
NATIONAL TOXICOLOGY PROGRAM Technical Report Series No. 375

NTP TECHNICAL REPORT

ON THE

TOXICOLOGY AND CARCINOGENESIS

STUDIES OF

VINYL TOLUENE (MIXED ISOMERS) (65%-71% META-ISOMER AND 32%-35% PARA-ISOMER)

(CAS NO. 25013-15-4)

IN F344/N RATS AND B6C3F1 MICE

(INHALATION STUDIES)

Gary Boorman, D.V.M., Ph.D., Study Scientist

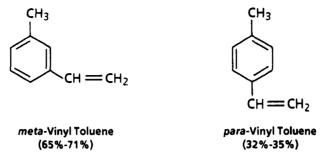
NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709

March 1990

NTP TR 375

NIH Publication No. 90-2830

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health


CONTENTS

PAGE

ABST	RACT	3
EXPL	ANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY	6
CONT	RIBUTORS	7
PEER	REVIEW PANEL	8
SUMM	MARY OF PEER REVIEW COMMENTS	9
I.	INTRODUCTION	11
II.	MATERIALS AND METHODS	17
III .	RESULTS	25
	RATS	26
	місе	33
	GENETIC TOXICOLOGY	42
IV.	DISCUSSION AND CONCLUSIONS	43
v.	REFERENCES	47

APPENDIXES

APPENDIX A	SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	53
APPENDIX B	SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	83
APPENDIX C	SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	109
APPENDIX D	SUMMARY OF LESIONS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	135
APPENDIX E	RESULTS OF SEROLOGIC ANALYSIS	161
APPENDIX F	INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	163
APPENDIX G	CHEMICAL CHARACTERIZATION, GENERATION, AND MONITORING OF CHAMBER CONCENTRATIONS OF VINYL TOLUENE FOR THE TOXICOLOGY STUDIES	169
APPENDIX H	GENETIC TOXICOLOGY OF VINYL TOLUENE	175
APPENDIX I	LIVER WEIGHTS OF RATS AND MICE IN THE FIFTEEN-DAY AND THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE	185
APPENDIX J	AUDIT SUMMARY	189

VINYL TOLUENE (mixed isomers)

 $C_{9}H_{10}$

Molecular weight 118.2

Synonyms: 3-Vinyl toluene and 4-vinyl toluene (mixed isomers)

ABSTRACT

Vinyl toluene is used as a monomer in the plastics and surface-coating industries. Toxicology and carcinogenesis studies were conducted by exposing groups of F344/N rats and B6C3F₁ mice of each sex to vinyl toluene (mixed isomers: 65%-71% meta and 32%-35% para) by inhalation 6 hours per day, 5 days per week, for 15 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, mouse L5178Y cells, and Chinese hamster ovary (CHO) cells.

Fifteen-Day Studies: Rats were exposed to 0, 200, 400, 800, or 1,300 ppm vinyl toluene, and mice were exposed to 0, 10, 25, 50, 100, or 200 ppm. All rats lived to the end of the studies. The mean body weights at necropsy of rats exposed to 400-1,300 ppm were 13%-19% lower than that of controls for males and 9%-13% lower for females. Most male rats exposed to 1,300 ppm had centrilobular necrosis and focal inflammatory cell infiltration of the liver, whereas minimal centrilobular vacuolization of the liver was seen in all female rats exposed to 1,300 ppm. Dysplasia of the bronchial epithelial lining, chronic bronchitis, and lymphoid hyperplasia of the lung were observed in all rats exposed to 1,300 ppm.

Three of five male mice exposed to 200 ppm vinyl toluene died before the end of the studies. Four of five male mice exposed to 200 ppm had moderate-to-severe hepatocellular necrosis; all female mice exposed to 200 ppm had hyperplasia of the epithelium of the intrapulmonary bronchi and centrilobular necrosis, vacuolization, and inflammatory cell infiltrates in the liver.

Thirteen-Week Studies: Rats were exposed to 0, 25, 60, 160, 400, or 1,000 ppm vinyl toluene. All rats lived to the end of the studies. The final mean body weights of rats exposed to 400-1,000 ppm were 8%-19% lower than that of controls for males and 6%-12% lower for females. Relative liver weights for rats at 1,000 ppm were significantly greater than those for controls. The severity of nephropathy was increased in male rats exposed to 160, 400, or 1,000 ppm. Compound-related lesions were not observed in female rats.

Mice were exposed to 0, 10, 25, 60, or 160 ppm vinyl toluene. The final mean body weights of mice exposed to 25-160 ppm were 12%-20% lower than that of controls for males and 13%-16% lower for females. Inflammation of the lung was observed in 5/10 male and 3/9 female mice exposed to 160 ppm. Metaplasia of the nasal turbinates was seen in all exposed groups.

Based on these results, 2-year studies were conducted by exposing groups of 49 or 50 rats of each sex to 0, 100, or 300 ppm vinyl toluene by inhalation, 6 hours per day, 5 days per week for 103 weeks. Groups of 50 mice of each sex were exposed to 0, 10, or 25 ppm on the same schedule.

Body Weights and Survival in the Two-Year Studies: Mean body weights of male rats exposed to 300 ppm vinyl toluene and those of female rats exposed to 100 and 300 ppm were generally 4%-11% lower than those of controls. No significant differences in survival were seen between any groups of rats of either sex (male: control, 19/49; low dose, 17/50; high dose, 19/50; female: 31/50; 28/50; 26/50). Mean body weights of mice exposed to 25 ppm were 10%-23% lower than those of controls after week 8, whereas mice exposed to 10 ppm showed a weight decrement that was generally less than 10%. The survival of male mice exposed to 25 ppm was significantly greater than that of controls. No other significant differences in survival were seen between any groups of mice of either sex (male: 33/50; 30/50; 41/50; female: 36/50; 37/50; 34/50).

Nonneoplastic and Neoplastic Effects in the Two-Year Studies: Degenerative and nonneoplastic proliferative lesions of the nasal mucosa were observed at increased incidences in exposed rats. These lesions included diffuse hyperplasia (goblet cell) of the respiratory epithelium with intraepithelial mucous cysts and focal erosion of the olfactory epithelium with cystic dilatation (cysts) of the Bowman's glands. Focal respiratory epithelial metaplasia of the olfactory epithelium was seen in some exposed males, and cells with homogeneous eosinophilic cytoplasm in the olfactory epithelium occurred at increased incidences in exposed female rats. Neoplasms of the nasal mucosa were not seen in male or female rats.

There were no chemically related increases in neoplasm incidence in exposed male or female rats.

Degenerative and inflammatory lesions of the nasal mucoca were observed at increased incidences in exposed mice. These lesions included focal chronic active inflammation and diffuse hyperplasia of the respiratory epithelium. Chronic active inflammation of the bronchioles occurred in many exposed mice but not in controls. Neoplasms of the nasal passage were not observed in mice.

There were no chemically related increases in neoplasm incidence in exposed male or female mice. Exposure-related decreased incidences included alveolar/bronchiolar neoplasms (control, 12/50; 10 ppm, 5/49; 25 ppm, 2/49) and malignant lymphomas (7/50; 3/50; 0/50) in males and hepatocellular neoplasms (9/48; 5/16; 2/49) in females.

Genetic Toxicology: Vinyl toluene did not induce gene mutations in S. typhimurium strains TA98, TA100, TA1535, or TA1537 with or without exogenous metabolic activation (S9). Vinyl toluene was positive in the mouse lymphoma assay for induction of trifluorothymidine resistance in L5178Y/TK cells in the absence of S9; it was not tested with S9. Vinyl toluene did not induce sister chromatid exchanges or chromosomal aberrations in CHO cells with or without S9.

Conclusions: Under the conditions of these 2-year inhalation studies, there was no evidence of carcinogenic activity* for male or female F344/N rats exposed to 100 or 300 ppm vinyl toluene and no evidence of carcinogenic activity for male or female $B6C3F_1$ mice exposed to 10 or 25 ppm.

There was evidence of chemical-related toxicity to the nasal passage in both rats and mice.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 9.

Male F344/N Rats	Female F344/N Rats	Male B6C3F ₁ Mice	Female B6C3F ₁ Mice
Exposure concentrations 0, 100, or 300 ppm vinyl toluene, 6 h/d, 5 d/wk	0, 100, or 300 ppm vinyl toluene, 6 h/d, 5 d/wk	0, 10, or 25 ppm vinyl toluene, 6 h/d, 5 d/wk	0, 10, or 25 ppm vinyl toluene, 6 h/d, 5 d/wk
Body weights in the 2-year Exposed groups lower than controls		Exposed groups lower than controls	Exposed groups lower than controls
Survival in the 2-year stud ; 19/49; 17/50; 19/50	y 31/50; 28/50; 26/50	33/50; 30/50; 41/50	36/50; 37/50; 34/50
Nonneoplastic effects Hyperplasia of respiratory epithelium; erosion and cysts of olfactory epithelium; meta- plasia of olfactory epithelium	Hyperplasia of respiratory epithelium; erosion and cysts of olfactory epithelium	Hyperplasia of respiratory epithelium; chronic active inflammation of nasal pas- sage and bronchioles	Hyperplasia of respiratory epithelium; chronic active inflammation of nasal pas- sage and bronchioles
Neoplastic effects None	None	None	None
Level of evidence of carcin No evidence	o genic activity No evidence	No evidence	No evidence
Other considerations		Exposure-related decreased incidences of lymphomas and pulmonary neoplasms	Exposure-related decreased incidences of liver neoplasm:

EXPLANATION OF LEVELS OF EVIDENCE OF CARCINOGENIC ACTIVITY

The National Toxicology Program describes the results of individual experiments on a chemical agent and notes the strength of the evidence for conclusions regarding each study. Negative results, in which the study animals do not have a greater incidence of neoplasia than control animals, do not necessarily mean that a chemical is not a carcinogen, inasmuch as the experiments are conducted under a limited set of conditions. Positive results demonstrate that a chemical is carcinogenic for laboratory animals under the conditions of the study and indicate that exposure to the chemical has the potential for hazard to humans. Other organizations, such as the International Agency for Research on Cancer, assign a strength of evidence for conclusions based on an examination of all available evidence including: animal studies such as those conducted by the NTP, epidemiologic studies, and estimates of exposure. Thus, the actual determination of risk to humans from chemicals found to be carcinogenic in laboratory animals tory animals requires a wider analysis that extends beyond the purview of these studies.

Five categories of evidence of carcinogenic activity are used in the Technical Report series to summarize the strength of the evidence observed in each experiment: two categories for positive results ("Clear Evidence" and "Some Evidence"); one category for uncertain findings ("Equivocal Evidence"); one category for no observable effects ("No Evidence"); and one category for experiments that because of major flaws cannot be evaluated ("Inadequate Study"). These categories of interpretative conclusions were first adopted in June 1983 and then revised in March 1986 for use in the Technical Reports series to incorporate more specifically the concept of actual weight of evidence of carcinogenic activity. For each separate experiment (male rats, female rats, male mice, female mice), one of the following quintet is selected to describe the findings. These categories refer to the strength of the experimental evidence and not to either potency or mechanism.

- Clear Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a dose-related (i) increase of malignant neoplasms, (ii) increase of a combination of malignant and benign neoplasms, or (iii) marked increase of benign neoplasms if there is an indication from this or other studies of the ability of such tumors to progress to malignancy.
- Some Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a chemically related increased incidence of neoplasms (malignant, benign, or combined) in which the strength of the response is less than that required for clear evidence.
- Equivocal Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing a marginal increase of neoplasms that may be chemically related.
- No Evidence of Carcinogenic Activity is demonstrated by studies that are interpreted as showing no chemically related increases in malignant or benign neoplasms.
- Inadequate Study of Carcinogenic Activity is demonstrated by studies that because of major qualitative or quantitative limitations cannot be interpreted as valid for showing either the presence or absence of carcinogenic activity.

When a conclusion statement for a particular experiment is selected, consideration must be given to key factors that would extend the actual boundary of an individual category of evidence. This should allow for incorporation of scientific experience and current understanding of long-term carcinogenesis studies in laboratory animals, especially for those evaluations that may be on the borderline between two adjacent levels. These considerations should include:

- The adequacy of the experimental design and conduct;
- Occurrence of common versus uncommon neoplasia;
- Progression (or lack thereof) from benign to malignant neoplasia as well as from preneoplastic to neoplastic lesions;
- Some benign neoplasms have the capacity to regress but others (of the same morphologic type) progress. At present, it
 is impossible to identify the difference. Therefore, where progression is known to be a possibility, the most prudent
 course is to assume that benign neoplasms of those types have the potential to become malignant;
- Combining benign and malignant tumor incidences known or thought to represent stages of progression in the same organ or tissue;
- Latency in tumor induction;
- Multiplicity in site-specific neoplasia;
- Metastases;
- Supporting information from proliferative lesions (hyperplasia) in the same site of neoplasia or in other experiments (same lesion in another sex or species);
- The presence or absence of dose relationships;
- The statistical significance of the observed tumor increase:
- The concurrent control tumor incidence as well as the historical control rate and variability for a specific neoplasm;
- Survival-adjusted analyses and false positive or false negative concerns;
- Structure-activity correlations; and
- In some cases, genetic toxicology.

CONTRIBUTORS

The NTP Technical Report on the Toxicology and Carcinogenesis Studies of Vinyl Toluene is based on 13-week studies that began in January 1981 and ended in April 1981 and on 2-year studies that began in December 1981 and ended in November 1983 at Midwest Research Institute (Kansas City, MO).

National Toxicology Program (Evaluated Experiment, Interpreted Results, and Reported Findings)

Gary Boorman, D.V.M., Ph.D., Study Scientist

John R. Bucher, Ph.D. Scot L. Eustis, D.V.M., Ph.D. Joseph K. Haseman, Ph.D. James Huff, Ph.D.

(Discipline Leaders and Principal Contributors)

Jack Bishop, Ph.D. Douglas W. Bristol, Ph.D. R. Chhabra, Ph.D. R. Griesemer, D.V.M., Ph.D. C.W. Jameson, Ph.D. G.N. Rao, D.V.M., Ph.D. Douglas Walters, Ph.D.

NTP Pathology Working Group (Evaluated Slides and Prepared Pathology Report for Rats on 6/16/88)

Gary Boorman, D.V.M., Ph.D. (Chair) (NTP) H. Roger Brown, D.V.M. Experimental Pathology Laboratories, Inc. Darlene Dixon, D.V.M., Ph.D. (NTP) Takanori Harada, D.V.M., Ph.D. Institute of Environmental Toxicology, Japan Micheal Jokinen, D.V.M. (NTP) Eberharde Karbe, V.M.D., Ph.D. (Observer) BAYER AG Michael Stedham, D.V.M. (Pathology Associates, Inc.) Linda Uraih, D.V.M. (NTP)

(Evaluated Slides and Prepared Pathology Report for Mice on 6/9/88)

John Seely, D.V.M. (Chair) (PATHCO, Inc.) Gary Boorman, D.V.M., Ph.D. (NTP) Margarita McDonald, D.V.M., Ph.D. (NTP) C.J. Springhall, M.B., Ch.B., Dip. R.C. Path. (Observer) Shell Research Ltd., United Kingdom Michael Stedham, D.V.M. (Pathology Associates, Inc.) Steven Stefanski, D.V.M. (NTP) Jeffrey Wilson, D.V.M. (Research Consulting Company, Switzerland) Katsuhiko Yoshitomi, D.V.M., Ph.D. Experimental Pathology Laboratories, Inc.

Principal Contributors at Midwest Research Institute (Conducted Studies and Evaluated Tissues)

James M. Cholakis, Ph.D. Michael Stedham, D.V.M. A.T. Chatham, Ph.D.

Principal Contributors at Experimental Pathology Laboratories, Inc. (Provided Pathology Quality Assurance)

H. Roger Brown, D.V.M.

Katsuhiko Yoshitomi, D.V.M., Ph.D.

Principal Contributors at Carltech Associates, Inc. (Contractor for Technical Report Preparation)

William D. Theriault, Ph.D. Abigail C. Jacobs, Ph.D. John Warner, M.S. Naomi Levy, B.A.

PEER REVIEW PANEL

The members of the Peer Review Panel who evaluated the draft Technical Report on Vinyl Toluene on November 20, 1989, are listed below. Panel members serve as independent scientists, not as representatives of any institution, company, or governmental agency. In this capacity, Panel members have five major responsibilities: (a) to ascertain that all relevant literature data have been adequately cited and interpreted, (b) to determine if the design and conditions of the NTP studies were appropriate, (c) to ensure that the Technical Report presents the experimental results and conclusions fully and clearly, (d) to judge the significance of the experimental results by scientific criteria, and (e) to assess the evaluation of the evidence of carcinogenicity and other observed toxic responses.

National Toxicology Program Board of Scientific Counselors Technical Reports Review Subcommittee

Robert A. Scala, Ph.D. (Chair) Senior Scientific Advisor, Medicine and Environmental Health Department Research and Environmental Health Division Exxon Biomedical Sciences, East Millstone, NJ

Daniel S. Longnecker, M.D. Professor, Department of Pathology Dartmouth Medical School Hanover, NH Ellen K. Silbergeld, Ph.D. Senior Scientist Environmental Defense Fund Washington, DC

Ad Hoc Subcommittee Panel of Experts

John Ashby, Ph.D., (Principal Reviewer) Imperial Chemical Industries, PLC Central Toxicology Laboratory Alderley Park, England

Gary P. Carlson, Ph.D. Professor of Toxicology, Department of Pharmacology and Toxicology Purdue University, West Lafayette, IN

Harold Davis, D.V.M., Ph.D. School of Aerospace Medicine Brooks Air Force Base San Antonio, TX

Robert H. Garman, D.V.M., (Principal Reviewer) Consultants in Veterinary Pathology Murrysville, PA

Lois Swirsky Gold, Ph.D. University of California Lawrence Berkeley Laboratory Berkeley, CA David W. Hayden, D.V.M., Ph.D. Professor, Department of Veterinary Pathobiology College of Veterinary Medicine University of Minnesota, St. Paul, MN

Curtis D. Klaassen, Ph.D. Professor, Department of Pharmacology and Toxicology University of Kansas Medical Center Kansas City, KS

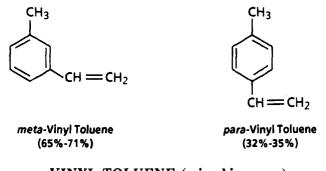
Barbara McKnight, Ph.D. Associate Professor Department of Biostatistics University of Washington Seattle, WA

Lauren Zeise, Ph.D. California Department of Health Services/RCHAS Berkeley, CA

SUMMARY OF PEER REVIEW COMMENTS ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF VINYL TOLUENE

On November 20, 1989, the draft Technical Report on the toxicology and carcinogenesis studies of vinyl toluene received public review by the National Toxicology Program Board of Scientific Counselors' Technical Reports Review Subcommittee and associated Panel of Experts. The review meeting was held at the National Institute of Environmental Health Sciences, Research Triangle Park, NC.

Dr. G. Boorman, NIEHS, began the discussion by reviewing the experimental design, results, and proposed conclusions (no evidence of carcinogenic activity for male or female rats or mice).


Dr. Ashby, a principal reviewer, agreed with the conclusions. He commented on the the decreased incidences of three tumor types in exposed groups of mice--lymphomas and pulmonary neoplasms in males and liver neoplasms in females. He said that the evidence for classifying vinyl toluene as a mutagen was quite slim.

Dr. Garman, the second principal reviewer, agreed with the conclusions. He asked for an explanation of why liquid vinyl toluene entered the inhalation chambers. He said that this raised questions about the technical conduct of the studies. Dr. Boorman explained that there was a dosing accident with one chamber at week 21 of the studies whereby six mice were exposed to the liquid chemical; these animals were removed from the studies. Dr. Boorman did not believe that this isolated incident reflected negatively on the overall conduct of the studies.

Dr. Ashby moved that the Technical Report on vinyl toluene be accepted with the conclusions as written for male and female rats and mice, no evidence of carcinogenic activity. Dr. Garman seconded the motion, which was accepted unanimously.

I. INTRODUCTION

Use, Production, and Properties Metabolism Systemic Toxicity Genetic Toxicology Long-Term Toxicity and Carcinogenicity Study Rationale

VINYL TOLUENE (mixed isomers)

 $C_{9}H_{10}$

Molecular weight 118.2

Synonyms: 3-Vinyl toluene and 4-vinyl toluene (mixed isomers)

Use, Production, and Properties

Vinyl toluene (methylstyrene) is used as a monomer in the plastics and surface-coating industries (Kuney, 1983) and as a component in insecticides (Clayton and Clayton, 1981). As many as 73,000 employees in 7,000 plants are potentially exposed to vinyl toluene (NIOSH, 1989).

Vinyl toluene is produced by the dehydrogenation of m- and p-ethyltoluene and by catalytic reforming. In 1976, it was estimated that approximately 50% of vinyl toluene was used as a chemical intermediate for unsaturated polyester resins, 40% for alkyd coating resins, and 10% as a chemical intermediate for drying oils (TDB, 1982). U.S. production of vinyl toluene alkyd resins in 1982 was nearly 31 billion pounds, dry weight (USITC, 1983).

Vinyl toluene is a colorless, combustible liquid with a strong, disagreeable odor. It is an alkylated benzene that occurs as a mixture primarily of the *m*- (50%-70%) and *p*- (30%-45%) isomers, with a density of 0.8946 at 25° C, a boiling point of 167°-172° C, and a vapor pressure of 1.15 mm mercury at 20° C. At elevated temperatures, vapors mixed with air may be explosive, and polymerization may occur under explosive expansion.

Metabolism

After rats received a single intraperitoneal injection of 50 mg/kg, 55% of the dose was found as

urinary metabolites, mainly in the first 6 hours; at higher doses, slightly smaller percentages were found (Heinonen, 1984). The principal urinary metabolites were thioethers (25%), p-methylmandelic acid (5.7%), p-methylphenylglyoxylic acid (11.9%), p-methylbenzoyl glycine (9.3%), p-methylphenylacetyl glycine (2.5%), and p-vinylbenzoyl glycine (1%). The excretion of these metabolites was prevented by pretreatment with an inhibitor of the cytochrome P450 monoxygenases. Further, vinyl toluene was found to bind to hepatic cytochrome P450, and the reduced glutathione content of the liver and kidney was decreased in rats after a single intraperitoneal injection (Heinonen and Vainio, 1980). These findings suggest that metabolism of vinyl toluene is catalyzed by cytochrome P450, producing vinyl toluene-7,8-oxide as the main reactive intermediate, with subsequent conjugation to glutathione or hydration to diols (Heinonen, 1984). Proposed metabolic pathways for vinyl toluene in rats are presented in Figures 1 and 2.

Systemic Toxicity

In humans, vinyl toluene is irritating to the eyes, upper respiratory tract, and skin at concentrations greater than 400 ppm, with prolonged or high doses causing depression of the central nervous system (Clayton and Clayton, 1981; Mackison et al., 1981). The American Conference of Governmental Industrial Hygienists recommends a threshold limit value (timeweighted average) of 50 ppm (240 mg/m³) for

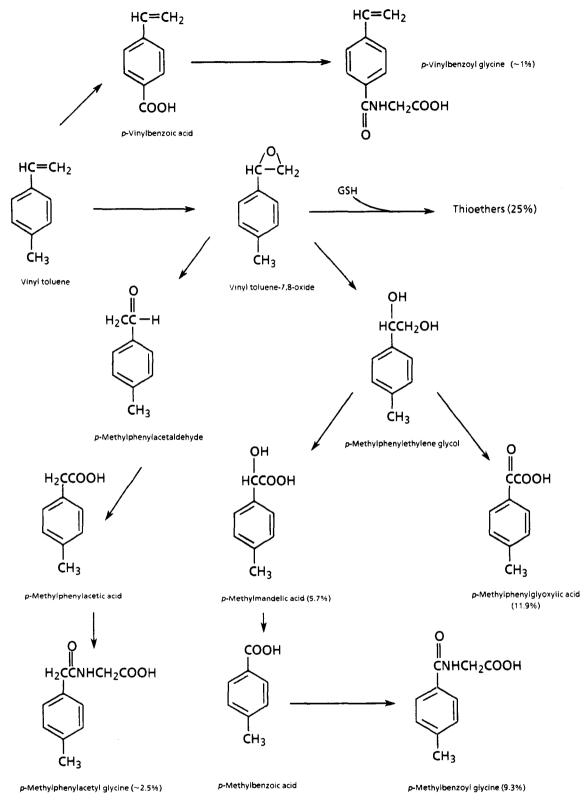


FIGURE 1. MAIN METABOLIC PATHWAYS OF VINYL TOLUENE IN RATS (adapted from Heinonen, 1984)

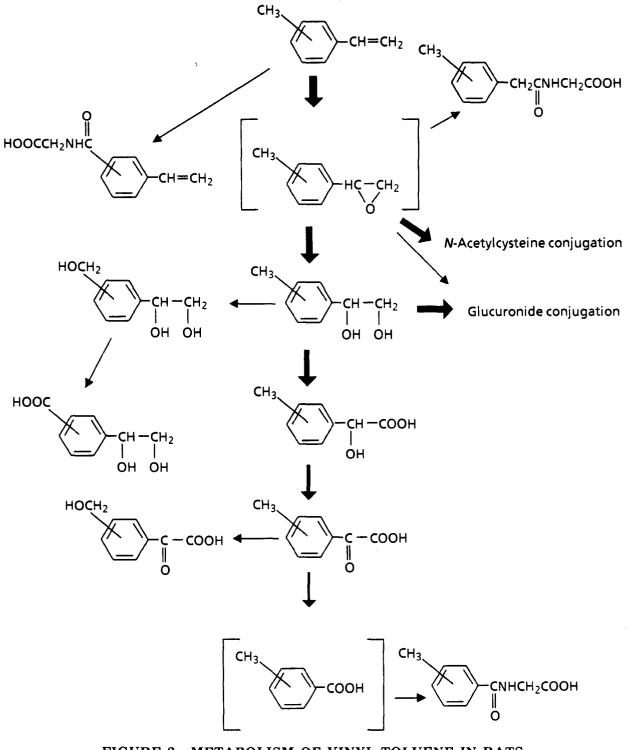


FIGURE 2. METABOLISM OF VINYL TOLUENE IN RATS (Adapted from Bergemalm-Rynell and Steen, 1982) occupational exposure to vinyl toluene (ACGIH, 1980). The recommended short-term exposure limit is 100 ppm (485 mg/m³). The current Occupational Safety and Health Administration standard is 100 ppm, averaged over an 8-hour work shift (Mackison et al., 1981).

The oral LD_{50} in rats is approximately 4 g/kg (Wolf et al., 1956). Inhalation exposure (approximately 100 exposures of up to 8 hours) at 1,250 ppm leads to fatty degeneration of the liver in guinea pigs, rabbits, monkeys, and rats and to death in rats.

Genetic Toxicology

Vinyl toluene (mixture of the o-, m-, and p-isomers) was negative in bacterial mutagenicity assays conducted with or without S9 activation (Norppa et al., 1981; Knaap et al., 1985; Zeiger et al., 1987) and in the Drosophila sex-linked recessive lethal assay (Norppa et al., 1981; Knaap et al., 1985). In contrast, the results obtained from the limited number of mammalian cell mutagenicity assays conducted with vinvl toluene were generally positive. This may reflect greater control for volatility in these assays, thus assuring adequate exposure to the chemical, or differences in chemical activation capabilities. Induction of gene mutation in L5178Y mouse lymphoma cells was reported, although this effect was observed only at high concentrations that produced severe toxicity (McGregor et al., 1988). Induction of sister chromatid exchanges (SCEs) and chromosomal aberrations in human lymphocytes was reported (Norppa, 1981a; Norppa and Vainio, 1983), but negative results were obtained for these two endpoints in Chinese hamster ovary (CHO) cells (Appendix H, Tables H3 and H4). Intraperitoneal injection of vinyl toluene in male C57BL/6 mice produced a significant increase in micronucleated polychromatic erythrocytes in the bone marrow (Norppa, 1981b).

Mutagenicity information is available on two of the metabolites of vinyl toluene: p- and m-(epoxyethyl) toluene. The p-isomer was positive for induction of gene mutations in bacteria (Sugiura et al., 1978; Sugiura and Goto, 1981; Tamura et al., 1982) and hamster V79 cells (Sugiura et al., 1979) and was reported to induce SCEs in human lymphocytes (Norppa and Vainio, 1983). The *m*-isomer was also reported to be a bacterial mutagen (Sugiura and Goto, 1981). All these tests were done in the absence of S9 activation. The fact that metabolites of vinyl toluene are mutagenic in bacteria although the parent compound is not implies a requirement for metabolism that apparently was available in the mammalian systems tested but was not supplied, or was ineffective, in the S9 fraction added to bacterial cultures.

This pattern of activity (mutagenic activity of metabolites but not the parent compound in bacterial systems) reflects the pattern seen with the structural analog styrene, which is not mutagenic in bacterial systems unless measures are taken to stabilize the mutagenic metabolite styrene oxide after its formation by the S9 mix (Dunkel et al., 1985). Many reports confirm the mutagenicity of styrene oxide in Salmonella (Vainio et al., 1976; Stoltz and Withey, 1977; de Meester et al., 1977; Loprieno et al., 1978), whereas the data for styrene glycol (produced by further metabolism of the styrene oxide) are uniformly negative (Milvy and Garro, 1976; Vainio et al., 1976; De Flora et al., 1984). Styrene also has been reported to induce SCEs and chromosomal aberrations in mammalian cells in vitro (Linnainmaa et al., 1978; Matsuoka et al., 1979; Norppa et al., 1980; Norppa and Vainio, 1983; Pohlova et al., 1985) and in vivo (Meretoja et al., 1978; Conner et al., 1980; Sharief et al., 1986); results from National Toxicology Program cytogenetic tests with CHO cells in vitro were, as with vinyl toluene, negative for induction of SCEs and chromosomal aberrations (NTP unpublished data). Norppa (1981b) reported induction of micronuclei in the bone marrow of C57BL/6 mice injected with styrene. The presumed mutagenic metabolite, styrene oxide, was also positive for these cytogenetic endpoints in vitro and in vivo (Loprieno et al., 1978; Linnainmaa et al., 1978; Norppa et al., 1980, 1983; Norppa, 1981a; Pohlova et al., 1985).

Long-Term Toxicity and Carcinogenicity

The long-term toxicity, carcinogenicity, and neoplasm-promoting potential of vinyl toluene

have previously not been adequately tested in animals.

Study Rationale

Vinyl toluene was selected for evaluation of long-term toxicity and carcinogenicity by the

National Cancer Institute because of its widespread production, its increasing use as a replacement for styrene, the potential for human exposure, and the lack of epidemiologic data or animal studies. The inhalation route of exposure was chosen to mimic the potential route of exposure in humans.

II. MATERIALS AND METHODS

PROCUREMENT AND CHARACTERIZATION OF VINYL TOLUENE GENERATION AND MONITORING OF CHAMBER CONCENTRATIONS Vapor Generation System Vapor Concentration Monitoring Chamber Atmosphere Characterization FIFTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Study Design Source and Specifications of Animals Animal Maintenance Clinical Examinations and Pathology Statistical Methods

PROCUREMENT AND CHARACTERIZATION OF VINYL TOLUENE

The vinyl toluene (mixed isomers) used in these studies, referred to in this Technical Report as vinyl toluene, was manufactured by Dow Chemical Company (Midland, MI). One of the three lots used was obtained from Missouri Solvents and Chemical Company, and two lots were obtained from Chem Central. Purity and identity analyses were conducted at Midwest Research Institute (Kansas City, MO) (Appendix G). The first lot was used for the short-term studies, the second lot was used for the first 20 months of the 2-year studies, and the third lot was used for the remainder of the 2-year studies.

The identity of all lots as a mixture of *m*-vinyl toluene and *p*-vinyl toluene was confirmed by infrared, ultraviolet, and nuclear magnetic resonance spectroscopic analysis. The purity of all lots was determined to be approximately 99% (combined 65%-71% *meta*- and 32%-35% *para*-isomers) by elemental analyses, Karl Fischer water analysis, the American Society for Testing and Materials (ASTM) visual test for polymers in styrene (limit of detection, 0.001% polymer), and gas chromatography. The content of the inhibitor, *t*-butylcatechol, was determined by a semiquantitative colorimetric method to range from 30 to 70 ppm.

Stability studies performed by gas chromatography indicated that vinyl toluene was stable as a bulk chemical when stored protected from light for 2 weeks at temperatures up to 25° C. Results of periodic analysis by infrared spectroscopy, gas chromatography, determination of inhibitor concentration, and polymer concentration indicated no significant degradation of the study material throughout the studies.

GENERATION AND MONITORING OF CHAMBER CONCENTRATIONS

Vapor Generation System

Vinyl toluene vapor was generated by using either a J-tube or a gas dispersion-type system in which heated air was passed through liquid vinyl toluene. The vapor then entered the airstream near the top of the chamber and was mixed in the chamber plenum before entering the exposure area of the chamber. In the 2-year studies, secondary flasks were used to further dilute and mix the vapor with filtered air before it was channeled to the appropriate intake port of the study chambers (Hazleton 2000[®], Lab Products, Inc.) (Table G2). An individual generation system contained within an enclosure specifically designed for operation under negative pressure was used for each chamber.

Vapor Concentration Monitoring

The concentration of vinyl toluene in the chambers and the exposure room was monitored by an automatic sampling system coupled to a gas chromatograph (Varian 2700) equipped with a flame ionization detector and a 3% SP2250 column (100% Carbowax 20M-TPA column for the short-term studies). The gas chromatographic system was standardized daily by manually injecting solutions of vinyl toluene in *n*-hexane. Samples from the study chamber atmospheres were pulled from the chambers by a vacuum pump. During the 2-year studies, each study chamber atmosphere, a sample of the control chamber atmosphere, and a sample of workroom air were analyzed every 30 minutes during the 6-hour exposure. The distribution of the mean daily concentrations in the chambers is summarized in Table G3.

Chamber Atmosphere Characterization

Uniformity of vapor concentration in each exposure chamber and at each position with animals present was measured periodically throughout the studies by the same system used for daily concentration monitoring to validate the use of single-port sampling for daily concentration monitoring. The coefficients of variation were always found to be less than 10%.

Tests were conducted for potential oxidation products and their possible hydration products, including vinyl toluene glycol, *m*-methylphenethyl alcohol, *p*-methylphenethyl alcohol, and a,p-dimethylbenzyl alcohol. An analytic sample was collected by passing a 400-ppm vinyl toluene atmosphere through an impinger in a dry ice/acetone bath at 12 liters/minute for 30 minutes; the sample was extracted with chloroform and analyzed by gas chromatography using a flame ionization detector and a 3% SP2250 column. None of the potential degradation products was determined to be present at concentrations greater than 0.05% of the vinyl toluene concentration.

Polymers present in a 1,000-ppm chamber atmosphere were determined after an impinger sample was condensed and the ASTM test (ASTM, 1970) and gel-permeation chromatography were performed on the condensate. The condensate was negative in the ASTM test (less than 0.1% polymer), and no high molecular weight substances were found by gel-permeation chromatography (Waters GPC columns, 254-nm ultraviolet detector, and tetrahydrofuran mobile phase).

The aerosol concentration was determined by drawing a 300-ppm vinyl toluene atmosphere through a seven-stage, multijet cascade impactor. Gas chromatographic analysis performed on the contents of the collection slip of each stage and of the final filter indicated that no aerosol was present on any given stage at greater than 0.037% (w/v) of total vinyl toluene sampled (total less than 0.26% for the seven stages).

Residual concentrations of vinyl toluene were determined in the chambers after the 6-hour exposure period. The concentration dropped rapidly; the residual chemical concentration in the chambers was generally less than the detectable level (0.01 ppm) 3 hours after the generators had been stopped and the chambers purged for 1 hour.

FIFTEEN-DAY STUDIES

Groups of five rats of each sex were exposed to air containing vinyl toluene at target concentrations of 0, 200, 400, 800, or 1,300 ppm, 6 hours per day for 10 days over a 15-day period. Groups of five mice of each sex were exposed to air containing vinyl toluene at target concentrations of 0, 10, 25, 50, 100, or 200 ppm on the same schedule. Rats and mice were observed once per day and were weighed before exposure, after 1 week, and at the end of the studies. A necropsy was performed on all animals. Histopathologic examinations were performed on rats in the 1,300-ppm groups, mice in the 200-ppm groups, and one male mouse and one female mouse in the control groups. Further details are presented in Table 1.

THIRTEEN-WEEK STUDIES

Thirteen-week studies were conducted to evaluate the cumulative toxic effects of repeated inhalation of vinyl toluene and to determine the concentrations to be used in the 2-year studies.

Male and female F344/N rats and $B6C3F_1$ mice were obtained at 4-5 weeks of age, observed for 20 days, and assigned to groups according to tables of random numbers. Feed was available ad libitum during nonexposure periods; water was available at all times.

Groups of 10 rats of each sex were exposed to air containing vinyl toluene at target concentrations of 0, 25, 60, 160, 400, or 1,000 ppm, 6 hours per day, 5 days per week for 13 weeks (64 exposures). Groups of 10 mice of each sex were exposed to air containing vinyl toluene at target concentrations of 0, 10, 25, 60, or 160 ppm on the same schedule. Further experimental details are summarized in Table 1.

Animals were observed one or two times per day; moribund animals were killed. Clinical signs were recorded once per week. Individual animal weights were recorded once per week.

At the end of the 13-week studies, survivors were killed. A necropsy was performed on all animals except those excessively autolyzed or cannibalized. Histologic examinations were performed on all rats in the control and 1,000-ppm groups, 9 male mice and 10 female mice in the control groups, and all mice in the 25-, 60-, and 160-ppm groups. Tissues and groups examined are listed in Table 1.

Fifteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
EXPERIMENTAL DESIGN		
Size of Study Groups 5 males and 5 females of each species	10 males and 10 females of each species	49 or 50 males and 50 females of each species
Exposure Concentrations Rats0, 200, 400, 800, or 1,300 ppm vinyl coluene (mixed isomers) by inhalation; mice0, 10, 25, 50, 100, or 200 ppm	Rats0, 25, 60, 160, 400, or 1,000 ppm vinyl toluene (mixed isomers) by inha- lation; mice0, 10, 25, 60, or 160 ppm	Rats0, 100, or 300 ppm vinyl toluene (mixed isomers) by inhalation; mice 0, 10, or 25 ppm
Date of First Exposure Rats9/30/80; mice8/20/80	1/6/81	12/1/81
Date of Last Exposure Rats10/14/80; mice9/3/80	4/7/81	Rats11/21/83; mice11/23/83
Duration of Exposure 6 h/d for 10 d over 15 d	6 h/d for 64 d over 13 wk	6 h/d, 5 d/wk for 103 wk
Type and Frequency of Observation Observed $1 \times d$; weighed initially and $1 \times wk$ thereafter	Observed 1 \times d; weighed initially and 1 \times wk thereafter	Observed 2 \times d; weighed initially, 1 \times wk for 13 wk, and 1 \times mo there- after
Necropsy and Histologic Examination Necropsy performed on all animals; his- tologic exams performed on all animals in the high dose groups and on 1 male and 1 female in mouse control groups. Tissues examined include: brain, duode- num, heart, kidneys, lungs, pancreas, and stomach for rats and mice. Brain and liver weighed at necropsy	s Necropsy performed on all animals; his- tologic exams performed on all control and high dose animals and on mice in the 25- and 60-ppm groups. Tissues ex- amined include: adrenal glands, bone, brain, cecum, colon, duodenum, epididy- mis/seminal vesicles/prostate/testes or oviduct/ovaries/uterus, esophagus, gall- bladder (mice), heart, ileum, jejunum, kidneys, larynx, liver, lungs, mammary gland, mandibular and mesenteric lymph nodes, mesentery, nasal passage, pancreas, parathyroid glands, pituitary gland, preputial or clitoral gland, rec- tum, salivary glands, skin, spinal cord, spleen, stomach, thymus, thyroid gland, trachea, and urinary bladder	Necropsy performed on all animals; the following tissues examined his- tologically for control and high dose groups and animals dying before mo 20 or 21: adrenal glands, bone, brain, cecum, colon, duodenum, epididymis/ seminal vesicles/prostate/testes or oviduct/ovaries/uterus, esophagus, gallbladder (mice), heart, ileum, jeju- num, kidneys, larynx, liver, lungs, mammary gland, mandibular and mesenteric lymph nodes, mesentery, nasal passage, pancreas, parathyroid glands, pituitary gland, preputial or clitoral gland, rectum, salivary gland skin, spinal cord, spleen, stomach, thymus, thyroid gland, trachea, and urinary bladder. Lungs and nasal passage examined for low dose rats and mice
ANIMALS AND ANIMAL MAINTEN	ANCE	
Strain and Species F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice	F344/N rats; B6C3F ₁ mice
Animal Source Charles River Breeding Laboratories (Kingston, NY)	Charles River Breeding Laboratories (Kingston, NY)	Frederick Cancer Research Facility (Frederick, MD)
Study Laboratory Midwest Research Institute	Midwest Research Institute	Midwest Research Institute

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE INHALATIONSTUDIES OF VINYL TOLUENE

Fifteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
ANIMALS AND ANIMAL MAINTEN	ANCE (Continued)	
Method of Animal Identification Ear tag	Ear tag	Ear tag
Fime Held Before Study Rats21 d; mice28 d	20 d	19 d
Age When Placed on Study Rats7-8 wk; mice9-10 wk	Rats7-8 wk; mice8-9 wk	Rats9-10 wk; mice8-9 wk
Age When Killed Rats9-10 wk; mice11-12 wk	Rats20-21 wk; mice21-22 wk	Rats113-114 wk; mice112-113 wk
Necropsy Dates Rats10/15/80; mice9/4/80-9/5/80	4/8/81-4/10/81	Rats11/28/83-12/1/83; mice12/1/83-12/5/83
Method of Animal Distribution Assigned to groups according to a table of random numbers	Assigned to groups according to tables of random numbers and then placed in cages in numerical order	Same as 13-wk studies
Diet NIH 07 Rat and Mouse Ration (Zeigler Bros., Inc., Gardners, PA); available ad ibitum except during exposure periods	Same as 15-d studies	Same as 15-d studies and Purina Rodent Laboratory Chow® (Ralston Purina Co., St. Louis, MO)
Vater Vater bottles; available ad libitum luring nonexposure periods	Automatic watering system (Edstrom Industries, Waterford, WI) or water bottles; available ad libitum	Same as 13-wk studies
C hambers Stainless steel Hazleton 2000® (Hazleton Systems, Aberdeen, MD)	Young and Bertke (Cincinnati, OH); Stainless steel Hazleton 2000® (Hazleton Systems, Aberdeen, MD)	Same as 15-d studies
Animals per Cage	1 (or 5 for 10-ppm mice)	1
Other Chemicals on Study in the San None	ne Room None	None
Chamber Environment Rats: temp72°-78° F; hum30%-48%; fluorescent light 12 h/d; 10-17 room air changes/h during exposure periods; mice: temp68°-76° F; hum35%-53%; fluorescent light 12 h/d; 10-18 room air changes/h during exposure periods	Temp69°-81° F; hum30%-51%; fluo- rescent light 12 h/d; 10-18 room air changes/h during exposure periods	Temp65°-80° F; hum29%-94%; fluo rescent light 12 h/d; >10 room air changes/h

TABLE 1. EXPERIMENTAL DESIGN AND MATERIALS AND METHODS IN THE INHALATION STUDIES OF VINYL TOLUENE (Continued)

TWO-YEAR STUDIES

Study Design

Groups of 49 or 50 male and 50 female rats were exposed to air containing vinyl toluene at concentrations of 0 (chamber controls), 100, or 300 ppm, 6 hours per day, 5 days per week for 103 weeks. Groups of 50 mice of each sex were exposed to air containing vinyl toluene at concentrations of 0 (chamber controls), 10, or 25 ppm on the same schedule. Actual concentrations are summarized in Table G3.

Source and Specifications of Animals

The male and female F344/N rats and B6C3F1 (C57BL/6N, female \times C3H/HeN MTV⁻, male) mice used in these studies were produced under strict barrier conditions at Frederick Cancer Research Facility. Breeding stock for the foundation colonies at the production facility originated at the National Institutes of Health Repository. Animals shipped for study were progeny of defined microflora-associated parents that were transferred from isolators to barrier-maintained rooms. Rats were shipped to the study laboratory at 6-7 weeks of age and mice at 5-6 weeks of age. The animals were quarantined at the study laboratory for 3 weeks. Thereafter, a complete necropsy was performed on five animals of each sex and species to assess their health status. The rats were placed on study at 9-10 weeks of age and mice at 8-9 weeks of age.

Animal Maintenance

Rats and mice were housed individually. Feed (Appendix F) and water were available ad libitum. Serologic analyses were performed as described in Appendix E. Cages were rotated one position clockwise once per day, except on weekends and holidays, from December 1, 1981, until February 18, 1982, and once per week thereafter. Further details of animal maintenance are summarized in Table 1.

Clinical Examinations and Pathology

All animals were observed two times per day. Individual body weights were recorded once per week for the first 13 weeks of the studies and once per month thereafter. Mean body weights were calculated for each group. Animals found moribund and those surviving to the end of the studies were humanely killed. A necropsy was performed on all animals, including those found dead. One male from the control group was found to have been missexed and was discarded.

During necropsy, all organs and tissues were examined for grossly visible lesions. Tissues were preserved in 10% neutral buffered formalin, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Histopathologic examination of tissues was performed according to an "inverse pyramid" design (McConnell, 1983a,b). That is, complete histopathologic examinations (Table 1) were performed on all high dose and control animals and on low dose animals dying through month 20 (male rats and female mice) or 21 (female rats and male mice) of the study. In addition, histopathologic examinations were performed on all grossly visible lesions in all dose groups. The nasal passage and lung were considered potential target organs for chemically related neoplastic and nonneoplastic effects and were examined histopathologically in the low concentration groups.

When the pathology evaluation was completed by the laboratory pathologist and the pathology data entered into the Toxicology Data Management System, the slides, paraffin blocks, and residual formalin-fixed tissues were sent to the NTP Archives. The slides, blocks, and residual wet tissues were audited for accuracy of labeling and animal identification and for thoroughness of tissue trimming. The slides, individual animal necropsy records, and pathology tables were sent to an independent pathology quality assessment laboratory. The individual animal records and pathology tables were compared for accuracy, slides and tissue counts were verified, and histotechnique was evaluated. All tissues with a tumor diagnosis, all potential target tissues (nasal passage and lung), and all tissues from a randomly selected 10% of the animals from each control and high concentration group were reevaluated microscopically by a quality assessment pathologist. Nonneoplastic lesions were evaluated for accuracy and consistency of diagnosis only in the potential target organs and in the randomly selected 10% of animals.

