	16	••			104 ± 1.3	···	64 ± 0.3
	33			(c) 20 ± 7.5	••	83 ± 7.2	103 ± 7.8
	66			 		(a) 17 ± 4 C	131 ± 2.1
.	100			Toxic		(c) 17 ± 4.6	 D
Trial Positi	summary ve	Positive	Positive	Positive	Positive	Positive	Positive
	ol (d)	619 ± 20.5	943 ± 78.7	$2,152 \pm 45.1$	$1,551 \pm 162.2$	$1,465 \pm 18.5$	612 ± 9.1

TABLE E1. MUTAGENICITY OF NITROFURAZONE IN SALMONELLA TYPHIMURIUM (a)

TABLE E1. MUTAGENICITY OF NITROFURAZONE IN SALMONELLA TYPHIMURIUM (Continued)

(a) Study performed at SRI International. The detailed protocol is presented in Haworth et al. (1983). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 µg/plate dose is the solvent control.

(b) Revertants are presented as mean \pm standard error from three plates.

(c) Slight toxicity

(d) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA1537.

Compound	Concentration (µg/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Mutant Count	Mutant Fraction (c)
Trial 1					· · · · · · · · · · · · · · · · · · ·
Dimethyl sulfoxide (d)	••	86.5 ± 3.9	99.8 ± 6.1	136.0 ± 7.1	52.8 ± 3.6
Nitrofurazone	25 50 (e) 100 150 200 300	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 61.0 \pm 8.1 \\ 58.0 \pm 2.1 \\ 40.0 \pm 2.0 \\ 34.0 \pm 4.0 \\ 28.3 \pm 0.9 \\ 5.3 \pm 2.0 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Methyl methanesulfonate	e 5 nl/ml	66.3 ± 3.9	58.3 ± 5.2	582.0 ± 23.1	(f) 294.7 ± 21.9
Trial 2					
Dimethyl sulfoxide (d)		85.0 ± 4.6	100.3 ± 1.3	72.3 ± 1.4	28.5 ± 1.6
Nitrofurazone	25 50 100 200 (g) 300 400	$\begin{array}{rrrr} 74.7 \pm & 0.9 \\ 72.3 \pm & 5.2 \\ 96.0 \pm & 11.7 \\ 73.7 \pm & 3.4 \\ 48 \\ Lethal \end{array}$	$57.3 \pm 7.3 \\ 43.3 \pm 3.2 \\ 38.3 \pm 1.2 \\ 14.3 \pm 5.8 \\ 4 \\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	37.0 ± 3.2 (f) 46.3 ± 2.7 (f) 64.7 \pm 6.7 (f) 160.0 ± 24.5 247
Methyl methanesulfonate	9 5	81.3 ± 5.9	67.3 ± 9.8	312.0 ± 39.5	(f) 128.3 ± 13.6

TABLE E2. MUTAGENICITY OF NITROFURAZONE IN MOUSE L5178Y LYMPHOMA CELLS (a,b)

(a) Study performed at Litton Bionetics, Inc. The experimental protocol is presented in detail by Myhr et al. (1985) and follows the basic format of Clive et al. (1979). The highest dose of study compound is determined by solubility or toxicity and may not exceed 5 mg/ml. All doses are tested in triplicate; the average for the three tests (unless otherwise specified) is presented in the table. Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium and soft agar supplemented with trifluorothymidine for selection of cells that were mutant at the thymidine kinase (TK) locus, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

soft agar to determine the cloning efficiency. (b) Mean \pm standard error of replicate trials for approximately 3×10^6 cells each. All data are evaluated statistically for both trend and peak response (P<0.05 for at least one of the three highest dose sets). Both responses must be significantly (P<0.05) positive for a chemical to be considered mutagenic. If only one of these responses is significant, the call is "questionable"; the absence of both trend and peak response results in a "negative" call.

(c) Mutant fraction (frequency) is a ratio of the mutant count to the cloning efficiency, divided by 3 (to arrive at MF per 1×10^6 cells treated); MF = mutant fraction.

(d) Results presented are the average of four tests.

(e) Results presented are the average of two tests.

(f) Significant positive response; occurs when the relative mutant fraction (average MF of treated culture/average MF of solvent control) is greater than or equal to 1.6.

(g) Data presented are the results of one test; doses were lethal in two tests.