The quality assessment report and slides were submitted to a Pathology Working Group (PWG) Chairperson, who reviewed microscopically all potential target tissues and any other tissues for which there was a disagreement in diagnosis between the laboratory and quality assessment pathologists. Representative examples of potential chemical-related nonneoplastic lesions and neoplasms and examples of disagreements in diagnosis between the laboratory and quality assessment pathologists were shown to the PWG. The PWG included the laboratory pathologist, the quality assessment pathologist, and other pathologists experienced in rodent toxicology, who examined the tissues without knowledge of dose group or previously rendered diagnoses. When the consensus diagnosis of the PWG differed from that of the laboratory pathologist, the diagnosis was changed to reflect the opinion of the PWG. This procedure has been described, in part, by Maronpot and Boorman (1982) and Boorman et al. (1985). The final pathology data represent a consensus of contractor pathologists and the NTP Pathology Working Group. For subsequent analysis of pathology data, the diagnosed lesions for each tissue type are combined according to the guidelines of McConnell et al. (1986).

Statistical Methods

Survival Analyses: The probability of survival was estimated by the product-limit procedure of Kaplan and Meier (1958) and is presented in the form of graphs. Animals were censored from the survival analyses at the time they were found to be dead from other than natural causes; animals dying from natural causes were not censored. Statistical analyses for a possible dose-related effect on survival used the method of Cox (1972) for testing two groups for equality and Tarone's (1975) life table test for a dose-related trend. When significant survival differences were detected, additional analyses using these procedures were carried out to determine the time point at which significant differences in the survival curves were first detected. All reported P values for the survival analysis are two-sided.

Calculation of Incidence: The incidence of neoplastic or nonneoplastic lesions is given as the ratio of the number of animals bearing such lesions at a specific anatomic site to the number of animals in which that site was examined. In most instances, the denominators include only those animals for which the site was examined histologically. However, when macroscopic examination was required to detect lesions (e.g., skin or mammary tumors) prior to histologic sampling, or when lesions could have appeared at multiple sites (e.g., lymphomas), the denominators consist of the number of animals on which a necropsy was performed.

Analysis of Tumor Incidence: The majority of tumors in this study were considered to be incidental to the cause of death or not rapidly lethal. Thus, the primary statistical method used was a logistic regression analysis, which assumed that the diagnosed tumors were discovered as the result of death from an unrelated cause and thus did not affect the risk of death. In this approach, tumor prevalence was modeled as a logistic function of chemical exposure and time. Both linear and quadratic terms in time were incorporated initially, and the quadratic term was eliminated if it did not significantly enhance the fit of the model. The dosed and control groups were compared on the basis of the likelihood score test for the regression coefficient of dose. This method of adjusting for intercurrent mortality is the prevalence analysis of Dinse and Lagakos (1983), further described and illustrated by Dinse and Haseman (1986). When tumors are incidental, this comparison of the time-specific tumor prevalences also provides a comparison of the timespecific tumor incidences (McKnight and Crowley, 1984).

In addition to logistic regression, alternative methods of statistical analysis were used, and the results of these tests are summarized in the appendixes. These include the life table test (Cox, 1972; Tarone, 1975), appropriate for rapidly lethal tumors, and the Fisher exact test and the Cochran-Armitage trend test (Armitage, 1971; Gart et al., 1979), procedures based on the overall proportion of tumor-bearing animals.

Tests of significance include pairwise comparisons of each dosed group with controls and a test for an overall dose-response trend. Continuitycorrected tests were used in the analysis of tumor incidence, and reported P values are onesided. The procedures described above also were used to evaluate selected nonneoplastic lesions. (For further discussion of these statistical methods, see Haseman, 1984.)

Historical Control Data: Although the concurrent control group is always the first and most appropriate control group used for evaluation, there are certain instances in which historical control data can be helpful in the overall assessment of tumor incidence. Consequently, control tumor incidences from the NTP historical control data base (Haseman et al., 1984, 1985) are included for those tumors appearing to show compound-related effects.

III. RESULTS

RATS

FIFTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

MICE

FIFTEEN-DAY STUDIES

THIRTEEN-WEEK STUDIES

TWO-YEAR STUDIES

Body Weights and Clinical Signs Survival Pathology and Statistical Analyses of Results

GENETIC TOXICOLOGY

FIFTEEN-DAY STUDIES

All rats lived to the end of the studies (Table 2). Lethargy, excessive lacrimation, and redstaining (porphyrin) material around the nose and mouth were observed for rats exposed to 1,300 ppm. The mean body weights at necropsy of rats exposed to 400-1,300 ppm were 13%-19% lower than that of the controls for males and 10%-13% lower for females.

Absolute and relative liver weights were significantly increased for rats exposed to 1,300 ppm (Table I1). Four of five male rats exposed to 1,300 ppm had centrilobular necrosis and focal inflammatory cell infiltration of the liver. Minimal-to-slight centrilobular vacuolization of the liver was seen in 5/5 female rats exposed to 1,300 ppm. Dysplasia of the bronchial epithelium, chronic bronchitis, and lymphoid hyperplasia of the lung were observed in all rats exposed to 1,300 ppm. The severity was minimal to slight in males and minimal in females. Because of decreased weight gain at 1,300 ppm (19% for males, 13% for females), the top concentration selected for the 13-week studies was 1,000 ppm.

THIRTEEN-WEEK STUDIES

All rats lived to the end of the studies (Table 3). The final mean body weights of rats exposed to 160, 400, or 1,000 ppm were 6%, 8%, or 19% lower than that of controls for males and 5%, 6%, or 12% lower for females. Excessive lacrimation, palpebral closure, and rough hair coats were seen in rats exposed to 1,000 ppm. Relative liver weights, but not absolute weights, for rats exposed to 1,000 ppm were significantly greater than those for controls (Table I2). A mild nephropathy characterized by increased tubular casts was found in male rats exposed to 160, 400, or 1,000 ppm. No compound-related lesions were observed in female rats.

TABLE 2. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE FIFTEEN-DAY INHALATIONSTUDIES OF VINYL TOLUENE

		Mear	n Body Weights	Necropsy Weight	
Concentration (ppm)	Survival (a)	Initial (b)	Necropsy	Change (c)	Relative to Controls (percent)
MALE			<u>.</u>	-, "	
0	5/5	148	211	+63	
200	5/5	145	203	+ 58	96
400	5/5	142	183	+41	87
800	5/5	145	183	+38	87
1,300	5/5	146	171	+25	81
FEMALE					
0	5/5	114	144	+30	
200	5/5	110	132	+22	92
400	5/5	111	129	+18	90
800	5/5	114	131	+17	91
1,300	5/5	113	125	+12	87

(a) Number surviving/number initially in group

(b) Initial group mean body weight

(c) Mean body weight change of the group

		Mea	n Body Weights	(grams)	Necropsy Weight
Concentration (ppm)	Survival (a)	Initial (b)	Necropsy	Change (c)	Relative to Controls (percent)
MALE					
0	10/10	159 ± 3	375 ± 11	$+216 \pm 9$	
25	10/10	155 ± 2	375 ± 7	$+220 \pm 6$	100
60	10/10	159 ± 3	372 ± 6	$+213 \pm 5$	99
160	10/10	158 ± 2	353 ± 6	$+195 \pm 5$	94
400	10/10	155 ± 2	346 ± 9	$+191 \pm 7$	92
1,000	10/10	155 ± 4	302 ± 10	$+147 \pm 7$	81
FEMALE					
0	10/10	125 ± 2	214 ± 5	$+89 \pm 3$	
25	10/10	124 ± 2	212 ± 4	$+88 \pm 3$	99
60	10/10	125 ± 2	209 ± 3	$+84 \pm 2$	98
160	10/10	124 ± 1	204 ± 1	$+80 \pm 1$	95
400	10/10	123 ± 1	201 ± 2	$+78 \pm 2$	94
1,000	10/10	122 ± 1	189 ± 4	$+67 \pm 3$	88

TABLE 3. SURVIVAL AND MEAN BODY WEIGHTS OF RATS IN THE THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean

(c) Mean body weight change of the group \pm standard error of the mean

Dose Selection Rationale: Because of lower mean body weight gain at 160 ppm or more, increased relative liver weights at 1,000 ppm, and mild nephrotoxicity in males, inhalation exposure concentrations selected for rats for the 2year studies were 100 and 300 ppm vinyl toluene, 6 hours per day, 5 days per week.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Mean body weights of male rats exposed to 300 ppm were generally 4%-8% lower than those of controls after week 2 (Table 4 and Figure 3). Mean body weights of female rats exposed to 100 and 300 ppm were generally 5%-11% lower than those of controls after week 21. No compound-related clinical signs were observed.

Weeks	Chambe	r Control		100 ppm		<u> </u>	300 ppm	
on Study	Av. Wt. (grams)	Number of Survivors	Av. Wt. (grams)	Wt. (percent of chamber controls)	Number of Survivors	Av. Wt. (grams)	Wt. (percent of chamber controls	Number of Survivors
MALE	<u>-</u> <u>-</u> <u>-</u>				<u></u>			<u>_</u>
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 13\\ 12\\ 13\\ 12\\ 13\\ 12\\ 13\\ 229\\ 33\\ 7\\ 41\\ 499\\ 35\\ 7\\ 61\\ 669\\ 73\\ 81\\ 89\\ 99\\ 77\\ 81\\ 81\\ 89\\ 99\\ 97\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 10$	$\begin{array}{c} 185\\ 210\\ 232\\ 250\\ 266\\ 279\\ 289\\ 298\\ 307\\ 321\\ 331\\ 337\\ 352\\ 374\\ 390\\ 403\\ 409\\ 416\\ 434\\ 440\\ 441\\ 457\\ 462\\ 441\\ 446\\ 441\\ 457\\ 462\\ 461\\ 459\\ 467\\ 462\\ 463\\ 457\\ 449\\ 463\\ 457\\ 443\\ 434\\ 434\\ 443\\ 443\\ 443\\ 443\\ 44$	$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49\\ 49$	$\begin{array}{c} 191\\ 210\\ 229\\ 247\\ 263\\ 276\\ 288\\ 298\\ 310\\ 316\\ 324\\ 335\\ 346\\ 352\\ 388\\ 401\\ 408\\ 401\\ 408\\ 408\\ 408\\ 408\\ 408\\ 408\\ 408\\ 408$	103 100 99 99 99 99 100 100 100 101 98 98 99 99 99 99 99 99 99 99 99 100 100 100	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$\begin{array}{c} 185\\ 205\\ 218\\ 234\\ 251\\ 262\\ 273\\ 294\\ 300\\ 309\\ 318\\ 326\\ 333\\ 369\\ 367\\ 381\\ 387\\ 397\\ 406\\ 410\\ 415\\ 418\\ 422\\ 430\\ 435\\ 438\\ 442\\ 440\\ 441\\ 442\\ 441\\ 441\\ 443\\ 433\\ 414 \end{array}$	100 98 94 94 94 94 94 94 94 94 95 96 93 94 95 95 95 96 94 95 95 96 94 95 95 96 94 95 95 95 95 96 94 95 96 94 95 96 96 92 100 93	50 50 50 50 50 50 50 50 50 50 50 50 50 5
Mean for wee 1-13 17-49 53-101	294 414 454		291 411 444	99.0 99.3 97.8		277 3 94 433	94.2 95.2 95.4	
FEMALE	2							
$\begin{array}{c} 0\\ 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 17\\ 21\\ 29\\ 33\\ 41\\ 45\\ 33\\ 37\\ 41\\ 45\\ 53\\ 57\\ 61\\ 65\\ 69\\ 777\\ 81\\ 85\\ 89\\ 93\\ 97\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 101\\ 10$	132 144 153 161 167 176 182 196 195 197 204 204 207 202 230 232 239 247 254 270 285 295 305 312 321 326 330 334 333 329	$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$	$\begin{array}{c} 133\\ 142\\ 148\\ 155\\ 162\\ 166\\ 170\\ 175\\ 181\\ 184\\ 187\\ 191\\ 195\\ 201\\ 210\\ 220\\ 225\\ 234\\ 240\\ 249\\ 249\\ 258\\ 267\\ 276\\ 282\\ 290\\ 294\\ 297\\ 301\\ 305\\ 302\\ 306\\ 305\\ 298 \end{array}$	101 99 97 96 97 96 97 96 97 96 97 96 97 95 96 97 95 96 97 95 94 89 95 94 89 92 91 91 90 90 90 90 91 91 91 91	50 50 50 50 50 50 50 50 50 50 50 50 50 5	$134\\142\\146\\153\\160\\165\\169\\173\\178\\182\\185\\187\\190\\193\\204\\208\\214\\219\\224\\230\\238\\246\\249\\262\\271\\275\\280\\283\\291\\293\\299\\298\\304\\300\\303\\303$	102 99 95 96 95 96 96 96 95 95 95 95 95 94 94 94 94 94 94 92 92 92 90 90 88 90 92 92 92 90 92	$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$
Mean for wee 1-13 17-49 53-101	941 179 241 319		173 226 291	96.6 93.8 91.2		171 226 290	95.5 93.8 90.9	

TABLE 4. MEAN BODY WEIGHTS AND SURVIVAL OF RATS IN THE TWO-YEAR INHALATION STUDIES OF VINYL TOLUENE

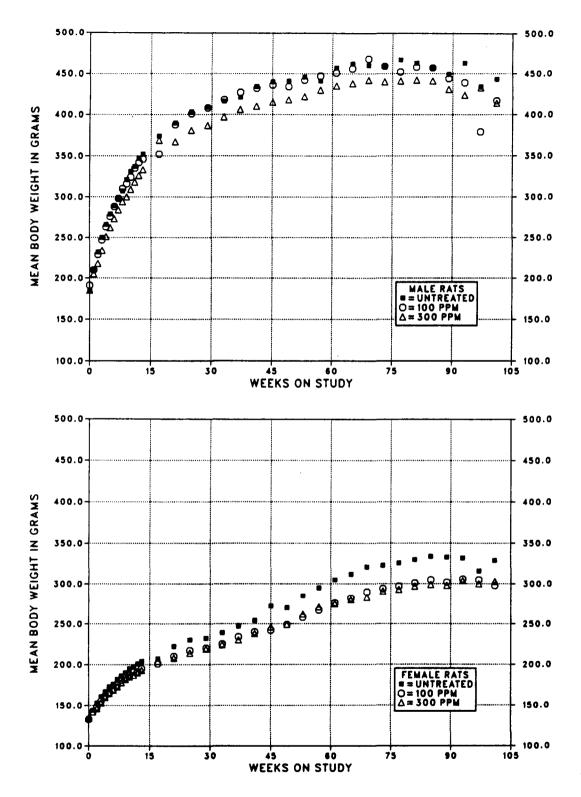


FIGURE 3. GROWTH CURVES FOR RATS EXPOSED TO VINYL TOLUENE BY INHALATION FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female rats exposed to vinyl toluene at the concentrations used in these studies and for controls are shown in Table 5 and in the Kaplan and Meier curves in Figure 4. No significant differences in survival were seen between any groups of rats of either sex.

Pathology and Statistical Analyses of Results

This section describes the statistically significant

or biologically noteworthy changes in the incidences of rats with neoplastic or nonneoplastic lesions of the nasal passage, kidney, and urinary bladder.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes A and B for male and female rats, respectively.

TABLE 5. SURVIVAL OF RATS IN THE TWO-YEAR INHALATION STUDIES OF VINYL TOLUENE

	Chamber Control	100 ppm	300 ppm
MALE (a)		· · · · · · · · · · · · · · · · · · ·	
Animals initially in study	50	50	50
Natural deaths	6	4	3
Moribund kills	24	29	28
Animals missexed	1	0	0
Animals surviving to study termination	19	17	19
Mean survival (days)	648	648	665
Survival P values (b)	0.762	0.825	0.878
FEMALE (a)			
Animals initially in study	50	50	50
Natural deaths	3	1	6
Moribund kills	16	21	18
Animals surviving to study termination	31	28	26
Mean survival (days)	677	683	667
Survival P values (b)	0.372	0.733	0.399

(a) First day of termination period: 728

(b) The result of the life table trend test is in the chamber control column, and the results of the life table pairwise comparisons with the chamber controls are in the dosed columns.

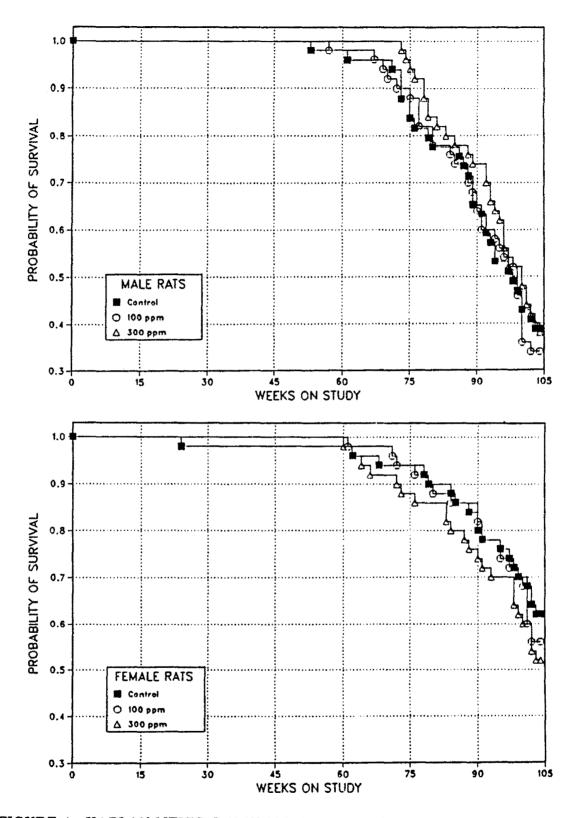


FIGURE 4. KAPLAN-MEIER SURVIVAL CURVES FOR RATS EXPOSED TO VINYL TOLUENE BY INHALATION FOR TWO YEARS

Nasal Passage: Degenerative and nonneoplastic proliferative lesions occurred at increased incidences in the nasal mucosa of exposed rats (Table 6). Hyperplasia of the respiratory epithelium was usually diffuse and was characterized by increased numbers of goblet cells and increased height of the epithelium; in some males, slight folding of the epithelium (papillary hyperplasia) was seen. The cysts were small, intraepithelial glandlike structures distended with mucus. Lesions involving the olfactory epithelium occurred primarily in the anterior region along the dorsal meatus. The olfactory epithelium was focally eroded; the underlying Bowman's glands were cystically dilated, and the glandular epithelium was replaced by ciliated columnar cells (olfactory epithelium, cyst). In some exposed male rats, the olfactory epithelium was focally replaced by pseudostratified ciliated columnar epithelium (respiratory epithelial metaplasia). In the olfactory epithelium of exposed female rats, there were increased numbers of cells with homogeneous eosinophilic cytoplasm or hyaline degeneration (hyperplasia, eosinophil). This degenerative change apparently results from the intracytoplasmic accumulation of secretory material.

Neoplasms of the nasal mucosa did not occur in exposed or control rats of either sex.

Kidney: Lipomas were observed in 2/50 male rats exposed to 300 ppm. The lipoma of the kidney is a benign mesenchymal neoplasm consisting of completely differentiated fat cells with interspersed fibrocytes, collagen, and blood vessels. The historical incidence of renal mesenchymal neoplasms in male F344/N rats is 0/346 for chamber controls and 2/1,590 (0.1%) for untreated controls; the highest observed incidence is 1/50.

Urinary Bladder: Papillomas of the transitional epithelium were observed in 2/49 male rats exposed to 300 ppm. The historical incidence of urinary bladder transitional epithelium neoplasms in male F344/N rats is 3/339 (0.9%) for chamber controls and 1/1,552 (0.1%) for untreated controls; no more than one neoplasm has been observed in any control group. Hyperplasia of the transitional epithelium was not observed in males; hyperplasia was seen in a single high concentration female rat.

		Male		Female			
Site/Lesion	Chamber Control	100 ppm	300 ppm	Chamber Control	100 ppm	300 ppm	
Number examined	48	50	50	50	49	50	
Olfactory epithelium							
Cyst	0	4	*6	0	*5	**13	
Erosion	0	**8	1	0	3	4	
Hyperplasia, eosinophil (a)	1	0	0	2	*9	**21	
Metaplasia	0	*6	4	0	1	0	
Respiratory epithelium							
Ċyst	2	**13	*9	0	*6	**10	
Hyperplasia	12^{-12}	*24	**28	8	**19	**19	

TABLE 6. NUMBERS OF RATS WITH SELECTED LESIONS IN THE NASAL PASSAGE IN THETWO-YEAR INHALATION STUDIES OF VINYL TOLUENE

(a) Refers to hyperplasia of the olfactory epithelial cells that also have eosinophilic cytoplasm

*P<0.05 vs. controls

**P<0.01 vs. controls

FIFTEEN-DAY STUDIES

Three of five male mice exposed to 200 ppm died before the end of the studies (Table 7). Compound-related clinical signs seen at 200 ppm included lethargy and palpebral closure. Ataxia was seen at 100 ppm. There was no correlation between the exposure concentration and the change in mean body weights. The absolute and relative liver weights were increased for mice exposed to 200 ppm (Table I3). One control mouse and five mice of each sex exposed to 200 ppm were examined microscopically. Severe hyperemia and hemorrhage of the pulmonary parenchyma were seen in exposed male mice that died on day 3. Three other exposed male mice had interstitial pneumonia. Four of five male mice exposed to 200 ppm had moderate-tosevere necrosis of the liver; all five female mice exposed to 200 ppm had hyperplasia of the epithelium of the intrapulmonary bronchi and centrilobular hepatocellular necrosis, vacuolization, and polymorphonuclear leukocyte infiltrates in the liver.

THIRTEEN-WEEK STUDIES

The incidence of deaths was not related to the exposure concentrations (Table 8). The final mean body weights of mice exposed to 25, 60, or 160 ppm were 12%, 12%, or 20% lower than that of controls for males and 13%, 14%, or 16% lower for females. Lethargy was observed for mice exposed to 60 or 160 ppm; palpebral closure was observed for mice exposed to 160 ppm. The relative liver weights for exposed and control mice were not significantly different (Table I4). Inflammation of the lung was observed in 5/10 male and 3/9 female mice exposed to 160 ppm, in 4/9 male and 2/10 female mice exposed to 60 ppm, and in 1/10 female controls. Metaplasia of the respiratory epithelium of the nasal turbinates (hyaline cytoplasmic alteration) was seen in all exposed groups. Acute inflammation and/or metaplasia of the nasal turbinates were seen in 7/10 male and 9/9 female mice exposed to 160 ppm, 7/8 male and 10/10 female mice exposed to 60 ppm, 8/9 male and 9/10 female mice exposed to 25 ppm, 3/10 male and 4/10 female mice exposed to

		Me	an Body Weights	Necropsy Weight		
Concentration (ppm)	Survival (a)			Change (b)	Relative to Controls (percent)	
MALE				······		
0	5/5	24.0	26.4	+2.4		
10	5/5	27.0	27.8	+0.8	105	
25	5/5	26.2	27.6	+1.4	105	
50	5/5	26.2	26.0	-0.2	98	
100	5/5	27.0	27.2	+0.2	103	
200	(c) 2/5	26.4	26.5	+0.1	100	
FEMALE						
0	5/5	22.6	24.8	+2.2		
10	5/5	21.2	23.6	+2.4	95	
25	5/5	23.4	24.8	+1.4	100	
50	5/5	21.6	22.6	+1.0	91	
100	5/5	23.2	23.8	+0.6	96	
200	5/5	22.4	23.6	+1.2	95	

TABLE 7. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE FIFTEEN-DAY INHALATIONSTUDIES OF VINYL TOLUENE

(a) Number surviving/number initially in group

(b) Mean body weight change of the group

(c) Day of death: 3,3,6

Concentration (ppm)	Survival (a)	Mean Body Weights (grams)			Necropsy Weight
		Initial (b)	Necropsy	Change (c)	Relative to Controls (percent)
MALE					
0	(d) 9/10	23.2 ± 0.4	33.1 ± 0.7	$+9.8 \pm 0.7$	
10	(e) 5/10	22.6 ± 0.7	33.4 ± 1.1	$+10.2 \pm 1.0$	101
25	10/10	22.4 ± 0.5	29.1 ± 0.5	$+6.7 \pm 0.2$	88
60	(f) 4/10	22.9 ± 0.5	29.0 ± 0.4	$+5.5 \pm 0.3$	88
160	(g) 8/10	23.3 ± 0.5	26.5 ± 0.5	$+2.9 \pm 0.5$	80
FEMALE					
0	10/10	18.4 ± 0.2	27.6 ± 0.8	$+9.2 \pm 0.8$	
10	(e) 8/10	17.5 ± 0.4	25.8 ± 0.6	$+8.4 \pm 0.5$	93
25	10/10	17.7 ± 0.7	24.0 ± 0.4	$+6.3 \pm 0.5$	87
60	10/10	17.2 ± 0.7	23.8 ± 0.4	$+6.6 \pm 0.6$	86
160	10/10	16.9 ± 0.8	23.2 ± 0.3	$+6.3 \pm 0.7$	84

TABLE 8. SURVIVAL AND MEAN BODY WEIGHTS OF MICE IN THE THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE

(a) Number surviving/number initially in group

(b) Initial group mean body weight \pm standard error of the mean. Subsequent calculations are based on animals surviving to the end of the study.

(c) Mean body weight change of the survivors \pm standard error of the mean

(d) Week of death: 4

(e) Killed after accidental overexposure during week 5

(f) Week of death: all 2

(g) Week of death: all 1 $\,$

10 ppm, and 1/10 female controls. Lesions of the lungs and nasal turbinates were not seen in the male controls.

TWO-YEAR STUDIES

Body Weights and Clinical Signs

Dose Selection Rationale: Because of lower mean body weight gain of animals exposed to 25 ppm or more, lesions in the nasal passage, and lethargy at 60 ppm and higher, inhalation exposure concentrations selected for mice for the 2-year studies were 10 and 25 ppm vinyl toluene, 6 hours per day, 5 days per week. Mean body weights of mice exposed to 25 ppm were 10%-23% lower than those of controls after week 8; mean body weights of mice exposed to 10 ppm were 5%-14% lower than those of controls after week 37 for males and week 41 for females (Table 9 and Figure 5). No compound-related clinical signs were seen.

Weeks		er Control		<u>10 ppm</u>		·····	25 ppm	
on Study	Av. Wt. (grams)	Number of Survivors	Av. Wt. (grams)	Wt. (percent of chamber controls)	Number of Survivors	Av. Wt. (grams)	Wt. (percent of chamber controls)	Number of Survivors
ALE		<u>-</u>					<u></u>	
0 1	24.0 25.6	50 50	24.4 25.1	102 98	50 50	24.7 24.8	103 97	50 50
2	26.6	50	26.7	100	50	25.2	95	50 50 50 50 50 50 50 50 50 50
3 4	26.9 28.0	50 50	27.4 28.0	102 100	50 50	$25.0 \\ 25.2$	93 90	50 50
5	28.2 29.2	50 50	28.5 29.4	101 101	50 50	26.4 26.3	94 90	50
6 7	29.1	50	29.6	102	50	27.0	93	50
8 9	30.0 30.3	50 50	30.2 30.3	101 100	50 50	26.9 27.1	90 89	50 50
10 11	30.7 31.4	50 50	$31.1 \\ 31.8$	101 101	50 50	27.6 27.9	90 89	50 50
12	32.0	50	32.0	100	50	28.1	88	50
13 17	32.3 32.7	50 50	32.2 32.1	100 98	50 50	28.2 28.6	87 87	50 50
21 25 29 33 37 41 45 49 53 57 61	34.2 34.4	50 50	33.0 33.4	96 97	50 50	29.2 29.1	85 85	50 48
29	35.7	50	33.6	94	50	29.9	84	48
33 37	36.2 36.4	50 50	35.1 34.3	97 94	50 50	30.2 30.5	83 84	48 47
41	37.7 38.3	49 49	35.0 35.8	93 93	50 50	31.2 32.0	84 83 84	47 47
49	38.4	49	36.3	95	50	31.4	82	47
53 57	39.4 39.9	49 49	36.5 37.5	93 94	49 48	31.7 32.0	80 80	47 47
61	40.3	49	37.5 37.7	94	48	32.5	81	47 47
69	40.3 41.5	49 49	37.9 38.2	94 92	47 47	32.8 33.3	81 80	47
65 69 73 77	40.7 39.7	49 47	37.9 37.3	93 94	49 48 48 47 47 47 47 47	32.9 32.9	81 83	47 47
81	40.2	47	36.8	92	45 42	33.2	83	47
85 89	40.7 40.2	45 44	36.0 36.5	88 91	41	33.2 33.3	82 83	46 46
93 97	40.3 40.3	42 38	36.4 36.7	90 91	38 35	33.3 33.7	83 84	46 45
101	39.6	36	36.3	92	32	33.6	85	42
an for wee 1-13	29.3		29.4	100.3		26.6	90.1	
17- 49 3-101	36.0 40.2		34.3 37.1	95.3 92.3		30.2 33.0	83.9 82.1	
EMALE	E							
0 1	18.7 20.0	50 50	19.1 19.8	102 99	50 50	18.9 20.0	101 100	50 49
2 3	$21.3 \\ 22.8$	50 50	$21.6 \\ 22.1$	101 97	50	20.3 21.0	95 92	49 49
4	23.2	50	22.8	98	50	21.1	91	49
5 6	23.6 24.2	50 50	23.2 23.5	98 97	50 50 50 50 50 50 50 50 50	21.5 21.9	91 90	49 48 48 48 48 48 48 48
7 8	24.2 24.9	49 49	$24.6 \\ 24.5$	102 98	50 50	$22.3 \\ 22.1$	92 89	48 48
9	25.8	49	25.4	98	50	22.8	89 88	48
10 11	26.0 26.5	49 49	25.9 26.3	100 99	50 50	22.6 23.1	87 87	48 48
12 13	26.9 26.4	49 49	26.4 26.4	98 100	50 50	23.3 23.6	87 89	48 48
17 21	26.4 27.2 28.8	49 49	26.5	97	50	23.7	87	48
25	28.5	49	27.6 28.0	96 98	50	$\begin{array}{c} 24.4 \\ 24.7 \end{array}$	85 87	48 42
25 29 33	29.9 31.1	49 49	27.7 29.4	93 95	50 50 50 50	25.2 26.0	84 84	48 42 42 42
37 41	30.1	49	29.0	96	50	26.1	87	42
45	31.1	49 49 49 49	28.7 29.6 29.6 29.5	92 95 93	50 50	26.2 26.6 26.9	84 86	42 42 42
49 53	32.0 33.4	49 49	29.6 29.5	93 88	50 50	26.9 26.8	84 80	42 41
57	32.9	49	29.9	88 91	50	27.0	82	41
65	33.0	49 49	30.1 30.4	90 92	50 50	26.9 27.2	80 83	41 41
45 49 53 57 61 65 69 73 77 81	31.2 31.1 32.0 33.4 32.9 33.6 32.9 34.8 34.7 35.2 35.6 35.9 35.8 35.8 35.3	49 49 48 48 48 48 48	31.0 31.0	89 89	50 50 50 50 50 50 49 49 49 49 49 49 49 47 47	27.4 27.3	80 83 79 79 78 78 78 77 77	41 40 40 40 40 40
77	35.2	48	30.9	88	49	27.4	78	40
85	35.9	45	30.8 30.4	87 85	49 48	27.7 27.7	78 77	40 40
89 93	35.8 35.3	45 45	30.8 30.0	86 85	47 47	27.7 27.8	77 79	38 38
85 89 93 97 101	35.2 34.8	44 40	30.8 31.3	88 90	45 39	27.9 28.2	79 81	38 38 35 35
an for wee 1-13 17-49		*0	0.10	20	29	20.2	01	30
1-13	24.3 30.0		24.0 28.5	98.8 95.0		22.0 25.3	90.5 85.0	
17-49								

TABLE 9. MEAN BODY WEIGHTS AND SURVIVAL OF MICE IN THE TWO-YEAR INHALATIONSTUDIES OF VINYL TOLUENE

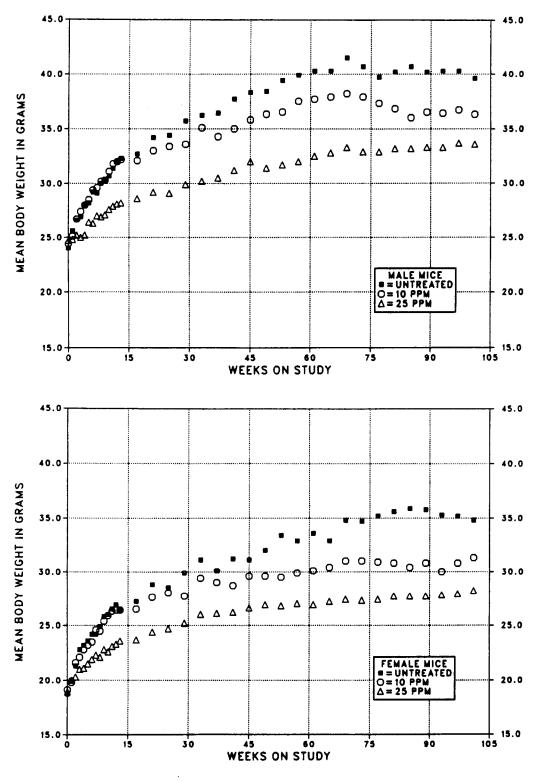


FIGURE 5. GROWTH CURVES FOR MICE EXPOSED TO VINYL TOLUENE BY INHALATION FOR TWO YEARS

Survival

Estimates of the probabilities of survival for male and female mice exposed to vinyl toluene at the concentrations used in these studies and for controls are shown in Table 10 and in the Kaplan and Meier curves in Figure 6. During week 21, liquid vinyl toluene entered the 25ppm chamber due to a technical error in the connection of the vinyl toluene vapor generation lines; two males and six females came into direct contact with the liquid and died or were killed in a moribund condition. The survival of male mice exposed to 25 ppm was significantly greater than that of controls after day 707. No other significant differences in survival were seen between any groups of either sex.

Pathology and Statistical Analyses of Results

This section describes the statistically significant or biologically noteworthy changes in the incidences of mice with neoplastic or nonneoplastic lesions of the nasal passage, lung, hematopoietic system, and liver.

Summaries of the incidences of neoplasms and nonneoplastic lesions, individual animal tumor diagnoses, statistical analyses of primary neoplasms that occurred with an incidence of at least 5% in at least one animal group, and historical control incidences for the neoplasms mentioned in this section are presented in Appendixes C and D for male and female mice, respectively.

TABLE 10. SURVIVAL OF MICE IN THE TWO-YEAR INHALATION STUDIES OF VINYL TOLUENE

	Chamber Control	10 ppm	25 ppm
MALE (a)			······································
Animals initially in study	50	50	50
Natural deaths	6	7	2
Moribund kills	10	13	4
Killed accidentally	1	0	3
Animals surviving to study termination	33	30	41
Mean survival (days)	694	679	691
Survival P values (b)	0.026	0.472	0.031
FEMALE (a)			
Animals initially in study	50	50	50
Natural deaths	8	2	7
Moribund kills	6	10	i
Killed accidentally	Õ	1	8
Animals surviving to study termination	36	37	34
Mean survival (days)	698	712	611
Survival P values (b)	0.434	0.847	0.473

(a) First day of termination period: 731

(b) The result of the life table trend test is in the chamber control column, and the results of the life table pairwise comparisons with the chamber controls are in the dosed columns.

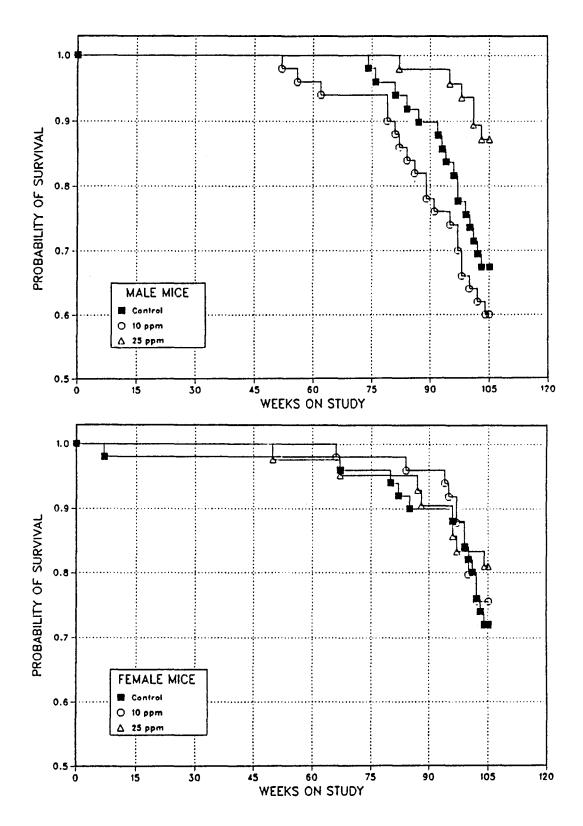


FIGURE 6. KAPLAN-MEIER SURVIVAL CURVES FOR MICE EXPOSED TO VINYL TOLUENE BY INHALATION FOR TWO YEARS

Nasal Passage: Increased incidences of chronic active inflammation and hyperplasia of the respiratory epithelium occurred in exposed mice (Table 11). Lesions were located in the middle and posterior portions of the dorsal meatus. The severity of the lesions was dose related: inflammation and hyperplasia were generally mild and moderate in the 10-ppm males and females, respectively, and moderate and marked in the 25-ppm males and females, respectively. Inflammation was characterized by focal infiltration of the mucosa by varying numbers of neutrophils and mononuclear cells. Hyperplasia consisted of increased height of the epithelium. downgrowth of ciliated columnar cells into the submucosal glands, formation of intraepithelial glandlike structures, and extension of the respiratory epithelium into areas usually covered by olfactory epithelium. Neoplasms of the nasal passage were not observed.

Lung: Chronic active inflammation of the bronchioles occurred at increased incidences in exposed mice (Table 11). The severity of the lesion was minimal to moderate and varied considerably within and among the exposure groups. It consisted of focal accumulations of neutrophils, macrophages, and lymphocytes within the walls of bronchioles and the interstitium of adjacent alveoli. The epithelium of affected alveoli had increased numbers of cuboidal cells; the lumina contained some inflammatory cells, proteinaceous material, and when severe, eosinophilic crystals and cholesterol clefts.

Alveolar/bronchiolar neoplasms occurred with a significant negative trend in male mice, and the incidences in the 25-ppm group were significantly lower than those in controls (Table 12).

Hematopoietic System: Lymphomas in males occurred with a significant negative trend; the incidence in the group exposed to 25 ppm was significantly lower than that in the controls (Table 13). A marginal (P < 0.10) decrease was also observed for exposed females (chamber control, 16/48; low dose, 9/49; high dose, 8/50).

Liver: The incidences of hepatocellular carcinomas and adenomas or carcinomas (combined) in the female group exposed to 25 ppm were significantly lower than those in controls (Table 14).

 TABLE 11. NUMBERS OF MICE WITH SELECTED RESPIRATORY TRACT LESIONS IN THE

 TWO-YEAR INHALATION STUDIES OF VINYL TOLUENE

		Male			Female	
Site/Lesion	Chamber Control	10 ppm	25 ppm	Chamber Control	10 ppm	25 ppm
Number examined (a)	50	48	49	48	49	48
Nasal passage						
Chronic active inflammation Respiratory epithelium	2	**47	**48	3	**49	**47
Hyperplasia	5	**48	**49	5	**49	**47
Lung/bronchiole						
Chronic active inflammation	0	**(b) 15	**30	0	**14	**(b) 37

(a) Unless otherwise specified

(b) Forty-nine mice were examined.

**P<0.01 vs. controls

TABLE 12. ALVEOLAR/BRONCHIOLAR NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (a)

	Chamber Control	10 ppm	25 ppm (b)
Adenoma		<u> </u>	
Overall Rates	9/50 (18%)	2/49 (4%)	2/49 (4%)
Terminal Rates	6/33 (18%)	2/30 (7%)	2/41 (5%)
Day of First Observation	687	731	731
Logistic Regression Tests	P = 0.011N	P = 0.037N	P = 0.018N
Carcinoma			
Overall Rates	3/50 (6%)	3/49 (6%)	0/49 (0%)
Adenoma or Carcinoma (c)			
Overall Rates	12/50 (24%)	5/49 (10%)	2/49 (4%)
Terminal Rates	8/33 (24%)	4/30 (13%)	2/41 (5%)
Day of First Observation	687	358	731
Logistic Regression Tests	P = 0.003 N	P = 0.065N	P = 0.003 N

(a) For a complete explanation of the entries in this table, see Table C3 (footnotes); the statistical analyses used are discussed in Section II (Statistical Methods).

(b) Two males died or were killed at week 21 after coming into direct contact with liquid vinyl toluene that entered the chamber. (c) Historical incidence in chamber controls in NTP studies (mean \pm SD): 82/398 (21% \pm 8%); historical incidence in untreated controls in NTP studies: 277/1,684 (16% \pm 7%)

TABLE 13. HEMATOPOIETIC SYSTEM NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (a)

	Chamber Control	10 ppm	25 ppm (b)
_ymphoma (c)			. <u> </u>
Overall Rates	7/50 (14%)	3/50 (6%)	0/50 (0%)
Terminal Rates	6/33 (18%)	2/30 (7%)	0/41 (0%)
Day of First Observation	670	632	
Life Table Tests	P = 0.003N	P = 0.203N	P = 0.004 N
Logistic Regression Tests	P = 0.005N	P = 0.186N	P = 0.006N

(a) For a complete explanation of the entries in this table, see Table C3 (footnotes); the statistical analyses used are discussed in Section II (Statistical Methods).

(b) Two males died or were killed at week 21 after coming into direct contact with liquid vinyl toluene that entered the chamber. (c) Historical incidence of lymphomas or leukemia (combined) in chamber controls in NTP studies (mean \pm SD): 33/398 (8% \pm 3%); historical incidence in untreated controls in NTP studies: 196/1,692 (12% \pm 6%)

TABLE 14. HEPATOCELLULAR NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION
STUDY OF VINYL TOLUENE (a)

	Chamber Control	10 ppm	25 ppm (b)
Adenoma			· · · ·
Overall Rates	4/48 (8%)	(c) 2/16 (13%)	2/49 (4%)
Carcinoma			
Overall Rates	6/48 (13%)	(c) 3/16 (19%)	0/49 (0%)
Terminal Rates	4/36 (11%)		0/34 (0%)
Day of First Observation	692		
Logistic Regression Test			P = 0.026N
Adenoma or Carcinoma (d)			
Overall Rates	9/48 (19%)	(c) 5/16 (31%)	2/49 (4%)
Terminal Rates	7/36 (19%)		1/34 (3%)
Day of First Observation	692		42
Logistic Regression Test			P = 0.021N

(a) For a complete explanation of the entries in this table, see Table D3 (footnotes); the statistical analyses used are discussed in Section II (Statistical Methods).

(b) Six females died or were killed at week 21 after coming into direct contact with liquid vinyl toluene that entered the chamber.

(c) Incomplete sampling of tissues for low concentration group for nontarget tissues

(d) Historical incidence in chamber controls in NTP studies (mean \pm SD): 34/397 (9% \pm 3%); historical incidence in untreated controls in NTP studies: 163/1,683 (10% \pm 4%)

Vinyl toluene did not induce gene mutations in Salmonella typhimurium strains TA98, TA100, TA1535, or TA1537 when tested in a preincubation protocol at doses up to 1,000 µg/plate with or without Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9 (Zeiger et al., 1987; Table H1). In the mouse lymphoma assay for induction of trifluorothymidine resistance in L5178Y cells, vinyl toluene gave a positive response in two trials conducted without S9 at the highest doses tested; these doses also produced severe toxicity, as evidenced by a relative total growth of less than 10% (McGregor et al., 1988; Table H2). Vinyl toluene was not tested in the mouse lymphoma assay with S9. In cytogenetic tests with Chinese hamster ovary cells, vinyl toluene did not induce sister chromatid exchanges or chromosomal aberrations in either the presence or the absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 (Table H3). The methodology and full results are presented in Appendix H.

IV. DISCUSSION AND CONCLUSIONS

Inhalation studies of the toxicity and carcinogenicity of vinyl toluene were conducted in F344/N rats and B6C3F₁ mice of each sex. For the 2-year studies, groups of 50 rats of each sex were exposed to vinyl toluene for 6 hours per day, 5 days per week for 103 weeks at concentrations of 0, 100, or 300 ppm; groups of mice were exposed under similar conditions to 0, 10, or 25 ppm. For both rats and mice, concentration selection for the 2-year studies was based primarily on body weight effects, lethargy, and toxic lesions of the nasal passage observed in the 15-day and 13-week studies.

The mice were approximately 10 times more sensitive to inhalation of vinyl toluene than were the rats in the current studies. Intraperitoneal injections of vinyl toluene show that mice are also more sensitive by that route, experiencing a more pronounced reduction in hepatic glutathione content than do rats (Heinonen and Vainio, 1980). Injection did not affect hepatic P450 enzymes in rats but caused profound depression in mice. Mice clearly are more sensitive to the toxic effects of vinyl toluene than are rats, but the exact mechanisms that account for this species difference are not known.

Throughout the 2-year studies, body weights of rats exposed to 300 ppm vinyl toluene averaged 4%-11% lower than those of controls. No significant differences in survival were seen in any groups of rats of either sex. The lowered body weights and the chemically related lesions occurring in the nasal passage indicated that the concentrations were adequate for assessing the long-term toxicity and carcinogenicity of vinyl toluene and that higher doses would not have been appropriate.

In rats, the most striking change in the nasal passage was a loss of olfactory epithelium with replacement by respiratory epithelium. This change was most prominent in the most anterior extension of the olfactory epithelium along the dorsal meatus, where exposure to the chemical may be highest. The Bowman's glands beneath the olfactory epithelium also were often replaced by ciliated columnar cells similar to the respiratory epithelium. These changes have been seen with other toxic chemicals, such as methyl isocyanate (Boorman et al., 1987), dimethylamine (Buckley et al., 1985), and chlorine (Jiang et al., 1986), and may represent an adaptive response of the olfactory epithelium. There was a mild diffuse hyperplasia of the respiratory epithelium, which is often seen in association with an inflammatory response. Focal proliferative lesions or neoplasms of the nasal passage were not found in rats.

Transitional cell papillomas of the urinary bladder were seen in two male rats exposed to 300 ppm but were not considered to be related to vinyl toluene exposure. Hyperplastic lesions of the urinary bladder were not found in any animals. Neoplasms of the urinary bladder were not found in female rats, but one high concentration female had focal hyperplasia of the urinary bladder. The renal pelvis is lined by transitional epithelium similar to that which lines the urinary bladder; hyperplasia of the renal pelvic transitional epithelium was found in two control males and three high concentration females. Although transitional epithelial neoplasms of the urinary bladder are uncommon, the historical incidence of this neoplasm in chamber control male F344/N rats at the study laboratory is 3/339 (0.9%). The two neoplasms in the high concentration males were considered to be unrelated to vinyl toluene exposure because of the low number and lack of supporting evidence of hyperplasia.

Three mesenchymal renal neoplasms were found in the 300-ppm male rats. Two of these were diagnosed as lipomas and were considered to be of interstitial cell origin, a lipid-containing renal cell associated with aldosterone and electrolyte balance (Kriz and Kaissling, 1985). This neoplasm is uncommon in F344/N rats and has not been well described. Chemically induced neoplasms of the kidney are almost invariably derived from the epithelium of the nephron; some potent carcinogens induce nephroblastomalike neoplasms or anaplastic mesenchymal neoplasms (Hard, 1976). No chemicals have been associated with the induction of lipomas, and the occurrence of this neoplasm in two high concentration male rats is considered spurious and unrelated to the administration of vinyl toluene. The third renal mesenchymal neoplasm was a sarcoma that contained marked osseous metaplasia. This neoplasm was considered unrelated to the interstitial cell neoplasms (lipomas) or to vinyl toluene exposure.

During most of the 2-year studies, the body weights of mice exposed to 25 ppm vinyl toluene averaged 10%-23% lower than those of control mice, indicating that a higher exposure concentration could not have been tolerated even though there was no decreased survival in the exposed animals.

The lesions of the nasal passage in mice were analogous to those found in rats, with extension of respiratory epithelium into areas normally covered by olfactory epithelium. This may represent metaplasia of olfactory epithelium to ciliated cells similar in appearance to respiratory epithelium or loss of olfactory epithelium, with extension of the respiratory epithelium into areas of olfactory epithelium. This change was diagnosed as respiratory epithelial hyperplasia. As in the rats, ciliated cells extended down into and replaced the cells of Bowman's glands. There also appeared to be some atrophy of the nerves in the submucosa of the nasal passage, a lesion not recognized in rats. No primary neoplasms were seen in the nasal passage in mice.

Negative trends in the incidences of neoplasms were associated with vinyl toluene exposure in mice. Malignant lymphomas showed a marked decline in males and a marginally significant decrease in females. Pulmonary neoplasms were markedly decreased in males, but no difference was seen in females. Female mice also showed a marginal decline in hepatocellular neoplasms. The mice in these studies showed weight reduction associated with vinyl toluene exposure which may have been due to toxicity or reduced feed consumption. A decrease in neoplasms has been seen in rodents with reduced feed consumption (Zurcher et al., 1982), but the reason for the negative neoplasm trends in the current studies is not known.

Exposure to 300 ppm vinyl toluene previously resulted in a borderline experimental neuropathy in rats (Gagnaire et al., 1986). In a 21-week inhalation study, the animals did not show signs of neurotoxicity, and no structural changes were seen in teased nerve fiber preparations or by electron microscopy. However, temporary decreases in sensory and motor nerve conduction velocity were found in the tail of rats exposed to vinyl toluene for 15-20 weeks. In another study, a slight decrease in motor nerve conduction velocity was seen after exposure to 100 ppm for 12 weeks (Seppalainen and Savolainen, 1982a,b). No clinical or histologic evidence of nerve damage was seen after 2 years, suggesting that these changes were indeed borderline.

Epoxide intermediates are possibly formed by the metabolism of vinyl toluene (Heinonen and Vainio, 1980), and it has been suggested that the main reactive intermediate is vinyl toluene-7.8oxide (Heinonen, 1984). Because of their electrophilic character, the intermediates could bind to nucleic acids and proteins, leading to toxicity, mutagenicity, and carcinogenicity. In the current studies, there was moderate evidence of toxicity and vinyl toluene was mutagenic in cultured mammalian cells, but there was no evidence of carcinogenicity. The reason for the lack of carcinogenicity is unknown, but given the toxicity seen in the nasal passage and the body weight losses, it is unlikely that the rats or mice could have tolerated much higher concentrations.

The experimental and tabulated data for the NTP Technical Report on vinyl toluene (mixed isomers) were examined for accuracy, consistency, completeness, and compliance with Good Laboratory Practice regulations. As summarized in Appendix J, the audit revealed no major problems with the conduct of the studies or with collection and documentation of the experimental data. No discrepancies were found that influenced the final interpretation of the results of these studies.

Under the conditions of these 2-year inhalation studies, there was no evidence of carcinogenic activity* for male or female F344/N rats exposed to 100 or 300 ppm vinyl toluene and no evidence of carcinogenic activity for male or female $B6C3F_1$ mice exposed to 10 or 25 ppm.

There was evidence of chemical-related toxicity to the nasal passage in both rats and mice.

^{*}Explanation of Levels of Evidence of Carcinogenic Activity is on page 6.

A summary of the Peer Review comments and the public discussion on this Technical Report appears on page 9.

Vinyl Toluene (mixed isomers), NTP TR 375 46

V. REFERENCES

1. American Conference of Governmental Industrial Hygienists (ACGIH) (1980) Documentation of Threshold Limit Values, 4th ed. Cincinnati: ACGIH.

2. American Society for Testing and Materials (ASTM) (1970) Annual Book of ASTM Standards. Designation No. D2121-70, Method B. ASTM.

3. Ames, B.N.; McCann, J.; Yamasaki, E. (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat. Res. 31:347-364.

4. Armitage, P. (1971) Statistical Methods in Medical Research. New York: John Wiley & Sons, Inc., pp. 362-365.

5. Bergemalm-Rynell, K.; Steen, G. (1982) Urinary metabolites of vinyltoluene in the rat. Toxicol. Appl. Pharmacol. 62:19-31.

6. Boorman, G.A.; Montgomery, C.A., Jr.; Eustis, S.L.; Wolfe, M.J.; McConnell, E.E.; Hardisty, J.F. (1985) Quality assurance in pathology for rodent carcinogenicity studies. Milman, H.; Weisburger, E., Eds.: Handbook of Carcinogen Testing. Park Ridge, NJ: Noyes Publications, pp. 345-357.

7. Boorman, G.A.; Uraih, L.C.; Gupta, B.N.; Bucher, J.R. (1987) Two-hour methyl isocyanate inhalation and 90-day recovery study in B6C3F1 mice. Environ. Health Perspect. 72:63-69.

8. Buckley, L.A.; Morgan, K.I.; Swenberg, J.A.; James, R.A.; Hamm, T.E.; Barrow, C.S. (1985) The toxicity of dimethylamine in F344 rats and B6C3F1 mice following a one-year exposure. Fundam. Appl. Toxicol. 5:341-352.

9. Clayton, G.D.; Clayton, F.E., Eds. (1981) Patty's Industrial Hygiene and Toxicology, 3rd ed. New York: John Wiley & Sons, Inc., Vol. 2B, pp. 3319-3323. 10. Clive, D.; Johnson, K.O.; Spector, J.F.S.; Batson, A.G.; Brown, M.M.M. (1979) Validation and characterization of the L5178Y/TK^{+/-} mouse lymphoma mutagen assay system. Mutat. Res. 59:61-108.

11. Conner, M.K.; Alarie, Y.; Dombroske, R.L. (1980) Sister chromatid exchange in murine alveolar macrophages, bone marrow, and regenerating liver cells induced by styrene inhalation. Toxicol. Appl. Pharmacol. 55:37-42.

12. Cox, D.R. (1972) Regression models and life tables. J. R. Stat. Soc. B34:187-220.

13. De Flora, S.; Zanacchi, P.; Camoirano, A.; Bennicelli, C.; Badolati, G.S. (1984) Genotoxic activity and potency of 135 compounds in the Ames reversion test and in a bacterial DNArepair test. Mutat. Res. 133:161-198.

14. de Meester, C.; Poncelet, F.; Roberfroid, M.; Rondelet, J.; Mercier, M. (1977) Mutagenicity of styrene and styrene oxide. Mutat. Res. 56:147-152.

15. Dinse, G.E.; Haseman, J.K. (1986) Logistic regression analysis of incidental-tumor data from animal carcinogenicity experiments. Fundam. Appl. Toxicol. 6:44-52.

16. Dinse, G.E.; Lagakos, S.W. (1983) Regression analysis of tumour prevalence data. J. R. Stat. Soc. C32:236-248.

17. Dunkel, V.C.; Zeiger, E.; Brusick, D.; McCoy, E.; McGregor, D.; Mortelmans, K.; Rosenkranz, H.S.; Simmon, V.F. (1985) Reproducibility of microbial mutagenicity assays: II. Testing of carcinogens and noncarcinogens in *Salmonella typhimurium* and *Escherichia coli*. Environ. Mutagen. 7(Suppl. 5):1-248.

18. Dunnett, C.W. (1955) A multiple comparison procedure for comparing several treatments with a control. J. Am. Stat. Assoc. 50:1096-1122.

19. Gagnaire, F.; Nicot, T.; Zissu, D.; Bonnet, P.; de Ceaurriz, J. (1986) Assessment of tail nerve function in rats chronically exposed to vinyltoluene. Toxicol. Lett. 30:27-34.

20. Galloway, S.M.; Armstrong, M.J.; Reuben, C.; Colman, S.; Brown, B.; Cannon, C.; Bloom, A.D.; Nakamura, F.; Ahmed, M.; Duk, S.; Rimpo, J.; Margolin, B.H.; Resnick, M.A.; Anderson, B.; Zeiger, E. (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: Evaluations of 108 chemicals. Environ. Molec. Mutagen. 10(Suppl. 10):1-175.

21. Gart, J.J.; Chu, K.C.; Tarone, R.E. (1979) Statistical issues in interpretation of chronic bioassay tests for carcinogenicity. J. Natl. Cancer Inst. 62:957-974.

22. Hard, G.S. (1976) Tumors of the kidney, renal pelvis, and ureter. Pathology of Tumours in Laboratory Animals, Vol. 1. Tumours of the Rat. IARC Scientific Publications No. 6. Lyon, France: IARC.

23. Haseman, J.K. (1984) Statistical issues in the design, analysis and interpretation of animal carcinogenicity studies. Environ. Health Perspect. 58:385-392.

24. Haseman, J.K.; Huff, J.; Boorman, G.A. (1984) Use of historical control data in carcinogenicity studies in rodents. Toxicol. Pathol. 12: 126-135.

25. Haseman, J.K.; Huff, J.; Rao, G.N.; Arnold, J.; Boorman, G.A.; McConnell, E.E. (1985) Neoplasms observed in untreated and corn oil gavage control groups of F344/N rats and (C57BL/6N \times C3H/HeN)F₁ (B6C3F₁) mice. J. Natl. Cancer Inst. 75:975-984.

26. Heinonen, T.H.H. (1984) Metabolism of vinyltoluene in the rat: Effect of induction and inhibition of the cytochrome P-450. Biochem. Pharmacol. 33:1585-1593.

27. Heinonen, T.; Vainio, H. (1980) Vinyltoluene induced changes in xenobiotic-metabolizing enzyme activities and tissue glutathione content in various rodent species. Biochem. Pharmacol. 29: 2675-2679. 28. Jiang, X.-Z.; Morgan, K.T.; Beauchamp, R.O., Jr. (1986) Histopathology of acute and subchronic nasal toxicity. Barrow, C.S., Ed.: Toxicology of the Nasal Passages. Washington, DC: Hemisphere Publishing Corp., pp. 51-66.

29. Kaplan, E.L.; Meier, P. (1958) Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53:457-481.

30. Knaap, A.G.A.; Voogd, C.E.; Kramers, P.G.N. (1985) Mutagenicity of vinyl compounds. Mutat. Res. 147:303.

31. Kriz, W.; Kaissling, B. (1985) Structural organization of the mammalian kidney. Seldin, D.W.; Giebisch, G., Eds.: The Kidney: Physiology and Pathophysiology. New York: Raven Press, pp. 265-306.

32. Kuney, J.H., Ed. (1983) Chemocyclopedia: The Manual of Commercially Available Chemicals, Vol. 2. Washington, DC: American Chemical Society.

33. Linnainmaa, K.; Meretoja, T.; Sorsa, M.; Vainio, H. (1978) Cytogenetic effects of styrene and styrene oxide on human lymphocytes and *Allium cepa*. Scand. J. Work Environ. Health 4(Suppl. 2):156-162.

34. Loprieno, N.; Presciuttini, S.; Sbrana, I.; Stretti, G.; Zaccaro, L.; Abbondandolo, A.; Bonatti, S.; Fiorio, R.; Mazzaccaro, A. (1978) Mutagenicity of industrial compounds. VII. Styrene and styrene oxides. II. Point mutations, chromosome aberrations and DNA repair induction analyses. Scand. J. Work Environ. Health 4(Suppl. 2):169-178.

35. Mackison, F.W.; Stricoff, R.S.; Partridge, L.J., Jr. (1981) NIOSH/OSHA Occupational Health Guidelines for Chemical Hazards. DHHS (NIOSH) Publication No. 81-123. Washington, DC: Government Printing Office.

36. Maronpot, R.R.; Boorman, G.A. (1982) Interpretation of rodent hepatocellular proliferative alterations and hepatocellular tumors in chemical safety assessment. Toxicol. Pathol. 10:71-80. 37. Matsuoka, A.; Hayashi, M.; Ishidate, M., Jr. (1979) Chromosomal aberration tests on 29 chemicals combined with S9 mix *in vitro*. Mutat. Res. 66:277-290.

38. McConnell, E.E. (1983a) Pathology requirements for rodent two-year studies. I. A review of current procedures. Toxicol. Pathol. 11:60-64.

39. McConnell, E.E. (1983b) Pathology requirements for rodent two-year studies. II. Alternative approaches. Toxicol. Pathol. 11:65-76.

40. McConnell, E.E.; Solleveld, H.A.; Swenberg, J.A.; Boorman, G.A. (1986) Guidelines for combining neoplasms for evaluation of rodent carcinogenesis studies. J. Natl. Cancer Inst. 76:283-289.

41. McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Riach, C.; Caspary, W.J. (1988) Responses of the L5178Y $tk^+/tk^$ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environ. Molec. Mutagen. 12:85-154.

42. McKnight, B.; Crowley, J. (1984) Tests for differences in tumor incidence based on animal carcinogenesis experiments. J. Am. Stat. Assoc. 79:639-648.

43. Meretoja, T.; Vainio, H.; Jaerventaus, H. (1978) Clastogenic effects of styrene exposure on bone marrow cells of rat. Toxicol. Lett. 1:315-318.

44. Milvy, P.; Garro, A.J. (1976) Mutagenic activity of styrene oxide (1,2-epoxyethylbenzene), a presumed styrene metabolite. Mutat. Res. 40: 15-18.

45. Mortelmans, K.; Haworth, S.; Lawlor, T.; Speck, W.; Tainer, B.; Zeiger, E. (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8(Suppl. 7):1-119.

46. Myhr, B.; Bowers, L.; Caspary, W.J. (1985) Assays for the induction of gene mutations at the thymidine kinase locus in L5178Y mouse lymphoma cells in culture. Prog. Mutat. Res. 5:555-568. 47. National Cancer Institute (NCI) (1976) Guidelines for Carcinogen Bioassay in Small Rodents. NCI Technical Report No. 1. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD. 65 p.

48. National Institute for Occupational Safety and Health (NIOSH) (1989) National Occupational Hazard Survey as of November 8, 1989, for Vinyl Toluene. NIOSH, Cincinnati, OH.

49. National Institutes of Health (NIH) (1978) Open Formula Rat and Mouse Ration (NIH-07). Specification NIH-11-1335. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institutes of Health, Bethesda, MD.

50. Norppa, H. (1981a) The *in vitro* induction of sister chromatid exchanges and chromosome aberrations in human lymphocytes by styrene derivatives. Carcinogenesis 2:237-242.

51. Norppa, H. (1981b) Styrene and vinyltoluene induce micronuclei in mouse bone marrow. Toxicol. Lett. 8:247-251.

52. Norppa, H.; Vainio, H. (1983) Induction of sister-chromatid exchanges by styrene analogues in cultured human lymphocytes. Mutat. Res. 116:379-387.

53. Norppa, H.; Sorsa, M.; Pfaeffli, P.; Vainio, H. (1980) Styrene and styrene oxide induce SCEs and are metabolized in human lymphocyte cultures. Carcinogenesis 1:357-361.

54. Norppa, H.; Skyttae, E.; Donner, M.; Sorsa, M.; Vainio, H. (1981) Mutagenicity of vinyl toluene. Mutat. Res. 85:294.

55. Norppa, H.; Vainio, H.; Sorsa, M. (1983) Metabolic activation of styrene by erythrocytes detected as increased sister chromatid exchanges in cultured human lymphocytes. Cancer Res. 43:3579-3582.

56. Pohlova, H.; Rossner, P.; Sram, R.J. (1985) Cytogenetic analysis of human peripheral blood lymphocytes in culture exposed in vitro to styrene and styrene oxide. J. Hyg. Epidemiol. Microbiol. Immunol. 29:269-274. 57. Sadtler Standard Spectra. IR No. D1711. Philadelphia: Sadtler Research Laboratories.

58. Seppalainen, A.M.; Savolainen, H. (1982a) Dose-dependent neurophysiological and biochemical effects of prolonged vinyltoluene vapor inhalation in rat. Neurotoxicology 3:36-43.

59. Seppalainen, A.M.; Savolainen, H. (1982b) Impaired nerve function in rats after prolonged exposure to vinyltoluene. Arch. Toxicol., Suppl. 5, pp. 100-102.

60. Sharief, Y.; Brown, A.M.; Backer, L.C.; Campbell, J.A.; Westbrook-Collins, B.; Stead, A.G.; Allen, J.W. (1986) Sister chromatid exchange and chromosome aberration analyses in mice after *in vivo* exposure to acrylonitrile, styrene, or butadiene monoxide. Environ. Mutagen. 8:439-448.

61. Stoltz, D.R.; Withey, R.J. (1977) Mutagenicity testing of styrene and styrene epoxide in *Salmonella typhimurium*. Bull. Environ. Contam. Toxicol. 17:739-742.

62. Sugiura, K.; Goto, M. (1981) Mutagenicities of styrene oxide derivatives on bacterial test systems: Relationship between mutagenic potencies and chemical reactivity. Chem. Biol. Interact. 35:71-91.

63. Sugiura, K.; Yamanaka, S.; Fukasawa, S.; Goto, M. (1978) The mutagenicity of substituted and unsubstituted styrene oxides in *E. coli*: Relationship between mutagenic potencies and physico-chemical properties. Chemosphere 7: 737-742.

64. Sugiura, K.; Maeda, A.; Goto, M. (1979) Substitutional effects of styrene oxides on survival and mutation induction in cultured Chinese hamster cells (V-79). Chemosphere 6:369-372. 65. Tamura, N.; Takahashi, K.; Shirai, N.; Kawazoe, Y. (1982) Studies on chemical carcinogens. XXI. Quantitative structure-mutagenicity relationship among substituted styrene oxides. Chem. Pharm. Bull. 30:1393-1400.

66. Tarone, R.E. (1975) Tests for trend in life table analysis. Biometrika 62:679-682.

67. Toxicology Data Bank (TDB) (1982) National Library of Medicine. Profile TDB 1035.

68. U.S. International Trade Commission (USITC) (1983) Synthetic Organic Chemicals. USITC Publication No. 1422. Washington, DC: Government Printing Office.

69. Vainio, H.; Paakkonen, R.; Ronnholm, K.; Raunio, V.; Pelkonen, O. (1976) A study on the mutagenic activity of styrene and styrene oxide. Scand. J. Work Environ. Health 3:147-151.

70. Wolf, M.A.; Rowe, V.K.; McCollister, D.D.; Hollingsworth, R.L.; Oyen, F. (1956) Toxicological studies of certain alkylated benzenes and benzene. Am. Med. Assoc. Arch. Ind. Health 14: 387-398.

71. Zeiger, E.; Anderson, B.; Haworth, S.; Lawlor, T.; Mortelmans, K.; Speck, W. (1987) *Salmonella* mutagenicity tests. III. Results from the testing of 255 chemicals. Environ. Mutagen. 9(Suppl. 9):1-110.

72. Zurcher, C.; van Zwieten, M.J.; Solleveld, H.A.; Hollander, C.F. (1982) Aging research. Foster, H.L.; Small, J.D.; Fox, J.G., Eds.: The Mouse in Biomedical Research, Vol. IV. Experimental Biology and Oncology. New York: Academic Press, pp. 11-35.

Vinyl Toluene (mixed isomers), NTP TR 375 52

APPENDIX A

SUMMARY OF LESIONS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF

VINYL TOLUENE

TABLE A1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	55
TABLE A2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	58
TABLE A3	ANALYSIS OF PRIMARY NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	70
TABLE A4a	HISTORICAL INCIDENCE OF KIDNEY MESENCHYMAL NEOPLASMS IN MALE F344/N RATS	74
TABLE A4b	HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL NEOPLASMS IN MALE F344/N RATS	75
TABLE A5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	76

PAGE

54

	Chambe	r Control	100 p	pm	300 p	pm
DISPOSITION SUMMARY						
Animals initially in study	50		50		50	
Early deaths						
Moribund sacrifice	24		29		28	•
Natural death	6		4		3	
Survivors						
Terminal sacrifice	19		17		19	
Wrong sex	1					
Animals examined microscopically	49		50		50	
ALIMENTARY SYSTEM						·
Intestine large, cecum	(43)		(9)		(47)	
Intestine large, colon	(46)		(13)		(49)	
Serosa, carcinoma, metastatic, intestine sma	all 1	(2%)				
Intestine small, ileum	(44)		(12)		(44)	
Jejunum, adenocarcinoma, mucinous						(2%)
Intestine small, jejunum	(45)		(13)		(47)	
Adenocarcinoma		(2%)				
Liver	(49)	(a a)	(42)		(50)	
Fibrosarcoma, metastatic		(2%)	-			(0~)
Neoplastic nodule		(4%)		(5%)		(2%)
Mesentery	(8)	(100)	(4)		(6)	
Fat, adenocarcinoma, metastatic, intestine s		(13%)	(10)		(10)	
Pancreas	(46)		(19)		(49)	
Pharynx Palate, papilloma squamous	(1)	(100%)	(1)	(100%)	(1)	
Salivary glands	(48)	(100%)	(18)	(100%)	(50)	
Fibrosarcoma	(40)			(6%)	(00)	
Stomach, forestomach	(48)		(13)	(0,2)	(49)	
Stomach, glandular	(40)		(13)		(50)	
	()		(14)			
CARDIOVASCULAR SYSTEM	(10)				(50)	
Heart	(49)		(14)		(50)	
ENDOCRINE SYSTEM						
Adrenal gland	(49)		(24)		(50)	
Adrenal gland, cortex	(49)		(20)		(50)	
Adenoma	2	(4%)			-	(0 7)
Carcinoma			·			(2%)
Adrenal gland, medulla	(49)	(90)	(21)	(1.40)	(46)	(101)
Pheochromocytoma malignant		(2%) (6%)	3	(14%)		(4%) (2%)
Pheochromocytoma complex Pheochromocytoma honign		(6%) (22%)	0	(20%)		(2%)
Pheochromocytoma benign Pheochromocytoma benign, multiple		(22%) (6%)	0	(29%)		(2 4%) (7%)
Islets, pancreatic	3 (46)	(070)	(16)		(49)	(170)
Adenoma		(11%)		(19%)		(10%)
Adenoma, two		(2%)	Ŭ		Ũ	
Carcinoma	•	(= /* /			1	(2%)
Parathyroid gland	(45)		(14)		(45)	
Adenoma		(2%)	(= - /			
Pituitary gland	(49)		(35)		(50)	
Pars distalis, adenoma		(55%)		(57%)		(56%)
Pars distalis, adenoma, multiple		(2%)				(2%)
Pars distalis, adenoma, two		(6%)		(3%)		(2%)
Pars distalis, carcinoma	3	(6%)	1	(3%)	1	(2%)

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

C-cell, acrcinoma 7 (14%) 2 (10%) 6 C-cell, carcinoma 1 (2%) 1 (5%) 1 Follicular cell, carcinoma 2 (10%) 1 GENERAL BODY SYSTEM 1 1 (100%) (1) Lipoma 1 (100%) (1) (1) GENITAL SYSTEM (100%) (1) (1) GENITAL SYSTEM (100%) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prostate (49) (13) (43) Adenoma 1 (2%) (13) (43) Adenoma 1 (2%) (13) (43) Adenoma 1 (2%) (13) (43) Adenoma 10 (20%) 10 (24%) 8 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM (48) (15) (50) Bone marrow (48) (15) (50) Lymph node (14) (44) (14) Mediastinal, pheochromocytoma malignant, metastatic, and and		Chambo	er Control	100 g	орт	300 j	opm
Thyroid gland (49) (20) (50) Bilateral, C-cell, adenoma 7 (14%) 2 (10%) 1 C-cell, adenoma 1 (2%) 1 (5%) 1 C-cell, acrinoma 1 (2%) 1 (5%) 1 Follicular cell, carcinoma 1 (2%) 1 (10%) 1 CENERAL BODY SYSTEM Tissue, NOS (1) (1) (1) (1) Lipoma 1 (100%) (18) (48) Adenoma 1 (2%) 2 (1%) 1 Presuital gland (46) (18) (49) (42) (50) Adenoma 1 (2%) 3 (13) (43) Adenoma 10 (2%) 10 (24%) 8 Hematy eside (49) (42) (50) 33 Intersitial cell, adenoma 10 (2%) 8 (15) (50) Hematy eside (49) (42) (50) (33) (14) (44) (14) (14) (14) <	NDOCRINE SYSTEM (Continued)				<u></u>		
Bilateral, C-cell, adenoma 7 (14%) 2 (10%) 6 C-cell, carcinoma 1 (2%) 1 (5%) 1 Follicular cell, carcinoma 1 (2%) 1 (5%) 1 GENERAL BODY SYSTEM 1 (100%) (1) (1) (1) Lipoma 1 (100%) (1) (1) Central SYSTEM Epididymis (47) (16) (50) Prostate (49) (18) (49) Adenoma 1 (2%) 2 (13) Adenoma, metastatic, intestine small 1 (2%) (3) (43) Adenoma, metastatic, intestine small 1 (2%) (3) (43) Adenoma 1 (2%) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma (49) (27) (50) 10 (24%) 8 Uymph node (43) (15) (50) 10 (24%) (27) (50) Interstitial cell		(49)		(20)		(50)	
C-cell, adenoma 7 (14%) 2 (10%) 6 C-cell, acrinoma 1 (2%) 1 (5%) 1 Follicular cell, carcinoma 2 (10%) 1 CENERAL BODY SYSTEM (1) (1) (1) Tissue, NOS (1) (100%) (1) Epididymis (47) (16) (50) Preputial gland (46) (18) (49) Adenoma 1 (2%) 2 (11%) 1 Prostate (49) (18) (49) Adenoma 1 (2%) 2 (50%) 33 Interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM (49) (15) (50) Lymph node (49) (14) (48) Lymph node, manibular (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) (49) (27) Mammary gland (38) (14) (48) (15) (50) Inguinal, renal, adenocarcinoma, metastatic, thyroi		(40)		(20)			(2%)
C-cell, carcinoma 1 (2%) 1 (5%) 1 Follicular cell, carcinoma 2 (10%) 1 GENERAL BODY SYSTEM 1 (1) (1) Lipoma 1 (100%) (1) (1) CENITAL SYSTEM (1) (10%) (1) Carcinoma 1 (2%) 2 (11%) 1 Prostate (40) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prostate (40) (13) (43) Adenoma 1 (2%) (13) (43) Adenoma 10 (2%) (13) (43) Adenoma 10 (2%) 10 (24%) 83 Interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 83 Interstitial cell, adenoma, metastatic, intenstinal, intenstitial cell, adenoma, metastatic, intenstitial cell, adenoma, metastatic, intenstic, adrenal gland 1 (4%) (27) (50) Iymph node, mandibular (44) (14) (48) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1		7	(14%)	2	(10%)		(12%)
Follicular cell, carcinoma 2 (10%) 1 CENERAL BODY SYSTEM (1) (1) (1) Tissue, NOS (1) (100%) (1) CENITAL SYSTEM (100%) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prostate (49) (13) (43) Adenoma 1 (2%) (42) (50) Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small (2%) (42) (50) Bilteral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM Bone marcow (48) (15) (50) Lymph node, meantal gland 1 (2%) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (14) (48) Lymph node, meanteric (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1 (35) (49)							(2%)
Tissue, NOS (1) (1) Lippma 1 (100%) CENITAL SYSTEM (47) (16) (50) Prepuial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prepuial gland (46) (18) (49) (13) (43) Adenoma 1 (2%) 2 (13) (43) Adenoma 1 (2%) (13) (43) Adenoma, metastatic, intestine small 1 (2%) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) Bone marrow (49) (27) (50) (50) Inguinal, renal, adenocarcinoma, metastatic, intensi gland 1 (2%) (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thryoid gland 1 (2%) (4%) Lymph node, mesenteric (44) (14) (48) Carcinoma, metastatic, thryoid gland 1 (2%) (4%) (14) Spleen (49)							(2%)
Tissue, NOS (1) (1) Lippma 1 (100%) Bididymis (47) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Preputial gland (46) (18) (49) Adenoma 1 (2%) 2 (11%) 1 Prostate (40) (13) (43) Adenoma 1 (2%) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 10 (20%) (45) (50) Bone marrow (48) (15) (50) Iymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intensi gland 1 (4%) (44) (14) Lymph node, mandibular (44) (14) (48) (15) Carcinoma, metastatic, thyroid gland 1 (2%) (14) (38) Thymos (38) (14) (38) 1	NERAL BODY SYSTEM						
Lipoma 1 (100%) ZENTAL SYSTEM 5 Epididymis (47) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 Carcinoma 1 (2%) 2 Carcinoma 1 (2%) 2 (11%) 1 1 Seminal vesicle (49) (13) (43) Adenoma 1 (2%) 2 (50) 33 Interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 10 (20%) 10 (24%) 8 Bone marrow (48) (15) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) 1 (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, durocarcinoma, metastatic, 1 (2%) 1 (4%) (49) Lymph node, mandibular (44) (17) (48) Spleen (10) (2%) 1 (4%)		(1)				(1)	
Epiddymis (47) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prostate (49) (18) (49) Adenoma 1 (2%) 2 (11%) 1 Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small 1 (2%) (50) Bilateral, interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 10 (24%) 8 (50) 33 Interstitial cell, adenocarcinoma, metastatic, intestine small 1 (2%) (49) (27) (50) Lymph node (49) (27) (50) 160 (48) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1 (4%) (49) (35) (49) Lymph node, mandibular (44) (14) (48) (35) (49) (35) (49) (35) (49) (35) (49) (35) (49) <td></td> <td></td> <td></td> <td></td> <td></td> <td>(-)</td> <td></td>						(-)	
Epiddymis (47) (16) (50) Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (17%) 1 Prostate (49) (18) (49) (49) (41) (13) (43) Adenoma 1 (2%) 2 (50) 33 (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (50) (48) (14) (48) (47) (14) (48) (50) (49) (25) (49) (46) (46) (46) (46) (46) (46) (46) (46) (46) (46) (46) (46) <td>NITAL SYSTEM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NITAL SYSTEM						
Preputial gland (46) (18) (48) Adenoma 1 (2%) 2 (11%) 1 Prostate (49) (18) (49) Adenoma 1 (2%) 2 (11%) 1 Seminal vesicle (41) (13) (43) Adenoma 1 (2%) (50) Seminal vesicle (41) (13) (43) Adenoma 25 (51%) 21 (50%) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) Juppin node (48) (15) (50) Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (49) (35) (49) Thymos (38) (14) (38) (14) (38) Thymoma malignant 1 (5%) 1 1		(47)		(16)		(50)	
Adenoma 1 (2%) 2 (1%) 1 Prostate (49) (18) (49) Adenoma 1 (2%) (43) Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small 1 (2%) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM Enemarrow (48) (15) (50) Lymph node (48) (15) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) 1 Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (44) (14) (44) Lymph node, mesenteric (44) (17) (48) (14) (38) (49) (35) (49) Thymoma malignant 1 (3%) 1 (3%) 1 1 NTEGUMENTARY SYSTEM Informa sequantous tumor benign 1 (4%) 1 (4%) </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Carcinoma 1 (2%) 2 (11%) 1 Prostate (49) (18) (49) (18) (49) Adenoma 1 (2%) 13 (43) (43) Adenocarcinoma, metastatic, intestine small (17) (2%) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM Bone marrow (48) (15) (50) Bone marrow (48) (15) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (2%) Lymph node, mesenteric (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1 Thymoma malignant 1 (3%) (14) (38) Thymoma malignant 1 (3%) 1 (5%) <		· ·		(10)			(4%)
Prostate (49) (18) (18) (49) Adenoma 1 (2%) (13) (43) Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small 1 (2%) (49) (42) Testes (49) (42) (50) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM (49) (27) (50) Bone marrow (48) (15) (50) Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) (49) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (14) (48) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (14) (38) (14) (38) Thymo and lignart (38) (14) (38) (14) (38) Thymoma malignart 1 (3%) 5 5 50 Skin (49) (23) (50) 1 50 Metastatic, adren				2	(11%)		(2%)
Adenoma 1 (2%) (10) (13) (14) Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small 1 (2%) (50) Testes (49) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 10 (24%) 8 (15) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) 1 (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1 Lymph node, mandibular (44) (14) (48) Thymus (38) (14) (38) Thymoma malignant 1 (5%) 1 NEGUMENTARY SYSTEM 1 (4%) 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (3%) 5 Kr					(**/*/		(
Seminal vesicle (41) (13) (43) Adenocarcinoma, metastatic, intestine small 1 (2%) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 649 (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 649 (27) (50) 10 10 (24%) 8 Hematstine, henochromocytoma malignant, metastatic, thyroid gland 1 (2%) 14%) (14) (48) Lymph node, mandibular (44) (14) (14) (48) 11 (38) (14) (38) (14) (38) (14) (38) (14) (38) (14) (38) (14) (38) 1 1 NTEGUMENTARY SYSTEM 1 1 (4%) 1 (4%) 50 1 (4%) 50 1 (4%) 1 1 3 13%				(10)		()	
Adenocarcinoma, metastatic, intestine small 1 (2%) (42) (50) Testes (49) (42) (50) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 0 00 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 0 (27) (50) 10 10 (24%) 8 HEMATOPOIETIC SYSTEM 0 (27) (50) 10 10 (24%) 8 HEMATOPOIETIC SYSTEM 0 (27) (50) 10 10 (24%) 8 HEMATOPOIETIC SYSTEM 0 (27) (50) 10 10 (24%) 14 13 15 15 15 15 11 11 11 11 11 11 11 11				(13)		(43)	
Testes (49) (42) (50) Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM (48) (15) (50) Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) (4%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (4%) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (49) (35) (49) Thymona malignant (14) (14) (38) (14) (38) Thymoma malignant 1 (3%) 1 1 NTEGUMENTARY SYSTEM 1 (49) (23) (50) Basesquamous tumor benign 1 (4%) 1 1 Fibroadenoma 1 (3%) 1 1 Skin (49) (23) (50) 1 Basesquamous tumor benign 1 (4%) 1 1				((-0)	
Bilateral, interstitial cell, adenoma 25 (51%) 21 (50%) 33 Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM 500 (48) (15) (50) 10 Lymph node (49) (27) (50) 10 10 (24%) 10 Mediastinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) 10 (24%) 14 (14) (14) (48) Lymph node, mandibular (44) (17) (48) (14) (38) (14) (38) Spleen (49) (35) (49) (35) (49) Thymus (38) (14) (38) 1 (38) 1 NTEGUMENTARY SYSTEM Mamary gland (38) (20) (46) 1 Adenocarcinoma 1 (3%) 5 (49) 1 1 Skin (49) (23) (50) 1 1 1 1 Skin (49) 1 (3%) 5 (4%) 1			• •	(42)		(50)	
Interstitial cell, adenoma 10 (20%) 10 (24%) 8 HEMATOPOIETIC SYSTEM Bone marrow (48) (15) (50) Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (4%) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 14) (48) Spleen (49) (35) (49) Thymos (38) (14) (38) Thymoma malignant 1 (5%) 1 NTEGUMENTARY SYSTEM 1 (5%) 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (3%) 5 Fibroadenoma 1 (49) 3 (13%) Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 1 Keratoacanthoma, two 1 1 14%) Papillo	Bilateral, interstitial cell, adenoma			. ,	(50%)	. ,	(66%)
Bone marrow (48) (15) (50) Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) (49) (27) (50) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (2%) 1 (4%) (14) (48) Lymph node, madibular (44) (14) (48) (2%) (49) (35) (49) Lymph node, mesenteric (44) (17) (48) (49) (35) (49) Spleen (49) (35) (49) (36) (49) (38) Thymus (38) (14) (38) (14) (38) Thymoma malignant 1 (5%) 1 NTEGUMENTARY SYSTEM 1 (3%) 1 (50) Adenocarcinoma 1 (3%) 1 (50) Skin (49) (23) (50) 1 Basosquamous tumor benign 1 (4%) 1 1 Keratoacanthoma 2 (4%) 1 1 1	Interstitial cell, adenoma	10	(20%)	10	(24%)		(16%)
Lymph node (49) (27) (50) Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) (4%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (4%) (14) (48) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (4%) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (5%) 1 NTEGUMENTARY SYSTEM 1 (4%) (50) Mammary gland (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) 5 Keratoacanthoma 2 (4%) 3 (13%) Skin (49) 1 (4%) 1 Reatoacanthoma 2 (4%) 3 13%) 5 Keratoacanthoma 2 (4%) 1 (4%) 1 <td>EMATOPOIETIC SYSTEM</td> <td></td> <td>·····</td> <td></td> <td></td> <td>······</td> <td></td>	EMATOPOIETIC SYSTEM		·····			······	
Inguinal, renal, adenocarcinoma, metastatic, intestine small 1 (2%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (2%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 NTEGUMENTARY SYSTEM Mammary gland (38) (20) (46) Adenocarcinoma 1 (3%) 1 (5%) 1 Fibroadenoma 1 (3%) 1 (5%) 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma, two 1 (4%) Papilloma squamous 1 (2%) 1 (4%) 1 Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, fibrosarcoma 1 (2%) 1 (4%) 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%) 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%)	Bone marrow	(48)		(15)		(50)	
intestine small 1 (2%) Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (49) (35) (49) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (5%) 1 NTEGUMENTARY SYSTEM 1 (5%) 1 Manmary gland (38) (20) (46) Adenocarcinoma 1 (3%) 1 (5%) Fibroadenoma 1 (3%) 1 5 Karatoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibroma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 1 (4%) 1 <td>Lymph node</td> <td>(49)</td> <td></td> <td>(27)</td> <td></td> <td>(50)</td> <td></td>	Lymph node	(49)		(27)		(50)	
Mediastinal, pheochromocytoma malignant, metastatic, adrenal gland 1 (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) 1 (48) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (5%) 1 NTEGUMENTARY SYSTEM 1 (5%) 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) (23) (50) Basosquamous tumor benign 1 (4%) 1 Keratoacanthoma 2 (4%) 3 (13%) Keratoacanthoma 1 (2%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 4%) Subcutaneous tissue, fibroma 3 (6%) 1 4%) 1 Subcutaneous tissue, fibroma 3 1 1 4%) 1 <td>Inguinal, renal, adenocarcinoma, metastat</td> <td>ic,</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Inguinal, renal, adenocarcinoma, metastat	ic,					
metastatic, adrenal gland 1 (4%) Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (49) (35) (49) Lymph node, mesenteric (49) (35) (49) (38) (14) (38) Thymus (38) (14) (38) (14) (38) 1 Thymoma malignant 1 (5%) 1 1 NTEGUMENTARY SYSTEM 1 (5%) 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (3%) 1 1 Fibroadenoma 1 (3%) 1 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 1 1 Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma, two 1 (4%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, arcoma 3 (6%) 1 (4%) 1	intestine small	1	(2%)				
Lymph node, mandibular (44) (14) (48) Carcinoma, metastatic, thyroid gland 1 (2%) (2%) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (3%) (14) (38) NTEGUMENTARY SYSTEM 1 (5%) 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (3%) 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 1 Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma, two 1 (4%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 (2%) 1 (4%) 1 Subcutaneous tissue, sarcoma 1	Mediastinal, pheochromocytoma malignan	it,					
Carcinoma, metastatic, thyroid gland 1 (2%) Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (7%) (48) NTEGUMENTARY SYSTEM 1 (38) (20) (46) Mammary gland (38) (20) (46) 1 Adenocarcinoma 1 (5%) 1 1 Fibroadenoma 1 (3%) (23) (50) Basosquamous tumor benign 1 (4%) 3 (13%) 5 Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma 1 (2%) 1 (4%) 1 Papilloma squamous 1 (2%) 1 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 1 4 Subcutaneous tissue, neurofibroma 1 1 1 1 1 1 Subcutaneous tissue, sarcoma 1 1 1 <td>metastatic, adrenal gland</td> <td></td> <td></td> <td>1</td> <td>(4%)</td> <td></td> <td></td>	metastatic, adrenal gland			1	(4%)		
Lymph node, mesenteric (44) (17) (48) Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (38) (14) (38) NTEGUMENTARY SYSTEM 1 (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 1 Keratoacanthoma 2 (4%) 3 (13%) Papilloma squamous 1 (2%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 1 MUSCULOSKELETAL SYSTEM 1 1 1 1		(44)		(14)		(48)	
Spleen (49) (35) (49) Thymus (38) (14) (38) Thymoma malignant 1 (38) (14) (38) NTEGUMENTARY SYSTEM 1 1 (38) (20) (46) Adenocarcinoma 1 (5%) 1 1 Fibroadenoma 1 (3%) 1 (5%) 1 Skin (49) (23) (50) 1 1 Basosquamous tumor benign 1 (4%) 1 1 1 Keratoacanthoma 2 (4%) 3 (13%) 5 5 Keratoacanthoma, two 1 (2%) 1 1 1 1 Papilloma squamous 1 (2%) 1 1 1 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 1 Subcutaneous tissue, neurofibroma 1 1 1 1 1 1 Subcutaneous tissue, sarcoma 1 (2%) 1 1 1 1		1	(2%)				
Thymus (38) (14) (38) Thymoma malignant 1 1 NTEGUMENTARY SYSTEM 1 1 Mammary gland (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 5 Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma, two 1 (2%) 1 1 Papilloma squamous 1 (2%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 1 Subcutaneous tissue, fibroma 2 (4%) 1 1 Subcutaneous tissue, arcoma 3 (6%) 1 (4%) 1 MUSCULOSKELETAL SYSTEM 1 1 1 1 1		(44)		(17)			
Thymoma malignant1NTEGUMENTARY SYSTEM(38)(20)(46)Mammary gland(38)(20)(46)Adenocarcinoma1(5%)1Fibroadenoma1(3%)1Skin(49)(23)(50)Basosquamous tumor benign1(4%)Keratoacanthoma2(4%)3Keratoacanthoma2(4%)3Keratoacanthoma, two1(4%)1Papilloma squamous1(2%)1Trichoepithelioma111Subcutaneous tissue, fibrosar coma3(6%)1Subcutaneous tissue, neurofibroma111Subcutaneous tissue, sarcoma1(2%)11MUSCULOSKELETAL SYSTEM1111		(49)		(35)		(49)	
INTEGUMENTARY SYSTEM (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) 1 Skin (49) (23) (50) Basosquamous tumor benign 1 (4%) 1 Keratoacanthoma 2 (4%) 3 (13%) Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma 1 (2%) 1 (4%) 1 Papilloma squamous 1 (2%) 1 (4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 4%) 1 Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 1 1 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%)		(38)		(14)		(38)	
Mammary gland (38) (20) (46) Adenocarcinoma 1 (5%) 1 Fibroadenoma 1 (3%) 1 1 Skin (49) (23) (50) 1 Basosquamous tumor benign 1 (4%) 3 (13%) 5 Keratoacanthoma 2 (4%) 3 (13%) 5 Keratoacanthoma, two 1 (4%) 1 4%) 1 Papilloma squamous 1 (2%) 1 4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 4%) 1 Subcutaneous tissue, fibroma 2 (4%) 1 4%) 1 Subcutaneous tissue, neurofibroma 1 1 4%) 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%)	Thymoma malignant					1	(3%)
Adenocarcinoma1 (5%)1Fibroadenoma1 (3%)1Skin(49)(23)(50)Basosquamous tumor benign1 (4%)(4%)Keratoacanthoma2 (4%)3 (13%)5Keratoacanthoma, two1 (4%)1Papilloma squamous1 (2%)1Trichoepithelioma11Subcutaneous tissue, fibroma2 (4%)1 (4%)Subcutaneous tissue, fibroma3 (6%)1 (4%)Subcutaneous tissue, neurofibroma11Subcutaneous tissue, sarcoma1 (2%)1 (4%)MUSCULOSKELETAL SYSTEM11	TEGUMENTARY SYSTEM						
Fibroadenoma1 (3%)1Skin(49)(23)(50)Basosquamous tumor benign1 (4%)Keratoacanthoma2 (4%)3 (13%)5Keratoacanthoma, two1 (4%)1Papilloma squamous1 (2%)1Trichoepithelioma11Subcutaneous tissue, fibroma2 (4%)1 (4%)Subcutaneous tissue, fibroma3 (6%)1 (4%)1Subcutaneous tissue, neurofibroma11Subcutaneous tissue, sarcoma1 (2%)1 (4%)MUSCULOSKELETAL SYSTEM11	Mammary gland	(38)				(46)	
Skin(49)(23)(50)Basosquamous tumor benign1(4%)5Keratoacanthoma2(4%)3(13%)5Keratoacanthoma, two1(4%)11Papilloma squamous1(2%)11Trichoepithelioma1111Subcutaneous tissue, fibroma2(4%)1(4%)1Subcutaneous tissue, fibrosarcoma3(6%)1(4%)1Subcutaneous tissue, neurofibroma1111Subcutaneous tissue, sarcoma1(2%)1(4%)1MUSCULOSKELETAL SYSTEM11111				1	(5%)	1	
Basosquamous tumor benign1 (4%)Keratoacanthoma2 (4%)3 (13%)5Keratoacanthoma, two1 (4%)1Papilloma squamous1 (2%)1Trichoepithelioma11Subcutaneous tissue, fibroma2 (4%)1 (4%)Subcutaneous tissue, fibrosarcoma3 (6%)1 (4%)Subcutaneous tissue, neurofibroma1Subcutaneous tissue, sarcoma1 (2%)1 (4%)MUSCULOSKELETAL SYSTEM1							(2%)
Keratoacanthoma2 (4%)3 (13%)5Keratoacanthoma, two1 (4%)Papilloma squamous1 (2%)Trichoepithelioma1Subcutaneous tissue, fibroma2 (4%)Subcutaneous tissue, fibrosarcoma3 (6%)Subcutaneous tissue, neurofibroma1Subcutaneous tissue, neurofibroma1Subcutaneous tissue, sarcoma1 (2%)MUSCULOSKELETAL SYSTEM		(49)				(50)	
Keratoacanthoma, two1 (4%)Papilloma squamous1 (2%)1Trichoepithelioma1Subcutaneous tissue, fibroma2 (4%)1 (4%)Subcutaneous tissue, fibrosarcoma3 (6%)1 (4%)Subcutaneous tissue, neurofibroma1Subcutaneous tissue, sarcoma1 (2%)1 (4%)MUSCULOSKELETAL SYSTEM1							
Papilloma squamous1 (2%)1Trichoepithelioma1Subcutaneous tissue, fibroma2 (4%)1 (4%)Subcutaneous tissue, fibrosarcoma3 (6%)1 (4%)Subcutaneous tissue, neurofibroma1Subcutaneous tissue, sarcoma1 (2%)1 (4%)MUSCULOSKELETAL SYSTEM1		2	(4%)			5	(10%)
Trichoepithelioma 1 Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 1 4%) 1 Subcutaneous tissue, neurofibroma 1 1 4%) 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%)			(0~)	1	(4%)		(05)
Subcutaneous tissue, fibroma 2 (4%) 1 (4%) 1 Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 1 1 Subcutaneous tissue, sarcoma 1 2%) 1 (4%) 1 MUSCULOSKELETAL SYSTEM Image: sarcoma <		1	(2%)				(2%)
Subcutaneous tissue, fibrosarcoma 3 (6%) 1 (4%) 1 Subcutaneous tissue, neurofibroma 1 1 Subcutaneous tissue, sarcoma 1 (2%) 1 (4%)		~	(10)	-	((2%)
Subcutaneous tissue, neurofibroma 1 Subcutaneous tissue, sarcoma 1 (2%) MUSCULOSKELETAL SYSTEM							(2%)
Subcutaneous tissue, sarcoma 1 (2%) 1 (4%) MUSCULOSKELETAL SYSTEM		3	(6%)	1	(4%)		(2%)
		1	(2%)	1	(4%)	1	(2%)
	ISCHLOSKELETAL SVSTEM						
		(9)		(4)		(1)	
Hindlimb, rhabdomyosarcoma 1 (25%)		(2)				(1)	
Intercostal, fibroma 1 (25%)							