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cel (percent) (b)
- S9 (c)	<u></u>			<u></u>			<u></u>	
Trial 1Summary: Positive								
Dimethyl sulfoxide		50	1,048	554	0.53	11.1	26.0	
Nitrofurazone	0.25 0.83 2.50 8.33	50 50 50 0	1,049 1,043 1,048	667 717 713	0.64 0.69 0.68	13.3 14.3 14.3 	26.0 26.0 26.0 26.0	119.8 128.8 128.8
Mitomycin C	0.001 0.010	50 5	1,048 105	810 249	0.77 2.37	16.2 49.8	26.0 26.0	145.9 448.6
Trial 2Summary: Positive								
Dimethyl sulfoxide		50	1,048	544	0.52	10. 9	26.0	
Nitrofurazone	10 12.5 15	50 50 50	1,049 1,046 1,047	864 1,033 1,052	0.82 0.99 1.00	17.3 20.7 21.0	(d) 34.3 (d) 34.3 (d) 34.3	158.7 189.9 192.7
Mitomycin C	0.001 0.010	50 5	1,047 105	844 309	0.81 2.94	16.9 61.8	26.0 26.0	155.0 567.0
+ S9 (e)								
Trial 1Summary: Positive								
Dimethyl sulfoxide		50	1,040	497	0.48	9.9	26.0	
Nitrofurazone	25 83.3 250 833	50 50 50 0	1,043 1,047 1,045	558 610 697	0.53 0.58 0.67	11.2 12.2 13.9	26.0 26.0 26.0 26.0	113.1 123.2 140.4
Cyclophosphamide	0.4 2	50 5	1,047 105	732 158	0.70 1.50	14.6 31.6	26.0 26.0	147.5 319.2

TABLE E3. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY NITROFURAZONE (a)

(a) Study performed at Litton Bionetics, Inc. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as described in (c) or (e) below and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air-dried, and stained.

(b) SCEs/cell in treated culture expressed as a percent of the SCEs/cell in the control culture

(c) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) Because some chemicals induce a delay in the cell division cycle, harvest times are occasionally extended to maximize the proportion of second division cells available for analysis.

(e) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Then cells were washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

	<u>.</u>	Trial 1					Trial 2		
Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs
- S9 (b)					- S9 (b)				
Dimethyl sulfo	xide				Dimethyl su	llfoxide			
	100	3	0.03	3		100	2	0.02	2
Nitrofurazone		-		•	Nitrofurazo		-	0.01	-
20	100	3	0.03	3	25	100	19	0.19	17
23	100	21	0.21	17	30	100	22	0.22	19
25	25	13	0.52	24	40	50	56	1.12	44
30	25	9	0.36	28	10	00			
Sun	nmary: Po	ositive			\$	Summary	: Positive		
Mitomycin C					Mitomycin	7			
0.040	100	16	0.16	14	0.040	100	33	0.33	24
0.063	100	31	0.31	21	0.063	25	14	0.56	40
+ S9 (c)									
Dimethylsulfor	ride								
	100	0	0.00	0					
Nitrofurazone									
300	100	5	0.05	4					
400	100	5	0.05						
500	100	4	0.04	5 2					
600	0	-		-					
Sur	nmary: N	egative							
Cyclophosphan	nide								
3.80	100	5	0.05	5					
12.50	25	7	0.28	16					

TABLE E4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY NITROFURAZONE (a)

(a) Study performed at Litton Bionetics, Inc. Abs = aberrations. Harvest time--18.5 hours; because of chemical-induced cell cycle delay, incubation time before addition of colcemid was lengthened to provide sufficient metaphases at harvest. A detailed presentation of the technique for detecting chromosomal aberrations is found in Galloway et al. (1985). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) as indicated in (b) or (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(b) In the absence of S9, Chinese hamster ovary cells were incubated with study compound or solvent (dimethyl sulfoxide) for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

(c) In the presence of S9, cells were incubated with study compound or solvent (dimethyl sulfoxide) for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

APPENDIX F

SENTINEL ANIMAL PROGRAM

		PAGE
TABLE F1	MURINE ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE	
	TWO-YEAR FEED STUDIES OF NITROFURAZONE	167

I. Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results. The Sentinel Animal Program is part of the periodic monitoring of animal health that occurs during the toxicologic evaluation of chemical compounds. Under this program, the disease state of the rodents is monitored via serology on sera from extra (sentinel) animals in the study rooms. These animals are untreated, and these animals and the study animals are both subject to identical environmental conditions. The sentinel animals come from the same production source and weanling groups as the animals used for the studies of chemical compounds.

Fifteen $B6C3F_1$ mice and 15 F344/N rats of each sex are selected at the time of randomization and allocation of the animals to the various study groups. Five animals of each designated sentinel group are killed at 6, 12, and 18 months on study. Data from animals surviving 24 months are collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal is collected and clotted, and the serum is separated. The serum is cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the antibody titers. The following tests are performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	PVM (pneumonia virus of mice) Reo 3 (reovirus type 3) GDVII (Theiler's encephalomyelitis virus) Poly (polyoma virus) MVM (minute virus of mice) Ectro (infectious ectromelia) Sendai (6, 18, 24 mo)	M. Ad. (mouse adenovirus) LCM (lymphocytic choriomeningitis virus) Sendai (12 mo)	MHV (mouse hepatitis virus) M. pul. (Mycoplasma pulmonis)
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus) Sendai (6, 18, 24 mo)	RCV (rat coronavirus) (6, 12, 18 mo)	RCV (24 mo) Sendai (12 mo) M. pul.