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

Chambo	er Control	100 p	pm	300 p	pm
					÷ .
(49)		(15)		(50)	
		(10)		(00)	
1	(2%)				
			· · · · · · · · · · · · · · · · · · ·		
(37)		(5)		(41)	
1	(3%)				
		(50)		(50)	
		1	(2%)		
1	(2%)			1	(2%)
1	(2%)				
-					
		1	(2%)		
1	(2%)		(
_	x = · · · <i>r</i>	(14)		(50)	
,		ν /		()	
	·			<u></u>	
		(1)			
		1	(100%)		
· · · · · ·					
(49)		(35)		(50)	
(43)		(50)			(4%)
					(2%)
(48)		(12)			(= /0)
(10)		(12)		• •	(4%)
*(49)		*(50)		*(50)	
			(52%)		(40%)
20		20			(2%)
3	(6%)	1	(2%)	-	()
48		50		50	
				149	
-		45		49	
14		2		-	
1					
-					
	(49) 1 1 (37) 1 (49) 1 1 (49) 1 1 (48) 1 (48) 1 (48) (49) (48) (49) (48) *(49) 25 3 48 152 48 108 38 43 5 12 1 1	1 (3%) (49) 1 (2%) 1 (2%)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

TABLE A1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

DAYS ON STUDY	0 5 7	3 7 1	4 2 2	4 9 2	5 0 6	5 1 1	5 1 1	5 2 0	5 2 5	5 3 2	5 5 3	5 5 7	5 9 9	6 0 7	6 1 3	6 2 1	6 2 3	6 2 3	6 3 3	6 3 8	6 4 3	6 4 7	6 5 2	6 5 8	6 7 3
		- <u>-</u> -	~	-	- <u>n</u>	-	-	7	-		0			, 	0	- 0-	0	-0-	-0-	0	- <u>n</u> -	0	-0		
CARCASS ID	6 1 1	6 9 1	7 3 1	9 5 1	5 5 1	6 6 1	7 0 1	6 0 1	8 9 1	8 2 1	8 8 1	8 6 1	8 7 1	7 6 1	7 7 1	6 4 1	6 5 1	8 3 1	5 4 1	5 9 1	7 9 1	9 7 1	7 4 1	8 4 1	7 8 1
LIMENTARY SYSTEM																									
Csophagus ntestine large		+++	++	+ A	+++	+++	++	+++	Å	++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+ A	++	++	++	++	+++	++	++	++	+++++++++++++++++++++++++++++++++++++++
ntestine large, cecum ntestine large, colon		М +	+++++++++++++++++++++++++++++++++++++++		++	+ +	М +	++		++	+ +	+ +	+++	м +	+++		++	+++	++	+++	+++	++	+++++++++++++++++++++++++++++++++++++++	++	+
Serosa, carcinoma, metastatic, intestine small																									
itestine large, rectum	1	м	+		М	+	М	М		М	+	+	+	M	М		+	+	+	М	+	+	+	+	Μ
ntestine small ntestine small, duodenum		+ M	++++	A	++++	+++	+++	+++	A	++++	+++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++	A	+++	+++	+	+++	++++	+++++++++++++++++++++++++++++++++++++++	++	++	+
itestine small, ileum itestine small, jejunum		M	+		+	+	+	+		+	+	+	+	+	+		+	+	+	Ă	+	+	+	+	-
itestine small, jejunum Adenocarcinoma		+	+		+	+	+	+		+	+	+	+	+	+		+	+	+	A	+	+	+	+	•
iver		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Fibrosarcoma, metastatic Neoplastic nodule Iesentery																						x +	+		
Fat, adenocarcinoma, metastatic, intestine small	ĺ																					+	Ŧ		
ancreas		М	+	М	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
haryn x Palate, papilloma squamous																									
alivary glands		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
tomach tomach, forestomach		+++	+++	A	+++	+++	++	+	+++++++++++++++++++++++++++++++++++++++	+ +	+++	+ +	+ +	+ +	+ +	+ +	++++++	++++	+++	+++	+ +	+++	+++	+++	
oomach, glandular both		÷	÷		÷	+++	÷	+	÷	+	÷	÷	+	÷	÷	+	÷	÷	÷	÷	÷		÷	+	
ARDIOVASCULAR SYSTEM																									
leart		+	+	.+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
NDOCRINE SYSTEM drenal gland	_	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	
drenal gland, cortex Adenoma		+	÷	+	+	+	+	+	÷	+	+	+	÷	÷	+	÷	÷	÷	÷	÷	+	÷	÷	÷	
drenal gland, medulla		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pheochromocytoma malignant Pheochromocytoma complex																x									
Pheochromocytoma benign Pheochromocytoma benign, multiple																	х	х	X	X		х			
slets, pancreatic		М	+	М	+	+	+	÷	А	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma Adenoma, two																									
arathyroid gland		+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	М	+	+	+	+	+	М	+	
Adenoma ituitary gland		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Pars distalis, adenoma Pars distalis, adenoma, multiple					* x	* X	* X	x x		X	*	*		*	*	*	* X	* X							
Pars distalis, adenoma, two Pars distalis, carcinoma													Y												
hyroid gland		+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+ X	+	+	
C-cell, adenoma C-cell, carcinoma																	х					X			
ENERAL BODY SYSTEM																					_				
issue, NOS Lipoma																									
ENITAL SYSTEM pididymis				F	Ł	Ŧ			<u>ب</u>	÷	Ŧ		Ŧ	Ŧ	Ŧ		Ŧ			+	Ŧ	м			
reputial gland		÷	Ň	Ň	÷	+	÷	+	+	+ x	÷	÷	+	+	÷	÷	+	+	÷	÷	÷	+	÷	÷	
Adenoma Carcinoma										х															
rostate		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	
Adenoma eminal vesicle		+	м	м	м	+	М	м	м	м	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	
Adenocarcinoma, metastatic, intestine small													,										•		
estes Bilataral interativial call adaptors		+	+ X	+	+ X	+	+	+	* X	* X	+	* X	+	+	+	+	+	+	+	+	* x	* X	+	* X	
Bilateral, interstitial cell, adenoma Interstitial cell, adenoma			A	x	л				х	л	X	л		х				X	x		A	A	X	А	

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: CHAMBER CONTROL

+: Tissue examined microscopically : Not examined -: Present but not examined microscopically I: Insufficient tissue

M: Missing A: Autolysis precludes examination X: Incidence of listed morphology

DAYS ON STUDY	6 8	6 9	6 9	7	7	$\frac{7}{2}$	$\frac{7}{2}$	$\frac{7}{2}$	$\frac{7}{2}$	72	7	72	7 2	7	72	$\frac{7}{2}$	$\frac{7}{2}$	$\frac{7}{2}$	72	$\frac{7}{2}$	7	73	$\frac{7}{3}$	73	7	
51051	3	3	7	ŏ	4	1	8	8	8	8	2 9	9	9	2 9	9	9	9	9	ŝ	ŝ	3 0	0	0	0	0	
		~		_	-			~~~	~			~							~	~~~	~			0		TOTAL: TISSUES
CARCASS	0	9	9	6	6	9	5	0 5	0 5	5	5	0 5	6	7	7	8	8	9	9	9	7	*	9	9	ō	TUMORS
ID	3	4	9	8	2	6	2	3	6	7	1	8	7	1	2	Õ	1	1	2	3	5	5	0	8	0	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
ALIMENTARY SYSTEM															_											
Esophagus Intestine large	+++	+++	+++	++	+++++	+++++	+++	м +	++++	++++	++++	+++	+	+++++	+++	++++	++++	++	++	+++	++	M +	+++	+++	+++	47 46
Intestine large, cecum	+	+	+	+	+	+	+	+	+	+	+	+	+++++	÷	+	+	+	+	+	+	+	+	+	+	+	43
Intestine large, colon	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Serosa, carcinoma, metastatic, intestine small																				x						1
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	36
Intestine small Intestine small, duodenum	++++	+++	+++	+++	++	+++	+++	+++	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	++	+++	+ +	+++	+++	+ +	++++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+++	46 45
Intestine small, ileum	+	÷	÷	4	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	+	÷	+	+	÷	÷	÷	÷	+	4
Intestine small, jejunum Adenocarcinoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	*	+	+	+	+	+	4
Liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Fibrosarcoma, metastatic												x									x					
Neoplastic nodule Mesentery	+	+			+							A.		+						+	Λ				+	
Fat, adenocarcinoma, metastatic,																										
intestine small Pancreas	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	4
Pharynx	+		r					,	,	'			'	•				'		,	'			'	,	
Palate, papilloma squamous Salivary glands	X	+	+	-	±.	ъ		+	-	+		+	Ŧ		L.	-	1	+	L.	1	-	L.	Ŧ	+	+	4
Stomach	+	+	+	÷	+	+	+	+	÷	÷	÷	÷	+	÷	+	+	+	÷	+	+	+	+	+	+	+	4
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	4
Stomach, glandular Tooth	+	+	+	÷	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	4
CARDIOVASCULAR SYSTEM Heart	+	+	+		Ŧ	<u>т</u>		Ŧ		+		1	+		-	· _	_	+	-	ъ	-		_	т.	+	4
		1	+					,		Ŧ	т.	F	٣	Ŧ		· ·	'	r	-		F	Ŧ				
ENDOCRINE SYSTEM Adrenal gland	1	-			.	-		-		+	+	+	+			т.		+	L.	_			-			4
Adrenal gland, cortex	+	+	÷	+	÷	÷	+	+	+	+	+	+	÷	÷	+	+	+	+	+	÷	÷	÷	÷	÷	+	4
Adenoma											X									X						4
Adrenal gland, medulla Pheochromocytoma malignant	+	+	+	÷	Ŧ	÷	+	+	+	+	+	*	+	+	+	+	+	+	Ŧ	+	+	+	÷	+	+	4
Pheochromocytoma complex			X X																Х							
Pheochromocytoma benign Pheochromocytoma benign, multiple			X			x			x	X						X	х	X		x	x					11 3
Islets, pancreatic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Adenoma	{		х	X							*	x	х	X												5
Adenoma, two Parathyroid gland	+	+	+	+	+	М	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Adenoma	1 ·				*								•													45 1
Pituitary gland Pars distalis, adenoma	+	+	+ v	+	+	+	*	* x	x X	*	*	+	+	x +	+	+	+	* X	*	*	x x	x x	+	*	*	49 27
Pars distalis, adenoma, multiple			A								A			~				-		41			х		••	1
Pars distalis, adenoma, two	1			v				v					X		х		X									3
Pars distalis, carcinoma Thyroid gland	+	+	+	÷.	+	* X	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
C-cell, adenoma		х			X	X					x+				* X											7
C-cell, carcinoma																										1
GENERAL BODY SYSTEM																	_						_			
Tissue, NOS Lipoma							* X																			
•																										
GENITAL SYSTEM Epididymis	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	+	47
Preputial gland	1 +	+	+	÷	M	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	÷	÷	÷	+	+	÷	46
Adenoma Carcinoma	1																				v					1
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	л +	+	+	+	+	49
Adenoma	Ι,												X													1
Seminal vesicle Adenocarcinoma, metastatic, intestine	1+	+	+	÷	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	41
small	1																			X						1
Testes Bilateral, interstitial cell, adenoma	x +	x+	+	+	* x	x x	+	* x	+	+	×	*	*	*	* X	x x	+	* x	+	+	x x	+	x x	x x	*	49 25
Interstitial cell, adenoma	1	A			A	A	X	А	X	x	•	A	л	•	4	а		л		х	л	X	А	A	•	10
	I								-																	_

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: CHAMBER CONTROL (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: CHAMBER CONTROL (Continued)

DAYS ON STUDY	0 5 7	3 7 1	4 2 2	4 9 2	5 0 6	5 1 1	5 1 1	5 2 0	5 2 5	5 3 2	5 5 3	5 5 7	5 9 9	6 0 7	6 1 3	6 2 1	6 2 3	6 2 3	6 3 3	6 3 8	6 4 3	6 4 7	6 5 2	6 5 8	6 7 3
CARCASS ID	0 6 1 1	0 6 9 1	0 7 3 1	0 9 5 1	0 5 5 1	0 6 6 1	0 7 0 1	0 6 0 1	0 8 9 1	0 8 2 1	0 8 8 1	0 8 6 1	0 8 7 1	0 7 6 1	0 7 7 1	0 6 4 1	0 6 5 1	0 8 3 1	0 5 4 1	0 5 9 1	0 7 9 1	0 9 7 1	0 7 4 1	0 8 4 1	0 7 8 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Inguinal, renal, adenocarcinoma, metastatic, intestine small		+ +	+++	+++	+++	+++	+ +	A +	+ +	+ +	+++	+ +	+ +	+ +	++	+ +	+ + +	+ +	++++						
metastatic, intestine small Lymph node, mandibular Carcinoma, metastatic, thyroid gland Lymph node, mesenteric Spleen Thymus		+ M + +	+ + + M	M + + M	+ M + +	+ ++++	+ +++	+ M + +	+ +++	M + + M	+ + + +	+ + + +	M + + +	+ +++	M + + M	+ +++	+ X M + M	+ + +	+ +++	+ +++	+ ++++	+ + M	+ + M	+ + + +	+ . + + +
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Keratoacanthoma		M +	M +	M +	+++	+++	+ +	+++	+ +	M +	м +	+	M +	M +	M +	+ +	+++	+ +	+ +	+ + X	M +	M +	++	* *	+ + +
Papilloma squamous Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma					x								x							Λ	x	x			
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle		+	+	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++++	+	+	+
NERVOUS SYSTEM Brain Astrocytoma, NOS Carcinoma, early invasion Carcinoma, metastatic, pituitary gland		+	+	+	+	+	+	*	+	+	+	ł	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Carcinoma, metastatic, thyroid gland		м	М	м	м	М	м	М	м	М	+	м	+	+	+	+	* x	+	+	+	+	+	+	+	м
Lung Carcinoma, metastatic, thyroid gland Fibrosarcoma, metastatic		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	x x	+	+	+	+	+ X	+	+	+
Pheochromocytoma complex, metastatic Nose Trachea Carcinoma, metastatic, thyroid gland		+ +	·+ ·+	+ +	+ +	+ +	X A +	+ + X	+ +	+ +	+ +	+ +	+ +	+	+ +	+ +									
SPECIAL SENSES SYSTEM Eye						+													+						
URINARY SYSTEM Kidney Urinary bladder		++++	+ +	+ +	+++	+ +	+ +	+ +	+++	+ +	+ +	++	++	 + +	+ +	+++	+++	+++	++	+ +	+++	++++	+ + +	+ + +	++++
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma malignant		+	* x	+ X	+	+ X	+	+	+ X	+	* X	* X	+	* x	* X	+	+	* x	* x	* x	+	+ X	* x	* X	* x

DAYS ON STUDY	6 8 3	6 9 3	6 9 7	7 0 0	7 1 4	7 2 1	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	TOTAL:									
CARCASS ID	0 6 3 1	0 9 4 1	0 9 9 1	0 6 8 1	0 6 2 1	0 9 6 1	0 5 2 1	0 5 3 1	0 5 6 1	0 5 7 1	0 5 1 1	0 5 8 1	0 6 7 1	0 7 1 1	0 7 2 1	0 8 0 1	0 8 1 1	0 9 1 1	0 9 2 1	0 9 3 1	0 7 5 1	0 8 5 1	0 9 0 1	0 9 8 1	1 0 0 1	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Lymph node	+++++++++++++++++++++++++++++++++++++++	+ +	++	+++	+ +	++	+ +	+++	++	++	+++	+++	+ +	+ +	+++	+++	++	+ +	+ +	++	+ +	+++	+ +	+++	+ +	48 49
Inguinal, renal, adenocarcinoma, metastatic, intestine small Lymph node, mandibular Carcinoma, metastatic, thyroid gland Lymph node, mesenteric Spleen Thymus	+ + M	+ M + +	+ + + +	+ +++	+ + ++	+ +++	+ ++++	+ +++	+ +++	+ + M	+ + + +	+ + + +	+ + + +	M +++++	+ + + +	+ +++	+ +++	+ + + M	+ ++ M	X + + + + + +	+++++	+ + + +	+ + + +	+ +++	+ +++	1 44 1 44 49 38
INTEGUMENTARY SYSTEM Mammary gland Fibroadenoma Skin Keratoacanthoma Papilloma squamous Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma	+	+ +	+ +	+ +	+ +	M +	+ +	+ +	+ + X	++	+ +	+ +	++	+ + X	+ + X X	+ +	38 1 49 2 1 2 3 1									
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 2
NERVOUS SYSTEM Brain Astrocytoma, NOS Carcinoma, early invasion Carcinoma, metastatic, pituitary gland	+	+	+	+ X	+	+	+	+ x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 1 1 1
RESPIRATORY SYSTEM Larynx Carcinoma, metastatic, thyroid gland Lung Carcinoma, metastatic, thyroid gland Fibrosarcoma, metastatic Pheochromocytoma complex, metastatic Nose Trachea Carcinoma, metastatic, thyroid gland	+ + + + +	++++	+++++	+ + +	+ + + +	+ + + +	++++++	+ + ++	+ + + +	+ + + + +	+ + +	+ + + + + + +	+ + ++	+ + + + +	+ + + +	+ + ++	++++++	+ + +	++++++	+++++	+++++	+ + +	+ + + +	+ + +	+ + +	37 1 49 1 1 1 48 48 48 1
SPECIAL SENSES SYSTEM Eye	+																									3
URINARY SYSTEM Kidney Urinary bladder	++++	+ +	++	++++	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	+++	++++	+ +	+ +	+ +	+++++	+ +	+	+ +	++++	+ +	+ +	++++	49 48
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma malignant	+ X	* x	*	+	* x	*	+	+	+	*	+	+	+	+	* x	* x	+	+	+	* x	+	*	*	* x	* x	49 25 3

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: CHAMBER CONTROL (Continued)

465 2861 ++AAA+AAA+ A	479 2791 ++M++++++ +	484 2591 ++M++++++	4 9 9 2 8 9 1 ++M++++++	519 2931 ++++++	533 2541 ++M+++	5 3 9 2 6 1 1 ++++ M	9 2 6 7 1 ++ A A	554 2581 ++++	54 27 1 1 +++++	3 7 3 1 +++	3	6 1 2 8 3 1	6 1 3 9 1 1	6 2 3 2 9 8 1	6 2 4 2 6 5 1	6 2 7 9 6 1	6 3 3 5 3 1	7 2 7	6 5 8 7 8 1	6 6 0 2 6 0 1	6 6 9 0 1	6 8 0 7 0 1	6 8 7 2 7 5 1
61 ++AAA+AAA	91 ++ M+++++	591 ++M++++	891 ++M+++++	3 1 ++++++++	4 1 + + M + +	1 1 + + + + + + + + + + + + + + + + + +	6 7 1 ++ A A	8 1 + + +	1 1 + + +	3 1 + + +	2	3	1	9 8	5	9 6	53	777	8	0	0	ò	5
61 ++AAA+AAA	91 ++ M+++++	591 ++M++++	891 ++M+++++	3 1 ++++++++	4 1 + + M + +	1 1 + + + + + + + + + + + + + + + + + +	6 7 1 ++ A A	8 1 + + +	1 1 + + +	3 1 + + +	2	3	1	9 8	5	9 6	53	777	8	0	0	ò	5
AAA +AAA	M++++	M++++	M+++++	++++	M + +	+ +	A A	+ +	+ +	+ +	_												
AAA +AAA	M++++	M++++	M+++++	++++	M + +	+ +	A A	+ +	+ +	+ +													
AAA +AAA	M++++	M++++	++++	++++	M + +	+ +	A A	+	+	+													
+ A A A	+++++	+ + + +	+ + + +	++++	+		A.	+															
+ A A A	+ + +	+ + +	+ + +	+ +	+		Α	÷	+	+ +													
A A	+	+	+			+	+	+ '	+	+													+ +
Α	++++				++++	+++	A A	+ +	+ +	+++													+
+ A	+	+		+	+	+	A	÷	÷	+										•			
A	т		Ŧ	+	+	+	+	+	+	+	+	+	+	+	+	*	-	• +		+	+	+	+
A	-																						
	Ŧ	М	+	+	+	+	+	+	+	+		+						+	•				
+	+	+	+	+	+	+	+	+	+	+							4	-					
+	+	+	+	+	+	÷.	+	+	+	+													
Ą	+	+	+	M	+	+	+	+	+	+													
A.	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ													
М	+	+	+	+	+	+	+	+	+	+													
+ •	+	+	+	+	+	+	+	+	+									+	-			++++	++++
Â	÷	÷	÷	+	+	+	+	÷	÷	+								+	-			÷	Ň
	v	v																X				v	
A	+	Â	+	+	+	+	+	+	+	+												•	
Å	+++++++++++++++++++++++++++++++++++++++	++	+	++	++	++	+	++		+++++++++++++++++++++++++++++++++++++++			+						+		+	+	+
			X			X	x	X	x	x									X		X	X	* x
+	+	+	+	+	+	+	+	+	М	+								+	-				
			.																				
+	+	+	÷	+	+	÷	+	+	÷	М				+									
+	+	+	+	+	+	+	+	+	+	+													+
+	М	+	+	+	+	+	+	+	+	+					+						+		
м +	м +		+	м +			M	+++	++					+	+++	+				+	++	+	+
		x	x		х									х	x	x	2		Č.	X	х	X	
A +	++++	+++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++	++++	+++		+	+					+ -	F	+			
r	Ŧ	Ŧ	٠		T	F	F	r	r	F		r	,										
А	М	М	м	+	+	+	+	+	+	+								÷	•	+			
Α	М	+	+	+	+		+	+	+	+	ر	J.	+									L	
, M	+	++	++	++	+	м́.		++	+	+	Ŧ	Ŧ	Ŧ		Ŧ	Ŧ	-	+		Ŧ	+	Ť	
	A M +AA A +A + + ++ +M+ A+ AA+	A + M + + + + + A + + + + + + + + + + + + + + + + + + + A + + + + + + + A + + + + + A + + + + + A + + + + + + + + A + + + + + + + + + + + + + + + + + + +	A + + M + + + + + + A + + + A + + + A + + + A + + + + + + + A + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A + + + + + + + + + + + + + + + + + + +	A + + + + + + + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}} \begin{array}{c} \\ \\ \end{array} \end{array}} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}} \\ \begin{array}{c} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \end{array}} \\ \begin{array}{c} \\ \end{array}} \\ $								

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 100 ppm

DAYS ON STUDY	6 8 7	6 8 9	6 9 4	6 9 5	6 9 7	6 9 7	7 0 0	7 1 4	$\frac{7}{2}$	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	TOTAL:
CARCASS ID	2 8 5 1	2 6 3 1	2 8 8 1	2 5 5 1	2 5 7 1	2 6 6 1	2 9 2 1	2 7 4 1	2 5 6 1	2 6 4 1	2 6 8 1	2 6 9 1	2 7 2 1	2 5 1 1	2 5 2 1	2 6 2 1	2 8 4 1	2 7 6 1	2 8 0 1	2 8 7 1	2 9 4 1	2 9 5 1	2 9 7 1	2 9 9 1	3 0 0 1	TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large, cecum Intestine large, colon Intestine large, colon Intestine large, colon Intestine small, duodenum Intestine small, duodenum In	++++	++	+	+		++	+++++++	+	+ x +	++++++++ + +++++		++++++++ + + ++++	+++++++++++++++++++++++++++++++++++++++		+	+	+	++		++	+	++	++	+ x	+	15 15 9 13 12 16 14 12 13 42 2 4 19 1 1 15 13 14 3
CARDIOVASCULAR SYSTEM Heart										+		+	+													14
ENDOCRINE SYSTEM Adrenal gland Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma malignant Pheochromocytoma benign Islets, pancreatic Adenoma Parathyroid gland Pituitary gland Pars distalis, adenoma Pars distalis, adenoma Pars distalis, adenoma Thyroid gland C-cell, adenoma C-cell, adenoma C-cell, carcinoma Follicular cell, carcinoma GENERAL BODY SYSTEM	+++++++++++++++++++++++++++++++++++++++	+	+	+ X	+ x +	+	* x * x	* x	+ * X *	+ + + + + + + X + X		+ + + + X +	+ + + + + + + + + X	+ x	+	+		+	++++	+ + x + x + x	+ + + + X X + X	* X	+ x + x + x + x	+ + + + X + X		24 20 21 3 6 16 3 14 35 20 1 1 20 2 2
CENITAL BOD'T STSTEM Epididymis Preputial gland Carcinoma Prostate Seminal vesicle Testes Bilateral, interstitial cell, adenoma Interstitial cell, adenoma	+ x	+ X	+ + + X		+ X	+ x	+	+ x	+ + x	++ ++ + X	+ x	++ ++	+ + X + + + + X	+	+ + X	+ x	+ + X	+ x	+ x + x	+ x		+ X	+ x	+ + X	+ X	16 18 2 18 13 42 21 10
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Mediastinal, pheochromocytoma	+	+			+	+	+			+ +	*	+++	++				++	+		<u></u>						15 27
malignant, metastatic, adrenal giand Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+++++++++++++++++++++++++++++++++++++++	+	+		+ +	+	+			+ + +	+	++++++	+ + +			+	++	+ + +			+	+	+			1 14 17 35 14

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 100 ppm (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 100 ppm (Continued)

DAYS ON STUDY	3 9 3	4 6 5	4 7 9	4 8 4	4 9 9	5 1 9	5 3 3	5 3 9	5 3 9	5 5 4	5 5 4	5 8 3	5 9 3	6 1 1	6 1 3	6 2 3	6 2 4	6 2 7	6 3 3	6 3 7	6 5 8	6 6 0	6 6 6	6 8 0	6 8 7
CARCASS ID	2 8 1 1	2 8 6 1	2 7 9 1	2 5 9 1	2 8 9 1	2 9 3 1	2 5 4 1	2 6 1 1	2 6 7 1	2 5 8 1	$\frac{2}{7}$ 1 1	$\frac{2}{7}$ 3	$ \frac{2}{8} \frac{2}{1} $	2 8 3 1	2 9 1 1	2 9 8 1	2 6 5 1	2 9 6 1	2 5 3 1	2 7 7 1	2 7 8 1	2 6 0 1	2 9 0 1	2 7 0 1	2 7 5 1
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Skin Basosquamous tumor benign Keratoacanthoma Keratoacanthoma, two Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, sarcoma	 +	+	+ + X	М +	++	+ + x	+	++	+ +	+ +	+ +	+ +										+			
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Hindlimb, rhabdomyosarcoma Intercostal, fibroma	+ + x	+	+	+	+	+	+	+	+	+	+	+											+ x		
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+													—
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar carcinoma Pheochromocytoma malignant, metastatic, adrenal gland Nose	M +	M +	++++	M +	+	M +	M +	M +	M +	M +	+++++	M +	+	+	+	+	+	+	+	+ X	+	+	+	+	+
Trachea	+++	+	+	+ +	++	+ +	+ +	+ +	+++++	+	, M	++	+	+	+	+	+	+	+	+	+	+	+	+	Ŧ
SPECIAL SENSES SYSTEM Eye Zymbal gland Right, carcinoma	-																					* x			
URINARY SYSTEM Kidney Urinary bladder	+++	A +	+ M	++++	+ +	+ M	++++	++	+++	+++	++++	++		+	+	+		+	+	+			+	+	+
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma malignant	*	* X	*	* X	+	+	*	+	+	+	+	* X	, x	* X	* X	x x	* X	* x	* x	+	+	* x	+	*	+

DAYS ON STUDY	6 8 7	6 8 9	6 9 4	6 9 5	6 9 7	6 9 7	7 0 0	7 1 4	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	TOTAL							
CARCASS ID	2 8 5 1	2 6 3 1	2 8 8 1	2 5 5 1	2 5 7 1	2 6 6 1	2 9 2 1	2 7 4 1	2 5 6 1	2 6 4 1	2 6 8 1	2 6 9 1	2 7 2 1	2 5 1 1	2 5 2 1	2 6 2 1	2 8 4 1	2 7 6 1	2 8 0 1	2 8 7 1	2 9 4 1	2 9 5 1	2 9 7 1	2 9 9 1	3 0 0 1	TISSUES TUMORS
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Skin Basosquamous tumor benign Keratoacanthoma, Keratoacanthoma, two Subcutaneous tissue, fibrosarooma Subcutaneous tissue, fibrosarooma Subcutaneous tissue, sarcoma			+ X	+ + X	••••	+ X	+	+	+	+ + X		+ +	+ + X	+	+ +			+		+ X + X				+		20 1 23 1 3 1 1 1 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle Hindhimb, rhabdomyosarcoma Intercostal, fibroma					+		+			+		+	+			24 1	+		+				+			18 4 1 1
NERVOUS SYSTEM Brain										+		+	+			_										15
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar carcinoma Pheochromocytoma malignant, metastatuc, adrenal gland Nose Trachea	+	++	++	++	++	++	+	+	++	+ + +	++	+ + +	++++	+	+	++	++	++	++	+	++	++	+	++	+ X +	5 50 1 1 50 14
SPECIAL SENSES SYSTEM Eye Zymbal gland Right, carcinoma						+	+					_														2 1 1
U RINARY SYSTEM Kıdney Urinary bladder		+		+	+	+	+	+	+	++		+	+ +				+		+	+	+			+		35 12
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma malignant	x x	* x	* X	+	+	+ X	+	+	+	* x	+ X	+	+	+	+	+	*	* X	+	+	* x	* X	*	+	+	50 26 1

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 100 ppm (Continued)

															-	-									
DAYS ON STUDY	5 0 6	5 1 2	5 1 9	5 2 9	5 4 1	5 4 1	5 4 8	5 4 8	5 6 7	5 7 5	5 8 9	6 1 1	6 1 7	6 3 8	6 4 4	6 4 7	6 4 8	6 5 3	6 6 0	6 6 6	6 6 7	6 6 9	6 7 8	6 7 9	6 9 4
CARCASS ID	1 9 5 1	1 6 6 1	1 5 5 1	1 6 5 1	1 7 0 1	1 9 2 1	1 5 9 1	1 7 7 1	1 6 3 1	1 9 4 1	1 8 6 1	1 9 6 1	1 7 8 1	1 9 8 1	1 5 7 1	1 6 9 1	1 8 2 1	1 7 9 1	1 8 3 1	1 8 1 1	1 9 9 1	1 9 1 1	1 6 7 1	1 7 6 1	1 5 6 1
ALIMENTARY SYSTEM																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+
Intestine large, cecum Intestine large, colon	M	++++	М +	+++	+++	+	+	+++	++	+++	++	+++	++++	++++	+	+	+++	+++	++	+++	+++	+++	+++	A A	+
Intestine large, rectum	M	м́	ň	м́.	м́.	+ M	+++	+	ň	м́.	м́.	+	+	+	+	+	÷	+	+	÷	+	+	+	Â	Ŧ
Intestine small	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	÷	+	÷	÷	÷	÷	÷	Ä	÷ 1
Intestine small, duodenum	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	Α	+
Intestine small, ileum	+	+	М	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	Α	A	+
Jejunum, adenocarcinoma, mucinous Intestine small, jejunum	X +	+	-	-	+	-		М	+		+	+	+	4	+	+	Ŧ	<u>т</u>	Ŧ	4	ъ	-	ъ	Α	+
Liver	+	+	+	÷	Ŧ	÷	+	+	+	÷	+	÷	+	÷	+	÷	+	+	+	+	+	+	+	- 1	+
Neoplastic nodule																									
Mesentery									+	+			+											+	- 1
Pancreas Pharynx	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+
Salivary glands	+	+	+	+	+	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach	+	÷	÷	÷	÷	+	+	÷	÷	+	+	÷	÷	÷	÷	+	÷	÷	÷	÷	+	÷	÷	÷	+
Stomach, forestomach	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Stomach, glandular Tooth	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM	·																· · ·								
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Carcinoma Adrenal gland, medulla		L				,	ι.	+	1			+			м		+	м	1	L	<u>ـ</u>	<u>ь</u>	L.	м	X
Pheochromocytoma malignant		Ŧ	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	INT	Ŧ	т	TAT	т	Ŧ	Ŧ	-	Ŧ	TAT	Ŧ
Pheochromocytoma complex																									
Pheochromocytoma benign						X								X						х					
Pheochromocytoma benign, multiple																									.
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+
Carcinoma	1																								1
Parathyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	Μ	+	+
Pituitary gland	+	+ + X	+ x	+ + X	+ x	+	*	+	+	+	+	+	+	+	+	* x	+	+ + X	+ x	* X	* X	* x	*	+	+
Pars distalis, adenoma		х	х	х	х		X									х		X	х	х	X	х	х		
Pars distalis, adenoma, multiple Pars distalis, adenoma, two																									
Pars distahis, carcinoma																									
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Bilateral, C cell, adenoma																									
C cell, adenoma													Х			X						х		х	
C cell, carcinoma Follicular cell, carcinoma																						л			
GENERAL BODY SYSTEM Tissue, NOS	-	+																							
	.																								
GENITAL SYSTEM Epididymis	1.	+	+	ъ	L.	т.	ـد	+	+	+	+	+	÷	Ŧ		+	+	÷	+	+	+	+	+	+	+
Preputial gland	+++	+	+	+	Ŧ	+	+	+	+	+	+	+	+++	+ м	++	+	+	+	+ +	+	+	+	+	Ă	+
Adenoma				•	•	•	•								•					ŕ					
Carcinoma	[х			
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	A	+
Seminal vesicle Testes	M	M	M	м +	M +	M +	++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++	+++	+	+	+	+	++	+	++	++	++	++	+	++	+	+++
Bilateral, interstitial cell, adenoma	x +	* x	*	Ŧ	Ŧ	x	Ŧ	x	Ŧ	Ŧ	Ŧ	*	*	*	× X	Ŧ	* X	Ŧ	Ť	Ť	x	*		*	Ŧ
Interstitial cell, adenoma					x				x	x													x	·	

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 300 ppm

DAYS ON STUDY	7 0 0	7 0 1	7 0 4	7 1 1	7 2 1	7 2 4	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	
	-				<u> </u>		~	•			-					<u> </u>									-2	TOTAL
CARCASS ID	1 6 2 1	5 4 1	6 0 1	5 3 1	7 5 1	8 8 1	$\frac{1}{5}$ 2 1	5 8 1	6 8 1	7 1 1	$\frac{1}{7}$ 2 1	5 1 1	6 1 1	6 4 1	8 4 1	$\frac{1}{7}$ 3	1 7 4 1	8 0 1	8 5 1	1 8 7 1	8 9 1	9 0 1	1 9 3 1	1 9 7 1	0 0 1	TUMORS
ALIMENTARY SYSTEM																										·
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++++	+	+	+	+	+	+	+	+	++	50
Intestine large Intestine large, cecum	+++	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	++	+	+	+	+	++	+	+	+	+	+	+++	+	+++++++++++++++++++++++++++++++++++++++	+	++	++	++	+	49 47
Intestine large, colon	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	+	+	49
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+++	+++	40 49
Intestine small Intestine small, duodenum	+++++	+++	++	++	++++	++	++++	+++	+	++	+++	+++	+	+	++	+	++	+	+	+	++	++	++	++	+	49
Intestine small, ileum	+	+	÷	÷	÷	÷	÷	÷	÷	+	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	M	44
Jejunum, adenocarcinoma, mucinous	1.																									47
Intestine small, jejunum Liver	+++++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	++	++	++	++	+++++++++++++++++++++++++++++++++++++++	+++	+	+	++	+	+	+	+	++	м +	+	+	+++++++++++++++++++++++++++++++++++++++	50
Neoplastic nodule			•	•			•	x			•				•	•	•		•							1
Mesentery	+++++	L	L		+																					6 49
Pancreas Pharyn x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Sahvary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach, forestomach Stomach, glandular	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+++	++	++	++++	++	+	+	+	++++	++++	+++++++++++++++++++++++++++++++++++++++	+++	+	+++	+	+	+	++	49 50
Tooth		Ŧ	т	Ŧ	т	т	Ŧ	т	+	Ŧ	Ŧ	т	Ŧ	т	Ŧ	T	т	т	r	т	1	,	1	•	•	1
CARDIOVASCULAR SYSTEM Heart	+																						·		+	50
	-	+	Ŧ	Ŧ	Ŧ	.	.	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Τ	Ŧ	Ŧ	Ŧ	· ·	Ŧ	т	50
ENDOCRINE SYSTEM																										
Adrenal gland Adrenal gland, cortex	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	50 50
Carcinoma	17	,	,	7	,	,	*	1	,	,	7	,	,	7	,	,	,	'	,	,	,	,	'	,		1
Adrenal gland, medulla	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	46
Pheochromocytoma malignant		х				v						Х														2
Pheochromocytoma complex Pheochromocytoma benign						X X				x		X	x				х	х				х	х			11
Pheochromocytoma benign, multiple				x					х		x		**													3
Islets, pancreatic	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Adenoma Carcinoma	x		X	X			X					X														5
Parathyroid gland	+	+	+	+	+	М	X X M	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Pituitary gland	x +	+	* x	+	+ X	*	+	+	+	+	+	+	+	+	+ X	+	+ X	+	+	+ X	* X	* x	* X	+	+	50 28
Pars distalis, adenoma	X	х	х	X	х	х			х		Х			X	х		х			x	X	х	X	x	X	28
Pars distalis, adenoma, multiple Pars distalis, adenoma, two							х		л																	
Pars distalis, carcinoma																	х									1
Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Bilateral, C cell, adenoma C cell, adenoma	1			X							х												x	x		1 6
C cell, carcinoma	1			л																			n.	А		i
Follicular cell, carcinoma																									х	1
GENERAL BODY SYSTEM Tissue, NOS	-																									1
GENITAL SYSTEM																	-									-
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Preputial gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48 2
Adenoma Carcinoma	1													л	А											
Prostate	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Seminal vesicle	1.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	43
Testes	+	* x	+	+	x x	x +	+	* x	* x	* x	* x	x x	* X	+	+ x	+ X	* x	+ x	* X	+	x +	× x	* x	x +	×	33
Bilateral, interstitial cell, adenoma	X																									

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 300 ppm (Continued)

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 300 ppm (Continued)

DAYS ON STUDY	5 0 6	5 1 2	5 1 9	5 2 9	5 4 1	5 4 1	5 4 8	5 4 8	5 6 7	5 7 5	5 8 9	6 1 1	6 1 7	6 3 8	6 4 4	6 4 7	6 4 8	6 5 3	6 6 0	6 6 6	6 6 7	6 6 9	6 7 8	6 7 9	6 9 4
CARCASS ID	1 9 5 1	1 6 6 1	1 5 5 1	1 6 5 1	1 7 0 1	1 9 2 1	1 5 9 1	1 7 7 1	1 6 3 1	1 9 4 1	1 8 6 1	1 9 6 1	1 7 8 1	1 9 8 1	1 5 7 1	1 6 9 1	1 8 2 1	1 7 9 1	1 8 3 1	1 8 1 1	1 9 9 1	1 9 1 1	1 6 7 1	1 7 6 1	1 5 6 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymus Thymoma malignant	+ + + + + M	+ + + + + + +	+ + + + + + +	+ + + + + M	+++++	+ + + + + + M	+ + + + + M	+ + + + + + M	+ + + + M	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+ + + + + + +	+ + + + + + M	+ + + + + + +	+ + M + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+ + + + + M	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + A A A	+ + MM + +
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	м
Fibroadenoma Skin Keratoacanthoma Papilloma squamous Trichoepithelioma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibroma	+	+	+	÷	+ X	+	+	+	+	+	* X	+	+ X	+	+	+	+	+	+ x	+	* x	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Carcinoma, metastatic, thyroid gland Nose Trachea	M + +	M + +	M + +	M + ++	M + +	M + +	 + + + +	+ + + +	M + + +	+++++	M + +	+ + +	 + + + + +	+++++	++++++	++++++	+++++	+++++	+++++++	+ + +	+ + + +	+ + + X + + +	+ + + +	+ + + +	+ + + +
SPECIAL SENSES SYSTEM Eye									·				-				+								
URINARY SYSTEM Kidney Lipoma Sarcoma Urinary bladder Transitonal epithelium, papilloma	+++++	+	+	+	+	+	+	++	+++	++	++	+ x +	++	++	+	+	+	+	++	+	+	++	++	++	+ +
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothelioma benign	+	,+ X	* X	+	+	+ X	+	+ X	* X	* X	+	* x	* x	+ X X	* x	+	* x	+	+	+	+	+	÷	+	+

TABLE A2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE RATS: 300 ppm (Continued)

DAYS ON STUDY	7 0 0	7 0 1	7 0 4	7 1 1	7 2 1	7 2 4	7 2 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	TOTAL
CARCASS ID	1 6 2 1	1 5 4 1	1 6 0 1	1 5 3 1	1 7 5 1	1 8 8 1	1 5 2 1	1 5 8 1	1 6 8 1	1 7 1 1	1 7 2 1	1 5 1 1	1 6 1 1	1 6 4 1	1 8 4 1	1 7 3 1	$\frac{1}{7}$ $\frac{4}{1}$	1 8 0 1	1 8 5 1	1 8 7 1	1 8 9 1	1 9 0 1	1 9 3 1	1 9 7 1	2 0 0 1	TISSUES TUMORS
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus Thymus Thymoma malignant	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + + X	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + + + + M	+ + + + + M	+ + + + + + + + + + + + + + + + + + + +	++++++	++++++	+ + + + + M	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	50 50 48 48 49 38 1
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma Skin Keratoacanthoma Papilloma squamous Trichoepithelioma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, neurofibroma	+	+	+ X +	++	++	+	+	+	+	+	+	+	+	+	+ +	+	+ + X	+ + X	++	+ + X	+ + X	+++	* *	М +	+ + X	46 1 50 5 1 1 1 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Larynx Lung Carcinoma, metastatic, thyroid gland Nose Trachea	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + + +	+ + + +	+ + + +	++ ++	+ + + +	+ + + +	+ + + +	+ + + +	++++++	+ + + +	+ + +	++++++	+ + + +	+ + + +	+ + +	41 50 1 50 50
SPECIAL SENSES SYSTEM Eye	+	+	+																				+			5
URINARY SYSTEM Kudney Lupoma Sarcoma Urnary bladder Transitonal epithelium, papilloma	+	+	+	+ +	+ M	++	++	+	+	+	+	+ +	+	+ X +	+ + X	+	* * +	++	+	+	+	+	+	+	+ + X	50 2 1 49 2
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear Mesothehoma benign	+ x	* X	* x	*	+	+	+	+	+	+	+	+	+	* X	+	+	* X	+	+	+	* X	* x	+	+	+ X	50 20 1

TABLE A3.	ANALYSIS OF	PRIMARY	NEOPLASMS IN STUDY OF VIN		IN THE TW	VO-YEAR INHALATION
			STUDY OF VIN	YL TOLUENE		

	Chamber Cont	rol 100 ppm	300 ppm
Adrenal Medulla: Pheochromocytoma			
Overall Rates (a)	1 4/49 (2 9%)	(b) 6/21 (2 9%)	14/46 (30%)
Adjusted Rates (c)	51.1%		58.2%
Terminal Rates (d)	7/19 (37%)		9/18 (50%)
Day of First Observation	623		541
Life Table Test (e)			P = 0.563N
Logistic Regression Test (e)			P = 0.590N
Fisher Exact Test (e)			P = 0.510
Adrenal Medulla: Malignant Pheochromo Overall Rates (a)	ocytoma 1/49 (2%)	(b) 3/21 (14%)	2/46 (4%)
		(5) 5/21 (14%)	2/40 (470)
drenal Medulla: Complex Pheochromoc Overall Rates (a)		(h) 0/21 (0 <i>%</i>)	1/46 (2%)
Adjusted Rates (c)	3/49 (6%) 12.0%	(b) 0/21 (0%)	5.0%
Terminal Rates (d)	1/19 (5%)		0/18 (0%) 794
Day of First Observation	621		724 D=0.207N
Life Table Test (e)			P = 0.297N P = 0.205N
Logistic Regression Test (e)			P = 0.305N
Fisher Exact Test (e)			P = 0.333N
drenal Medulla: Pheochromocytoma; B			15/40 (000)
Overall Rates (a)	17/49 (35%)	(b) 8/21 (38%)	15/46 (33%)
Adjusted Rates (c)	60.4%		60.0%
Terminal Rates (d)	9/19 (47%)		9/18 (50%)
Day of First Observation	621		541 D = 0.000N
Life Table Test (e)			P = 0.393N
Logistic Regression Test (e)			P = 0.404N
Fisher Exact Test (e)			P = 0.501 N
Preputial Gland: Adenoma or Carcinoma			·
Overall Rates (a)	2/46 (4%)	(b) 2/18 (11%)	3/48 (6%)
Adjusted Rates (c)	7.6%		13.6%
Terminal Rates (d)	1/19 (5%)		2/19 (11%)
Day of First Observation	532		669
Life Table Test (e)			P = 0.520
Logistic Regression Test (e)			P = 0.530
Fisher Exact Test (e)			P = 0.520
Pancreatic Islets: Adenoma			
Overall Rates (a)	6/46 (13%)	(b) 3/16 (19%)	5/49 (10%)
Adjusted Rates (c)	27.9%		21.6%
Terminal Rates (d)	4/19 (21%)		2/19 (11%)
Day of First Observation	697		700
Life Table Test (e)			P = 0.470N
Logistic Regression Test (e)			P = 0.445N
Fisher Exact Test (e)			P = 0.455N
Pituitary Gland/Pars Distalis: Adenoma			
Overall Rates (a)	31/49 (63%)	(b) 21/35 (60%)	30/50 (60%)
Adjusted Rates (c)	92.9%		80.0%
Terminal Rates (d)	17/19 (89%)		12/19 (63%)
Day of First Observation	506		512
Life Table Test (e)			P = 0.395N
Logistic Regression Test (e)			P = 0.375N

ituitary Gland/Pars Distalis: Carcinoma Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	3/49 (6%) 11.9% 1/19 (5%) 599 arcinoma 33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%) 8.3%	(b) 1/35 (3%) (b) 22/35 (63%)	1/50 (2%) 5.3% $1/19 (5%)$ 728 $P = 0.294N$ $P = 0.277N$ $P = 0.301N$ 30/50 (60%) 80.0% $12/19 (63\%)$ 512 $P = 0.280N$ $P = 0.226N$ $P = 0.291N$
Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	11.9% 1/19 (5%) 599 arcinoma 33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)	(b) 22/35 (63%)	5.3% 1/19 (5%) 728 P = 0.294N P = 0.277N P = 0.301N 30/50 (60%) 80.0% 12/19 (63%) 512 P = 0.280N P = 0.226N
Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	1/19 (5%) 599 arcinoma 33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		1/19 (5%) 728 $P = 0.294N$ $P = 0.277N$ $P = 0.301N$ $30/50 (60%)$ $80.0%$ $12/19 (63%)$ 512 $P = 0.280N$ $P = 0.226N$
Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	599 arcinoma 33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		728 P = 0.294N P = 0.277N P = 0.301N 30/50 (60%) 80.0% 12/19 (63%) 512 P = 0.280N P = 0.226N
Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	arcinoma 33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		P = 0.294N $P = 0.277N$ $P = 0.301N$ $30/50 (60%)$ $80.0%$ $12/19 (63%)$ 512 $P = 0.280N$ $P = 0.226N$
Logistic Regression Test (e) Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		P = 0.277N $P = 0.301N$ $30/50 (60%)$ $80.0%$ $12/19 (63%)$ 512 $P = 0.280N$ $P = 0.226N$
Fisher Exact Test (e) ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		P = 0.301N 30/50 (60%) 80.0% 12/19 (63%) 512 P = 0.280N P = 0.226N
ituitary Gland/Pars Distalis: Adenoma or Ca Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		30/50 (60%) 80.0% 12/19 (63%) 512 P = 0.280N P = 0.226N
Overall Rates (a) Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	33/49 (67%) 93.4% 17/19 (89%) 506 2/49 (4%)		80.0% $12/19 (63%)$ 512 $P = 0.280N$ $P = 0.226N$
Adjusted Rates (c) Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	93.4% 17/19 (89%) 506 2/49 (4%)		80.0% $12/19 (63%)$ 512 $P = 0.280N$ $P = 0.226N$
Terminal Rates (d) Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	17/19 (89%) 506 2/49 (4%)		12/19(63%) 512 P=0.280N P=0.226N
Day of First Observation Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	506 2/49 (4%)		512 P=0.280N P=0.226N
Life Table Test (e) Logistic Regression Test (e) Fisher Exact Test (e)	2/49 (4%)		P=0.280N P=0.226N
Logistic Regression Test (e) Fisher Exact Test (e)			P = 0.226N
Fisher Exact Test (e)			
Fisher Exact Test (e)			P=0.291N
kin: Keratoacanthoma			
Overall Rates (f)		4/50 (8%)	5/50 (10%)
Adjusted Rates (c)		17.7%	20.6%
Terminal Rates (d)	1/19 (5%)	2/17 (12%)	3/19 (16%)
Day of First Observation	638	479	589
Life Table Tests (e)	P = 0.235	P = 0.307	P=0.241
Logistic Regression Tests (e)	P = 0.228	P = 0.345	P = 0.246
Cochran-Armitage Trend Test (e)	P = 0.208		
Fisher Exact Test (e)	- 0.200	P=0.349	P = 0.226
ubcutaneous Tissue: Fibrosarcoma			
Overall Rates (f)	3/49 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (c)	13.6%	5.9%	2.2%
Terminal Rates (d)	2/19 (11%)	1/17 (6%)	0/19(0%)
Day of First Observation	647	728	541
Life Table Tests (e)	P = 0.251N	P = 0.332N	P = 0.279N
Logistic Regression Tests (e)	P = 0.253N	P = 0.308N	P = 0.293N
Cochran-Armitage Trend Test (e)	P = 0.266N	1 = 0.00011	
Fisher Exact Test (e)	1 - 0.20011	P = 0.301 N	P = 0.301 N
ubcutaneous Tissue: Fibroma or Fibrosarco Overall Rates (f)	ma 5/49 (10%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (c)	20.8%	10.0%	5.2%
Terminal Rates (d)	3/19 (16%)	1/17 (6%)	0/19 (0%)
Day of First Observation	599	694	541
Life Table Tests (e)	P = 0.181N	P = 0.245N	P = 0.191N
Logistic Regression Tests (e)	P = 0.184N	P = 0.212N	P = 0.203N
Cochran-Armitage Trend Test (e)	P = 0.198N		
Fisher Exact Test (e)	1 -0.10010	P = 0.210N	P=0.210N
ubcutaneous Tissue: Sarcoma or Fibrosarco	, ma		
Overall Rates (f)	4/49 (8%)	2/50 (4%)	1/50 (2%)
Adjusted Rates (c)	4/49 (8%) 16.5%	8.0%	2.2%
Terminal Rates (d)	2/19 (11%)	8.0% 1/17 (6%)	2.2% 0/19(0%)
Day of First Observation	643	519	541
	643 P≈0,132N		
Life Table Tests (e) Logistic Regression Tests (e)		P = 0.359N P = 0.329N	P = 0.155N P = 0.172N
	P = 0.148N	P=0.329N	P = 0.172N
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P = 0.146N	P = 0.329 N	P = 0.175N

.

TABLE A3. ANALYSIS OF PRIMARY NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chamber Control	100 ppm	300 ppm
Subcutaneous Tissue: Fibroma, Neurofibro	ma, Sarcoma, or Fibros	arcoma	·····
Overall Rates (f)	6/49 (12%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (c)	23.5%	12.0%	10.2%
Terminal Rates (d)	3/19 (16%)	1/17 (6%)	1/19 (5%)
Day of First Observation	599	519	541
Life Table Tests (e)	P = 0.203N	P = 0.270N	P = 0.210N
Logistic Regression Tests (e)	P = 0.?	P = 0.233N	P = 0.221N
Cochran-Armitage Trend Test (e)	P = 0.226N	1-0.20014	1 = 0.22110
Fisher Exact Test (e)	1 = 0.22014	P=0.233N	P = 0.233N
Cestis: Interstitial Cell Adenoma			
Overall Rates (a)	35/49 (71%)	31/42 (74%)	41/50 (82%)
Adjusted Rates (c)	94.1%	93.2%	97.5%
Terminal Rates (d)	17/19 (89%)	14/16 (88%)	18/19 (95%)
Day of First Observation	422	484	506
Life Table Tests (e)	P = 0.275	P = 0.471N	P = 0.332
Logistic Regression Tests (e)	P = 0.206	P = 0.516	P = 0.220
Cochran-Armitage Trend Test (e)	P = 0.131	D	D 0.4
Fisher Exact Test (e)		P = 0.494	P=0.157
Thyroid Gland: C-Cell Adenoma		1	
Overall Rates (a)	7/49 (14%)	(b) 2/20 (10%)	7/50 (14%)
Adjusted Rates (c)	28.0%		26.8%
Terminal Rates (d)	2/19 (11%)		3/19 (16%)
Day of First Observation	647		617
Life Table Test (e)			P = 0.566N
Logistic Regression Test (e)			P = 0.548N
Fisher Exact Test (e)			P = 0.597 N
Fhyroid Gland: C-Cell Adenoma or Carcino	oma		
Overall Rates (a)	8/49 (16%)	(b) 3/20 (15%)	8/50 (16%)
Adjusted Rates (c)	30.1%		29.3%
Terminal Rates (d)	2/19 (11%)		3/19 (16%)
Day of First Observation	623		617
Life Table Test (e)	020		P = 0.552N
Logistic Regression Test (e)			P = 0.541N
Fisher Exact Test (e)			P = 0.590N
			F = 0.3901
Tematopoietic System: Mononuclear Leuke Overall Rates (f)	emia 25/49 (51%)	26/50 (52%)	20/50 (40%)
Adjusted Rates (c)	67.8%	67.2%	52.9%
Terminal Rates (d)	8/19 (42%)	7/17 (4 1%)	5/19 (26%)
Day of First Observation	422	393	512
Life Table Tests (e)	P = 0.145N	P = 0.462	P = 0.190N
		P = 0.462 P = 0.542	P = 0.190 N P = 0.196 N
Logistic Regression Tests (e)	P = 0.159N P = 0.127N	r - 0.042	L -0.1301
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P = 0.137N	P = 0.541	P = 0.184N
All Sites: Mesothelioma			
	240 (67)	1 (50 (90))	1/50 (97)
Overall Rates (f)	3/49 (6%)	1/50 (2%)	1/50 (2%)
Adjusted Rates (c)	7.8%	2.9%	2.7%
Terminal Rates (d)	0/19 (0%)	0/17 (0%)	0/19(0%)
Day of First Observation	492	623	638
Life Table Tests (e)	P = 0.238N	P = 0.301 N	P = 0.262N
Logistic Regression Tests (e)	P = 0.334N	P = 0.304 N	P = 0.402N
Cochran-Armitage Trend Test (e)	P = 0.266N		
Fisher Exact Test (e)		P = 0.301 N	P = 0.301 N

TABLE A3. ANALYSIS OF PRIMARY NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

TABLE A3. ANALYSIS OF PRIMARY NEOPLASMS IN MALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

- (a) Number of tumor-bearing animals/number of animals examined microscopically at the site
- (b) Incomplete sampling of tissues
- (c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality
- (d) Observed tumor incidence in animals killed at the end of the study

(c) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The logistic regression test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or lower incidence in a dosed group than in controls is indicated by (N).

⁽f) Number of tumor-bearing animals/number of animals examined grossly at the site

TABLE A4a. HISTORICAL INCIDENCE OF KIDNEY MESENCHYMAL NEOPLASMS IN MALE F344/N RATS (a)

Study	Incidence of Lipomas in Controls	
Historical Incidence for Chamber Con	trols in NTP Studies (b)	
Propylene oxide	0/50	
Methyl methacrylate	0/50	
Propylene	0/50	
1,2-Epoxybutane	0/50	
Dichloromethane	0/50	
Tetrachloroethylene	0/49	
Bromoethane	0/47	
TOTAL	0/346	
SD (c)	0.00%	
Range (d)		
High	0/50	
Low	0/50	
Overall Historical Incidence for Untre	ated Controls in NTP Studies	
TOTAL	2/1,590 (0.1%)	
SD (c)	0.49%	
Range (d)		
High	1/50	
Low	0/50	

(a) Data as of March 1, 1989, for studies of at least 104 weeks

(b) All studies were conducted at Battelle Pacific Northwest Laboratories.

(c) Standard deviation

(d) Range and SD are presented for groups of 35 or more animals.

TABLE A4b. HISTORICAL INCIDENCE OF URINARY BLADDER TRANSITIONAL CELL NEOPLASMS IN MALE F344/N RATS (a)

Study	Incidence of Papillomas or Carcinomas in Controls	
Historical Incidence for Chamber	Controls in NTP Studies (b)	
Propylene oxide	(c) 1/48	
Methyl methacrylate	0/49	
Propylene	0/50	
1,2-Epoxybutane	(d) 1/49	
Dichloromethane	0/50	
Tetrachloroethylene	(d) 1/46	
Bromoethane	0/47	
TOTAL	3/339 (0.9%)	
SD (e)	1.12%	
Range (f)		
High	1/46	
Low	0/50	
Overall Historical Incidence for Un	ntreated Controls in NTP Studies	
TOTAL	(d) 1/1,552 (0.1%)	
SD (e)	0.37%	
Range (f)		
High	1/48	
Low	0/50	

(a) Data as of March 1, 1989, for studies of at least 104 weeks

(b) All studies were conducted at Battelle Pacific Northwest Laboratories. (c) Carcinoma

(d) Papilloma

(e) Standard deviation
(f) Range and SD are presented for groups of 35 or more animals.

	Chambe	er Control	100 ppm		300 ppm		
DISPOSITION SUMMARY		<u></u>					
Animals initially in study	50		50		50		
Early deaths	00		00		00		
Moribund sacrifice	24		29		28		
Natural death	6		-4				
Survivors	•		-		Ũ		
Terminal sacrifice	19		17		19		
Wrong sex	1				10		
Animals examined microscopically	49		50		50		
LIMENTARY SYSTEM							
	(43)		(9)		(47)		
Intestine large, cecum Hyperplasia, lymphoid	(43)		(9)			(2%)	
	0	(596)				•	
Parasite metazoan		(5%)	(19)			(9%)	
Intestine large, colon Hypomologia, lymphoid	(46)		(13)		(49)	(2%)	
Hyperplasia, lymphoid Mineralization, multifocal							
Parasite metazoan	4	(9%)				(2%) (12%)	
		(370)					
Artery, inflammation, chronic active, focal Intestine large, rectum			(10)			(2%)	
U	(36)	(00)	(12)		(40)	(= 0)	
Parasite metazoan		(6%)			2	(5%)	
Artery, submucosa, inflammation, chronic		(0~)					
multifocal		(3%)					
Intestine small, duodenum	(45)		(14)		(48)		
Inflammation, acute, multifocal	-	(0~)	1	(7%)			
Inflammation, chronic, diffuse		(2%)					
Ulcer, two		(2%)					
Intestine small, ileum	(44)		(12)		(44)		
Inflammation, chronic active, multifocal						(2%)	
Liver	(49)		(42)		(50)		
Angiectasis, focal		(6%)	3	(7%)		(4%)	
Angiectasis, multifocal		(6%)				(6%)	
Basophilic focus		(2%)		(10%)		(6%)	
Basophilic focus, multiple	1	(2%)		(7%)	1	(2%)	
Congestion				(5%)			
Cytomegaly, focal			1	(2%)			
Cytomegaly, multifocal			1	(2%)			
Cytoplasmic alteration, focal	2	(4%)			1	(2%)	
Degeneration, ballooning, focal	3	(6%)			3	(6%)	
Eosinophilic focus	1	(2%)	1	(2%)	1	(2%)	
Eosinophilic focus, multiple		(2%)					
Fatty change, diffuse		(2%)		(7%)	1	(2%)	
Fatty change, focal		(4%)		(2%)			
Fatty change, multifocal		(2%)	3	(7%)		(16%)	
Granuloma, multifocal		(8%)			4	(8%)	
Hematopoietic cell proliferation, multifoc	al 1	(2%)					
Hemorrhage, multifocal		(4%)			1	(2%)	
Hepatodiaphragmatic nodule	3	(6%)		(7%)	3	(6%)	
Hepatodiaphragmatic nodule, multiple			1	(2%)			
Hyperplasia, nodular, focal					1	(2%)	
Hyperplasia, nodular, multifocal	1	(2%)					
Mitotic alteration			2	(5%)			
Necrosis, focal				(2%)	1	(2%)	
Necrosis, multifocal	12	(24%)		(7%)		(16%)	
Pigmentation, multifocal				(2%)	-		
Thrombus, two	1	(2%)	-	. = . = /			
Vacuolization cytoplasmic, multifocal	-		1	(2%)			
Bile duct, fibrosis, multifocal	2	(4%)	-	. =,	1	(2%)	
					+	(= <i>i</i> = <i>i</i>	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

С	hambe	r Control	100 p	pm	300 p	pm
IMENTARY SYSTEM						 .
Liver (Continued)	(49)		(42)		(50)	
Centrilobular, congestion, diffuse		(2%)	(/		(,	
Centrilobular, degeneration, diffuse		(4%)	5	(12%)	1	(2%)
Centrilobular, degeneration, multifocal	-	(4,0)	Ū	(12,0)		(8%)
Centrilobular, fatty change, diffuse	11	(22%)	9	(5%)		(8%)
Centrilobular, fatty change, multifocal		(2%)	4	$(0, \mathbf{k})$		(0%)
Centrilobular, necrosis, diffuse		(10%)		(00)		
Centrilobular, necrosis, multifocal	Ţ	(2%)	1	(2%)		(0~~)
Periportal, cytomegaly, diffuse						(2%)
Periportal, fatty change, diffuse	1	(2%)		(2%)	2	(4%)
Portal, fibrosis, multifocal			1	(2%)		
Portal, inflammation, chronic, multifocal	1	(2%)				
Portal, inflammation, chronic active, multifoca	1 2	(4%)	1	(2%)		
Mesentery	(8)		(4)		(6)	
Accessory spleen, two	,					(17%)
Hemorrhage, acute, multifocal	1	(13%)			-	
Inflammation, chronic active, multifocal	•	(1	(17%)
Artery, ectasia, multifocal			1	(25%)	1	(11/0)
Artery, inflammation, chronic, focal			1	(20 %)	1	(17%)
		(100)		(050)	1	(1 (%)
Artery, inflammation, chronic, multifocal	1	(13%)		(25%)		(1 - - - - - - - - - -
Artery, mineralization, multifocal				(25%)	1	(17%)
Fat, necrosis, focal			1	(25%)		
Pancreas	(46)		(19)		(49)	
Infiltration cellular, lymphocytic, focal	1	(2%)				
Infiltration cellular, lymphocytic, multifocal	2	(4%)				
Acinus, atrophy, diffuse	3	(7%)	1	(5%)		
Acinus, atrophy, focal		(11%)		(0.0)	2	(4%)
Acinus, atrophy, multifocal		(39%)	2	(11%)	_	(41%)
Acinus, hyperplasia, focal	*0	(00 %)	2	(44/0)		(2%)
		(901)			I	(270)
Acinus, hyperplasia, multifocal	T	(2%)		(50)		
Artery, ectasia, multifocal				(5%)		
Artery, fibrosis				(5%)		
Artery, inflammation, chronic, multifocal			1	(5%)		
Artery, inflammation, chronic active, focal					2	(4%)
Artery, inflammation, chronic active, multifoca	al 2	(4%)			1	(2%)
Artery, mineralization, multifocal			1	(5%)		
Pharynx	(1)		(1)		(1)	
Inflammation, chronic active, multifocal	(-/			(100%)	(-)	
Palate, inflammation, chronic, focal	1	(100%)	-	(100 /0)	1	(100%)
Salivary glands	(48)	(100%)	(18)		(50)	
		(001)	(10)		(30)	
Artery, inflammation, chronic active, multifoca		(2%)	(19)		(40)	
Stomach, forestomach	(48)	(100)	(13)	(1 5 0)	(49)	(100)
Inflammation, chronic active	5	(10%)	z	(15%)		(10%)
Mineralization, diffuse						(2%)
Ulcer		(6%)		(8%)		(6%)
Epithelium, hyperplasia	6	(13%)	2	(15%)		(12%)
Submucosa, edema, diffuse					1	(2%)
Submucosa, inflammation, subacute	1	(2%)				
Stomach, glandular	(47)		(14)		(50)	
Cyst, multiple		(2%)				
Infiltration cellular, lymphocytic	-		1	(7%)		
Inflammation, chronic active, focal			•		1	(2%)
Mineralization, diffuse						(2%)
		(90)			1	(270)
Mineralization, multifocal		(2%)				
Ulcer, acute		(4%)				
Tooth	(2)		(3)		(1)	
Dysplasia			3	(100%)		
Pulp, angiectasis	1	(50%)				

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

		Chamber Control		100 ppm		300 ppm	
CARDIOVASCULAR SYSTEM							
Heart	(49)		(14)		(50)		
Cardiomyopathy		(86%)		(71%)		(80%)	
Mineralization, multifocal		(00)		(,-,		(2%)	
Atrium left, thrombus	4	(8%)	1	(7%)	2	(4%)	
Endocardium, atrium, fibrosis, focal		(2%)	-	(1.10)	_	()	
Myocardium, fibrosis, focal	•	(1,0)			1	(2%)	
Valve, fibrosis, focal	1	(2%)				(2%)	
Valve, inflammation, proliferative, focal		(,				(2%)	
ENDOCRINE SYSTEM		<u> </u>					
Adrenal gland	(49)		(24)		(50)		
Capsule, accessory adrenal cortical nodule		(10%)		(8%)		(8%)	
Adrenal gland, cortex	(49)		(20)		(50)		
Cytoplasmic alteration, focal		(2%)	,			(2%)	
Degeneration, fatty, diffuse		(27%)	5	(25%)		(18%)	
Degeneration, fatty, focal		(12%)	4	(20%)		(12%)	
Degeneration, fatty, multifocal		(6%)	· 1	(5%)		(6%)	
Hyperplasia, focal	4	(8%)	2	(10%)	10	(20%)	
Hyperplasia, multifocal		(6%)			2	(4%)	
Hypertrophy, focal			2	(10%)	1	(2%)	
Hypertrophy, multifocal					1	(2%)	
Adrenal gland, medulla	(49)		(21)		(46)		
Angiectasis, focal	1	(2%)					
Hyperplasia, focal	8	(16%)		(14%)	5	(11%)	
Hyperplasia, multifocal	10	(20%)	2	(10%)	4	(9%)	
Islets, pancreatic	(46)		(16)		(49)		
Atrophy, diffuse	1	(2%)					
Hyperplasia	1	(2%)					
Hyperplasia, focal	2	(4%)			2	(4%)	
Hyperplasia, multifocal	1	(2%)	2	(13%)		(10%)	
Inflammation, multifocal					1	(2%)	
Parathyroid gland	(45)		(14)		(45)		
Hyperplasia		(2%)		(14%)		(11%)	
Pituitary gland	(49)		(35)		(50)		
Pars distalis, angiectasis		(4%)		(3%)		(6%)	
Pars distalis, cyst	1	(2%)	4	(11%)		(10%)	
Pars distalis, degeneration, fatty, focal				(a. e.)		(2%)	
Pars distalis, hyperplasia		(a a)	1	(3%)	2	(4%)	
Pars distalis, hyperplasia, eosinophil, diffuse		(2%)	-	(0~)			
Pars distalis, hyperplasia, focal		(4%)	3	(9%)	7	(14%)	
Pars distalis, hyperplasia, multifocal		(10%)					
Pars distalis, pigmentation, focal		(2%)					
Pars intermedia, hyperplasia	2	$\chi = 1 + \gamma$					
Thyroid gland	(49)		(20)		(50)		
Cyst		(2%)					
Mineralization, multifocal		(2%)			-		
C-cell, hyperplasia, focal		(8%)		(5%)		(4%)	
C-cell, hyperplasia, multifocal	4	(8%)	1	(5%)		(6%)	
Follicle, cyst		(0.4)				(4%)	
Follicular cell, degeneration, multifocal		(2%)			1	(2%)	
Follicular cell, hyperplasia, focal	1	(2%)					
GENERAL BODY SYSTEM							
Tissue, NOS	(1)				(1)		
Necrosis, focal					1	(100%)	

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	r Control	100 p	pm	300 p	opm
ENITAL SYSTEM						- 44 m
Epididymis	(47)		(16)		(50)	
Dilatation, multifocal		(4%)				(2%)
Granuloma sperm, single		(2%)				(2%)
Inflammation, suppurative, focal		(2%)			•	(1)0)
Left, atrophy	-	(2,0)			1	(2%)
Preputial gland	(46)		(18)		(48)	(2,0)
Abscess	(40)			(11%)	(40)	
Atrophy, diffuse	1	(2%)	2	(11,20)		
Ectasia		(4%)	2	(11%)	3	(6%)
Fibrosis, diffuse		(4%)	2	(1170)	J	(0%)
Inflammation, chronic active		(9%)			4	(8%)
Inflammation, granulomatous, diffuse		(2%)				(2%)
Inflammation, granulomatous, focal		(9%)				(6%)
Inflammation, granulomatous, multifocal		(39%)	4	(22%)	22	(46%)
Inflammation, suppurative, focal		(2%)				
Prostate	(49)		(18)		(49)	
Hyperplasia, focal	5	(10%)			5	(10%)
Hyperplasia, multifocal	3	(6%)	2	(11%)	6	(12%)
Inflammation, chronic	1	(2%)				
Inflammation, chronic active	8	(16%)	6	(33%)	13	(27%)
Seminal vesicle	(41)		(13)		(43)	
Atrophy, diffuse	3	(7%)				(12%)
Fibrosis, multifocal	-	(110)			-	(2%)
Inflammation, subacute, diffuse	1	(2%)			-	(= /• /
Inflammation, suppurative, chronic active,	-	(=,0)				
diffuse					1	(2%)
Testes	(49)		(42)		(50)	(2,0)
Hemorrhage	(43)			(2%)	(00)	
Mineralization, focal	1	(2%)	1	(270)		
Mineralization, nultifocal			•	(901)	1	(9α)
	-	(2%)		(2%)	-	(2%)
Arteriole, inflammation	6	(12%)	2	(5%)		(8%)
Capsule, hyperplasia, multifocal					-	(2%)
Interstitial cell, hyperplasia		(4%)		(10%)		(4%)
Seminiferous tubule, atrophy		(27%)	11	(26%)		(26%)
Seminiferous tubule, degeneration	2	(4%)				(8%)
Serosa, necrosis, focal	1	(2%)	1	(2%)	2	(4%)
EMATOPOIETIC SYSTEM				<u> </u>		
Bone marrow	(48)		(15)		(50)	
Atrophy			1	(7%)		
Hyperplasia	8	(17%)	2	(13%)	5	(10%)
Metaplasia, osseous	1	(2%)	1	(7%)		
Myelofibrosis	1	(2%)				
Myeloid cell, hyperplasia		(8%)			4	(8%)
Lymph node	(49)		(27)		(50)	
Inflammation, suppurative, focal Lumbar, hemorrhage		(2%)	()			(2%)
Lumbar, inflammation, granulomatous, mu	ltifocal 1	(2%)			•	(- /0/
Mediastinal, hemorrhage		(4%)	າ	(7%)	F	(10%)
Mediastinal, hyperplasia, lymphoid		(2%)	2	(1 /0)	5	(1070)
Mediastinal, hyperplasia, re cell		(2%)				
Mediastinal, pigmentation, hemosiderin Pancreatic, hemorrhage		(4%)	1	(4%)		
Pancreatic, hyperplasia, lymphoid		(4%)				
Lymph node, mandibular	(44)		(14)		(48)	
Hemorrhage			1	(7%)		(2%)
Hyperplasia, lymphoid	2	(5%)			3	(6%)
Hyperplasia, plasma cell	2	(5%)	1	(7%)	5	(10%)
Hyperplasia, re cell	1	(2%)				

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

		Chamber Control		100 ppm		300 ppm		
HEMATOPOIETIC SYSTEM (Continued)								
Lymph node, mesenteric	(44)		(17)		(48)			
Depletion lymphoid		(2%)	((2%)		
Fibrosis, multifocal	-	(=,=,				(2%)		
Hemorrhage			2	(12%)		(4%)		
Hyperplasia, lymphoid	2	(5%)	-			(4%)		
Hyperplasia, re cell		(2%)				(6%)		
Spleen	(49)	(470)	(35)		(49)	(0 , 0)		
Congestion	(43)			(3%)		(2%)		
Depletion lymphoid			1	(0%)		(2%)		
	1	(2%)	9	(60)		(2%) (8%)		
Fibrosis, focal				(6%)	4	(070)		
Fibrosis, multifocal	_	(4%)		(6%)				
Hematopoietic cell proliferation		(8%)	2	(6%)				
Necrosis, coagulative, focal		(2%)						
Pigmentation, hemosiderin	3	(6%)	1	(3%)		(14%)		
Thrombus, single						(2%)		
Capsule, fibrosis, focal						(2%)		
Capsule, fibrosis, multifocal	1	(2%)			1	(2%)		
Thymus	(38)		(14)		(38)			
Angiectasis, multifocal			1	(7%)				
Depletion lymphoid				(1)	1	(3%)		
Hemorrhage	1	(3%)	1	(7%)	-	(2		
Hyperplasia, tubular		(21%)		(14%)	6	(16%)		
Artery, inflammation, chronic active		(3%)	-	(1=10)		(3%)		
Mammary gland Ectasia, diffuse Ectasia, multifocal Granuloma Hyperplasia, diffuse Hyperplasia, focal Inflammation, chronic active, multifocal Inflammation, granulomatous Inflammation, proliferative Skin Cyst epithelial inclusion Hyperplasia, squamous Inflammation, chronic, focal Ulcer Artery, subcutaneous tissue, inflammation, chronic active, focal Subcutaneous tissue, cyst Subcutaneous tissue, hemorrhage, chronic, fo Subcutaneous tissue, inflammation, chronic active	14 3 2 (49) 1 1 1 1 1	 (24%) (37%) (8%) (5%) (5%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) (2%) 	7 2 1 (23) 3 2 1	 (20%) (35%) (10%) (5%) (13%) (9%) (4%) 	6 1 7 1 (50) 1 1 1	(9%) (13%) (2%) (15%) (2%)		
MUSCULOSKELETAL SYSTEM Bone Fibrous osteodystrophy Osteopetrosis	(49)		(18)		(50)			
Sternum, developmental malformation Skeletal muscle Hemorrhage, acute	1 (2)	(2%)	(4)	(50%)	(1)			

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

С	hambe	r Control	100 p	pm	300 p	pm
ERVOUS SYSTEM						
Brain	(49)		(15)		(50)	
Compression		(22%)		(33%)		(18%)
Hemorrhage, focal		(8%)	0	(00 /0)	-	(2%)
Hemorrhage, nultifocal		(2%)				(4%)
Hemorrhage, muthocal		(6%)	9	(13%)		(16%)
Hydrocephalus	ა	(0%)	2	(13%)	0	(10%)
Perivascular, infiltration cellular, mixed						
cell, multifocal		(0.0)	1	(7%)		
Thalamus, gliosis, focal	1	(2%)				
ESPIRATORY SYSTEM						
Larynx	(37)		(5)		(41)	
Inflammation, chronic, multifocal	(01)		(0)			(5%)
Inflammation, chronic active, focal	7	(19%)	1	(20%)		(12%)
			1	(20%)	5	(1270)
Inflammation, suppurative, focal	1	(3%)				(901)
Submucosa, dilatation						(2%)
Lung	(49)		(50)		(50)	
Edema, focal		(2%)				
Hemorrhage, subacute, multifocal	1	(2%)				(2%)
Mineralization, multifocal					1	(2%)
Alveolar epithelium, hyperplasia, focal			1	(2%)		
Alveolar epithelium, hyperplasia, multifocal				(4%)		
Artery, mineralization, focal				,	1	(2%)
Bronchus, hyperplasia, lymphoid, focal						(2%)
Bronchus, epithelium, hyperplasia, focal	1	(2%)			-	(2,0)
	1	(270)			1	(2%)
Interstitium, inflammation, acute, multifocal			1	(901)	1	(470)
Interstitium, inflammation, chronic, diffuse		(0.01)	T	(2%)		
Interstitium, inflammation, chronic, focal		(2%)		(0~)	•	(10)
Interstitium, inflammation, chronic, multifocal	. 2	(4%)	4	(8%)	2	(4%)
Interstitium, inflammation, chronic active,						
multifocal					2	(4%)
Interstitium, mineralization, multifocal			1	(2%)		
Vein, mineralization, multifocal	1	(2%)				
Nose	(48)		(50)		(50)	
Lumen, exudate		(4%)		(10%)		(4%)
Lumen, foreign body		(4%)		(10%)		(8%)
Mucosa, inflammation, chronic		(8%)		(8%)		(12%)
					-	
Mucosa, inflammation, chronic active		(4%)		(18%)		(8%)
Mucosa, thrombus, multifocal		(10%)		(10%)		(6%)
Nasolacrimal duct, exudate	1	(2%)	3	(6%)		(6%)
Nasolacrimal duct, fungus					1	(2%)
Nasolacrimal duct, hyperplasia	1	(2%)				
Nasolacrimal duct, inflammation, acute				(2%)		
Nasolacrimal duct, inflammation, chronic		(29%)	16	(32%)	10	(20%)
Nasolacrimal duct, inflammation, chronic activ		(10%)		(2%)	5	(10%)
Olfactory epithelium, atrophy		(4%)		(2%)		(6%)
Olfactory epithelium, cyst	4	(- / - /		(8%)		(12%)
Olfactory epithelium, crosion				(16%)		(2%)
Olfactory epithelium, hyperplasia, eosinophil	1	(2%)	0	(10/0)	1	(2/0)
	. 1	(270)				
Olfactory epithelium, inflammation, chronic					-	(901)
active			-	(100)		(2%)
Olfactory epithelium, metaplasia				(12%)		(8%)
Respiratory epithelium, cyst		(4%)		(26%)		(18%)
Respiratory epithelium, hyperplasia	8	(17%)	24	(48%)	27	(54%)
Respiratory epithelium, hyperplasia, eosinoph		(8%)			1	(2%)
Respiratory epithelium, hyperplasia, papillary			5	(10%)		(4%)
Trachea	(48)		(14)		(50)	
Inflammation, chronic	(=0)			(7%)		(4%)
Artery, inflammation, chronic active, focal	1	(2%)	1	(170)	2	(-= /0)
Glands, metaplasia, squamous, focal	1	(270)			•	(2%)
vilands, metaplasia, soliamolis, tocal					1	(2.70)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

т

С		er Control	100 ppm		300 ppm	
SPECIAL SENSES SYSTEM		<u>-</u>				
Eve	(3)		(2)		(5)	
Anterior, synechia			1	(50%)		
Cornea, inflammation, chronic active			1	(50%)		
Left, choroid, hemorrhage	1	(33%)				
Retina, degeneration	1	(33%)	1	(50%)		
Right, lens, cataract			1	(50%)		
URINARY SYSTEM	<u> </u>					
Kidney	(49)		(35)		(50)	
Bacterium	· /		1	(3%)		
Infiltration cellular, lymphocytic, multifocal	•		1			
Inflammation, suppurative, acute, multifocal			1	(3%)		
Inflammation, suppurative, focal					1	(2%)
Mineralization, diffuse					1	(2%)
Nephropathy, chronic	46	(94%)	32	(91%)	48	(96%)
Pigmentation, diffuse	8	(16%)		(6%)		(10%)
Pigmentation, multifocal	-	(4%)		(3%)		(2%)
Artery, inflammation, chronic active, focal		()			1	(2%)
Cortex, cyst	1	(2%)	1	(3%)		(6%)
Cortex, hyperplasia, atypical		(2%)		-	2	(4%)
Proximal convoluted renal tubule, necrosis,						
acute, multifocal					1	(2%)
Transitional epithelium, hyperplasia	2	(4%)				
Transitional epithelium, mineralization	4	(8%)				
Urinary bladder	(48)		(12)		(49)	
Calculus gross observation	1	(2%)				
Ectasia					1	(2%)
Inflammation, chronic active, focal	1	(2%)				
Inflammation, subacute, diffuse					1	(2%)
Lumen, calculus micro observation only, sing	le 1	(2%)				
Subserosa, mineralization, focal					1	(2%)

TABLE A5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

APPENDIX B

SUMMARY OF LESIONS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF

VINYL TOLUENE

.

TABLE B1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	85
TABLE B2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	88
TABLE B3	ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	98
TABLE B4	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	102

Vinyl Toluene (mixed isomers), NTP TR 375 84

Chambe	r Control	100 p	pm	300 p	pm
<u> </u>					
50		50		50	
16		21		18	
3		1		6	
				- •	
50		50		50	
	<u></u>				
(49)		(5)		(46)	
,		(10)		(49)	
(46)		(9)		(46)	
(50)		(9)		(50)	
(48)		(7)		(48)	
(48)		(7)		(49)	
(50)		(33)		(50)	
(4)		(2)		(5)	
		1	(50%)		
	(25%)				
		(13)		(49)	
	(2%)				
		(9)		(47)	
· - ·					
(50)		(11)		(,	
				1	(100%)
(50)		(10)		(50)	
in primary					
				1	(2%)
(50)		(14)		(50)	
(50)		(14)		(50)	
1 /	(2%)	,			
(48)		(14)		(45)	
	(4%)				(2%)
5					(7%)
(50)		(12)		(49)	
				-	(2%)
	(2%)		(8%)		(4%)
(50)					
25	(50%)				(48%)
-					(2%)
					(8%)
	(8%)		(5%)	-	(2%)
(50)		(10)			100
_	(1.1.07)				(2%)
7	(14%)				(4%)
					(4%)
				1	(2%)
	50 16 3 31 50 (49) (50) (46) (50) (48) (48) (48) (50) (49) (50) 1 (50) (49) (50) (50) (49) (50) (49) (50) (48) (48) (48) (50) (48) (48) (50) (48) (48) (49) (50) (48) (48) (50) (48) (49) (50) (48) (49) (50) (48) (49) (50) (48) (48) (50) (48) (49) (50) (48) (49) (50) (48) (49) (50) (48) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (48) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (49) (50) (5	$ \begin{array}{c} 16\\ 3\\ 3\\ 31\\ 50\\ \end{array} $ $ \begin{array}{c} (49)\\ (50)\\ (46)\\ (50)\\ (48)\\ (48)\\ (50)\\ (1)\\ (2\%)\\ (50)\\ (49)\\ (50)\\ (49)\\ (50)\\ \end{array} $ $ \begin{array}{c} (50)\\ (50)\\ (49)\\ (50)\\ (49)\\ (50)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 1\\ (2\%)\\ (50)\\ 3\\ (6\%)\\ 4\\ (8\%)\\ \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

GENERAL BODY SYSTEM

None

	Chambe	er Control	100 p	pm	300 p	pm
GENITAL SYSTEM			*		·	
Clitoral gland	(48)		(11)		(46)	
Adenoma		(2%)		(18%)		(4%)
Carcinoma	_	((18%)	_	
Duct, papilloma squamous	1	(2%)	-	(10.0)		
Ovary	(50)	(=,0)	(18)		(50)	
Uterus	(50)		(18)		(50)	
Adenoma		(2%)	((,	
Leiomyoma	-	(= ///	1	(6%)	1	(2%)
Leiomyosarcoma	1	(2%)		(6%)	-	(=,
Polyp stromal		(14%)		(33%)	5	(10%)
Sarcoma stromal		(2%)	-	(,	-	(=
Vagina	$(\tilde{\mathbf{n}})$				(1)	
Schwannoma malignant	,					(100%)
IEMATOPOIETIC SYSTEM						
Bone marrow	(49)		(9)		(50)	
Lymph node	(50)		(17)		(50)	
Lymph node, mandibular	(47)		(11)		(47)	
Lymph node, mesenteric	(47)		(11)		(46)	
Spleen	(50)		(12)		(50)	
Thymus	(38)		(6)		(37)	
NTEGUMENTARY SYSTEM	<u> </u>				<u>.</u>	
Mammary gland	(48)		(29)		(49)	
Adenocarcinoma		(6%)	(20)			(4%)
Adenoma	5	(0,0)	1	(3%)		(2%)
Carcinoma				(3%)	1	(270)
Fibroadenoma	19	(27%)		(28%)	9	(18%)
Fibroadenoma, multiple		(2%)	0	(2070)	5	(10%)
Fibroadenoma, two		(4%)				
Skin	(50)		(13)		(50)	
	(50)		(13)			(2%)
Basal cell carcinoma		(00)			1	(270)
Papilloma squamous		(2%)				
Squamous cell carcinoma		(2%)		(1 = 0)	1	(2%)
Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma		(6%)		(15%) (8%)		(2%)
	1	(2%)	1	(0%)		(2%)
Subcutaneous tissue, lipoma						(2%)
Subcutaneous tissue, myxoma						(270)
NUSCULOSKELETAL SYSTEM					/EA\	
Bone Stornum octoornoomo	(49)		(9)		(50)	
Sternum, osteosarcoma	. <u> </u>				1	(2%)
NERVOUS SYSTEM						
Brain	(50)		(11)		(50)	
RESPIRATORY SYSTEM						
Lung	(50)		(50)		(50)	
Carcinoma, metastatic, thyroid gland						(2%)
Trachea	(50)		(8)		(50)	
SPECIAL SENSES SYSTEM None		<u> </u>		<u>.,</u> ,		

TABLE B1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

TABLE B1.	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR	
	INHALATION STUDY OF VINYL TOLUENE (Continued)	

	Chamber Control	100 ppm	300 ppm
URINARY SYSTEM		······································	
Kidney	(50)	(14)	(50)
Urinary bladder	(49)	(9)	(46)
SYSTEMIC LESIONS	<u> </u>	<u></u>	
Multiple organs	*(50)	*(50)	*(50)
Leukemia mononuclear	20 (40%)	16 (32%)	25 (50%)
 TUMOR SUMMARY Total animals with primary neoplasms Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total animals with secondary neoplasms Total secondary neoplasms Total animals with malignant neoplasms 	48 108 44 73 28 35	41 70 34 46 23 24 1 1	46 97 39 57 31 40 2 2

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically. ** Primary tumors: all tumors except secondary tumors *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

Vinyl Toluene (mixed isomers), NTP TR 375 87

) 5 1 3 1 + + + + + + + + + + + + +	4 5 1 3	3 3 1	5 599 2 2 1 1 1 1 + + + + + + + + + + + + + +	92 361 +++++++++++++++++++++++++++++++++++	$\begin{array}{c} 6 \\ 1 \\ 3 \\ 0 \\ 5 \\ 1 \\ + + + + + + + + + + + + + + + + +$	$\begin{array}{c} 6\\ 3\\ 0\\ 2\\ 3\\ 1\\ ++++++++++++++++++++++++++++++++$		$\begin{array}{c} 6 \\ 3 \\ 5 \\ 4 \\ 6 \\ 1 \\ + + + + + + + + + + + + + + + + +$	9 5 0	7 9 0 2	6 8 8 2 2 1 ++++++++++++++++++++++++++++++++++++	1 0 8	8 3 7	8 4 7 1 ++++++	7 1 8 2 5 1 ++++ M +++++	728071+++++++++	7 2 8 1 9 1 +++++++++++++++++++++++++++++++	728 201 +++++++	7 2 8 2 1 1 +++++++++++++++++++++++++++++	$\begin{array}{c} 7 & 7 \\ 2 & 9 \\ 0 & 3 \\ 1 \\ + + + + + + + + + + + + + + + + +$
· 31	1 +++++++ M ++ + ++	1 +++++++++++++++++++++++++++++++++++++	$1 1 \\ + + + + + + + + + + + + + + + + + +$		1 +++++++++++++++++++++++++++++++++++++	3 1 ++++++++	3 1 +++++++	6 1 ++++++++	1 ++++++++++++++++++++++++++++++++++++	21 ++++++++	1 +++++++++++++++++++++++++++++++++++++	8 1 +++++++++++++++++++++++++++++++++++	7 1 ++++++++	1 +++++++++++++++++++++++++++++++++++++	1 ++++M+++	ž		ō	1 ++++++++++++++++++++++++++++++++++++	3 4 1 1 + + + + + + + + + + + + + + + + + +
· · · · · · · · · · · · · · · · · · ·	+++M++ + ++	·+++++ + ++	+ + + + + + + +	+ + + + + +	+ + + + +	÷	+++++++++++++++++++++++++++++++++++++++	+ + +	· + + + + + +	+ + + +	+	+++++++++++++++++++++++++++++++++++++++		+ + + +	M + + +	+++++++++++++++++++++++++++++++++++++++	++++++++++	++++++++++	++++++++++	+ + + + + + + + + + + + + + + + + + +
					+++++	++++	++	++	+	+	+	+ +	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	
+ +	+			+ +	+++	+ + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + + +		+ + + +	+ + + +	+ ++++	+ ++++	+ X + + + + +	+ ++++	+ + ++++	X + - + - + -
		+	+ -	+ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+ + + + X	+ + + X +	+ + M +	+ -	+ + + + + +	+ + + +	+ + + +	+ + +	+ + +	+ + +	+ + + +	+ + +		+ + X +	+ + + X +	+ + M +	+ + +	+ + + + X +	+ + +	+ + +	+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+ -+
+ + + + X	+ + X +	++++++	+ - + - + -	x	+ + X +	+ + +	+ + X +	+ + X +	+ + +	+ + X +	+ +	+ + X +	+++++	+ + +	.+ + X +	+ + X +	+++++	+ + X +	+ + X +	+ + +
				x					x	x		·								X
+ -	+	+	+ ·	+ +	+	+	+	+	+	+	* *	+	+	+	м +	+	+	+	+	+ +
+ -	÷	÷	÷	÷÷	÷	÷	+	÷	÷	x	÷ x	÷	÷	÷	÷	÷	÷	+	* X	+
++ + - +++		+ + X + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	X X + + + + +	X + + + + + +	X X + + + + + + + +	$\begin{array}{c} x \\ + + + + \frac{x}{x} + + + \\ + + + + + + + + + + \\ + + + + $	$\begin{array}{c} x \\ + + + + + \frac{x}{x} + + + + \\ + + + + + + + + + + + + \\ + + + + + + + + + + + + \\ + + + + + + + + + + + + \\ + + + + + + + + + + + + + \\ \end{array}$	$x + + + + \frac{x}{x} + + + + \frac{x}{x}$ $+ + + + + + + + + + + \frac{x}{x}$	$\begin{array}{c} x \\ + + + + + \frac{x}{x} + + + + \frac{x}{x} \frac{x}{x} \\ \\ + + + + + + + + + + + + + + + \\ + + + + + + + + + + + + + + + \\ \\ + + + + + + + + + + + + + + + + + \\ \end{array}$	$\begin{array}{c} x \\ + + + + \frac{x}{x} \\ + + + + \frac{x}{x} \\ + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + + + + + $	$\begin{array}{c} x \\ + + + + + \frac{x}{x} \\ + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + + + + + $	$\begin{array}{c} x \\ + + + + + \frac{x}{x} \\ + + + + \frac{x}{x} \\ + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + + + + + $	$\begin{array}{c} x \\ + + + + \frac{x}{x} \\ + + + + \frac{x}{x} \\ + + + + + \frac{x}{x} \\ + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + \frac{x}{x} \\ + + + + + + + + + + + + + + + + + + $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} x \\ + & + & + & + & + & + & + & + & + & +$

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: CHAMBER CONTROL

Tissue examined microscopically Not examined
 Present but not examined microscopically I Insufficient tissue

M Missing A. Autolysis precludes examination X Incidence of listed morphology

							(U	om		ucu	/														
7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	TOTAL.							
0 6 1	0 9 1	1 0 1	1 2 1	1 6 1	1 7 1	2 4 1	4 9 1	0 1 1	1 4 1	3 4 1	4 4 1	4 5 1	4 8 1	2 6 1	2 7 1	2 9 1	3 0 1	3 2 1	3 8 1	3 9 1	4 0 1	4 1 1	4 2 1	4 3 1	TISSUES TUMORS
* + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++ + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++ + .	+++++++++ + .	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	50 50 49 50 46 50 50 48 48 48 50 48 48 50 4 1 50 1
+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	+ + + +	+++++	+++++	+ + + +	+ + +	+ + + +	+ + + +	50 50 49 50
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
+++++++++++++++++++++++++++++++++++++++	+ + + +	++ + +	+ + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+ + + X +	+ + + + X	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	++ + +	+ + + +	+++++++	+ + + +	+ + + + X +	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + +	+ + + +	+ + + +	+ + + +	50 50 1 48 2 5 50 1
M + X +	+ + X +	+ + X +	+ + X +	+ + X + X	+ + X +	+ + +	+ + +	+ + X +	+ + X +	M + X +	++x +x	+ + X +	+ + X +	X + + X +	+ + X +	+ + +	+ + +	+ + +	M + X +	++ + X +X	+ + X +	+ + X +	+ + X +	++ + X +	1 46 50 25 3 4 50 7
																									-
+ + +	+ + +	+++++	+++++	+ + +	+++++	++++	+ + +	+ + +	+ + +	+++++	++++	+ X + + x	+ + +	+++	+ + + X	+ + + X	+ + +	++++	+ + +	+ + +	+ + +	++++	+ + +	++++	- 48 1 50 50 1 1 7
	2 9 0 6 1 +++++++++++++++++++++++++++++++++	2 2 3 9 9 0 6 9 9 1 1 + + + + + + + + + + + + + + + + + + +	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$														

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: CHAMBER CONTROL (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: CHAMBER CONTROL (Continued)

DAYS ON STUDY	1 6 6	4 3 4	4 7 0	5 4 5	5 5 3	5 8 2	5 9 2	5 9 2	6 1 3	6 3 0	6 3 0	6 3 5	6 5 9	6 7 9	6 8 8	7 0 1	7 0 8	7 0 8	7 1 8	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9
CARCASS ID	1 8 1	2 8 1	3 5 1	1 3 1	3 1 1	1 5 1	1 1 1	3 6 1	0 5 1	2 3 1	3 3 1	4 6 1	5 0 1	0 2 1	2 2 1	0 8 1	3 7 1	4 7 1	2 5 1	0 7 1	1 9 1	2 0 1	2 1 1	0 3 1	0 4 1
HEMATOPOIETIC SYSTEM Bloed Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	M + + M +	+ + + M + + +	+ + + + + + M	+ + + + + + M	+ + + + + + + + + + + + + + + + + + +	+ + + + M + +	+ + + M + + M	+ + + + +	+ + + + + + + +	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++	+++++++	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + M	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + M + + M	+ + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++++
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma Fibroadenoma, multiple	M	М	+	+	+	+	+ X	x x	+	+ X	+	+	+	+	+	+	+	+ X	+ X	+ X	+	+ X	* x	+	+
Fibroadenoma, two Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibrona Subcutaneous tissue, fibrosarcoma	+	+ X	+	+	+ x	+	+	+	+	+	X +	+	+	+	+ X	+	+	+	+ X	+	+	+	+	+	+
MUSCULOSKELETAL SYSTEM Bone	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Nose Trachea	+++++++	M + + +	M + + +	M + + +	+ + + +	M + + +	+++++	+ + + +	+ + + +	+ + + +	+ + + + +	++++++	+++++	+ + + +	+ + + +	+++++	++++++	+++++	+ + + +	+++++	+++++	++++++	++++++	+++++	+ + + +
SPECIAL SENSES SYSTEM Eye Zymbal gland												+		+	+										
URINARY SYSTEM Kidney Urinary bladder	++++	++++	++++	++++	++++	++++	++++	++++	++	++++	++++	+++++	+++	++++	+++	++++	++++	++++	++++	+++++	++++	+++	++++	 + +	+ +
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear	+	+	+	+	+	* X	+	*	* x	*	* X	* x	* X	+	+ X	* x	*	+ X	+	+	*	* X	+ X	* x	* X

TABLE B2.	INDIVIDUAL ANIMAL	TUMOR PATHOL	OGY OF FEMA	LE RATS:	CHAMBER CONTROL
		(Conti	nued)		

DAYS ON STUDY CARCASS ID	7 2 9 0 6 1	7 2 9 0 9	7 2 9 1 0	7 2 9 1 2 1	7 2 9 1 6	7 2 9 1 7	7 2 9 2 4	7 2 9 4 9	7 3 0 1	7 3 0 1 4	7 3 0 3 4	7 3 0 4 4	7 3 0 4 5	7 3 0 4 8	7 3 1 2 6	7 3 1 2 7	7 3 1 2 9	7 3 1 3 0	7 3 1 3 2 1	7 3 1 3 8	7 3 1 9 1	7 3 1 4 0	7 3 1 4 1	7 3 1 4 2 1		TOTAL TISSUES TUMORS
HEMATOPOIETIC SYSTEM Blood Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	L ++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + M	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + M + + + + +	++++++	+ + + + + M	+ + + + + M	+ + + + + M	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	* ++++++++++++++++++++++++++++++++++++	1 49 50 47 47 50 38
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Fibroadenoma, multiple Fibroadenoma, two Skin Papilloma squamous Squamous cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	+	+ X +	+ X +	+	+	+	+ X +	+ X +	+	+	+	+	+	+	+ X +	+ X +	+	+ X + X	+	+	+	+ x +	+ + X	+	+ X +	48 3 13 1 2 50 1 1 3 1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Larynx Lung Nose Trachea	+++++++	+ + + +	++++++	++++++	+++++++	+ + + +	++++++	++++++	+ + + +	+ + + +	++++++	+ + + +	++++++	+++++	+++++	+++++++	+++++	++++++	++++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++	46 50 50 50
SPECIAL SENSES SYSTEM Eye Zymbal gland																										2 1
URINARY SYSTEM Kidney Urinary bladder	+++	++++	+++	+ +	+++	++++	+++	+++	++++	+++	+++	+++	++++	++++	+++	++++	+ м	++++	++++	++++	+ +	++++	+ +	++++	+ +	50 49
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear	+	+	+	+	+	+	+	+ x	+	+	+	+	+ x	+	+	+	+	+	+	+	+ x	+	+ x	+	+	50 20

I.