II. Results

Results are presented in Table F1.

Interval (months)	No. of Animals	Positive Serologic Reaction for
ATS		
6	10/10 10/10	PVM Sendai
12	10/10	Sendai
18	10/10 9/10	PVM Sendai
24	10/10 6/10 4/10	PVM Sendai (b) <i>M. pul.</i>
ПСЕ		
6	5/10 6/10	PVM Sendai
12	2/10 8/9	PVM Sendai
18	9/9 8/9	PVM Sendai
24	5/10 10/10	PVM Sendai

TABLE F1. MURINE ANTIBODY DETERMINATIONS FOR RATS AND MICE IN THE TWO-YEAR FEED STUDIES OF NITROFURAZONE (a)

(a) Blood samples were taken from sentinel animals at 6, 12, and 18 months after the start of dosing and from the control animals just before they were killed; samples were sent to Microbiological Associates (Bethesda, MD) for determination of antibody titers.

(b) Further evaluation of this assay indicated that it was not specific for *M. pulmonis*, and these results were considered to be false positive.

168

.

APPENDIX G

FEED AND COMPOUND CONSUMPTION BY RATS AND MICE IN THE TWO-YEAR FEED STUDIES

OF NITROFURAZONE

PAGE

TABLE G1	FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	170
TABLE G2	FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	171
TABLE G3	FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	172
TABLE G4	FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE	173

TABLE G1. FEED AND COMPOUND CONSUMPTION BY MALE RATS IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

	Control			Lov	w Dose		High Dose				
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)	
4	16.9	231	15.9	227	0.9	22	14.8	220	0.9	42	
8	14.3	29 1	14.7	292	1.0	16	14.4	278	1.0	32	
12	16.6	326	12.6	328	0.8	12	12.4	308	0.7	25	
17	15.8	361	15.2	357	1.0	13	15.0	334	0.9	28	
21	14.5	386	14.6	372	1.0	12	14.1	355	1.0	25	
25	15.9	401	15.6	387	1.0	12	15.2	365	1.0	26	
30	14.1	410	13.6	396	1.0	11	13.5	370	1.0	23	
34	14.5	416	14.5	405	1.0	11	14.2	376	1.0	23	
39	15.1	428	13.9	412	0.9	10	13.7	377	0.9	23	
43	15.2	438	14.0	417	0.9	10	13.9	385	0.9	22	
47	15.1	437	13.3	412	0.9	10	13.6	381	0.9	22	
52	13.9	440	13.9	415	1.0	10	12.5	378	0.9	21	
56	13.7	439	16.4	414	1.2	12	13.7	380	1.0	22	
61	14.2	438	14.6	419	1.0	11	12.6	376	0.9	21	
66	14.8	441	13.7	422	0.9	10	13.3	381	0.9	22	
70	14.8	441	13.9	419	0.9	10	13.0	377	0.9	21	
74	13.8	441	12.8	412	0.9	10	12.4	374	0. 9	21	
78	14.5	441	13.7	417	0.9	10	12.8	370	0.9	21	
82	13.9	445	13.1	422	0.9	10	11.7	369	0.8	20	
87	13.0	433	12.0	410	0.9	9	11.2	353	0.9	20	
91	13.2	427	12.5	407	0.9	10	11.1	346	0.8	20	
96	13.4	429	13.2	407	1.0	10	13.1	340	1.0	24	
100	13.7	431	12.9	404	0.9	10	10.4	323	0.8	20	
Mean	14.6	407	13.9	390	1.0	11 -	13.2	353	0.9	24	
SD (d)	1.0		1.1		0.1	3 .	1.3		0.1	5	
CV (e)	6.8		7.9		10.0	27.3	9.8		11.1	20.8	

(a) Grams of feed removed from feed per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of nitrofurazone consumed per day per kilogram of body weight

(d) Standard deviation (e) Coefficient of variation = (standard deviation/mean) × 100

TABLE G2. FEED AND COMPOUND CONSUMPTION BY FEMALE RATS IN THE TWO-YEAR FEEDSTUDY OF NITROFURAZONE

	Control		Control Low Dose				High Dose			
Week	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight (grams)	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)
4	10.9	162	10.0	158	0.9	20	10.9	156	1.0	43
8	9.8	179	9.4	175	1.0	17	9.4	171	1.0	34
12	8.1	190	7.6	187	0.9	13	7.3	180	0.9	25
17	10.4	204	9.9	198	1.0	16	9.8	190	0.9	32
21	9.9	218	9.2	208	0.9	14	9.0	199	0.9	28
25	9.8	222	9.6	213	1.0	14	9.4	204	1.0	29
30	9.8	229	9.2	218	0.9	13	9.1	209	0.9	27
34	9.8	234	8.9	223	0.9	12	9.1	213	0.9	26
39	10.1	239	9.2	227	0.9	13	8.8	217	0.9	25
43	9.7	246	8.4	233	0.9	11	8.3	223	0.9	23
47	10.8	253	10.1	239	0.9	13	9.8	226	0.9	27
52	10.5	263	10.2	250	1.0	13	9.6	233	0.9	26
56	11.0	269	10,5	255	1.0	13	9.8	235	0.9	26
61	9.4	280	10.0	265	1.1	12	9.6	242	1.0	25
66	11.1	290	9,7	273	0.9	11	9.9	246	0.9	25
70	11.3	293	10.5	278	0.9	12	10.0	247	0.9	25
74	11.6	302	9.7	285	0.8	11	9.8	253	0.8	24
78	11.2	313	10.0	290	0.9	11	9.3	253	0.8	23
82	11.0	318	10.4	298	0.9	11	9.5	261	0.9	23
87	10.8	319	10.1	302	0.9	10	9.1	262	0.8	22
91	11.0	325	9.5	301	0.9	10	10.6	263	1.0	25
96	11.0	329	9.9	304	0.9	10	9.2	264	0.8	22
100	11.1	333	9.5	304	0.9	10	8.9	265	0.8	21
Mean	10.4	261	9.6	247	0.9	12	9.4	227	0.9	26
SD(d)	0.8		0.7		0.0	2	0.7		0.1	5
CV (e)	7.7		7.3		0.0	16.7	7.4		11.1	19.2

(a) Grams of feed removed from feed per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of nitrofurazone consumed per day per kilogram of body weight

(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100

TABLE G3. FEED AND COMPOUND CONSUMPTION BY MALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

Week	Con	Control		Low Dose			High Dose				
	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body Weight	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body	High/ Control (b)	Dose/ Day (c)	
6	3.4	28.7	3.5	29.0	1.0	18	3.6	29.2	1.1	38	
10	3.6	30.3	3.6	30.7	1.0	18	2.8	30.8	0.8	28	
20	4.1	33.0	3.9	33.1	1.0	18	4.4	33.1	1.1	41	
23	3.8	34.3	5.0	34.3	1.3	22	6.3	35.2	1.7	55	
28	4.0	35.9	3.9	35.7	1.0	16	4.2	36.8	1.1	35	
33	4.0	36.4	4.0	35.8	1.0	17	4.0	37.0	1.0	34	
37	3.8	37.3	3.7	36.4	1.0	15	4.0	38.2	1.1	32	
42	3.6	37.1	3.7	36.4	1.0	15	3.8	38.3	1.1	31	
46	4.1	38.6	3.8	38.1	0.9	15	4.2	39.6	1.0	33	
49	3.9	38.3	4.3	38.8	1.1	17	3.7	40.4	0.9	28	
54	3.8	3 9 .2	3.8	38.8	1.0	15	3.9	39.5	1.0	31	
58	3.7	39 .0	3.7	39.1	1.0	14	3.9	39. 9	1.1	30	
64	5.0	38.7	3.5	38.7	0.7	14	3.8	40.0	0.8	29	
68	3.6	38.3	4.1	38.6	1.1	16	4.4	39.1	1.2	35	
72	3.9	37.9	3.8	39.0	1.0	15	3.9	40.2	1.0	30	
77	3.8	39.1	3.7	39.6	1.0	14	4.0	40.2	1.1	31	
80	3.9	38.9	3.5	39.0	0.9	13	3.5	39.2	0.9	28	
84	3.7	39.9	3.7	39.2	1.0	14	3.6	40.0	1.0	28	
89	3.6	37.1	3.7	37.6	1.0	15	3.9	38.0	1.1	32	
93	3.8	38.5	3.4	37.7	0.9	14	3.9	37.6	1.0	32	
98	3.7	39.1	3.4	36.7	0.9	14	3.8	38.2	1.0	31	
102	3.7	39.4	3.5	37.6	0.9	14	3. 9	38.6	1.1	31	
Mean	3.8	37.0	3.8	36.8	1.0	16	4.0	37.7	1.0	33	
SD (d)	0.3		0.4		0.1	2	0.6		0.2	6	
CV (e)	7.9		10.5		10.0	12.5	15.0		20.0	18.2	

(a) Grams of feed removed from feed per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of nitrofurazone consumed per day per kilogram of body weight
(d) Standard deviation