	MALAIR		51	UD	-	Jr	**	I ML			u0.		L 2.	10	υp	բա									
DAYS ON STUDY	4 2 1	4 9 5		5 2 6	5 4 8	5 6 0	5 8 3	6 2 4	6 2 4	6 3 7	6 3 7	6 5 9	6 6 1	6 7 5	6 9 3	6 9 6	7 0 1	7 0 3	7 0 7	7 0 7	7 0 9	7 1 4	7 2 8	7 2 8	7 2 8
CARCASS ID	2 2 3 1	2 0 7 1	0	2 4 4 1	2 0 6 1	2 4 2 1	2 4 6 1	2 2 6 1	$2 \\ 3 \\ 1 \\ 1$	2 4 7 1	2 4 8 1		2 2 8 1	2 3 7 1	2 1 4 1	2 2 0 1	$ \begin{array}{c} 2 \\ 0 \\ 2 \\ 1 \end{array} $	2 1 9 1	$ \begin{array}{c} 2 \\ 3 \\ 2 \\ 1 \end{array} $	2 4 1 1	$ \frac{2}{3} 5 1 $		2 3 3 1	2 3 4 1	$ \begin{array}{c} 2 \\ 3 \\ 6 \\ 1 \end{array} $
ALIMENTARY SYSTEM			•		,																				
Esophagus	+++	+++		+	+	+	+	+	+																
Intestine large Intestine large, cecum	, + M				+	+++	+	+++++++++++++++++++++++++++++++++++++++	+	+															
Intestine large, colon	+	+	• +	+	+	+	+	÷	+	+															
Intestine large, rectum Intestine small	+	+++			+++	++	+++	++++	++++																
Intestine small, duodenum	+	+			+	+	+	+	+																
Intestine small, ileum	+	A			+	+	+	М	+																
Intestine small, jejunum Liver	+	A +			++	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+			
Mesentery							-	-		+							+								
Fibrosarcoma, metastatic, skin Pancreas	+					-	+			Ŧ							X								
Salivary glands	+	+	- +	· +	+	+	+	+	+	7															
Stomach	+	+			+	+	+	+	+																
Stomach, forestomach Stomach, glandular	+	+++++++++++++++++++++++++++++++++++++++	- +	· + · +	++	++	+++++++++++++++++++++++++++++++++++++++	+++	++																
CARDIOVASCULAR SYSTEM Heart					+		+	+	+										<u>.</u>						
		r				-	т	+																	
ENDOCRINE SYSTEM Adrenai gland	+					1	L	1	+				+												
Adrenai gland, cortex	+	+	- +	· +	+	+	+	+	+				+												
Adrenal gland, medulla	+	+	- +	• +	+	+	+	+	+				+												
Islets, pancreatic Carcinoma	+	7		· 7	Ŧ	+	+	+	+																
Parathyroid gland	М				+	+	+	+	+																
Pituitary gland Pars distalis, adenoma	+	+ X	- +	• +	+	x +	+	+	x x	* X	x x	+	x x	+	+	x x	x +	x +	x +	+		+	+	+	
Pars distalis, adenoma, multiple			•						~	A	~							*		х					
Pars distalis, adenoma, two Pars distalis, carcinoma														X											
Thyroid gland	+	+	+	• +	+	+	+	+	+						+										
GENERAL BODY SYSTEM Tissue, NOS							+																		
GENITAL SYSTEM																									
Chtoral gland	+	N	1 +	- +	М	М	М	+	+				*				+								
Adenoma Carcinoma													х												
Ovary	+	- 4	+ -	- +	+	+	+	+	+				+							+		+		+	
Uterus Leiomyoma	+			- +	+	+	+	+	+												+			+	+
Leiomyosarcoma																									X
Polyp stromal				X																				х	
HEMATOPOIETIC SYSTEM																					···				
Bone marrow	+		⊢ +		+	+	+	+	+																
Lymph node Lymph node, mandibular	+				+ M	++	+++	++	+++	++				++		+	+	+							
Lymph node, mesenteric	+	- 1	⊢ N	1 +	+	+	+	+	+					1		+	+								
Spleen Thymus	+ M				+++	+ M	++	++	+ м	+		+		+				+	+		+	+			
•	19.			- r	-	TAT	т	Ŧ	141												_				
INTEGUMENTARY SYSTEM Mammary gland	M	[4																						+	
Adenoma	14.				т	+	+	Ŧ	Ŧ				т	Ŧ	T		Ŧ	-	Ŧ	Ŧ				т	Ŧ
Carcinoma						х	v												x						x
Fibroadenoma Skin	+		+ +	- +	+	+	X +	+	+		+						+		л						л
Subcutaneous tissue, fibroma											Х														
Subcutaneous tissue, fibrosarcoma																	X								
MUSCULOSKELETAL SYSTEM							-											_							
Bone	+			- +	+	+	+	+	+																
NERVOUS SYSTEM Brain	+		+ -	+ +	+	+	+	+	+			+													
RESPIRATORY SYSTEM															······										
Larynx	N		+ -	+	+	+	М		+																
Lung Nose	+		+ -	⊢ + ⊢ +	• +		++		++	+	4	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Trachea			4			+	+	+	+	+	7	7	7	7	7'	T ²	*	ſ	ſ	r	*	+	-		
SPECIAL SENSES SYSTEM Eye								+				+					+								
URINARY SYSTEM															•										
Kidney Urinary bladder	+		+ -	⊢ + ⊢ +	· +	++	, M	+++++++++++++++++++++++++++++++++++++++	+ +				+ +		+			+							
SYSTEMIC LESIONS																									
	+		τ, γ	⊦ + t x	+	+	+	x x	x +	x ⁺	+	x +	+	x x	+	+	+	x +	x +	+	+	x +	+	+	+
Multiple organs Leukemia monoruclear	v																				¥				

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 100 ppm

DAYS ON STUDY	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	$7 \\ 3 \\ 1$	7 3 1	7 3 1	7 3 1	7 3 1	TOTAL
CARCASS ID	2 4 5 1	2 4 9 1	2 5 0 1	2 2 9 1	2 3 0 1	2 4 0 1	2 4 3 1	$2 \\ 2 \\ 1 \\ 1 \\ 1$	2 2 2 1	2 2 4 1	2 2 5 1	$ \begin{array}{c} 2 \\ 2 \\ 7 \\ 1 \end{array} $	2 3 8 1	2 3 9 1	2 0 1 1	2 0 3 1	2 0 4 1	2 0 5 1	2 0 8 1	2 0 9 1	2 1 3 1	$ \begin{array}{c} 2 \\ 1 \\ 5 \\ 1 \end{array} $	$ \begin{array}{c} 2 \\ 1 \\ 6 \\ 1 \end{array} $	2 1 7 1		TISSUES
ALIMENTARY SYSTEM Esophagus Intestine large, coum Intestine large, colon Intestine large, colon Intestine small, duodenum Intestine small, duodenum Intestine small, duodenum Intestine small, jeunum Liver Mesentery Fibrosarcoma, metastatic, skin Pancreas Saivary glands Stomach, forestomach Stomach, glandular	+ + + + + + + + + + + + + + + + + + + +		++++++		+	+	+	-		+	+	+	_		+		+	+	+	+		+ +		+		9 10 5 10 9 9 9 7 7 7 33 2 1 13 9 11 11
CARDIOVASCULAR SYSTEM Heart																	+									10
ENDOCRINE SYSTEM Adrenal gland, Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatu Carcnoma Parathyroid gland Ptututary gland Pars distalis, adenoma Pars distalis, adenoma, multiple Pars distalis, adenoma, two Pars distalis, carcinoma Thyroid gland	+ x + x	+ X	*	* X	* x	+ X	+ + + X	+ X	+ X	+	+++++++++		+		+ + + X	+ X	+ + + X	+ X	+ X	+		+ + X			+ X	14 14 14 12 1 7 43 24 1 1 2 10
GENERAL BODY SYSTEM Tissue, NOS	-					-																				-
GENITAL SYSTEM Chtorai gland Adenoma Carcinoma Ovary Uterus Leiomyoma Leiomyosarcoma Polyp stromai	+					+ x	+	+ +	+ X				+ X		+ X		+ +	+++ +	+	+ X	+		+ x			$ \begin{array}{c c} 11 \\ 2 \\ 2 \\ 18 \\ 18 \\ 1 \\ 1 \\ 6 \\ \end{array} $
HEMATOPOIETIC SYSTEM Bone marrow Lymph node, mandibular Lymph node, mesenteric Spieen Thymus	+						+	+++							++++							+			~	$ \begin{array}{c} 9\\ 17\\ 11\\ 12\\ 19\\ 6 \end{array} $
INTEGUMENTARY SYSTEM Mammary gland Adenoma Carcinoma Fibroadenoma Skin Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma	+ x		+ X +	+ x	_	+	+	+ x				+			+ X		+	+	+	+ x		+ X				29 1 1 8 13 2 1
MUSCULOSKELETAL SYSTEM Bone	-																			· · · · · ·		,	··			9
NERVOUS SYSTEM Brain	-					+																				11
RESPIRATORY SYSTEM Larynx Lung Nose Trachea	-	+	++	 + +	++	+	++	++	+ +	+++	++	++	+	+ +	+++	+ +	++++	+++	+	+	+	- +		+	· +	6 50 49 8
SPECIAL SENSES SYSTEM Eye	-																									3
URINARY SYSTEM Kidney Urinary bladder	-				_										+											14 9
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear	-	+	• +	• +	+	+	, x	+	+	+	+	+	+	+	+	+	+	+	+	• +	- +	×	- +	- +	+	50 16

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 100 ppm (Continued)

93 Vinyl Toluene (mixed isomers), NTP TR 375

I.

																-									
DAYS ON STUDY	4 1 4	4 3 4	4 4 4	4 5 6	4 9 9	5 0 6	5 2 6	5 7 6	5 7 6	5 8 2	6 0 6	6 1 4	6 2 6	6 3 7	6 4 6	6 8 0	6 8 1	6 8 3	6 9 0	6 9 7	7 0 9	7 0 9	7 1 4	7 1 8	7 2 8
CARCASS ID	1 0 5 1	1 3 1 1	1 0 4 1	1 1 1	1 1 6 1	1 4 9 1	1 4 7 1	1 3 4 1	$ \begin{array}{c} 1 \\ 3 \\ 6 \\ 1 \end{array} $	1 4 4 1	$\frac{1}{2}$	$ \begin{array}{c} 1 \\ 3 \\ 2 \\ 1 \end{array} $	1 4 2 1	1 3 7 1	1 2 9 1	1 2 6 1	1 1 5 1	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \end{array} $	1 0 1 1	1 1 8 1	1 2 3 1	1 4 1 1	1 3 1	1 3 0 1	1 3 5 1
ALIMENTARY SYSTEM Esophagus Intestine large, colon Intestine large, colon Intestine small, duodenum Intestine small, duodenum Intestine small, leum Intestine small, jeunum Liver Mesentery Pancreas Pharynx Sahvary glands	M + + M + + + + + + + + + + + + + + + +	++++M++M++ M +	+ + M + M + + + + + + + + + + + + + + +	++++M+++++ + +	++M+++++++++++++++++++++++++++++++++++	+ + M + + + + + + + + +	++M+++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + +	* * * * * * * * * *	+++++++++ M	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
Stomach Stomach, glandular Tongue Squamous cell carcinoma Tooth	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+ M +	+ + +	++++	+ + +	+ + +	+ + +	+ + +	+ + +	+ + +	+++	+ + +	++++	+ + +	++++	++++	++++	+ + +	+++	+ + +	++++	+ + +
CARDIOVASCULAR SYSTEM Heart Hemangiosarcoma, metastatic, uncertain primary site	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland, Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma malignant Pheochromocytoma benign Islets, pancreatic Adenoma Carenoma Parathyroid gland	+++++++	+ + + M M	++++++++	+ + + + + +	+ + + +	+ + + +	++++++++	+++++++	+ + + +	+ + + +	+ + M +	+ + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + X +	+ + + + M	+++++++	+ + X + M	+ + M + X +	+ + + +	+ + + +	+ + + + +	++++++++	+ + + +
Pituitary gland Pars distalis, adenoma Pars distalis, adenoma, multiple Pars distalis, adenoma, two Pars distalis, carcinoma Thyroid gland Carcinoma C cell, adenoma C cell, carcinoma Follicular cell, adenoma, papillary Follicular cell, carcinoma	+ x +	+	+	+	+ X +	+	+	+ * X +	+ X +	+ x +	+ +	+ +	+	+ x +	+ X +	+ x +	+ * +	+ x +	+ X +	+ x +	+ X +	+	+	+	+ X +
GENERAL BODY SYSTEM None GENITAL SYSTEM Clitoral gland Adenoma Ovary Uterus Letomyoma Polyp stromal Yagna Schwannoma malignant	M + +	M + +	M + +	++++	++++	+ + X	++++	++++	++++	++++	++++	+ + +	++++	+ + +	++++	+ X + +	+++	++++	++++	+ + +	+ + + X	++++	+ + + X	+ + + X	++++

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 300 ppm

								(U	on	1111	ueu	,														
DAYS ÖN STUDY	7 2 8	7 2 8	7 2 8	7 2 8	7 2 9	7 2 9	7 2 9	7 2 9	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 0	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	7 3 1	TOTAL:
CARCASS ID	1 4 5 1	1 4 6 1	1 4 8 1	1 5 0 1	1 2 8 1	1 3 3 1	1 4 0 1	1 4 3 1	1 0 9 1	1 1 0 1	1 2 1 1	1 2 4 1	$\frac{1}{2}$ 5 1	1 2 7 1	1 3 8 1	1 3 9 1	1 0 2 1	1 0 3 1	1 0 6 1	1 0 7 1	1 0 8 1	1 1 4 1	1 1 7 1	1 1 9 1		TISSUES
ALIMENTARY SYSTEM	_																									
Esophagus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	48
Intestine large	+++	++	+	+	+	+	+	+	+	+	+	++++	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+++	+++	+	+	+++	+++	+	+++++++++++++++++++++++++++++++++++++++	50 46
Intestine large, cecum Intestine large, colon		+	++++	+++++	+	+++	+	++++	+	+	+	+	++++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+++	+	40
Intestine large, rectum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	46
Intestine small	++	++	+	+	+	+	+++	+	++	+	+	+++	++	+	+	+	+	+	+++	+++	+	+	+++	++	+++	50 50
Intestine small, duodenum Intestine small, ileum	+	+	++	+	+	+++	+	++	++	+	++	+	+	+++	+	+	+	+	+	+	+	+	+	+	+	48
Intestine small, jejunum	+	+	+	+	+	÷	+	+	+	+	÷	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	49
Liver	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 5
Mesentery Pancreas	1 +	+	+	+	+	+	+	+	+	+	+	+	+	+++	+	+	+	+	+	+	+	+	+	÷	+	49
Pharynx																										1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	47
Stomach Stomach, forestomach	+++	++	+++	++	++	+++	++	++	++	+++	+++	++	++	+++	+++	++	+++	+++	+ +	+++	+++	++	++	++	+++	50 49
Stomach, glandular	+	+	+	÷	+	+	÷	+	÷	+	+	+	÷	÷	÷	+	÷	+	÷	+	÷	+	÷	÷	+	50
Tongue																								x x		1
Squamous cell carcinoma Tooth								+																А		1
	-																									
CARDIOVASCULAR SYSTEM Heart	1	+	+	+		+	+		+	+	1	-	+	+	-	+		+	+					1	+	50
Hemangiosarcoma, metastatic,		7	Ŧ	Ŧ	· •	Ŧ	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	7	Ŧ	-	7	Ŧ	Ŧ	Ŧ	7	50
uncertain primary site	1																								х	1
ENDOCRINE SYSTEM	-																									·
Adrenal gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Adrenal gland, cortex Adrenal gland, medulla	+	+	+	+	+	+	+	+ M	+	+	+ M	+	+	+	+	+	+	+	+	+	+	+	+ M	++	++++	50 45
Pheochromocytoma malignant	1 -	-	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	1VL	Ŧ	Ŧ	TAT	Ŧ	т	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	IAT	Ŧ	τ-	40
Pheochromocytoma benign																						х				3
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Carcinoma																							x			2
Parathyroid gland	+	+	+	М	+	+	+	+	+	+	+	+	М	+	+	+	М	+	М	+	+	М	+	+	+	41
Pituitary gland Pars distalis, adenoma	+	×	+	+	+	+	+	+	* x	× x	+	* x	+	+ + X	* X	+	+	+	* x	+	×	+	+	+	+	50 24
Pars distalis, adenoma, multiple		л							л	л	х	л		л	л				Λ		л		•			1
Pars distalis, adenoma, two						х											X	х							X	4
Pars distalis, carcinoma	Ι.																									1
Thyroid gland Carcinoma	1 +	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	× X	50 1
Ċ cell, adenoma	1													х		Х										2
C cell, carcinoma													х				Х									2
Follicular cell, adenoma, papillary Follicular cell, carcinoma						х							х													
GENERAL BODY SYSTEM	_																									
None																										5
GENITAL SYSTEM	-																									-
Clitoral gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	46
Adenoma		,			X	,	,							,								,	,	,	.1	2 50
Ovary Uterus	+++	+ +	++	+	++	+	+	+	+	+	+	+	+	++	+	++	++	++	+	++	+	++	++	+	++	50
Leiomyoma					·	·																·	•			1
Polyp stromai												X												X		5
Vagina Schwannoma malignant										x +																1
Sourcemeana manghane										A																1

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 300 ppm (Continued)

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 300 ppm (Continued)

DAYS ON STUDY	4 1 4	4 3 4	4 4 4	4 5 6	4 9 9	5 0 6	5 2 6	5 7 6	5 7 6	5 8 2	6 0 6	6 1 4	6 2 6	6 3 7	6 4 6	6 8 0	6 8 1	6 8 3	6 9 0	6 9 7	7 0 9	7 0 9	7 1 4	7 1 8	7 2 8
CARCASS ID	1 0 5 1	1 3 1 1	1 0 4 1	1 1 1 1	1 1 6 1	1 4 9 1	1 4 7 1	1 3 4 1	1 3 6 1	1 4 4 1	1 1 2 1	1 3 2 1	1 4 2 1	1 3 7 1	1 2 9 1	1 2 6 1	1 1 5 1	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 1 \end{array} $	1 0 1 1	1 1 8 1	1 2 3 1	1 4 1 1	1 1 3 1	1 3 0 1	1 3 5 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + M + +	+ + + + + + + + +	+ + + + M + M	+ + + + + + M	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + M	+ + + + + M	++++++	+ + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + M + + + +	++++++	+ + + M + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + M + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + M	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Adenoma	м	+ X	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Fibroadenoma Skin Basal cell carcinoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma Subcutaneous tissue, lipoma	+	+	+	+	X +	+	+	+	+	+	+	X +	+	X +	+	+	X +	+	+ X	+	X +	+ X	+	+	+
MUSCULOSKELETAL SYSTEM Bone Sternum, osteosarcoma Skeletal muscle	+	+	+	+	+	+	++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Carcinoma, metastatic, thyroid gland Nose Trachea	M + +	M + + +	M + ++	M + +	M + + +	M + + +	M + + +	M + + +	M + +	M + +	+ + +	++++++	+++++	++++++	+ + + +	++++++	 + + + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++	+ + + +	++++++	+ + + +	++++++
SPECIAL SENSES SYSTEM Eye Harderian gland									+							++++	+++	+							
URINARY SYSTEM Kidney Urinary bladder	++++	+ M	+++	+ M	+++	+++	+++	+ +	+	++++	+++	++++	++++	+ +	+ +	+ +	+++	+++	++++	++++	++++	++++	+ +	+++	+ +
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear	+	+	* x	*	+	+	+	+	+	+	*	+	*	*	*	+	+	* x	*	*	+	+	*	*	* x

DAYS ON	T 77	7	7	7	7	7	7	7	7	7	7-	7	7	7	7	4	7	7	7	-7-	7	7	7	7	7	i
STUDY	28	2 8	2 8	2 8	2 9	2 9	2 9	2 9	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 0	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	3 1	TOTAL.
CARCASS ID	1 4 5 1	1 4 6 1	1 4 8 1	1 5 0 1	$\frac{1}{2}$ 8 1	1 3 3 1	1 4 0 1	1 4 3 1	1 0 9 1	1 1 0 1	1 2 1 1		1 2 5 1	$ \frac{1}{2} 7 1 $	1 3 8 1	1 3 9 1	1 0 2 1	1 0 3 1	1 0 6 1	1 0 7 1	1 0 8 1	1 1 4 1	1 1 7 1	1 9 1		TISSUES TUMORS
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + M	+ + + + + + M	+++++++++++++++++++++++++++++++++++++++	+ + + + + + M	+ + + M + +	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	++++++	+ + + + + M	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + + + M	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++	++ ++ ++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	50 50 47 46 50 37
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma	+	+	+	*	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 2
Adenoma Fibroadenoma Skın Basal cell carcınoma Subcutaneous tissue, fibroma Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, lipoma	+	+	+	+	+	+ x	+	+	+	X + X	+	X +	+	+	+	+	X +	+	+	+	X +	÷	*	+	+	1 9 50 1 1 1
Subcutaneous tissue, myxoma MUSCULOSKELETAL SYSTEM																										<u> </u>
Bone Sternum, osteosarcoma Skeletal muscle	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Larynx Lung Carcinoma, metastatic, thyroid gland Nose Trachea	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	++++++	+ + +	++++++	+++++++	+ + +	++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + +	++++++	+++++++	+++++++	+ + + X + +	+++++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + +	++++++	+ + +	40 50 1 50 50
SPECIAL SENSES SYSTEM Eye Hardeman gland						_															-			+		52
U RINARY SYSTEM Kıdney Urınary bladder	++++	++++	+++	++++	+ +	+ M	++++	+ +	++++	+++	++++	+++	+ +	+++	++++	+++	++++	+++	+++	+++	++	++++	+++	++++	+++	50 46
SYSTEMIC LESIONS Multiple organs Leukemia mononuclear	* x	+	+	* x	+	* x	÷	*	+	* x	*	+	+	* X	+ X	*	*	* X	+	+	* x	+	* X	+	+	50 25

TABLE B2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE RATS: 300 ppm (Continued)

ι

	Chamber Control	100 ppm	300 ppm
Adrenal Medulla: Pheochromocytoma			
Overall Rates (a)	5/48 (10%)	(b) 0/14 (0%)	3/45 (7%)
Adjusted Rates (c)	14.3%	(4) 0) = - (4) 0)	9.7%
Terminal Rates (d)	3/31 (10%)		1/23 (4%)
Day of First Observation	592		456
Life Table Test (e)			P = 0.470 N
Logistic Regression Test (e)			P = 0.392N
Fisher Exact Test (e)			P = 0.394N
Adrenal Medulla: Pheochromocytoma; Ben	lign or Malignant		
Overall Rates (a)	7/48 (15%)	(b) 0/14 (0%)	4/45 (9%)
Adjusted Rates (c)	18.5%		12.5%
Terminal Rates (d)	3/31 (10%)		1/23 (4%)
Day of First Observation	545		456
Life Table Test (e)			P = 0.373N
Logistic Regression Test (e)			P = 0.292N
Fisher Exact Test (e)			P = 0.300N
Clitoral Gland: Adenoma or Carcinoma			
Overall Rates (a)	1/48 (2%)	(b) 4/11 (36%)	12/46 (4%)
Pancreatic Islets: Adenoma or Carcinoma			
Overall Rates (a)	2/50 (4%)	(b) 1/12 (8%)	3/49 (6%)
Adjusted Rates (c)	6.5%		9.6%
Terminal Rates (d)	2/31 (6%)		1/26 (4%)
Day of First Observation	728		680
Life Table Test (e)			P = 0.439
Logistic Regression Test (e)			P = 0.464
Fisher Exact Test (e)			P = 0.490
Mammary Gland: Adenocarcinoma			
Overall Rates (f)	3/50 (6%)	0/50 (0%)	2/50 (4%)
Adjusted Rates (c)	8.6%	0.0%	6.1%
Terminal Rates (d)	2/31 (6%)	0/28 (0%)	1/26 (4%)
Day of First Observation	592		576
Life Table Tests (e)	P = 0.596N	P = 0.136N	P = 0.560 N
Logistic Regression Tests (e)	P = 0.546N	P = 0.120N	P = 0.499 N
Cochran-Armitage Trend Test (e)	P = 0.548N		
Fisher Exact Test (e)		P = 0.121 N	P = 0.500 N
Mammary Gland: Carcinoma or Adenocard	cinoma		
Overall Rates (f)	3/50 (6%)	1/50 (2%)	2/50 (4%)
Adjusted Rates (c)	8.6%	2.2%	6.1%
Terminal Rates (d)	2/31 (6%)	0/28 (0%)	1/26 (4%)
Day of First Observation	592	560	576
Life Table Tests (e)	P = 0.547N	P = 0.328N	P = 0.560 N
Logistic Regression Tests (e)	P = 0.491 N	P = 0.317N	P = 0.499N
Cochran-Armitage Trend Test (e)	P = 0.500N	* U.UI III	
Fisher Exact Test (e)		P = 0.309N	P = 0.500 N
Aammary Gland: Fibroadenoma			
Overall Rates (f)	16/50 (32%)	8/50 (16%)	9/50 (18%)
Adjusted Rates (c)	42.3%	25.6%	26.4%
Terminal Rates (d)	42.3% 10/31 (32%)	6/28 (21%)	4/26 (15%)
Day of First Observation	592	583	499
Life Table Tests (e)	P = 0.194N	P = 0.088N	P = 0.176N
LITE LANIE LESIS (E)			
Logistic Regrossion Tests (a)			
Logistic Regression Tests (e) Cochran-Armitage Trend Test (e)	P = 0.117N P = 0.103N	P = 0.048N	P = 0.092N

TABLE B3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

	Chamber Control	100 ppm	300 ppm
Mammary Gland: Adenoma or Fibroadenom	a		
Overall Rates (f)	16/50 (32%)	9/50 (18%)	10/50 (20%)
Adjusted Rates (c)	42.2%	29.0%	27.9%
Terminal Rates (d)	10/31 (32%)	7/28 (25%)	4/26 (15%)
Day of First Observation	592	583	434
Life Table Tests (e)	P = 0.264N	P = 0.135N	P = 0.243N
Logistic Regression Tests (e)	P = 0.264 N P = 0.162 N	P = 0.079N	P = 0.131N
		F = 0.075 N	F=0.131N
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P = 0.151N	P = 0.083N	P = 0.127 N
fammary Gland: Adenoma, Fibroadenoma,			10/50 (010)
Overall Rates (f)	18/50 (36%)	10/50 (20%)	12/50 (24%)
Adjusted Rates (c)	47.7%	30.6%	32.8%
Terminal Rates (d)	12/31 (39%)	7/28 (25%)	5/26 (19%)
Day of First Observation	592	560	434
Life Table Tests (e)	P = 0.306N	P = 0.106N	P = 0.272N
Logistic Regression Tests (e)	P = 0.183N	P = 0.056N	P = 0.144N
Cochran-Armitage Trend Test (e)	P = 0.174N		
Fisher Exact Test (e)		P = 0.059N	P = 0.138N
Pituitary Gland/Pars Distalis: Adenoma			
Overall Rates (a)	28/50 (56%)	26/43 (60%)	29/50 (58%)
Adjusted Rates (c)	28/30 (36%) 71.2%	26/43 (60%) 74.8%	29/50 (58%) 71.2%
Terminal Rates (d)		(4.0%) 14/22 (64%)	15/26 (58%)
	20/31 (65%)	495	414
Day of First Observation	545		
Life Table Tests (e)	P = 0.269	P = 0.243	P = 0.259
Logistic Regression Tests (e)	P = 0.437	P = 0.379	P = 0.444
Cochran-Armitage Trend Test (e)	P = 0.501	5	5 6 5 6 6
Fisher Exact Test (e)		P = 0.412	P=0.500
Pituitary Gland/Pars Distalis: Carcinoma			
Overall Rates (a)	4/50 (8%)	2/43 (5%)	1/50 (2%)
Adjusted Rates (c)	11.7%	9.1%	2.3%
Terminal Rates (d)	3/31 (10%)	2/22 (9%)	0/26 (0%)
Day of First Observation	592	728	576
Life Table Tests (e)	P = 0.187N	P = 0.485N	P = 0.225N
Logistic Regression Tests (e) Cochran Armitage Trend Test (e)	P = 0.152N P = 0.147N	P = 0.424N	P = 0.179N
Cochran-Armitage Trend Test (e) Fisher Exact Test (e)	P = 0.147 N	P = 0.413N	P-0 191N
risher Exact lest(e)		r=0.4131N	P = 0.181 N
Pituitary Gland/Pars Distalis: Adenoma or (Carcinoma		
Overall Rates (a)	32/50 (64%)	28/43 (65%)	30/50 (60%)
Adjusted Rates (c)	79.5%	81.1%	71.9%
Terminal Rates (d)	23/31 (74%)	16/22 (73%)	15/26 (58%)
Day of First Observation	545	495	414
Life Table Tests (e)	P = 0.426	P = 0.305	P = 0.423
Logistic Regression Tests (e)	P = 0.432N	P = 0.509	P = 0.469N
Cochran-Armitage Trend Test (e)	P = 0.369 N		
Fisher Exact Test (e)	·	P = 0.542	P = 0.418N
Subcutaneous Tissue: Fibroma			
	2/50/60	9/50 / 401	1/50 (9%)
Overall Rates (f)	3/50 (6%)	2/50 (4%)	$\frac{1}{50}(2\%)$
Adjusted Rates (c)	7.2%	5.9%	3.1%
Terminal Rates (d)	0/31 (0%)	1/28 (4%)	0/26 (0%)
Day of First Observation	434	637	690 B
Life Table Tests (e)	P = 0.285N	P = 0.516N	P = 0.338N
Logistic Regression Tests (e)	P = 0.245N	P = 0.551N	P = 0.303 N
Cochran-Armitage Trend Test (e)	P = 0.252N		
Fisher Exact Test (e)		P = 0.500 N	P = 0.309 N

TABLE B3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATIONSTUDY OF VINYL TOLUENE (Continued)

	Chamber Control	100 ppm	300 ppm
Subcutaneous Tissue: Fibroma or Myxom	a		
Overall Rates (f)	3/50 (6%)	2/50 (4%)	2/50 (4%)
Adjusted Rates (c)	7.2%	5.9%	6.4%
Terminal Rates (d)	0/31 (0%)	1/28 (4%)	0/26 (0%)
Day of First Observation	434	637	690
Life Table Tests (e)	P = 0.497N	P = 0.516N	P = 0.535N
Logistic Regression Tests (e)	P = 0.447N	P = 0.551 N	P = 0.494N
Cochran-Armitage Trend Test (e)	P = 0.459N		
Fisher Exact Test (e)		P = 0.500 N	P = 0.500 N
Subcutaneous Tissue: Fibroma or Fibros			
Overall Rates (f)	4/50 (8%)	3/50 (6%)	2/50 (4%)
Adjusted Rates (c)	10.2%	8.7%	6.9%
Terminal Rates (d)	1/31 (3%)	1/28 (4%)	1/26 (4%)
Day of First Observation	434	637	690
Life Table Tests (e)	P = 0.345N	P = 0.524N	P = 0.393N
Logistic Regression Tests (e)	P = 0.282N	P = 0.528N	P = 0.329 N
Cochran-Armitage Trend Test (e)	P = 0.291 N		
Fisher Exact Test (e)		P = 0.500N	P = 0.339N
Subcutaneous Tissue: Fibroma, Myxoma,			
Overall Rates (f)	4/50 (8%)	3/50 (6%)	3/50 (6%)
Adjusted Rates (c)	10.2%	8.7%	10.0%
Terminal Rates (d)	1/31 (3%)	1/28(4%)	1/26 (4%)
Day of First Observation	434	637	690
Life Table Tests (e)	P = 0.523N	P = 0.524N	P = 0.556N
Logistic Regression Tests (e)	P = 0.456N	P = 0.528N	P = 0.492N
Cochran-Armitage Trend Test (e)	P = 0.465N		
Fisher Exact Test (e)		P = 0.500 N	P = 0.500 N
Thyroid Gland: C-Cell Adenoma			
Overall Rates (a)	7/50 (14%)	(b) 0/10 (0%)	2/50 (4%)
Adjusted Rates (c)	19.4%		7.7%
Terminal Rates (d)	4/31 (13%)		2/26 (8%)
Day of First Observation	592		728
Life Table Test (e)			P = 0.124N
Logistic Regression Test (e)			P = 0.091 N
Fisher Exact Test (e)			P = 0.080 N
Thyroid Gland: C-Cell Adenoma or Carci	noma		
Overall Rates (a)	7/50 (14%)	(b) 0/10 (0%)	4/50 (8%)
Adjusted Rates (c)	19.4%		15.4%
Terminal Rates (d)	4/31 (13%)		4/26 (15%)
Day of First Observation	592		728
Life Table Test (e)			P = 0.354N
Logistic Regression Test (e)			P = 0.294N
Fisher Exact Test (e)			P = 0.262N
Uterus: Stromal Polyp			
Overall Rates (f)	7/50 (14%)	6/50 (12%)	5/50(10%)
Adjusted Rates (c)	19.3%	19.6%	17.1%
Terminal Rates (d)	4/31 (13%)	5/28 (18%)	2/26 (8%)
Day of First Observation	434	526	709
Life Table Tests (e)	P = 0.441N	P = 0.555N	P = 0.476N
	T 0'ZZTTI	1 - 0.00011	* - 0141011
	P = 0.365N	P = 0.499N	P = 0.401 N
Logistic Regression Tests (e) Cochran-Armitage Trend Test (e)	P=0.365N P=0.344N	P = 0.499N	P = 0.401 N

TABLE B3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATIONSTUDY OF VINYL TOLUENE (Continued)

TABLE B3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE RATS IN THE TWO-YEAR INHALATION **STUDY OF VINYL TOLUENE (Continued)**

	Chamber Control	100 ppm	300 ppm
Hematopoietic System: Mononuclear Le	ukemia	<u> </u>	<u></u>
Overall Rates (f)	20/50 (40%)	16/50 (32%)	25/50 (50%)
Adjusted Rates (c)	46.9%	36.5%	66.5%
Terminal Rates (d)	9/31 (29%)	3/28 (11%)	14/26 (54%)
Day of First Observation	582	421	444
Life Table Tests (e)	P = 0.084	P = 0.346N	P = 0.121
Logistic Regression Tests (e)	P = 0.129	P = 0.279N	P = 0.188
Cochran-Armitage Trend Test (e)	P = 0.124		
Fisher Exact Test (e)		P = 0.266N	P = 0.211

(a) Number of tumor-bearing animals/number of animals examined microscopically at the site

(b) Incomplete sampling of tissues

(c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(d) Observed tumor incidence in animals killed at the end of the study (e) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or a lower incidence in a dosed group than in controls is indicated by (N).

(f) Number of tumor-bearing animals/number of animals examined grossly at the site

	Chambe	er Control	100 p	opm	300 p	pm
DISPOSITION SUMMARY						-
Animals initially in study	50		50		50	
Early deaths						
Moribund sacrifice	16		21		18	
Natural death	3		1		6	
Survivors						
Terminal sacrifice	31		28		26	
Animals examined microscopically	50		50		50	
ALIMENTARY SYSTEM						_
Intestine large, cecum	(49)		(5)		(46)	
Inflammation, chronic	()		(3)			(2%)
Inflammation, chronic active	1	(2%)				
Parasite metazoan		(4%)			8	(17%)
Artery, inflammation, chronic, focal		(2%)				
Intestine large, colon	(50)	<u>^</u>	(10)		(49)	
Parasite metazoan		(14%)		(10%)		(18%)
Muscularis, atrophy, focal		(2%)	1	(10/0)	5	
Intestine large, rectum	(46)	(2.0)	(9)		(46)	
Parasite metazoan	(- /	(4%)	(3)			(7%)
					ა	(170)
Mucosa, inflammation, chronic active, mul		(2%)	(0)		(50)	
Intestine small, duodenum	(50)		(9)		(50)	(9/2)
Muscularis, fibrosis, focal	/105		100			(2%)
Intestine small, ileum	(48)		(7)		(48)	
Inflammation, chronic, diffuse	1	(2%)			-	(00)
Parasite metazoan						(2%)
Liver	(50)		(33)		(50)	
Angiectasis, focal	3	(6%)				(6%)
Angiectasis, multifocal				(6%)		(2%)
Basophilic focus		(16%)		(9%)		(14%)
Basophilic focus, multiple	19	(38%)	9	(27%)	14	(28%)
Clear cell focus	1	(2%)				
Congestion, acute, multifocal			3	(9%)		
Cytomegaly, multifocal	1	(2%)	2		1	(2%)
Cytoplasmic alteration, focal		(2%)				(2%)
Eosinophilic focus		(2%)			-	,
Fatty change, diffuse		(6%)	1	(3%)		
Fatty change, focal	3		1	(0,0)	9	(4%)
Fatty change, multifocal	7	(14%)	1	(3%)		(8%)
Fibrosis, multifocal		(14%) (2%)	1	0701	4	(0,0)
		(38%)	~	(1901)	14	(28%)
Granuloma, multifocal	19	(38%)	6	(18%)		(28%) (2%)
Hemorrhage, acute, multifocal		(90)	E	(1506)		
Hepatodiaphragmatic nodule	1			(15%)	6	(12%)
Hepatodiaphragmatic nodule, multiple	1	(2%)		(3%)		
Hyperplasia, nodular, focal	-	(90)	2	(6%)	~	(401)
Hyperplasia, nodular, multifocal	1	(2%)				(4%)
Inflammation, chronic, multifocal				(0~)		(2%)
Mitotic alteration			1	(3%)		(2%)
Mixed cell focus	1	(2%)				(6%)
Mixed cell focus, two					1	(2%)
Necrosis, focal		(2%)	1	(3%)		
Necrosis, multifocal	8	(16%)	1	(3%)	5	(10%)
Pigmentation, multifocal			1	(3%)		
Bile duct, hyperplasia, focal	1	(2%)				
Bile duct, hyperplasia, multifocal	6	(12%)	7	(21%)	6	(12%)
Centrilobular, atrophy, multifocal		(2%)		(3%)	Ū	
Centrilobular, degeneration, diffuse		(2%)		(12%)		
Centrilobular, degeneration, multifocal	•	·-··/		(3%)		
Centrilobular, fatty change, diffuse	4	(8%)		(9%)	5	(10%)
Centrilobular, fatty change, ulluse	4	(0.07	0			(2%)
Centrilobular, necrosis, diffuse						(2%)
Centrilobular, necrosis, diffuse Centrilobular, necrosis, multifocal	1	(2%)				(2%) (6%)
Ventruonular necrosis militifocal	1	17.701			3	1070)

TABLE B4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE

ALIMENTARY SYSTEM Liver (Continued) Periportal, fatty change, multifocal Portal, inflammation, chronic, multifocal Mesentery Artery, inflammation, necrotizing, multifocal	(50)				•	
Liver (Continued) Periportal, fatty change, multifocal Portal, inflammation, chronic, multifocal Mesentery	(50)					
Portal, inflammation, chronic, multifocal Mesentery			(33)		(50)	
Portal, inflammation, chronic, multifocal Mesentery				(6%)	(00)	
Mesentery			-		1	(2%)
	(4)		(2)		(5)	(=,•,
ACLERY, IDHAMMATION, DECROTIZING, MULTITOCAL			(2)			(20%)
Fat, inflammation, necrotizing, focal						(20%)
Fat, necrosis, focal	1	(25%)				(80%)
Pancreas	(50)	(20 N)	(13)		(49)	
Inflammation, granulomatous, focal	(00)		(10)			(2%)
Acinus, atrophy, diffuse	2	(4%)			*	(2/0)
Acinus, atrophy, focal		(2%)			9	(4%)
Acinus, atrophy, nultifocal		(26%)	3	(23%)		(16%)
Acinus, hyperplasia, focal		(2%)	0	(20.0)	0	(10/0)
Artery, inflammation, chronic, focal		(4%)				
Artery, inflammation, chronic active, multifo		(2%)				
Duct, cyst, multiple		(270)			1	(2%)
Interlobular, inflammation, chronic, diffuse	,	(2%)			1	(270)
Pharynx	1	(270)				
					(1)	(1000)
Mucosa, palate, inflammation, chronic, diffuse						(100%)
Salivary glands	(50)	(07)	(9)		(47)	
Inflammation, chronic, diffuse		(2%)				
Inflammation, chronic active, focal		(2%)				
Duct, inflammation, chronic active, focal	1	(2%)				
Parotid gland, inflammation, chronic active,						
focal						(2%)
Stomach, forestomach	(49)		(11)		(49)	
Inflammation, chronic active		(6%)	1	(9%)	1	(2%)
Ulcer, subacute, single		(2%)				
Epithelium, hyperplasia		(4%)		(9%)	-	(2%)
Stomach, glandular	(50)		(11)		(50)	
Cyst epithelial inclusion			1	(9%)		
Inflammation, chronic active	1	(2%)				
Mucosa, cyst, multiple	2	(4%)				
Tooth					(1)	
Peridontal tissue, inflammation, chronic, diffuse					1	(100%)
CARDIOVASCULAR SYSTEM			(1.0)			
Heart	(50)	(00)	(10)		(50)	
Abscess, single		(2%) (79%)		(400)	40	1900
Cardiomyopathy Artery inflammation chronic active feed	30	(72%)	4	(40%)		(80%) (9%)
Artery, inflammation, chronic active, focal	-1 1	(901)			1	(2%)
Artery, inflammation, chronic active, multifor		(2%) (4%)		(100)	•	(10)
Atrium left, thrombus Enjoyrdium inflammation abronic active for		(4%)	1	(10%)		(4 %)
Epicardium, inflammation, chronic active, foc Myocardium, degeneration, focal	al					(2%) (2%)
Myocardium, degeneration, focal Valve, degeneration, mucoid, multifocal	1	(2%)			1	(2%)
ENDOCRINE SYSTEM						
Adrenal gland	(50)		(14)		(50)	
Bilateral, capsule, fibrosis, multifocal			(17)			(2%)
Capsule, accessory adrenal cortical nodule	5	(10%)	1	(7%)		(10%)
Adrenal gland, cortex	(50)	(10/0)	(14)	(1,0)	(50)	(10/0)
Angiectasis, focal		(4%)	(14)		(50)	
Angiectasis, nultifocal		(4%)	3	(21%)	A	(8%)
Atrophy	-		U	(24,70)		(2%)
Congestion	٨	(8%)	1	(7%)		(2%) (4%)
Jungeomon			1	(170)		
	1	(1906)			1	1 Min
Degeneration, fatty, diffuse Degeneration, fatty, focal		(2%) (16%)	1	(7%)		(2%) (16%)

TABLE B4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

T.