(e) Coefficient of variation = (standard deviation/mean) \times 100

TABLE G4. FEED AND COMPOUND CONSUMPTION BY FEMALE MICE IN THE TWO-YEAR FEED STUDY OF NITROFURAZONE

Week	Control		Low Dose				High Dose				
	Grams Feed/ Day (a)	Body Weight (grams)	Grams Feed/ Day (a)	Body	Low/ Control (b)	Dose/ Day (c)	Grams Feed/ Day (a)	Body Weight (grams)	High/ Control (b)	Dose/ Day (c)	
6	3.3	22.6	2.9	22.8	0.9	19	3.3	22.5	1.0	45	
10	2.9	23.4	3.1	24.5	1.1	19	2.8	23. 9	1.0	36	
20	3.2	27.3	3.1	27.1	1.0	17	3.3	26.5	1.0	39	
23	3.2	28.6	3.3	28.1	1.0	18	3.4	27.7	1.1	38	
28	3.5	31.0	3.4	29.6	1.0	17	3.5	29.4	1.0	37	
33	3.3	31.1	3.4	29.8	1.0	17	3.4	29.4	1.0	36	
37	3.2	32.3	3.2	30.7	1.0	16	3.1	31.4	1.0	31	
42	3.5	33.6	3.3	32.6	0.9	15	3.3	32.8	0.9	31	
46	3.7	34. 9	3.6	32.8	1.0	16	3.5	34.1	0.9	32	
49	3.6	35.7	3.5	34.8	1.0	15	3.4	35.9	0.9	29	
54	3.3	37.1	2.8	35.7	0.8	12	3.2	37.2	1.0	27	
58	3.5	37.3	3.3	36.6	0. 9	14	3.3	38.4	0.9	27	
64	3.7	37.9	3.7	37.4	1.0	15	3.5	39.7	0. 9	27	
68	3.9	38.2	3.5	38.6	0.9	14	3.5	40.5	0.9	27	
72	3.1	39.0	3.7	39.3	1.2	14	3.2	41.5	1.0	24	
77	3.4	39.6	3.5	41.1	1.0	13	3.3	42.1	1.0	24	
80	3.1	39.2	3.0	41.5	1.0	11	2. 9	42.3	0.9	21	
84	3.2	40.4	2.9	42.1	0.9	10	3.1	43.5	1.0	22	
89	3.3	39.6	3.1	41.3	0.9	11	3.0	41.9	0.9	22	
93	3.7	40.3	3.2	41.8	0.9	11	3.4	42.5	0.9	25	
98	3.8	41.7	3.2	42.5	0.8	11	3.4	44.1	0. 9	24	
102	3.9	42.7	3.3	43.0	0.8	12	3.2	43.5	0.8	23	
Mean	3.4	35.2	3.3	35.2	1.0	14	3.3	35.9	1.0	29	
SD (d)	0.3		0.3		0.1	3	0.2		0.1	7	
CV (e)	8.8		9.1		10.0	21.4	6.1		10.0	24.1	

(a) Grams of feed removed from feed per animal per day. Not corrected for scatter.
(b) Grams of feed per day for the dosed group divided by that for the controls
(c) Estimated milligrams of nitrofurazone consumed per day per kilogram of body weight

(d) Standard deviation (e) Coefficient of variation = (standard deviation/mean) × 100

Nitrofurazone, NTP TR 337

174

APPENDIX H

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Meal Diet: June 1981 to July 1983

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

			PAGE
TABLE H1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION		176
TABLE H2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	•	176
TABLE H3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION		177
TABLE H4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION		178

TABLE H1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight
round #2 yellow shelled corn	24.50
round hard winter wheat	23.00
ybean meal (49% protein)	12.00
ish meal (60% protein)	10.00
heat middlings	10.00
ried skim milk	5.00
falfa meal (dehydrated, 17% protein)	4.00
rn gluten meal (60% protein)	3.00
oil	2.50
ed brewer's yeast	2.00
y molasses	1.50
calcium phosphate	1.25
ound limestone	0.50
t	0.50
mixes (vitamin and mineral)	0.25

(a) NIH, 1978; NCI, 1976 (b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source
Vitamins	····	· · · · · · · · · · · · · · · · · · ·
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D ₃	4,600,000 IU	D-activated animal sterol
K ₃	2.8 g	Menadione
d-a-Tocopheryl acetate	20,000 IŬ	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	
Thiamine	10.0 g	Thiamine mononitrate
B ₁₂	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zincoxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE H2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