	Chambe	er Control	100 p	pm	300 p	pm
ENDOCRINE SYSTEM			<u></u>			<u></u>
Adrenal gland, cortex (Continued)	(50)		(14)		(50)	
Hyperplasia, focal	9	(18%)				(4%)
Hyperplasia, multifocal		(1	(7%)	1	(2%)
Hypertrophy, focal	4	(8%)			1	(2%)
Hypertrophy, multifocal		(4%)	1	(7%)	1	(2%)
Pigmentation, hemosiderin, diffuse		(4%)			1	(2%)
Pigmentation, hemosiderin, multifocal					1	(2%)
Adrenal gland, medulla	(48)		(14)		(45)	
Angiectasis, multifocal	1	(2%)			1	(2%)
Hyperplasia, focal	5	(10%)	1	(7%)	5	(11%)
Hyperplasia, multifocal	2	(4%)			3	(7%)
Vacuolization cytoplasmic, diffuse	1	(2%)				
Islets, pancreatic	(50)		(12)		(49)	
Ectopic tissue, focal	1	(2%)				
Hyperplasia, focal					4	(8%)
Hyperplasia, multifocal	2	(4%)			-	
Hypertrophy, focal		(4%)			1	(2%)
Hypoplasia, diffuse		(2%)			-	,
Pituitary gland	(50)	()	(43)		(50)	
Pars distalis, angiectasis, focal		(8%)		(2%)		(4%)
Pars distalis, angiectasis, multifocal		(4%)		(7%)	-	()
Pars distalis, concretion	-	(1)0)	Ũ	(1.0)	1	(2%)
Pars distalis, cyst	5	(10%)	10	(23%)		(20%)
Pars distalis, cyst, multiple	v	(10,0)		(2%)	10	(20,0)
Pars distalis, hemorrhage, chronic, focal	1	(2%)	-	(270)		
Pars distalis, hyperplasia		(2%)	1	(2%)	1	(2%)
Pars distalis, hyperplasia, focal		(6%)		(5%)		(4%)
Pars distalis, hyperplasia, nultifocal	0	(0,0)		(2%)		(2%)
Pars distalis, pigmentation, hemosiderin,			-	(270)	-	(2,0)
diffuse	1	(2%)				
Pars intermedia, pigmentation, hemosiderir		(270)				
diffuse		(2%)				
Pars nervosa, pigmentation, diffuse	1	(270)			1	(2%)
Thyroid gland	(50)		(10)		(50)	(
Cyst		(4%)	(10)			(2%)
Developmental malformation	-	(-1.0)	1	(10%)	-	()
C-cell, hyperplasia, focal	2	(4%)	-	(20/0/	3	(6%)
C-cell, hyperplasia, multifocal		(42%)	1	(10%)	-	(14%)
					·	
FENERAL BODY SYSTEM			(1)			
Tissue, NOS Necrosis, acute			(1) 1	(100%)		
GENITAL SYSTEM	(40)				(10)	
Clitoral gland	(48)		(11)	(00)	(46)	
Abscess				(9%)		001
Atrophy				(9%)	-	(2%)
Ectasia	-	(02)		(18%)		(9%)
Hyperplasia		(6%)	1	(9%)		(7%)
Inflammation, acute		(4%)	-			(2%)
Inflammation, chronic active		(2%)	1	(9%)		(4%)
Inflammation, granulomatous		(4%)				(7%)
Ovary	(50)		(18)		(50)	
Angiectasis, multifocal		(2%)				
Congestion, diffuse	1	(2%)				(2%)
Cyst			5	(28%)	3	(6%)
Hyperplasia						

TABLE B4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	er Control	100 p	pm	300 p	opm
SENITAL SYSTEM (Continued)		<u></u>				
Uterus	(50)		(18)		(50)	
Adenomyosis, focal	(00)		(10)			(2%)
Cyst	1	(2%)				(2%)
Dilatation		(2%)	3	(17%)		(4%)
Inflammation, acute, multifocal		(2%)				
Inflammation, chronic active		(2%)			1	(2%)
Endometrium, hyperplasia, focal		(2%)				
Epithelium, hyperplasia, diffuse	1	(2%)			1	(2%)
Epithelium, hyperplasia, focal	2	(4%)			1	(2%)
Lumen, hemorrhage			1	(6%)	1	(2%)
IEMATOPOIETIC SYSTEM						
Bone marrow	(49)		(9)		(50)	
Hyperplasia	2	(4%)			3	(6%)
Hyperplasia, megakaryocyte					1	(2%)
Metaplasia, osseous, diffuse	1	(2%)				
Myeloid cell, hyperplasia		(12%)			2	(4%)
Lymph node	(50)		(17)		(50)	
Hyperplasia, re cell	• •	(2%)			,	
Mediastinal, hemorrhage	4	(8%)			3	(6%)
Mediastinal, hyperplasia, re cell					1	(2%)
Mediastinal, pigmentation, hemosiderin, dif	fuse				1	(2%)
Pancreatic, hemorrhage	1	(2%)	1	(6%)		
Pancreatic, inflammation, acute			1	(6%)		
Pancreatic, pigmentation, hemosiderin					1	(2%)
Renal, hyperplasia, plasma cell					1	(2%)
Renal, hyperplasia, re cell					1	(2%)
Lymph node, mandibular	(47)		(11)		(47)	
Edema					1	(2%)
Hyperplasia, lymphoid					1	(2%)
Hyperplasia, plasma cell	2	(4%)			5	(11%)
Hyperplasia, re cell			1	(9%)	1	(2%)
Artery, inflammation, chronic active, focal					1	(2%)
Lymph node, mesenteric	(47)		(12)		(46)	
Hemorrhage	3	(6%)	3	(25%)	2	(4%)
Hyperplasia, plasma cell	1	(2%)				
Hyperplasia, re cell	4	(9%)			3	(7%)
Pigmentation, hemosiderin			1	(8%)		
Spleen	(50)		(19)		(50)	
Fibrosis, focal			1	(5%)	2	(4%)
Fibrosis, multifocal					1	(2%)
Granuloma, multifocal	1	(2%)				
Hematopoietic cell proliferation		(10%)			5	(10%)
Hyperplasia, reticulum cell, multifocal	1	(2%)				
Metaplasia, osseous, focal			1	(5%)		
Pigmentation, hemosiderin	11	(22%)		(5%)	15	(30%)
Capsule, ectopic tissue		(2%)				
Capsule, infiltration cellular, lymphocytic,						
multifocal	1	(2%)				
Thymus	(38)		(6)		(37)	
Ectopic parathyroid gland		(3%)		(33%)	(
Hyperplasia, tubular, diffuse		(16%)	_	- 1	14	(38%)
Infiltration cellular, polymorphonuclear		(3%)				
Artery, mediastinum, inflammation, chroni						
active, multifocal		(3%)				

TABLE B4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

т

c		hamber Control		100 ppm		300 ppm	
INTEGUMENTARY SYSTEM			<u></u>				
Mammary gland	(48)		(29)		(49)		
Ectasia, diffuse	()			(10%)	1	(2%)	
Ectasia, focal	2	(4%)			2	(4%)	
Ectasia, multifocal	12	(25%)	10	(34%)	15	(31%)	
Galactocele				(3%)			
Hyperplasia, diffuse		(29%)		(38%)		(31%)	
Hyperplasia, focal		(2%)	1	(3%)	2	(4%)	
Hyperplasia, multifocal		(8%)					
Inflammation, granulomatous, multifocal Artery, inflammation, chronic active, focal	4	(4%)			1	(2%)	
Skin	(50)		(13)		(50)	(2,0)	
Hyperplasia, squamous, focal	(00)		(10)			(2%)	
Inflammation, chronic active, focal						(2%)	
AUSCULOSKELETAL SYSTEM	·						
Bone	(49)		(9)		(50)		
Hyperostosis		(2%)				(4%)	
Osteopetrosis	1	(2%)				(10%)	
Skeletal muscle					(1)	(100%)	
Inflammation, proliferative, diffuse					1	(100%)	
VERVOUS SYSTEM							
Brain	(50)		(11)		(50)		
Compression		(22%)	1	(9%)	16	(32%)	
Hemorrhage, focal		(4%)		(00)			
Hemorrhage, multifocal Hydrocephalus		(2%) (4%)		(9%) (9%)	5	(10%)	
		(4%)		(3%)		(10%)	
RESPIRATORY SYSTEM							
Larynx	(46)		(6)		(40)		
Hyperplasia, papillary, focal						(3%)	
Inflammation, acute, diffuse					1	(3%)	
Inflammation, acute, focal		(2%)					
Inflammation, chronic, diffuse		(2%)				(8%)	
Inflammation, chronic, focal Inflammation, chronic active, focal		(9%) (22%)				(8%) (10%)	
Submucosa, dilatation, multifocal		(22%) (2%)			4	(1070)	
Lung	(50)	(270)	(50)		(50)		
Atelectasis, focal	(00)		(00)			(2%)	
Autolysis	1	(2%)			-		
Granuloma, multifocal			1	(2%)			
Hemorrhage, acute, multifocal	1	(2%)				_	
Inflammation, chronic, multifocal						(2%)	
Alveolar epithelium, hyperplasia, focal				(10%)	1	(2%)	
Alveolar epithelium, hyperplasia, multifocal			1	(2%)			
Alveolus, infiltration cellular, histiocytic,			•	(90)			
focal Bronchiole, alveolus, inflammation, acute,			1	(2%)			
multifocal					1	(2%)	
Interstitium, inflammation, chronic, focal	2	(4%)			1		
		(2%)	1	(2%)	1	(2%)	
Interstitium, inflammation, chronic, multifocal			*		•	,	
Interstitium, inflammation, chronic, multifocal Peribronchial, hyperplasia, lymphoid, multifoca	al 2	(4,70)					
Peribronchial, hyperplasia, lymphoid, multifoca	al 2	(4%)			1	(2%)	
	al 2 (50)	(470)	(49)		1 (50)	(2%)	
Peribronchial, hyperplasia, lymphoid, multifoca Pleura, inflammation, subacute, multifocal	(50) 1	(2%) (4%)		(8%)	(50) 2	(2%) (4%) (2%)	

TABLE B4. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

TABLE B4. SUMM.	ARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE RATS IN THE
	TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

CI	hambe	r Control	100 p	pm	300 p	pm
RESPIRATORY SYSTEM						
Nose (Continued)	(50)		(49)		(50)	
Mucosa, inflammation, acute	((/			(2%)
Mucosa, inflammation, chronic	2	(4%)	2	(4%)	1	(2%)
Mucosa, inflammation, chronic active		(2%)	4	(8%)	4	(8%)
Mucosa, metaplasia, focal		(2%)	-	(2.27	-	(
Mucosa, thrombus, multifocal		(4%)	4	(8%)		
Nasolacrimal duct, exudate		(10%)		(6%)	4	(8%)
Nasolacrimal duct, inflammation, chronic		(26%)	-	(35%)		(32%)
Nasolacrimal duct, inflammation, chronic activ		(10%)		(2%)		(8%)
Olfactory epithelium, atrophy	c v	(10,0)		(4%)		(6%)
Olfactory epithelium, cyst				(10%)	-	(26%)
Olfactory epithelium, erosion			-	(6%)		(8%)
Olfactory epithelium, exudate				(2%)	-	(0.07
Olfactory epithelium, hyperplasia, eosinophil	9	(4%)		(18%)	91	(42%)
Olfactory epithelium, metaplasia	4	(470)		(2%)	21	(4470)
				· · ·	10	(20%)
Respiratory epithelium, cyst	-	(1.49)		(12%)		(32%)
Respiratory epithelium, hyperplasia		(14%)	19	(39%)	-	
Respiratory epithelium, hyperplasia, eosinophi		(00)			3	(6%)
Respiratory epithelium, hyperplasia, multifoca		(2%)	(0)		-	
Trachea	(50)		(8)		(50)	
Inflammation, acute, focal		(2%)				
Inflammation, chronic, focal	1	(2%)				
PECIAL SENSES SYSTEM						
Eye	(2)		(3)		(5)	
Cataract	1	(50%)			1	(20%)
Bilateral, cataract			1	(33%)	. 1	(20%)
Bilateral, retina, degeneration			1	(33%)		
Retina, degeneration	1	(50%)			1	(20%)
Harderian gland					(2)	
Inflammation, chronic, multifocal					2	(100%)
JRINARY SYSTEM						
Kidney	(50)		(14)		(50)	
Hydronephrosis	(00)		(14)			(2%)
Nephropathy, chronic	46	(92%)	6	(43%)		(86%)
Pigmentation, diffuse		(16%)		(14%)		(22%)
Pigmentation, multifocal		(22%)		(7%)		(12%)
Bilateral, hydronephrosis	11	(2270)	1	(170)		(2%)
Cortex, cyst	1	(2%)			1	(270)
Cortex, hyperplasia, atypical, focal		(4%)			1	(2%)
					1	(270)
Cortex, inflammation, suppurative, focal Cortex, mineralization, multifocal	1	(2%)			1	(2%)
Corticomedullary junction, mineralization, multifocal						(2%)
Pelvis, inflammation, suppurative, diffuse					1	(2%)
Proximal convoluted renal tubule, necrosis, multifocal	2	(4%)				
Transitional epithelium, hyperplasia	-	、 - · - <i>·</i>			3	(6%)
Transitional epithelium, mineralization, focal	1	(2%)				(2%)
Transitional epithelium, mineralization, local	1				L	
multifocal	2	(6%)			3	(6%)
Urinary bladder	(49)	(0/0/	(9)		(46)	
Ectasia	(43)		(9)			(4%)
Inflammation, chronic, diffuse	1					(2%)
Artery, inflammation, chronic active, multifoca Transitional epithelium, hyperplasia, focal						(2%)
iransitionalanthalliim hunarnlasia tosal					1	(2%)

Ţ

APPENDIX C

SUMMARY OF LESIONS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF

VINYL TOLUENE

TABLE C1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	111
TABLE C2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	114
TABLE C3	ANALYSIS OF PRIMARY NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	126
TABLE C4a	HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR NEOPLASMS IN MALE $B6C3F_1$ MICE	128
TABLE C4b	HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM NEOPLASMS IN MALE $B6C3F_1$ MICE	129
TABLE C5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	130

.

PAGE

Vinyl Toluene (mixed isomers), NTP TR 375 110

	Chambe	r Control	10 pp	om	25 pp	om
DISPOSITION SUMMARY	<u> </u>					
Animals initially in study	50		50		50	
Early deaths	00		00		00	
Moribund sacrifice	10		13		4	
Natural death	6		7		2	
Accidentally killed	1		•		ĩ	
Dosing accident	-				2	
Survivors					_	
Terminal sacrifice	33		30		41	
Animals examined microscopically	50		50		50	
ALIMENTARY SYSTEM						
Esophagus	(49)		(9)		(48)	
Intestine large, cecum	(46)		(7)		(43)	
Intestine large, colon	(40)		(10)		(44)	
Serosa, sarcoma, metastatic, uncertain p			(10)		(=()	
site	, initial y				1	(2%)
Intestine small, duodenum	(47)		(10)		(49)	(470)
Polyp adenomatous	(=1)			(10%)		(2%)
Intestine small, jejunum	(46)		(10)	(20/0/	(44)	(= /0)
Adenocarcinoma	(+0)			(10%)	(
Liver	(50)		(23)	(10/0/	(48)	
Hemangiosarcoma, multiple		(2%)	(20)		(10)	
Hepatocellular carcinoma		(18%)	11	(48%)	7	(15%)
Hepatocellular carcinoma, multiple	-	(2%)		(4%)		(10%)
Hepatocellular adenoma		(12%)		(9%)	-	(4%)
Hepatocellular adenoma, multiple		(4%)	4	(0 10)	-	(4/0)
Sarcoma, metastatic, uncertain primary		(4/0)			1	(2%)
Mesentery	(6)				(3)	
Fat, hemangiosarcoma	(0)					(33%)
Pancreas	(49)		(9)		(49)	(00,0)
Sarcoma, metastatic, uncertain primary			(3)			(2%)
Salivary glands	(50)		(11)		(50)	(2,0)
Stomach, forestomach	(48)		(11)		(47)	
CARDIOVASCULAR SYSTEM None						
ENDOCRINE SYSTEM		<u></u>		<u>.</u>	***** ****	
Adrenal gland	(49)		(10)		(48)	
Capsule, adenoma, multiple		(2%)				
Capsule, sarcoma, metastatic, uncertain	primary					
site	-				1	(2%)
Adrenal gland, cortex	(49)		(10)		(48)	
Adenoma	1	(2%)				
Adrenal gland, medulla	(49)		(9)		(47)	
Pheochromocytoma benign	1	(2%)				(2%)
Islets, pancreatic	(49)		(9)		(49)	
Adenoma					2	(4%)
Parathyroid gland	(36)		(6)		(35)	
Pituitary gland	(45)		(11)		(47)	
Pars distalis, adenoma	1	(2%)				(2%)
Thyroid gland	(49)		(9)		(47)	
Follicular cell, adenocarcinoma		(2%)				

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE

1

	Chamber Control	10 ppm	25 ppm
GENERAL BODY SYSTEM None			
GENITAL SYSTEM			. <u> </u>
Epididymis	(49)	(11)	(49)
Prostate Serosa, sarcoma, metastatic, uncertain pr	(46)	(9)	(44)
site	imary		1 (2%)
Seminal vesicle	(48)	(17)	(49)
Serosa, sarcoma, metastatic, uncertain pr		(=-)	· /
site	•		1 (2%)
Testes	(50)	(12)	(49)
Interstitial cell, adenoma		1 (8%)	1 (2%)
HEMATOPOIETIC SYSTEM		· · · · · · · · · · · · · · · · · · ·	
Bone marrow	(49)	(10)	(49)
Lymph node	(50)	(26)	(50)
Lymph node, mandibular	(47)	(11)	(35)
Lymph node, mesenteric	(42)	(19)	(33)
Spleen	(49)	(14)	(49)
Hemangiosarcoma		1 (7%)	
Capsule, sarcoma, metastatic, uncertain j site	primary		1 (2%)
Thymus	(35)	(6)	(34)
	(00)	(0)	(J*)
INTEGUMENTARY SYSTEM			
Skin	(50)	(30)	(49)
Subcutaneous tissue, fibrosarcoma			1 (2%)
Subcutaneous tissue, fibrous histiocytom	1	1 (3%)	1 (07)
Subcutaneous tissue, hemangioma			1 (2%)
MUSCULOSKELETAL SYSTEM			
Bone	(50)	(10)	(50)
Osteoma	1 (2%)		
NERVOUS SYSTEM			
Brain	(50)	(11)	(50)
Meninges, hamartoma	1 (2%)		
RESPIRATORY SYSTEM			
Larynx	(44)	(6)	(46)
Lung	(50)	(49)	(49)
Alveolar/bronchiolar adenoma	9 (18%)	2 (4%)	2 (4%)
Alveolar/bronchiolar carcinoma	1 (2%)	2 (4%)	
Alveolar/bronchiolar carcinoma, multiple		1 (2%) 4 (8%)	
Hepatocellular carcinoma, metastatic, liv	ver 3 (6%)	4 (8%)	
SPECIAL SENSES SYSTEM			
Harderian gland		(1)	
Bilateral, adenoma		1 (100%)	
URINARY SYSTEM			
			(50)
Kidney Urinary bladder	(49)	(11) (27)	(50) (47)

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	er Control	10 p	pm	25 ppm
YSTEMIC LESIONS				<u></u>	
Multiple organs	*(50)		*(50)		*(50)
Lymphoma malignant histiocytic	2	(4%)	2	(4%)	
Lymphoma malignant lymphocytic	3	(6%)			
Lymphoma malignant mixed	2	(4%)	1	(2%)	
UMOR SUMMARY Total animals with primary neoplasms ** Total primary neoplasms Total animals with benign neoplasms Total benign neoplasms Total animals with malignant neoplasms Total animals with secondary neoplasms *** Total secondary neoplasms	33 48 21 26 18 22 3 3		23 28 7 7 16 21 4		20 25 10 11 13 14 1 7

TABLE C1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: CHAMBER CONTROL

DAYS ON STUDY	2 6 6	5 1 4	5 2 9	5 6 7	5 8 8	6 0 7	6 4 4	6 4 8	6 5 8	6 7 0	6 7 3	6 7 3	6 8 7	6 9 6	7 0 7	7 1 4	7 1 7	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2
CARCASS ID	7 2 1	9 8 1	6 3 1	5 5 1	9 7 1	7 0 1	8 1 1	9 5 1	7 4 1	5 7 1	5 1 1	6 6 1	5 3 1	5 6 1	8 8 1	9 0 1	5 2 1	7 3 1	8 9 1	5 4 1	5 8 1	5 9 1	6 0 1	6 9 1	7 1 1
ALIMENTARY SYSTEM																									
Esophagus Gallbladder	+++	+ A	+++	+ м	++++	M M	+++	+ A	+++++++++++++++++++++++++++++++++++++++	ж м	++	+	+ M	+++	+ м	+++	+++	+++	+++++++++++++++++++++++++++++++++++++++	+++	++++	++++	+	+++++++++++++++++++++++++++++++++++++++	++
Intestine large	+	+	÷	+	÷	+	÷	M	÷	+	÷	÷	+	÷	+	÷	+	÷	÷	÷	÷÷	÷	+	+	+
intestine large, cecum	M	+	М	M	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Intestine large, colon Intestine large, rectum	+ M	+ м	+++	+++	+++	+ M	+++		+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++	+	+++++++++++++++++++++++++++++++++++++++	+ +	+++	+++	+	++	++	+++++++++++++++++++++++++++++++++++++++	+++++	++	++
Intestine small	+	+	+	+	+	A	+	М	+	+	+	÷	+	+	Ă	+	+	÷	- -	+	+	+	÷	+	+
Intestine small, duodenum	+	+	+	+	+		+		+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
Intestine small, ileum	+	M	Ą	+	+		M		+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+
Intestine small, jejunum Liver	++++	+++	++	+++	+	+	+++	+	+	+	+	++	+	+	+	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+++++++++++++++++++++++++++++++++++++++	M +	+++
Hemangiosarcoma, multiple	1		x		,							•	•		•				•	,	•				
Hepatocellular carcinoma		х		х	х				X	х									х			X			
Hepatocellular carcinoma, multiple Hepatocellular adenoma					x						Х														
Hepatocellular adenoma, multiple					ñ																				
Mesentery					+					+	+		+	+											
Pancreas	+	+++	+++++++++++++++++++++++++++++++++++++++	++++	+	+	+	M +	+	+	+	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	+	+	+	+	+	+	+	+++
Salivary glands Stomach	++++	+	÷	÷	, M	+	++	, M	+	++	÷	÷	+	+	+	++	+	+	+	+	+	+	+	+	+
Stomach, forestomach	+	÷	÷	÷		÷	÷	***	+	+	+	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	+	÷	÷	÷
Stomach, glandular	+	+	+	+		+	+		+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
CARDIOVASCULAR SYSTEM																									
Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	+	+	+	+	+
ENDOCRINE SYSTEM									<u></u>				-												
Adrenal gland	+	+	+	+	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Capsule, adenoma, multiple																									
Adrenal gland, cortex Adenoma	+	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Adrenai gland, medulla	1 +	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Pheochromocytoma benign																					X				
Islets, pancreatic Parathyroid gland	+ M	+++	+++	+	, M	+ м	+ M	м +	+++	+++++++++++++++++++++++++++++++++++++++	+++	+++	+	+	+++	+ M	++	++	+ M	+ M	++	++	+	+	+++
Pituitary gland	+	+	÷	+	+	+	+	M	+	+	+	+	+	+	+	+	+	M	+	+	+	+	+	+	÷
Pars distalis, adenoma																					х				
Thyroid gland Follicular cell, adenocarcinoma	+	+	+	+	*	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Follicular cell, adenoma					A																				
GENERAL BODY SYSTEM	.																								
None																									
GENITAL SYSTEM	·																								
Coagulating gland											+														
Epididymis	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Preputial gland Prostate	++++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	+	۵	+	L.	+	+	++++	+ м	+	+	м	м	+	+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+	+
		, M	+	Ŧ	Ŧ	Ŧ	+	Ă	+	+	Ţ	+	+	111	+	+	+	++++	+	+	+ +	+	+	+	÷
Seminal vesicle	+																								

+: Tissue examined microscopically : Not examined -: Present but not examined microscopically I: Insufficient tissue

M: Missing A: Autolysis precludes examination X: Incidence of listed morphology

Vinyl Toluene (mixed isomers), NTP TR 375 114

DAYS ON STUDY	732	7 3 2	732	732	732	7 3 2	733	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	733	7 3 3	7 3 4	7 3 4	7 3 4	734	7 3 4	7 3 5	7 3 5	735	7 3 5	
CARCASS ID	- 7 5 1	8 4 1	8 5 1	8 6 1	8 7 1	0 0 1	6 4 1	6 5 1	6 7 1	6 8 1	7 9 1	8 0 1	8 2 1	8 3 1	9 6 1	9 9 1	6 2 1	7 7 1	7 8 1	9 3 1	9 4 1	6 1 1	7 6 1	9 1 1	9 2 1	TOTAL: TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gailbladder Intestine large, cecum Intestine large, coion Intestine large, cecum Intestine large, rectum Intestine small, duodenum Intestine small, leum Intestine small, jejunum Laver	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	- +++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	· ++++++++++	· · · · · · · · · · · · · · · · · · ·	- +++++++++++++++++++++++++++++++++++++	· · · · · · · · · · · · · · · · · · ·	+++++++++++++++++++++++++++++++++++++++	. + + + + + + + + + + + + + + + + + + +	- +++++++++++++++++++++++++++++++++++++	+ A + + + + + + + + + + + + + + + + + +	· ++++++++++	- +++++++++++	+M++++++++	* + + + + + + + + + + + + + + + + + + +	· + + + + + + + + + + + + + + + + + + +	· · · + + + + + + + + + + + + + + + + +	·	- +++++++++++++++++++++++++++++++++++++	~ ++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	- + + + + + + + + + + + + + + + + + + +	- + + + + + + + + + + + + + + + + + + +	- +++++++++++++++++++++++++++++++++++++	49 41 49 46 48 46 47 47 47 47 44 46 50
Hemangrosarcoma, multiple Hepatocellular carcinoma Hepatocellular actrinoma, multiple Hepatocellular adenoma, multiple Mesentery Pancreas Salivary glands Stomach, forestomach Stomach, glandular	++++	, X + + + + +	, + + + + + +	, X +++++	· + + + +	, ++++	, X ++++	, X +++++	, X ++++	, X ++++	* + + + + +	++++	* * * * * * * * *	+++++	* * * *	· + + + +	++++	X +++++	+++++	× + + + + + + + + + + + + + + + + + + +	+++++	, ++++	+++++	+++++	+++++	1 9 1 6 2 6 49 50 48 48 48 48
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
ENDOCRINE SYSTEM Adrenal gland Capsule, adenoma, multiple Adrenai gland, cortex Adrenai gland, cortex Adrenai gland, medulla Pheochromocytoma benign Islets, pancreatic Parathyroid gland Ptutitary gland Para distalis, adenoma Thyroid gland Follicular cell, adenoma	+ + + + + +	+ + + M I +	+ + + + + + +	+ + + + + + +	+ +X+ +++ +	+ + + + + +	+ + + +++ +	+X+ + ++M +	+ + + + M+ +	+ + + ++ +	+ + + + M +	+ + + + + M+ +	+ + + + M+ +	+ + + + + + X	+ + + + + +	+ + + + M + +	+ + + +++ +	+ + + + + + + +	+ + + + M+ +	+ + + + + +	+ + + + X	+ + + ++ +	+ + + + + X	+ + + + + +	+ + + + M + +	49 1 49 1 49 36 45 1 49 3 3 49 1 3
GENERAL BODY SYSTEM None GENITAL SYSTEM Coagulating gland																										
Epddymis Preputial gland Prostate Seminal vesicle Testes	+ + + +	+ + + + +	+ + +	+ + +	+ + +	+ + +	+ + +	+ + + +	+ + +	+ + + + +	+ + +	+ +++	+ + + +	+ + + +	M + + +	+ + + +	+ + +	+ + + +	+ + + +	+ + + + +	+ + + +	+++++	+++++	+++++	+ + + +	49 15 46 48 50

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: CHAMBER CONTROL (Continued)

DAYS ON STUDY	2 6 6	5 1 4	5 2 9	5 6 7	5 8 8	6 0 7	6 4 4	6 4 8	6 5 8	6 7 0	6 7 3	6 7 3	6 8 7	6 9 6	7 0 7	7 1 4	7 1 7	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2
CARCASS ID	7 2 1	9 8 1	6 3 1	5 5 1	9 7 1	7 0 1	8 1 1	9 5 1	7 4 1	5 7 1	5 1 1	6 6 1	5 3 1	5 6 1	8 8 1	9 0 1	5 2 1	7 3 1	8 9 1	5 4 1	5 8 1	5 9 1	6 0 1	6 9 1	7 1 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + M M + +	+ + + M + + +	+ + + + + M	++++++	+ + + + + M	+ + + M + +	+ + + + + + M	A + A M A	+++++ ++++ M	+ + + + M + + -	+ + + + + M	+++++	+ + + + + M	+ + M + + +	+++++++	+ + + + + + M	++++++	+++++++	+ + + + + M + + +	++++++	+ + + + + M	+++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++
INTEGUMENTARY SYSTEM Mammary gland Skin	M +	M +	M +	M +	M +	M +	M +	M +	+++	M +	M +	M +	++++	M +	M +	M +	M +	M +	M +	M +	M +	M +	++++	++++	M +
MUSCULOSKELETAL SYSTEM Bone Osteoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain Meninges, hamartoma	+	+	+	+	+	+	+	+	+	+	+	* *	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple	++++	M +	+ +	+++	+ +	М +	+++	M +	+++	+++	+ +	+ +	+ + X	+ + X	+ + X	+ + X	+++	+ + X	+ + X	+ + X	+++	+ +	+ +	+ +	++++
Hepatocellular carcinoma, metastatic, liver				v							x			X											
Nose Trachea	+++	+ +	+ +	X + +	+ +	+ М	+ +	+ +	+ +	+ +	Α + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
SPECIAL SENSES SYSTEM Ear																									
URINARY SYSTEM Kidaey Urethra Urnary bladder	+++	++	+++	+++++	++	++	++	A A	+++	+++	++	+++	++	 + +	+++	+++	+++	 + +	+	++	++	+++	++	+++	 + +
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histocytic	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Lymphoma malignant lymphocytic Lymphoma malignant mixed										x										X			x		

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: CHAMBER CONTROL (Continued)

DAYS ON STUDY	$\begin{array}{c} 7\\ 3\\ 2\end{array}$	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	7 3 5	7 3 5	7 3 5	TOTAL
CARCASS ID	7 5 1	8 4 1	8 5 1	8 6 1	8 7 1	0 0 1	6 4 1	6 5 1	6 7 1	6 8 1	7 9 1	8 0 1	8 2 1	8 3 1	9 6 1	9 9 1	6 2 1	7 7 1	7 8 1	9 3 1	9 4 1	6 1 1	7 6 1	9 1 1	9 2 1	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus	+ + + + + M	+++++	+ + + + + + M	+++++	+ + + + + M + + +	+++++	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + M	++++++	++++++	+ + + + + + + + + + + + + + + + + + +	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M	+ + + + + M	+++++	+ + + + M + M	++++++	+ + + + + + + +	49 50 47 42 49 35
INTEGUMENTARY SYSTEM Mammary gland Skin	M +	M +	M +	М +	+++++	M +	+++++	M +	M +	M +	M +	M +	M +	++++	M +	+ +	M +	M +	M +	M +	+++	+++	+++	M +	M +	11 50
MUSCULOSKELETAL SYSTEM Bone Osteoma	+	+	+	+	* x	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
NERVOUS SYSTEM Brain Meninges, hamartoma	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma.	+ + X	+ +	+ +	+ +	+ + X	M +	+ +	+ +	+ + X	++++	+++	+ +	+ +	++++	+ +	+ +	++++	++++	+++	+ +	+++	+ + X	М +	м +	+ +	44 50 9 1
multiple Hepatocellular carcinoma, metastatic, liver Nose Trachea	+++	+++	+ +	X + +	+++	+++	+ +	++++	+ +	+++	+ +	+++	+ +	++++	+ +	+ +	+++	+++	+ +	++++	+++	+ +	X + +	+++	+ +	2 3 50 49
SPECIAL SENSES SYSTEM Ear					+																					1
URINARY SYSTEM Kidney Urethra Urinary bladder	+++++	+	++	++	+	+++	+++	++	+++	+	+ +	++	++	+++	++	+++	++	+++	+	+++	++	+ +	++	++	+++	49 1 49
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+ X	+	+	* X	* x	+	+	+	+	+	+	+	+	+ X	+	+	50 2 3 2

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: CHAMBER CONTROL (Continued)

																					_		_		
DAYS ON STUDY	3 5 8	3 9 2	4 3 4	5 5 0	5 5 3	5 6 7	5 7 4	5 8 2	6 0 2	6 2 3	6 2 3	6 3 2	6 6 1	6 7 6	6 7 6	6 8 2	6 8 6	6 9 5	7 1 4	7 2 4	7 3 1	$ \frac{7}{3} 1 $	7 3 2	732	7 3 2
			-	Ŭ.,	3	'	*	4	4	3	3	-	T	o	-	4	Ø	э	4	4	T	T	z	z	Z
CARCASS	$\frac{2}{6}$	27	26	29	25	25	2 5	2 9	2 8	25	$\frac{2}{7}$	25	2 9	2 6	2 8	2 8	2 9	2 9	$\frac{2}{7}$	2 5	2 5	2 5	25	27	27
ID	5	6	8	2	5	3	9	3	7	1	71	8	5 1	0	1	8	9 1	1	3 1	7	4	6 1	2	i	2
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ALIMENTARY SYSTEM			·																						
Esophagus Galloladder	M M		+	++++		+	+	+	M A	++	+	++++		+		A		+		+					
Intestine large	+		+	+		÷	+	÷	+	+	÷	÷		,						+					
Intestine large, cecum Intestine large, colon	+++++		A +	M		+	+	+	A A	М +	+	+								+					
Intestine large, rectum	M		Å	+++		++	+	+	Â	+	+	+								+					
Intestine small	+		+	+		+	+	+	+	+	+	+						+		+					
Intestine small, duodenum Polyp adenomatous	+		A	+		+	+	М	A	+	+	+						x+		+					
Intestine small, ileum	+		A	+		+	+	+	М	+	+	+						A		+					
Intestine small, jejunum	+		A	+		+	+	+	М	+	М	+								+					
Adenocarcinoma Liver	+	A	+	+	+	+	+	+	+	+	+	+	+			+		+		+			+		
Hepatocellular carcinoma	1 .		x	,	x	x			•	•	x	x	•			*				x			x		
Hepatocellular carcinoma, multiple	ļ						X																		
Hepatocellular adenoma Pancreas	+		A	+		+	+	+	A	+	+	+								+					
Salivary glands	+		+	+		+	+	+	+	+	+	+								+					
Stomach Stomach, forestomach	+++++	+	+	+		+	+	++++	A A	++++	+++	+++++++++++++++++++++++++++++++++++++++							+	+++++++++++++++++++++++++++++++++++++++					
Stomach, glandular	+	A A	++	++		++	+++	+	Â	+	+	+							+	÷					
CARDIOVASCULAR SYSTEM																									
Heart	+	+	+	+		+	+	+	+	+	+	+								+					
ENDOCRINE SYSTEM																									
Adrenal gland	+		+	÷		+	+	+	A	+	+	+								+					
Adrenal gland, cortex	+		+	+		+	+	÷	Α	+	+	+								+					
Adrenal gland, medulla Islets, pancreatic	++++		+	++		++	+	+	A A	++++	+++	++++								M +					
Parathyroid gland	M	A	A +	+		Ň	+	+	Â	M	÷	÷								ň					
Pituitary gland	+		+	+		+	+	+	+	+	+	+								+					
Thyroid gland	M	A	+	+		+	+	+	М	+	+	+								+					
GENERAL BODY SYSTEM						-							• • •			<u> </u>									
Tissue, NOS																				+					
GENITAL SYSTEM																									
Epididymis Preputial gland	+	A	+	+++		+	+	+	+ A	+	+	+								+			+		
Prostate	+		+	÷		+	+	+	Α	М	+	+								+			F		
Seminal vesicle	M		+	+	+	+	+	+	+	+	++++	+++	+	+	+				+	+					
Testes Interstitial cell, adenoma	+	A	+	+		+	+	+	+	+	+	+								+					
	I																								

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 10 ppm

TABLE C2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	10 ppm
				(Continued	I)			

DAYS ON STUDY	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL.						
CARCASS ID	2 7 4 1	2 7 5 1	2 8 9 1	2 9 0 1	2 6 9 1	2 7 0 1	$\frac{2}{8}$ 3	2 8 4 1	2 8 5 1	2 8 6 1	2 9 7 1	2 9 8 1	3 0 0 1	2 6 6 1	2 6 7 1	2 8 0 1	2 8 2 1	2 9 6 1	2 6 1 1	2 6 2 1	2 6 3 1	2 6 4 1	2 7 8 1	2 7 9 1	2 9 4 1	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large, ceum Intestine large, ceum Intestine large, colon Intestine small Intestine small, duodenum Polyp adenomatous Intestine small, leum Intestine		+		+ X	+ X			+ X		+ + X				+ X			+ X		++ ++ +					+		9 10 11 7 10 8 15 10 10 10 10 10 10 11 23 11 1 29 11 12 10 11 12 10 11 10 10 10 10 10 10 10 10
CARDIOVASCULAR SYSTEM Heart										•					+											13
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, cortex Islets, pancreatic Parathyroid gland Pituntary gland Thyroid gland														_												10 10 9 6 11 9
GENERAL BODY SYSTEM Tissue, NOS																										1
GENITAL SYSTEM Epididymis Preputial gland Prostate Seminal vesicle Testes Interstitial cell, adenoma	+	+	+	+									+ x		+	+										11 6 9 17 12 1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: 10 ppm (Continued)

DAYS ON STUDY	3 5 8	3 9 2	4 3 4	5 5 0	5 5 3	5 6 7	5 7 4	5 8 2	6 0 2	6 2 3	6 2 3	6 3 2	6 6 1	6 7 6	6 7 6	6 8 2	6 8 6	6 9 5	7 1 4	7 2 4	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2
CARCASS ID	2 6 5 1	2 7 6 1	2 6 8 1	2 9 2 1	2 5 5 1	2 5 3 1	2 5 9 1	2 9 3 1	2 8 7 1	2 5 1 1	2 7 7 1	2 5 8 1	2 9 5 1	2 6 0 1	2 8 1 1	2 8 8 1	2 9 9 1	2 9 1	2 7 3 1	2 5 7 1	2 5 4 1	2 5 6 1	2 5 2 1	2 7 1 1	$ \begin{array}{c} 2 \\ 7 \\ 2 \\ 1 \end{array} $
HEMATOPOIETIC SYSTEM Bone marrow Lymph node, mandibular Lymph node, mesenteric Spieen Hemangiosarcoma Thymus	M + + M + M		+ + M M A M	+ + + + + +		+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + M + + +	+ + + M A A	+ + + M + + + +	+ + + + + + M	+ + + + + + M	+					+ + +		+ + + + + + M	+ x		++	+ +	
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrous histiocytoma	M +	A	М +	M +		M +	М +	M +	M +	+ +	+ +	M +		+	+			+	+	M +	+ X				
MUSCULOSKELETAL SYSTEM Bone Skøletal muscle	M		+	+		+	+	+ +	+	+	+	+								+					
NERVOUS SYSTEM Brain			+	+		+	+	+	÷	+	+	+					-			+			·		
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multipie Hepatocellular carcinoma, metastatic,	M + X	A	M +	+ +	+	+ +	M +	+++++	+	M +	+ +	+++	+	+	+	+	+	+	+	+ +	+	+	+	+	* X
liver Nose Trachea	M	A	+ +	+ +	+	+ +	X + +	+ +	+ М	+ +	+ +	+ +	+	+	+	X +	+	+	+	+ +	+	+	+	+	+
SPECIAL SENSES SYSTEM Harderian gland Bilateral, adenoma	-										-														
URINARY SYSTEM Kidney Urinary bladder	- + +	A	++++	++	+	++++	++++	++++	A A	++++	++++	+ +	+	+	+		+	+	+	++++				+	
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histiocytic Lymphoma malignant mixed	-	+	+	+	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	*	+	+

TABLE C2.	INDIVIDUAL	ANIMAL	TUMOR	PATHOLOGY	OF	MALE	MICE:	10 ppm
				(Continued	l)			

DAYS ON STUDY	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL.														
CARCASS ID	2 7 4 1	2 7 5 1	2 8 9 1	2 9 0 1	2 6 9 1	2 7 0 1	2 8 3 1	2 8 4 1	2 8 5 1	2 8 6 1	2 9 7 1	2 9 8 1	3 0 0 1	2 6 6 1	2 6 7 1	2 8 0 1	2 8 2 1	2 9 6 1	2 6 1 1	2 6 2 1	2 6 3 1	2 6 4 1	2 7 8 1	2 7 9 1	2 9 4 1	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Lymph node, mandibular Lymph node, mesenteric Spleen Hemangiosarcoma Thymus		+++++	÷	+ +	+ +			+		+ +				+		+ + +	+ + +		++			+ +		+ +		10 26 11 19 14 1 6
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrous histocytoma	+				+	+	+	+	+	+		+	+	+	+		+			+	+					2 30 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle			,																							
NERVOUS SYSTEM Brain																										11
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Alveolar/bronchiolar carcinoma, multiple	+	+	+	+	+	+	+	+	+	+	+	+	+	+ x	+	+	+ X	+	+	* X	+	+	+	+	+	6 49 2 2 1
Hepatocellular carcinoma, metastatic, liver Nose Trachea	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	4 48 9
SPECIAL SENSES SYSTEM Harderian gland Bilateral, adenoma																							*			1 1
URINARY SYSTEM Kıdney Urınary bladder	+		+	+						+		+			+		+				+			+	+	11 27
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histiocytic Lymphoma malignant mixed	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	50 2 1

DAYS ON STUDY	1 4 8	1 4 8	2 5 2	5 7 4	6 6 4	6 8 3	7 0 2	7 0 3	7 1 6	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3
CARCASS ID	1 5 3 1	1 5 4 1		1 9 1 1	1 9 9 1	1 9 2 1	1 9 5 1	1 9 4 1	1 8 1 1	1 5 9 1	1 6 0 1	1 5 1 1	1 5 2 1	1 5 5 1	1 5 6 1	1 5 7 1	1 5 8 1	1 7 5 1	1 7 1 1	1 7 2 1	1 7 3 1	1 7 4 1	1 8 6 1	1 8 7 1	1 8 8 1
ALIMENTARY SYSTEM Esophagus Gailbiadder Intestine large, cocum Intestine large, cocum Intestine large, cocum Intestine large, cocum Intestine large, rectum Intestine small, duodenum Polyp adenomatous Intestine small, lieum Intestine small, lieum	+ M + M + + M + + M M +	+++M++ M+++ M++	MA+M+ + M++ M++	+M++M M ++ MMM	+ A +++ +++ +++	+++++++++++++++++++++++++++++++++++++++	+M+++ +++ +A+	+++++++++++++++++++++++++++++++++++++++	+ M A A	+++M+ ++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++ + + + + + + M +	+++++ +++++++++++++++++++++++++++++++++	++++ +++ +++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+M+++ +++ ++++	+++++ +++++++++++++++++++++++++++++++++	++++M +++ +++	+++++ +++ +++	+++++ +++	+++++ +++ ++++	+++++ +++ +++	+++++++++++++++++++++++++++++++++++++++	+++++ +++++++++++++++++++++++++++++++++
Hepatocellular carcinoma Hepatocellular carcinoma, multiple Hepatocellular adenoma Sarcoma, metastatic, uncertain primary site Mesentery							x	x		X	+			+		x								x	X
Fat, hemangnosarcoma Pancreas Sarcoma, metastatic, uncertain primary	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
site Salvary glands Stomach Stomach, forestomach Stomach, glandular	+++++++++++++++++++++++++++++++++++++++	+ + M +	+++++	+ M	+ + +	+ + +	+++++	+ + + +	+ + M +	+ + + +	+ + + +	++++	+ + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + +	+ + +	+ + + +	+ + +	+ + +	+ + + +	+ + +	+ + +
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland Capsule, sarcoma, metastatic, uncertain primary site	+	+	+	М	+	+	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	ł	+	+	+
Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign	+++	+ M	+ +		+++++	+ +	+ +		+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
Islets, pancreatic Adenoma Parathyroid gland	+ M	+ M	+ M	+ M	+	+ M	+	+	A +	++	+ M	++	+	+ M	+ M	++	++	++	x M	++	+ M	++	++	+	+
Pituitary gland Pars distalis, adenoma Thyroid gland	+++	+	+ М	M M	I +	+ +	+	+	+ +	+ +	+ +	* * +	+ +	+ +	+ +	+ +	+	+ +	+	+	+	+	+	+	+
GENERAL BODY SYSTEM Tissue, NOS						+																			