Nutrients	Mean ± Standard Deviation	Range	No. of Samples
Crude protein (percent by weight)	23.97 ± 1.16	21.7-26.3	27
Crude fat (percent by weight)	5.00 ± 0.46	4.2-6.0	27
Crude fiber (percent by weight)	3.38 ± 0.36	2.4-4.2	27
Ash (percent by weight)	6.56 ± 0.27	5.97-7.11	27
mino Acids (percent of total die	et)		
Arginine	1.260	1.21-1.31	2
Cystine	0.395	0.39-0.40	2
Glycine	1.175	1.15-1.20	2
			2
Histidine	0.553	0.530-0.576	2
Isoleucine	0.908	0.881-0.934	2
Leucine	1.905	1.85-1.96	2
Lysine	1.250	1.20-1.30	2
Methionine	0.310	0.306-0.314	2
Phenylalanine	0.967	0.960-0.974	2
Threonine	0.834		2
		0.827-0.840	2
Tryptophan	0.175	0.171-0.178	2
Tyrosine	0.587	0.566-0.607	2
Valine	1.085	1.05-1.12	2
ssential Fatty Acids (percent of	f total diet)		
Linoleic	2.37		1
Linolenic	0.308		1
Arachidonic	0.008		1
litamins			
Vitamin A (IU/kg)	$12,163 \pm 3,045$	7,800-22,000	27
Vitamin D (IU/kg)	6,300	· · · · · · · · ·	1
a-Tocopherol (ppm)	37.6	31.1-44.0	2
Thiamine (ppm)	1.82 ± 0.34	1.2-2.6	(b) 26
Riboflavin (ppm)			
	6.9	6.1-7.4	2
Niacin (ppm)	75	65-85	2
Pantothenic acid (ppm)	30.2	29.8-30.5	2
Pyridoxine (ppm)	7.2	5.6-8.8	2
Folic acid (ppm)	2.1	1.8-2.4	2
Biotin (ppm)	0.24	0.21-0.27	2
Vitamin B_{12} (ppb)	12.8	10.6-15.0	$\frac{1}{2}$
Choline (ppm)	3,315	3,200-3,430	2
finerals			
Calcium (percent)	1.24 ± 0.10	1.10-1.45	27
Phosphorus (percent)	0.97 ± 0.05	0.84-1.1	27
Potassium (percent)	0.809	0.772-0.846	2
Chloride (percent)	0.557	0.479-0.635	2
Sodium (percent)	0.304	0.258-0.349	2
Magnesium (percent)	0.172	0.166-0.177	2
Sulfur (percent)	0.278	0.270-0.285	2
Iron (ppm)	418	409-426	$\tilde{2}$
	90.8	86.0-95.5	2
Manganese (ppm)			4
Zinc (ppm)	55.1	54.2-56.0	Z
Copper (ppm)	12.68	9.65-15.70	2 2 2
Iodine (ppm)	2.58	1.52-3.64	2
Chromium (ppm) Cobalt (ppm)	1.86 0.57	1.79-1.93	2 2

TABLE H3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

(a) One or two batches of feed analyzed for nutrients reported in this table were manufactured in January and/or April 1983.

(b) One batch (7/22/81) not analyzed for thiamine

Contaminants	Mean ± Standard Deviation	Range	No. of Samples	
Arsenic (ppm)	0.48 ± 0.13	0.21-0.74	27	
Cadmium (ppm) (a)	< 0.01	< 0.01-0.01	27	
ead (ppm)	0.91 ± 0.75	0.27-2.93	$\bar{27}$	
fercury (ppm) (a)	< 0.05		27	
elenium (ppm)	0.28 ± 0.06	0.16-0.40	27	
flatoxins (ppb) (b)	<5	<5.0.<10.0	27	
(itrate nitrogen (ppm) (c)	9.97 ± 4.64	0.6-19.0	27	
itrite nitrogen (ppm) (c)	1.99 ± 1.23	0.4-5.3	27	
HA (ppm) (d)	5.42 ± 4.94	<2.0-20.0	27	
HT (ppm) (d)	3.19 ± 2.52	<1.0-13.0	27	
erobic plate count (CFU/g) (e)	$110,956 \pm 82,794$	7,000-310,000	25	
erobic plate count (CFU/g) (f)	133.848 ± 114.587	7,000-420,000	27	
oliform (MPN/g) (g)	931.1 ± 973.4	<3->2,400	27	
coli (MPN/g) (h)	6.89 ± 7.46	<3-23	26	
C. coli (MPN/g) (i)	12.15 ± 28.51	<3-150	20	
'otal nitrosamines (ppb) (j)	3.73 ± 3.26	0.9-12.9	27	
V-Nitrosodimethylamine (ppb) (j)	2.93 ± 2.89	0.7-12.9	27	
7-Nitrosopyrrolidine (ppb) (k)	1.24 ± 0.60	<0.9-3.2	24	
esticides (ppm)				
a-BHC (a,l)	<0.01		27	
β -BHC (a)	<0.02		27	
y-BHC-Lindane (a)	<0.01		27	
δ -BHC (a)	< 0.01		27	
Heptachlor (a)	< 0.01		27	
Aldrin (a)	<0.01		27	
Heptachlor epoxide (a)	< 0.01		27	
DDE (a)	< 0.01		27	
DDD(m)	< 0.01	0.05 (7/14/81)	27	
DDT (a)	< 0.01		27	
HCB(a)	< 0.01		27	
Mirex (a)	<0.01		27	
Methoxychlor (n)	< 0.05	0.13 (8/25/81); 0.6 (6/24/82)	27	
Dieldrin (m)	< 0.01	0.02 (7/27/82)	27	
Endrin (a)	< 0.01		27	
Telodrin (a)	< 0.01		27	
Chlordane (a)	< 0.05		27	
Toxaphene (a)	< 0.1		27	
Estimated PCBs (a)	< 0.2		27	
Ronnel (a)	< 0.01		27	
Ethion (a)	< 0.02		27	
Trithion (a)	< 0.05		27	
Diazinon (a)	<0.1		27	
Methyl parathion (a)	< 0.02		27	
Ethyl parathion (a)	< 0.02		27	
Malathion (o)	0.10 ± 0.07	< 0.05-0.34	27	
Endosulfan I (a,p)	< 0.01		25	
Endosulfan II (a,p)	<0.01		25	
Endosulfan sulfate (a,p)	< 0.03		25	

TABLE H4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

TABLE H4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

- (a) All values were less than the detection limit, given in the table as the mean.
- (b) The detection limit was reduced from 10 ppb to 5 ppb after 7/81.
- (c) Source of contamination: Alfalfa, grains, and fish meal
- (d) Source of contamination: Soy oil and fish meal

- (f) Mean, standard deviation, and range include the very high value given in footnote (e).
- (g) MPN = most probable number

(h) Mean, standard deviation, and range exclude the high value of 150 obtained for the batch produced on 8/26/82.

(i) Mean, standard deviation, and range include the high value given in footnote (h).

(j) All values were corrected for percent recovery.

(k) Values not detected for batches produced on 6/24/82, 6/22/83, and 7/12/83.

(1) BHC = hexachlorocyclohexane or benzene hexachloride

(m) One observation was above the detection limit. The value and the date it was obtained are listed under the range.

(n) Two observations were above the detection limit. The values and the dates they were obtained are given under the range. (o) Twelve batches contained more than 0.05 ppm.

(p) Two batches produced on 5/26/81 and 7/14/81 were not analyzed for endosulfan I, endosulfan II, and endosulfan sulfate.

⁽e) Mean, standard deviation, and range exclude the very high value of 420,000 obtained for the batches produced on 3/23/83 and 7/12/83; CFU = colony-forming unit.

Nitrofurazone, NTP TR 337

APPENDIX I

AUDIT SUMMARY

The experimental data, documents, and pathology materials for the 2-year studies of nitrofurazone in rats and mice were audited for accuracy, consistency, completeness, and compliance with Good Laboratory Practice (GLP) regulations of the Food and Drug Administration (fully implemented by the NTP beginning on October 1, 1981). The laboratory studies were conducted for the NTP by Physiological Research Laboratories, Minneapolis, Minnesota, under a subcontract with Tracor Jitco, Inc., until February 28, 1983, and then under contract with the NIEHS. Animal exposures to the chemical in feed began in June 1981 for rats and mice. The retrospective audit was conducted for the NIEHS at the NTP Archives in January and February 1987 by the Dynamac Corporation (J.C. Bhandri, D.V.M., Ph.D., Principal Investigator). Other individuals who conducted the audit are listed in the full audit report, which is on file at the NIEHS. The audit included a review of:

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to study start.
- (2) Body weight, feed consumption, and clinical observation data for a random 10% sample of the study animals.
- (3) All inlife records including protocol, correspondence, environmental conditions, palpable masses, mortality, animal identification, and correlation of final inlife observation of masses, date of death, and disposition with necropsy records.
- (4) All chemistry records.
- (5) All postmortem records for individual animals concerning identification, disposition codes, condition codes, correlations between gross observations and microscopic diagnoses, and tissue accountability.
- (6) All wet tissue bags for inventory, and wet tissues from a random 20% sample of the study animals plus other relevant material to verify animal identification and to examine for untrimmed potential lesions.
- (7) Blocks and slides of tissues from a random 20% sample of study animals to examine for proper match and inventory.
- (8) Tabulated pathology diagnoses for a random 10% sample of study animals to verify computer data entry.
- (9) The preliminary draft Technical Report (February 1987).

Inlife procedures and events were documented adequately by the archival records, with the exception of the receipt of female rats and female mice, disposition of surplus animals, release of mice from quarantine, cage and rack changes, sanitation procedures, light cycle, and twice daily cage checks. The relatively few audit findings from the review of the inlife records were miscellaneous and minor in nature. Also, the mode of death entered into separate records maintained for animal census and clinical observations was either not internally consistent or sometimes not listed in both records for 29 rats and 14 mice; however, one of the two records was always in agreement with the disposition code listed on the necropsy record form. Minor errors in computing feed consumption were reported and corrected.

Inspection of wet tissues for individual animal identifiers showed that 63/76 rats and 57/68 mice were identified correctly by their residual tissues and that tissues were either partially present and correct or absent for the remaining animals. The audit identified 26 untrimmed potential lesions in the wet tissues of 22/76 rats examined and 15 untrimmed potential lesions in 12/68 mice examined. As a result, all wet tissues were reviewed for untrimmed lesions. This review resulted in the identification of the following neoplastic lesions: hepatic nodules in two control male rats, an adenoma of the pancreas in one control male rat, a squamous cell papilloma in a low dose female rat, a trichoepithelioma in the skin of a high dose male rat, several alveolar/bronchiolar adenomas or carcinomas in mice of each sex, and three forestomach papillomas in control and dosed mice. These diagnoses have been incorporated into the tables of the final version of this report and did not alter the interpretations. The

correlation between gross observations and microscopic diagnoses was very good (four noncorrelations each in rats and mice). Full details about these and other audit findings are presented in the audit report.

In conclusion, the study records at the NTP Archives support the data and results presented in the NTP Technical Report.

NATIONAL TOXICOLOGY PROGRAM TECHNICAL REPORTS **PUBLISHED AS OF APRIL 1988**

TR No	CHEMICAL
200	2.6-Toluenediamine Dihydrochloride
201	2,3,7,8-Tetrachlorodibenzo-p-dioxin (Dermal)
202	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin and 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin (Dermal)
203	Phenol
204	Benzoin
205	4,4'-Oxydianiline
206	Dibromochloropropane
207	Cytembena
208	FD & C Yellow No. 6
209	2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin (Gavage)
210	1,2-Dibromoethane (Inhalation)
211	C.I. Acid Orange 10
212	Di(2-ethylhexyl)adipate
213	Butylbenzyl Phthalate
214	Caprolactam
215	Bisphenol A
216	11-Aminoundecanoic Acid
217	Di(2-ethylhexyl)phthalate
219	2,6-Dichloro-p-phenylenediamine
220	C.I. Acid Red 14
221	Locust Bean Gum
222	C.I. Disperse Yellow 3
223	Eugenol
224	Tara Gum
225	D & C Red No. 9
226	C.I. Solvent Yellow 14
227	Gum Arabic
228	Vinylidene Chloride
229	Guar Gum
230	Agar
231	Stannous Chloride
232	Pentachloroethane
233	2-Biphenylamine Hydrochloride
234	Allyl Isothiocyanate
235	Zearalenone
236	D-Mannitol
237 238	1,1,1,2-Tetrachloroethane Ziram
238	
239	Bis(2-chloro-1-methylethyl)ether Propyl Gallate
240	Diallyl Phthalate (Mice)
242	Polybrominated Biphenyl Mixture
245	Melamine
240	L-Ascorbic Acid
248	
249	Amosite Asbestos
250	Benzyl Acetate
251	Toluene Diisocyanate
252	Geranyl Acetate
253	Allyl Isovalerate
255	1,2-Dichlorobenzene
257	Diglycidyl Resorcinol Ether
259	Ethyl Acrylate
261	Chlorobenzene

Chlorobenzene 261

- TR No. **CHEMICAL**
 - 263 1,2-Dichloropropane
 - 267 Propylene Oxide
 - Telone II® 269
 - HC Blue No. 1 271
 - 272 Propylene
- 273 Trichloroethylene (Four strains of rats)
- Tris(2-ethylhexyl)phosphate 274
- 275 2-Chloroethanol
- 8-Hydroxyquinoline 276
- 281 H.C. Red No. 3
- Chlorodibromomethane 282
- 284 Diallylphthalate (Rats)
- C.I. Basic Red 9 Monohydrochloride 285
- 287 **Dimethyl Hydrogen Phosphite**
- 288 1.3-Butadiene
- 289 Benzene
- 291 Isophorone
- HC Blue No. 2 293
- 294 **Chlorinated Trisodium Phosphate**
- 295 Chrysotile Asbestos (Rats) Tetrakis(hydroxymethy)phosphonium Sulfate and 296
- Tetrakis(hydroxymethy)phosphonium Chloride 298 Dimethyl Morpholinophosphoramidate
- 299 C.I. Disperse Blue 1
- 3-Chloro-2-methylpropene 300
- 301 o-Phenylphenol
- 4-Vinylcyclohexene 303
- 304 Chlorendic Acid
- Chlorinated Paraffins (C23, 43% chlorine) 305
- 306 Dichloromethane
- 307 **Ephedrine Sulfate**
- Chlorinated Paraffins (C_{12} , 60% chlorine) Decabromodiphenyl Oxide 308
- 309
- Marine Diesel Fuel and JP-5 Navy Fuel 310
- Tetrachloroethylene (Inhalation) 311
- n-Butyl Chloride 312
- 314 Methyl Methacrylate
- Oxytetracycline Hydrochloride 315
- 316 1-Chloro-2-methylpropene
- Chlorpheniramine Maleate 317
- Ampicillin Trihydrate 318
- 1,4-Dichlorobenzene 319
- 320 Rotenone
- 321 Bromodichloromethane
- 322 Phenylephrine Hydrochloride
- Dimethyl Methylphosphonate 323
- 324 Boric Acid
- 325 Pentachloronitrobenzene
- Ethylene Oxide 326
- 327 Xylenes (Mixed)
- 328 Methyl Carbamate
- 329 1,2-Epoxybutane
- 333 N-Phenyl-2-naphthylamine
- 334 2-Amino-5-nitrophenol

These NTP Technical Reports are available for sale from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161 (703-487-4650). Single copies of this Technical Report are available without charge (and while supplies last) from the NTP Public Information Office, National Toxicology Program, P.O. Box 12233, Research Triangle Park, NC 27709.