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 25 ppm

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: 25 ppm(Continued)

DAYS ON STUDY	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL.																
CARCASS ID	1 8 9 1	1 9 0 1	1 6 9 1	1 7 0 1	1 8 4 1	1 8 5 1	1 9 8 1	2 0 0 1	1 6 1 1	1 6 2 1	1 6 3 1	1 6 4 1	1 6 5 1	1 6 6 1	1 6 7 1	1 6 8 1	1 7 6 1	1 7 7 1	1 7 8 1	1 7 9 1	1 8 0 1	1 8 3 1	1 9 3 1	1 9 6 1	1 9 7 1	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gailbladder	++++	+	++++	++++	++++	+	+ M	+	+	+	+	+	+ M	+++	м +	++++	+	+ M	+	+	+ M	+ M	++++	 м	+++	48 37
Intestine large	+	+	÷	+	+	+	141	÷	+	Ŧ	Ŧ	÷	+	+	÷	+	÷	+	+	÷	+	+	÷	+	+	49
Intestine large, cecum	+	÷	÷	÷	÷	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	Ń	÷	÷	÷	44
Intestine large, colon Serosa, sarcoma, metastatic, uncertain primary site	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Intestine large, rectum	+	+	+	+	+	+	Â.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	45
Intestine small	+	÷	÷	÷	+	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	÷	+	÷	+	+	+	+	÷	÷	+	49
Intestine small, duodenum	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Polyp adenomatous																									X	
Intestine small, ileum Intestine small, jejunum	+	+	+	+	+	+	+	+++	+++	++	++	++	+	++	++	++	+	+	+	+	+	+	÷	++	М +	44
Liver	+	+	+	+	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	÷	÷	+	÷	÷	48
Hepatocellular carcinoma						x		x	•				x	,		x				•						7
Hepatocellular carcinoma, multiple					Х		Х												х							5
Hepatocellular adenoma																							X			2
Sarcoma, metastatic, uncertain primary																										
site							х																			1 3
Mesentery Fat, hemangiosarcoma															*											1
Pancreas	+	+	+	+	+	+	+	+	÷	+	+	+	+	+	^	+	+	+	+	+	+	+	+	+	+	49
Sarcoma, metastatic, uncertain primary	Ľ.				•	•		'	•	·				•		,										
site							х																			1
Salivary glands	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
Stomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
Stomach, forestomach	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
Stomach, glandular	+	Ŧ	+	+	+	+	+	+	+	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	т	Ŧ	Ŧ	T	T	Ŧ	Ŧ	Ŧ	Ŧ	43
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
												<u> </u>														
ENDOCRINE SYSTEM																										
Adrenal gland Capsule, sarcoma, metastatic, uncertain primary site	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adrenal gland, cortex	+	+	+	+	+	+	^ +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
Adrenal gland, medulla	+	÷	÷	+	+	÷	+	+	÷	÷	+	÷	÷	÷	÷	+	+	+	+	+	÷	+	+	÷	÷	47
Pheochromocytoma benign																								X		1
Islets, pancreatic Adenoma	+	+	+	+	+	+	+	* X	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49 2
Parathyroid gland	M	+	+	+	М	+	М	+	+	+	+	+	+	+	+	+	м	+	М	+	+	+	+	+	+	35
Pituitary gland	+	+	+	+	+	+	+	+	+	+	+	+	Μ	+	+	+	+	+	+	+	+	+	+	+	+	47
Pars distalis, adenoma Thyroid gland	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
GENERAL BODY SYSTEM Tissue, NOS																										1

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: 25 ppm (Continued)

									·																
DAYS ON STUDY	1 4 8	1 4 8	2 5 2	5 7 4	6 6 4	6 8 3	7 0 2	7 0 3	7 1 6	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3
CARCASS ID	1 5 3 1	1 5 4 1	1 8 2 1	1 9 1 1	1 9 9 1	1 9 2 1	1 9 5 1	1 9 4 1	1 8 1 1	1 5 9 1	1 6 0 1	1 5 1 1	1 5 2 1	1 5 5 1	1 5 6 1	1 5 7 1	1 5 8 1	1 7 5 1	1 7 1 1	1 7 2 1	1 7 3 1	1 7 4 1	1 8 6 1	1 8 7 1	1 8 8 1
GENITAL SYSTEM Epididymis Preputal gland Prostate	+	+++	+ + M	M M	+	+++	+++++	+++	+	+	+	+ M	+ M	+	+++	+	+++	+	+++++	+	+++	+++	+++	+++	+++++
Serosa, sarcoma, metastatic, uncertain primary site Seminal vesicle Serosa, sarcoma, metastatic, uncertain primary site	+	+	+		+	+	+	+	+	+	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+
Testes Interstitial cell, adenoma	+	+	+	М	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spieen Capsule, sarcoma, metastatic, uncertain	+ + M M +	+ + + + + M +	+ + M + +	+ + + + M +	++++++	+ + + MM +	++++++	+++++++++++++++++++++++++++++++++++++++	M + + M A	+ + + +	+++++++	+++++	+ + XX +	+++++	+ + + M + +	+++++	+++++	+++++	+ + + + +	+ + M + + +	+ + + + +	+ + + + + M +	+ + M + + +	+++++	+++++
primary site Thymus		+	М	М	+	+	м	М	+	М	+	÷	+	+	м	+	+	+	+	+	М	+	+	I	+
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangioma	M +	м +	M +	+ +	M +	м +	M +	+ + X	+ +	M +	M +	м +	+ +	+ +	+ +	M +	м +	м +	M +	M +	M +	+ +	+++	M + X	M +
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	++++	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma	M_+	M +	M +	+ M	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	M +	+ +	+ +	+++	+ +
Nose Trachea	+++++++++++++++++++++++++++++++++++++++	+ +	+ M	M M	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +
SPECIAL SENSES SYSTEM Eye								+											-						
URINARY SYSTEM Kidney Urinary bladder	++++	, м	+ +	, м	+++	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ м	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+++	+ +	+++	+ +
SYSTEMIC LESIONS Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
											_														

DAYS ON STUDY	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	TOTAL:
CARCASS ID	1 8 9 1	1 9 0 1	1 6 9 1	1 7 0 1	1 8 4 1	1 8 5 1	1 9 8 1	2 0 0 1	1 6 1 1	1 6 2 1	1 6 3 1	1 6 4 1	1 6 5 1	1 6 6 1	1 6 7 1	1 6 8 1	1 7 6 1	1 7 7 1	1 7 8 1	1 7 9 1	1 8 0 1	1 8 3 1	1 9 3 1	1 9 6 1	1 9 7 1	TISSUES
GENITAL SYSTEM Epididymis Preputial gland Prostate	++++++	+	++	++	++	+	++	++	++	+ M	+ + +	+++++	+++	+ +	+++	+	+++	+++	++	+ + M	+++	++	++	+++	+++	49 8 44
Serosa, sarcoma, metastatic, uncertain primary site Seminal vesicle Serosa, sarcoma, metastatic, uncertain	+	+	+	+	+	+	X +	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	1 49 1
primary site Testes Interstitial cell, adenoma	+	+	+	+	+	+	Х +	+	+	+	+	*	÷	+	+	+	+	+	+	+	+	+	+	+	+	49 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen	+ + + + +	+ + + M + +	+ + + + M +	+ + + + M +	+ + X + + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M +	+++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+ + + M + + +	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	+ + + M + + +	+++++	+ + + + + + M +	+ + + + M +	+ + + M M +	+ + + M + +	+ + + M + +	+++++	+ + M + + M + +	49 50 35 33 49
Capsule, sarcoma, metastatic, uncertain primary site Thymus	+	+	+	м	м	+	X M	м	+	+	+	+	+	+	+	м	+	+	+	м	+	м	+	+	+	1 34
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangioma	++++	М +	+++	+++	M +	М	M +	M +	M +	M +	M +	+++	+ +	+ +	+++	+++	M +	+ +	M +	M +	+ +	M +	+ +	+++	+ +	21 49 1 1
MUSCULOSKELETAL SYSTEM Bone Skeletal muscle	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50 1
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma	++++	++++	++++	++++	+++	+ +	+++	++++	+ +	+++	++++	++++	+ + X	+++	++++	++++	+++	+ +	+++	+++	++	++++	++++	+++	+++	46 49 2
Nose Trachea	+++++++++++++++++++++++++++++++++++++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	49 48
SPECIAL SENSES SYSTEM Eye																										1
URINARY SYSTEM Kidney Urinary bladder	+++++	+ +	+++	++	++	+ +	+++	+ +	+ +	+++	+ +	+++	+ +	+ +	+++	+ +	+++	++++	+ +	+ +	+++	+++	++	+ +	+++	50 47
SYSTEMIC LESIONS Multiple organs	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	50

TABLE C2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF MALE MICE: 25 ppm (Continued)

1

TABLE C3.	ANALYSIS OF	PRIMARY NEC	PLASMS IN	MALE MICE	IN THE	TWO-YEAR INHALATION
		STU	DY OF VIN	YL TOLUENI		

	Chamber Contro	ol 10 ppm	25 ppm
Liver: Hepatocellular Adenoma			
Overall Rates (a)	8/50 (16%)	(b) 2/23 (9%)	2/48 (4%)
Adjusted Rates (c)	22.9%	(0) =:=0 (0 10)	4.9%
Terminal Rates (d)	7/33 (21%)		2/41 (5%)
Day of First Observation	588		731
Life Table Test (e)	000		P = 0.023N
Logistic Regression Test (e)			P = 0.046N
Fisher Exact Test (e)			P = 0.053N
Liver: Hepatocellular Carcinoma			
Overall Rates (a)	10/50 (20%)	(b) 12/23 (52%)	12/48 (25%)
Adjusted Rates (c)	23.5%	(2) 11,10 (02.0)	27.8%
Terminal Rates (d)	4/33 (12%)		10/41 (24%)
Day of First Observation	514		702
Life Table Test (e)	V17		P = 0.575
Logistic Regression Test (e)			P = 0.363
Fisher Exact Test (e)			P = 0.363
Liver: Hepatocellular Adenoma or Carcino	ma		
Overall Rates (a)	17/50 (34%)	(b) 14/23 (61%)	14/48 (29%)
Adjusted Rates (c)	41.9%	(J) 1 THEO (UI /0)	32.5%
Terminal Rates (d)	11/33 (33%)		12/41 (29%)
Day of First Observation	514		702
Life Table Test (e)	014		P = 0.163N
Logistic Regression Test (e)			
			P = 0.376N
Fisher Exact Test (e)			P = 0.384N
Lung: Alveolar/Bronchiolar Adenoma Overall Rates (a)	0/50 (1901)	9/40 (477)	9/40 (47)
	9/50 (18%)	2/49 (4%)	2/49 (4%)
Adjusted Rates (c)	24.8%	6.7%	4.9%
Terminal Rates (d)	6/33 (18%)	2/30 (7%)	2/41 (5%)
Day of First Observation	687	731	731
Life Table Tests (e)	P = 0.009N	P = 0.043N	P = 0.013N
Logistic Regression Tests (e)	P = 0.011N	P = 0.037 N	P = 0.018N
Cochran-Armitage Trend Test (e)	P = 0.019N		
Fisher Exact Test (e)		P = 0.028N	P = 0.028N
Lung: Alveolar/Bronchiolar Carcinoma			
Overall Rates (a)	3/50 (6%)	3/49 (6%)	0/49 (0%)
Adjusted Rates (c)	8.6%	8.5%	0.0%
Terminal Rates (d)	2/33 (6%)	2/30 (7%)	0/41 (0%)
Day of First Observation	696	358	
Life Table Tests (e)	P = 0.072N	P = 0.622	P = 0.090 N
Logistic Regression Tests (e)	P = 0.091 N	P = 0.662N	P = 0.111N
Cochran-Armitage Trend Test (e)	P = 0.097 N		
Fisher Exact Test (e)		P=0.651	P = 0.125N
Lung: Alveolar/Bronchiolar Adenoma or Ca			
Overall Rates (a)	12/50 (24%)	5/49 (10%)	2/49 (4%)
Adjusted Rates (c)	32.2%	15.1%	4.9%
Terminal Rates (d)	8/33 (24%)	4/30 (13%)	2/41 (5%)
Day of First Observation	687	358	731
Life Table Tests (e)	P = 0.001 N	P=0.089N	P = 0.002N
Logistic Regression Tests (e)	P = 0.003 N	P = 0.065 N	P = 0.003 N
Logistic Regression Tests (e) Cochran-Armitage Trend Test (e)	P = 0.003 N P = 0.004 N	P = 0.065 N	P = 0.003 N

	Chamber Cor	ntrol 10 ppm	25 ppm
Thyroid Gland: Follicular Cell Adenoma	ан ал ан	· · · · · · · · · · · · · · · · · · ·	······································
Overall Rates (a)	3/49 (6%)	(b) 0/9 (0%)	0/47 (0%)
Adjusted Rates (c)	9.1%		0.0%
Terminal Rates (d)	3/33 (9%)		0/41 (0%)
Day of First Observation	731		
Life Table Test (e)			P = 0.086N
Logistic Regression Test (e)			P = 0.086 N
Fisher Exact Test (e)			P = 0.129N
Thyroid Gland: Follicular Cell Adenoma	or Adenocarcinoma		
Overall Rates (a)	4/49 (8%)	(b) 0/9 (0%)	0/47 (0%)
Adjusted Rates (c)	11.1%		0.0%
Terminal Rates (d)	3/33 (9%)		0/41 (0%)
Day of First Observation	588		
Life Table Test (e)			P = 0.046 N
Logistic Regression Test (e)			P = 0.070 N
Fisher Exact Test (e)			P = 0.064 N
Hematopoietic System: Lymphoma, All I	Aalignant		
Overall Rates (f)	7/50 (14%)	(b,g) 3/50 (6%)	0/50 (0%)
Adjusted Rates (c)	20.2%	9.1%	0.0%
Terminal Rates (d)	6/33 (18%)	2/30 (7%)	0/41 (0%)
Day of First Observation	670	632	
Life Table Tests (e)	P = 0.003 N	P = 0.203 N	P = 0.004N
Logistic Regression Tests (e)	P = 0.005 N	P = 0.186N	P = 0.006N
Cochran-Armitage Trend Test (e)	P = 0.006 N		
Fisher Exact Test (e)		P = 0.159N	P = 0.006 N

TABLE C3. ANALYSIS OF PRIMARY NEOPLASMS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

(a) Number of tumor-bearing animals/number of animals examined microscopically at the site

(b) Incomplete sampling of tissues

(c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(d) Observed tumor incidence in animals killed at the end of the study

(e) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or a lower incidence in a dosed group than in controls is indicated by (N).

(f) Number of tumor-bearing animals/number of animals examined grossly at the site

(g) Fourteen spleens and lymph nodes of 26 animals were examined microscopically.

TABLE C4a. HISTORICAL INCIDENCE OF ALVEOLAR/BRONCHIOLAR NEOPLASMS IN MALE $\rm B6C3F_1$ MICE (a)

		Incidence in Controls	
Study	Adenoma	Carcinoma	Adenoma or Carcinoma
listorical Incidence for Char	nber Controls in NTP Studies (b)	
ropylene oxide	14/50	2/50	15/50
fethyl methacrylate	10/50	3/50	11/50
ropylene	7/50	9/50	16/50
,2-Epoxybutane	7/49	5/49	11/49
Dichloromethane	3/50	2/50	5/50
thylene oxide	5/50	6/50	11/50
romoethane	5/50	2/50	7/50
etrachloroethylene	3/49	4/49	6/49
TOTAL	54/398 (13.6%)	33/398 (8.3%)	82/398 (20.6%)
SD(c)	7.45%	4.96%	8.03%
lange (d)			
High	14/50	9/50	16/50
Low	3/50	2/50	5/50
Verall Historical Incidence	for Untreated Controls in NTP	Studies	
TOTAL	204/1,684 (12.1%)	80/1,684 (4.8%)	277/1,684 (16.4%)
SD (c)	6.18%	2.70%	6.91%
lange (d)			
High	14/50	5/4 9	17/50
Low	1/50	0/49	4/50

(a) Data as of March 1, 1989, for studies of at least 104 weeks
(b) All studies were conducted at Battelle Pacific Northwest Laboratories.
(c) Standard deviation
(d) Range and SD are presented for groups of 35 or more animals.

	Incide	nce in Controls
Study	Lymphoma	Lymphoma or Leukemia
torical Incidence for Chamber	r Controls in NTP Studies (b)	
pylene oxide	5/50	6/50
thyl methacrylate	3/50	3/50
pylene	5/50	5/50
Epoxybutane	5/49	5/49
hloromethane	5/50	5/50
ylene oxide	1/50	1/50
moethane	5/50	5/50
achloroethylene	3/49	3/49
OTAL	32/398 (8.0%)	33/398 (8.3%)
D (c)	3.03%	3.29%
e (d)		
High	5/49	6/50
)W	1/50	1/50
rall Historical Incidence for	Untreated Controls in NTP Studies	
TOTAL	193/1,692 (11.4%)	196/1,692 (11.6%)
SD (c)	6.07%	6.31%
ge (d)		
High	13/50	14/50
Low	1/50	1/50

TABLE C4b. HISTORICAL INCIDENCE OF HEMATOPOIETIC SYSTEM NEOPLASMS IN MALE $\rm B6C3F_1$ MICE (a)

(a) Data as of March 1, 1989, for studies of at least 104 weeks(b) All studies were conducted at Battelle Pacific Northwest Laboratories.

(c) Standard deviation(d) Range and SD are presented for groups of 35 or more animals.

T.

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

0	er Control	10 pp	<u>, , , , , , , , , , , , , , , , , , , </u>	25 pp	om
50		50			
				50	
50		50		50	
	·····	· · · · · · · · · · · · · · · · · · ·	·····		·
(49)		(9)		(48)	
	(2%)		(11%)		
		(10)		(37)	
	(2%)			(
(46)		(0)			(901)
					(2%) (2%)
(50)		(23)			(270)
(00)		(20)			(2%)
1	(2%)			-	
				1	(2%)
2	(4%)			1	(2%)
					(2%)
					(2%)
1	(2%)				(2%)
	(00)		(40)	1	(2%)
T	(2%)	1	(4%)	1	(00)
1	(90)			1	(2%)
		3	(13%)	1	(2%)
2	(4%)	2	(9%)	2	(4%)
1	(2%)				
	(0.4)			1	(2%)
	(270)			(3)	
	(33%)				(33%)
				-	(00,0)
1	(17%)				
					(33%)
	(2.2)	(9)			
				2	(4%)
1	(270)			1	(2%)
1	(2.%)			1	(270)
(50)	<u>, /</u>	(11)		(50)	
(23)		(/			(2%)
24	(48%)	2	(18%)		(48%)
(48)		(10)		(47)	
1	(2%)				
1	(2%)	/4 4 1			(2%)
(47)		(11)			(00)
					(2%) (2%)
	$(49) \\ 1 \\ (41) \\ 1 \\ (46) \\ (50) \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 50\\ 50\\ \hline \\ 50\\ \hline \\ \\ (41)\\ 1 (2\%)\\ (41)\\ 1 (2\%)\\ (46)\\ \hline \\ (50)\\ \hline \\ (50)\\ \hline \\ (50)\\ \hline \\ (2\%)\\ \hline ($	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

	Chambe	r Control	10 pp	m	25 ppm				
CARDIOVASCULAR SYSTEM									
Heart	(50)		(13)		(50)				
Cardiomyopathy	(00)			(8%)		(2%)			
Artery, embolus, single	1	(2%)	1	$(0, \mathbf{v})$	-	(270)			
Artery, inflammation, chronic active	-	(270)	1	(8%)					
Coronary artery, infiltration cellular, mixed			-	(0,0)					
cell, focal	1	(2%)							
Mitral valve, pigmentation, hemosiderin, foc		(2%)							
Myocardium, inflammation, chronic active,	ai i	(270)							
multifocal	1	(2%)							
Perivascular, inflammation, acute, focal		(2%)							
Ventricle, karyomegaly, multifocal		(2%)							
Ventricle left, bacterium		(2%)							
Ventricle left, inflammation, subacute, focal		(2%)							
ENDOCRINE SYSTEM		····	<u></u> .						
Adrenal gland	(49)		(10)		(48)				
Accessory adrenal cortical nodule		(2%)	(10)			(6%)			
Capsule, hyperplasia, focal		(6%)				(8%) (4%)			
Capsule, hyperplasia, local Capsule, hyperplasia, multifocal		(73%)	0	(30%)					
Adrenal gland, cortex	(49)	(1070)	(10)	(30%)	(48)	(81%)			
Hyperplasia, focal		(10%)	(10)		• •	(1507)			
Hyperplasia, multifocal		(10%)				(15%)			
Hypertrophy, focal		(12%)	1	(100)		(10%)			
		(14%)	1	(10%)		(17%)			
Hypertrophy, multifocal		(12%)			-	(6%)			
Adrenal gland, medulla Hyperplasia, focal	(49)	(00)	(9)		(47)				
Islets, pancreatic		(2%)	(0)		(40)				
Hyperplasia, focal	(49)		(9)		(49)	(10)			
Hyperplasia, nultifocal	7	(1.40%)	1	(110)		(4%)			
		(14%)		(11%)		(8%)			
Parathyroid gland	(36)		(6)		(35)	(0 ~)			
Infiltration cellular, lymphocytic, focal	(45)		(11)			(3%)			
Pituitary gland	(45)	(40)	(11)		(47)	(10)			
Pars distalis, cyst		(4%)				(4%)			
Thyroid gland	(49)		(9)		(47)	(0~)			
Infiltration cellular, lymphocytic, focal						(2%)			
Inflammation, chronic, focal		(07)				(2%)			
Ultimobranchial cyst	1	(=)			2	(4%)			
Follicular cell, hyperplasia		(2%)							
Follicular cell, hyperplasia, multifocal	1 	(2%)			<u> </u>				
GENERAL BODY SYSTEM					(1)				
Tissue, NOS Inflammation, chronic active, multifocal			(1) 1	(100%)	(1)				
	- <u></u>	· · · · · · · · · · · · · · · · · · ·							
GENITAL SYSTEM									
Coagulating gland	(1)	(1000)							
Inflammation, chronic active		(100%)	(0)		(0)				
Preputial gland	(15)	(400)	(6)		(8)				
Abscess		(40%)		(17%)	-				
Cyst		(33%)	1	(17%)	8	(100%)			
Cyst multilocular	1	(7%)		(1 - 2 -)					
Dilatation	-	(202)		(17%)					
Inflammation, chronic		(20%)	3	(50%)					
Inflammation, chronic active		(47%)							
Prostate	(46)		(9)		(44)				
Infiltration cellular, lymphocytic, multifocal		(2%)							
Inflammation, chronic active		(7%)	1	(11%)					
Inflammation, suppurative, acute		(2%)							

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	er Control	10 pp	m	25 ppm				
GENITAL SYSTEM (Continued)									
Seminal vesicle	(48)		(17)		(49)				
Dilatation	1	(2%)	1	(6%)					
Testes	(50)		(12)		(49)				
Left, hemorrhage					1	(2%)			
Seminiferous tubule, atrophy Seminiferous tubule, degeneration, multifoca		(6%) (2%)	1	(8%)	3	(6%)			
IEMATOPOIETIC SYSTEM									
Bone marrow	(49)		(10)		(49)				
Myeloid cell, hyperplasia		(10%)		(20%)					
Lymph node	(50)		(26)		(50)				
Angiectasis, focal			1	(4%)		(0.7)			
Bronchial, hemorrhage				(10)	1	(2%)			
Inguinal, hyperplasia, lymphoid		(90)	1	(4%)					
Inguinal, hyperplasia, re cell		(2%)							
Lumbar, hemorrhage		(2%)							
Lumbar, hyperplasia, lymphoid	1	(2%)		(10)		(901)			
Mediastinal, hyperplasia, lymphoid Lymph node, mandibular	(47)		(11)	(4%)		(2%)			
Hyperplasia, lymphoid	(47)		(11)		(35)	(6%)			
Hyperplasia, re cell	2	(6%)				(6%) (9%)			
Lymph node, mesenteric	(42)	(0,0)	(19)		(33)	(070)			
Hematopoietic cell proliferation		(14%)		(21%)	(00)				
Hemorrhage		(60%)		(63%)	14	(42%)			
Hyperplasia		(00,0)		(5%)	14	(44 /0)			
Hyperplasia, lymphoid				(5%)	2	(6%)			
Hyperplasia, re cell	2	(5%)	-	(0.07)		(9%)			
Spleen	(49)	(2,17)	(14)		(49)	(2)			
Angiectasis, multifocal	()		()			(2%)			
Depletion lymphoid	1	(2%)			-	(= /• /			
Hematopoietic cell proliferation		(22%)	6	(43%)	2	(4%)			
Hyperplasia, lymphoid		(2%)		((2%)			
Hyperplasia, lymphoid, diffuse		()				(2%)			
Hyperplasia, plasma cell						(2%)			
Hyperplasia, re cell	1	(2%)				<u> </u>			
Thrombus					1	(2%)			
Lymphocyte, necrosis, multifocal						(2%)			
Thymus	(35)		(6)		(34)				
Cyst, multiple			(2)			(3%)			
Depletion lymphoid	1	(3%)	1	(17%)		(3%)			
Hyperplasia, lymphoid, diffuse	-		-			(3%)			
Inflammation, acute			1	(17%)					
Syncytial alteration	1	(3%)							
NTEGUMENTARY SYSTEM									
Skin	(50)		(30)		(49)				
Inflammation, chronic active		(2%)		(3%)		(2%)			
Ulcer				(3%)					
Prepuce, abscess			2	(7%)					
Prepuce, inflammation, chronic active			1	(3%)					
Prepuce, necrosis		(6%)							
Prepuce, ulcer	2	(4%)		(7%)					
Scrotal, pigmentation, melanin, focal				(3%)					
Scrotal, hair follicle, hyperplasia, focal				(3%)					
Subcutaneous tissue, abscess			1	(3%)					
Subcutaneous tissue, cyst	1	(2%)							
Subcutaneous tissue, edema			1	(3%)					
Subcutaneous tissue, inflammation,									
granulomatous, focal	1	(2%)							

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

C	hambe	r Control	10 pp)m	25 pr		
AUSCULOSKELETAL SYSTEM		<u></u>			<u></u>	<u></u>	
Bone	(50)		(10)		(50)		
Hyperostosis	1	(2%)					
Osteoporosis, focal					1	(2%)	
Sternum, developmental malformation	1	(2%)					
Skeletal muscle			(1)		(1)		
Arteriole, inflammation, chronic active			1	(100%)			
IERVOUS SYSTEM		<u> </u>					
Brain	(50)		(11)		(50)		
Hydrocephalus	1	(2%)					
Mineralization, focal	1	(2%)					
Mineralization, multifocal	26	(52%)	5	(45%)	21	(42%)	
Artery, meninges, inflammation, chronic, multifocal					1	(2%)	
ESPIRATORY SYSTEM							
Larynx	(44)		(6)		(46)		
Inflammation, acute, diffuse	· · ·					(2%)	
Inflammation, chronic, focal	1	(2%)					
Inflammation, chronic, multifocal						(2%)	
Lung	(50)		(49)		(49)		
Congestion			1	(2%)	1	(2%)	
Granuloma						(2%)	
Infiltration cellular, lymphocytic, multifocal		(10%)	1	(2%)	3	(6%)	
Infiltration cellular, histiocytic, diffuse	1	(2%)					
Infiltration cellular, histiocytic, focal				(4%)		(2%)	
Infiltration cellular, histiocytic, multifocal		(10)		(6%)	1	(2%)	
Alveolar epithelium, hyperplasia, focal	2	(4%)	Z	(4%)			
Alveolus, infiltration cellular, histiocytic, multifocal					1	(2%)	
Alveolus, inflammation, chronic active, focal			1	(2%)		(2%)	
Alveolus, inflammation, chronic active, local			L	(270)	1	(270)	
multifocal					3	(6%)	
Bronchiole, hyperplasia, focal			1	(2%)	9	(0,0)	
Bronchiole, hyperplasia, nultifocal				(8%)			
Bronchiole, inflammation, chronic, focal				(2%)			
Bronchiole, alveolus, inflammation, chronic,			•	(= /0)			
multifocal			1	(2%)			
Bronchiole, alveolus, inflammation, chronic							
active, focal			3	(6%)	1	(2%)	
Bronchiole, alveolus, inflammation, chronic					_		
active, multifocal			12	(24%)	29	(59%)	
Interstitium, inflammation, acute, focal	1	(2%)					
Mediastinum, infiltration cellular,				(00)	~	(10)	
lymphocytic, multifocal Blourn hymerplacia diffuse			1	(2%)		(4%)	
Pleura, hyperplasia, diffuse			1	(99)	1	(2%)	
Pleura, infiltration cellular, lymphocytic Nose	(50)		(48)	(2%)	(49)		
Mucosa, inflammation, acute		(6%)	(40)			(2%)	
Mucosa, inflammation, chronic		(2%)			1		
Mucosa, inflammation, chronic active	2	(4%)	47	(98%)	48	(98%)	
Nasolacrimal duct, inflammation, chronic		(2%)				(00.0)	
Nasolacrimal duct, inflammation, chronic acti		. = / = /	1	(2%)			
Respiratory epithelium, hyperplasia		(10%)		(100%)	49	(100%)	
Trachea	(49)		(9)		(48)	,	
Inflammation, chronic, focal						(2%)	
Glands, hyperplasia, diffuse						(4%)	

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

1

	Chambe	er Control	10 pj	om	25 рј	pm
SPECIAL SENSES SYSTEM		· · · · · ·			<u>, , , , , , , , , , , , , , , , , , , </u>	
Eye					(1)	
Left, cornea, inflammation, chronic active					1	(100%)
URINARY SYSTEM						
Kidney	(49)		(11)		(50)	
Congestion					1	(2%)
Cyst, single	1	(2%)				
Degeneration, chronic, focal, two					1	(2%)
Degeneration, chronic, multifocal					1	(2%)
Embolus, multifocal	1	(2%)				
Hydronephrosis	3	(6%)			1	(2%)
Infiltration cellular, lymphocytic, focal	1	(2%)			1	(2%)
Infiltration cellular, lymphocytic, multifocal	9	(18%)			3	(6%)
Infiltration cellular, mixed cell, multifocal	1	(2%)				
Inflammation, acute, focal			1	(9%)		
Inflammation, suppurative, acute, multifocal	1	(2%)				
Inflammation, suppurative, chronic active,						
multifocal	2	(4%)	1	(9%)		
Mineralization, focal	1	(2%)				
Mineralization, multifocal			1	(9%)		
Nephropathy, chronic			1	(9%)	3	(6%)
Artery, inflammation					1	(2%)
Capsule, fibrosis, multifocal			1	(9%)		
Cortex, renal tubule, epithelium, hyperplasia	1,					
atypical, focal	1	(2%)				
Urethra	(1)					
Calculus micro observation only	1	(100%)				
Urinary bladder	(49)		(27)		(47)	
Calculus micro observation only	2	(4%)				
Embolus	1	(2%)				
Inflammation, chronic active, diffuse	1	(2%)	1	(4%)		
Inflammation, chronic active, multifocal	1	(2%)				

TABLE C5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN MALE MICE IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

APPENDIX D

SUMMARY OF LESIONS IN FEMALE MICE IN

THE TWO-YEAR INHALATION STUDY OF

VINYL TOLUENE

TABLE D1	SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	137
TABLE D2	INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	140
TABLE D3	ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	152
TABLE D4	HISTORICAL INCIDENCE OF HEPATOCELLULAR NEOPLASMS IN FEMALE $B6C3F_1$ MICE	154
TABLE D5	SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE	155

PAGE

Vinyl Toluene (mixed isomers), NTP TR 375 136

	Chambe	er Control	10 pj	om	25 ppm				
DISPOSITION SUMMARY	<u> </u>				<u> </u>				
Animals initially in study	50		50		50				
Early deaths									
Moribund sacrifice	6		10		1				
Natural death	8		2		7				
Accidentally killed			1		2				
Dosing accident					6				
Survivors									
Terminal sacrifice Animals examined microscopically	36 48		37 49		34				
Animals examined incroscopically	40		49		50				
ALIMENTARY SYSTEM					<u>.</u>				
Esophagus	(48)		(1)		(47)				
Gallbladder	(38)		(2)		(42)				
Intestine large, colon	(47)		(2)		(46)				
Intestine large, rectum	(47)		(1)		(40)				
Intestine small	(46)		(6)		(47)				
Intestine small, duodenum	(45)		(3)	((44)				
Polyp adenomatous Liver	(49)			(33%)	(40)				
Hemangiosarcoma	(48)		(16)	(60)	(49)				
Hemangiosarcoma, metastatic, spleen				(6%) (6%)					
Hepatocellular carcinoma	6	(13%)		(13%)					
Hepatocellular carcinoma, multiple	U	(10%)		(6%)					
Hepatocellular adenoma	4	(8%)		(13%)	2	(4%)			
Mesentery	(8)	(0.0)	(3)	(10/0)	(2)	(1.0)			
Plasma cell tumor malignant			(-)			(50%)			
Pancreas	(47)		(3)		(49)				
Salivary glands	(48)		(1)		(48)				
Plasma cell tumor malignant					1	(2%)			
Stomach, forestomach	(47)		(3)		(45)				
Stomach, glandular	(47)		(3)		(47)				
Hamartoma	1	(2%)							
CARDIOVASCULAR SYSTEM		·····		······································	<u></u>				
Heart	(48)		(2)		(48)				
ENDOCRINE SYSTEM									
Adrenal gland	(47)		(3)		(49)				
Adrenal gland, medulla	(45)		(2)		(47)				
Pheochromocytoma benign		(2%)	,		• •				
Islets, pancreatic	(47)		(3)		(49)				
Carcinoma				(33%)					
Parathyroid gland	(29)		(1)		(25)				
Pituitary gland	(46)		(5)		(47)				
Pars distalis, adenoma		(17%)	3	(60%)		(4%)			
Pars intermedia, adenoma		(2%)	10			(2%)			
Thyroid gland Follicular cell, adenoma	(48)	(90)	(2)		(42)				
FOLICULAR CELL AGENOMA	1	(2%)							

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE

	Chambe	r Control	10 pj	om	25 ppm				
GENITAL SYSTEM			<u>.</u>						
Ovary	(46)		(14)		(44)				
Adenoma				(7%)	· /				
Granulosa cell tumor malignant	1	(2%)							
Hemangioma	1	(2%)							
Plasma cell tumor malignant					1	(2%)			
Uterus	(48)		(37)		(45)				
Granulosa cell tumor malignant, metastatic,									
uterus		(2%)							
Hemangiosarcoma, metastatic, spleen			1	(3%)					
Plasma cell tumor malignant					1	(2%)			
Polyp stromal	2	(4%)	1	(3%)					
Sarcoma stromal			1	(3%)					
IEMATOPOIETIC SYSTEM		_, <u>_</u> , <u>.</u> ,							
Bone marrow	(47)		(2)		(47)				
Lymph node	(48)		(8)		(49)				
Lymph node, mandibular	(45)		$(\tilde{1})$		(43)				
Plasma cell tumor malignant			(-)			(2%)			
Lymph node, mesenteric	(38)		(6)		(32)	~~ / * /			
Spleen	(47)		(13)		(49)				
Hemangiosarcoma	(*)			(23%)	(=3)				
Thymus	(40)		(2)	(20,0)	(42)				
NTEGUMENTARY SYSTEM									
Mammary gland	(47)		(1)		(44)				
Adenocarcinoma	2	(4%)							
Skin	(46)		(20)		(47)				
Subcutaneous tissue, fibrosarcoma			2	(10%)					
Subcutaneous tissue, hemangioma			1	(5%)					
Subcutaneous tissue, sarcoma					1	(2%)			
MUSCULOSKELETAL SYSTEM None		<u></u>		. <u></u>					
NERVOUS SYSTEM None									
RESPIRATORY SYSTEM			<u> </u>						
Larynx	(40)		(1)		(40)				
Plasma cell tumor malignant						(3%)			
Lung	(48)		(49)		(49)				
Adenocarcinoma, metastatic, mammary glar		(2%)							
Alveolar/bronchiolar adenoma		(4%)	2	(4%)	2	(4%)			
Alveolar/bronchiolar carcinoma		(2%)				(4%)			
Hepatocellular carcinoma, metastatic	_		1	(2%)	_				
Pleura, mediastinum, plasma cell tumor									
malignant					1	(2%)			
Trachea	(48)		(2)		(47)	.=,			
Plasma cell tumor malignant			ŗ			(2%)			
SPECIAL SENSES SYSTEM									
Harderian gland	(1)				(1)				
Adenoma, papillary		(100%)			(1)				
Carcinoma	•				1	(100%)			
						(100/0)			
Lacrimal gland	(10)				(5)				

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	er Control	10 pp	om	25 ppm				
URINARY SYSTEM					10478-1 2				
Kidney	(48)		(7)		(49)				
Hemangiosarcoma, metastatic, spleen			1	(14%)					
Urinary bladder	(45)		(2)		(40)				
SYSTEMIC LESIONS		<u></u>			-				
Multiple organs	*(48)		*(49)		*(50)				
Lymphoma malignant histiocytic	3	(6%)	2	(4%)	2				
Lymphoma malignant lymphocytic	7	(15%)			4	(8%)			
Lymphoma malignant mixed	4	(8%)	5	(10%)	1	(2%)			
Lymphoma malignant undifferentiated cell	2	(4%)	2	(4%)	1	(2%)			
rumor summary					· · · · · · · · · · · ·				
Total animals with primary neoplasms **	29		27		17				
Total primary neoplasms	48		31		27				
Total animals with benign neoplasms	16		11		7				
Total benign neoplasms	22		11		7				
Total animals with malignant neoplasms	22		18		12				
Total malignant neoplasms	26		20		20				
Total animals with secondary neoplasms ***	2		2						
Total secondary neoplasms	2		4						

TABLE D1. SUMMARY OF THE INCIDENCE OF NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

* Number of animals receiving complete necropsy examination; all gross lesions including masses examined microscopically.
 ** Primary tumors: all tumors except secondary tumors
 *** Secondary tumors: metastatic tumors or tumors invasive into an adjacent organ

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: CHAMBER CONTROL

DAYS ON STUDY	0 4 7	4 6 9	5 6 0	5 7 4	5 8 9	6 7 2	6 9 2	6 9 2	7 0 0	7 0 5	7 0 9	7 1 4	7 1 5	7 2 8	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2
CARCASS ID	2 2 1	1 9 1	3 1 1	4 8 1	0 7 1	4 5 1	1 4 1	1 8 1	4 6 1	2 1 1	2 3 1	1 3 1	0 4 1	0 9 1	1 2 1	2 9 1	1 0 1	1 1 1	1 5 1	2 5 1	2 6 1	2 7 1	$ \frac{2}{8} 1 $	3 0 1	4 1 1
ALIMENTARY SYSTEM Esophagus Gailbiadder Intestine large, cecum Intestine large, cecum Intestine large, cecum Intestine small, duodenum Intestine small, duodenum Intestine small, duodenum Intestine small, jeunum Liver Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Mesentery Pancreas Pharynx Salwary glands Stomach, forestomach Stomach, forestomach Stomach, glandular Hamartoma		++++M++++ + ++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ A A + M + + + A +	+++++++++++++++++++++++++++++++++++++++		+++++++++XX + ++++	+M++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+A++++A + ++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++X ++ ++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	$+\mathbf{A} + \mathbf{A} + \mathbf{A} + \mathbf{A} \mathbf{A} \mathbf{A} + \mathbf{X} + + + + +$	++++++++ + X + +++++	+ +++++++++++++++++++++++++++++++++++	+++++++++ ++ ++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	*************	+++++++++X + +++++
CARDIOVASCULAR SYSTEM Heart		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Isiets, pancreatic Parathyrond gland Ptuutary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland Follicular cell, adenoma		+++++++++++++++++++++++++++++++++++++++	++++ + + M+ +	+++ +++ +	+++ + MM+ +	+++++++++++++++++++++++++++++++++++++++		+ + + + M + +	+++ +++ X +	++++ ++++ X +	+++ + + M+ +	+++ ++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M+ +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++ ++++++++++++++++++++++++++++++++++	+++ + + M+ +	+ + + + + M M +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ ++ ++ X +	+++++++++++++++++++++++++++++++++++++++	+ + + + M + X +
GENERAL BODY SYSTEM None				<u> </u>																					

Tissue examined microscopically Not examined
 Present but not examined microscopically I Insufficient tissue

M Missing A. Autolysis precludes examination X Incidence of listed morphology

												-/														
DAYS ON STUDY CARCASS	7 3 2 4	7 3 2 4	7 3 2 4	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4 2	7 3 4 3	7 3 4 3	7 3 4 4	7 3 4 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5 3	7 3 5 3	7 3 5 4	TOTAL. TISSUES
ID	21	3 1	4 1	5 1	6 1	8 1	4 1	6 1	7 1	8 1	9 1	0 1	0 1	4 1	5 1	9 1	0 1	1 1	2 1	3 1	6 1	7 1	2 1	3 1	7 1	TUMORS
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large, cecum Intestine large, cecum Intestine small, excern Intestine small, excern Intestine small, duodenum Intestine small, loudenum Intestine small, loudenum Intestine small, loudenum Intestine small, loudenum Intestine small, loudenum Intestine small, loudenum Intestine small, loudenum Hepatocellular carcinoma Hepatocellular adenoma Mesentery Pancreas Pharynx Salivary glands Stomach forestomach Stomach, forestomach Stomach glandular Hamartoma	+ M + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+M++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++ X + ++++	++++++ X + ++++	+++++++++++++++++++++++++++++++++++++++	+ M +++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+M++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++ X + ++++	*****	+++++++++++++++++++++++++++++++++++++++	+++++++++ + +++++	+ A ++++++++ + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++ +++++++++++++++++++++++++++++++++	X++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+M+++++++ + + + + + + + + + + + + + + +	48 38 47 45 47 46 45 44 45 44 42 48 47 1 48 47 1 48 47 1 1
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, cortex Adrenal gland, medulla Pheochromocytoma benign Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland Folhcular cell, adenoma	+ + M + M + X +	+ + + + M + X +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+++ + + + + +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++ + M+ +	+++++++++++++++++++++++++++++++++++++++	+++X+++X +	+ + + + M + +	+ + + + + + + +	++++ ++++ X +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	++++ +M+X +	M ++++ +	+++++++++++++++++++++++++++++++++++++++	+++ +++ +	+++ ++++++++++++++++++++++++++++++++++	++++ + M+ +	+ + + + + + M +	++++ ++++ X	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	47 47 45 1 47 29 46 8 1 48 1
GENERAL BODY SYSTEM None																										

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: CHAMBER CONTROL (Continued)

DAYS ON STUDY	0 4 7	4 6 9	5 6 0	5 7 4	5 8 9	6 7 2	6 9 2	6 9 2	7 0 0	7 0 5	7 0 9	7 1 4	7 1 5	7 2 8	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2
CARCASS ID	$\frac{2}{2}$	1 9 1	3 1 1	4 8 1	0 7 1	4 5 1	1 4 1	1 8 1	4 6 1	2 1 1	2 3 1	1 3 1	0 4 1	0 9 1	1 2 1	2 9 1	1 0 1	1 1 1	1 5 1	2 5 1	2 6 1	2 7 1	2 8 1	3 0 1	4 1 1
GENITAL SYSTEM Chtoral gland Ovary Granulosa cell tumor malignant Hemangioma Uterus Granulosa cell tumor malignant, metastatic, uterus Polyp stromal		+	+ +	+ +	M +	+ +		++	++	+	+	+	+ +	+ +	+ +	+ +	+ +	+ X +	++	+ +	++	++	+ +	++	+++
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Thymus		+ + + + + + M	+ + + + + M + M + M	+ + + + + +	+ + + + M A +	+ + + + M + +		+++++++++++++++++++++++++++++++++++++++	+++++	+ + + + + + M	+ + + + M + +	+ + + M +	* + + + + + + + + + + + + + + + + + + +	++++++	+++++++	+++++	+ + + + +	+++++	+++++	+++++	+++++	+ + + + + + M	+ + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
INTEGUMENTARY SYSTEM Mammary gland Adenocarcinoma Skin		+ +	++	+++	++	+ +		+ +	+++	+++	+++	+++	+++	+++	+++	+++	+++	++	+++	+++	+	+++	+++	+ +	+++
MUSCULOSKELETAL SYSTEM Bone		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain		+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Lung Adenocarcinoma, metastatic, mammary gland		+	++++	+ +	+++	+++		+ +	+ +	+ +	M +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	++++	+ +	++++	+ +	+ +	+ +
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Nose Trachea		+ +	+ +	+ +	+ +	+ +		+ +	+ +	+ +	+ +	X + +	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
SPECIAL SENSES SYSTEM Eye Hardenan gland Adenoma, papillary Lacrimal gland	-								+							<u>.</u>	+	+						<u> </u>	
URINARY SYSTEM Kidney Urinary bladder		+++++	+++++	+ M	++++	+++		++++	+++++	++++	++++	++++	+++	++++	+++	+++	+++	++++	++++	+++	++++	++++	++++	++++	 + +
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histiocytic Lymphoma malignant iymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type		+	+	+	+	* X		+ X	+ x	* X	+ X	+	* X	+ X	+	+	+ X	+	+	+	+	+ X	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: CHAMBER CONTROL (Continued)

7 3 2	7 3 2	7 3 2	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL															
4 2 1	4 3 1	4 4 1	0 5 1	0 6 1	0 8 1	2 4 1	3 6 1	3 7 1	3 8 1	3 9 1	4 0 1	2 0 1	3 4 1	3 5 1	4 9 1	5 0 1	0 1 1	0 2 1	0 3 1	1 6 1	1 7 1	3 2 1	3 3 1	4 7 1	TISSUES
+	+ +	M +	++	++	++	* * + X	+ +	++	+ + X	++	+	+ +	+ +	+	+ +	+ +	+ +	++	+ +	++	++	+ + + x	+ +	+ +	1 46 1 48 1 2
++++++	++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + M	+ + + + + + M	+ + + + + M + +	+ + + + + M	+ + + + I + + + +	+ + + M + + + + +	+++++	++++++	+++++	+ + + + + M	++++++	+ + + + + M + + + +	+ + + M + + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + +	+ + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + M + +	47 48 45 38 47 40
+	+++	++	++	+++	+++	+	++	+++	++	+++	+++	+ +	+	+ +	+ +	++	+++	+++	+++	++	++	* *	M +	* *	47 2 46
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	47
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
 + +	+ +	+ +	+ +	++++	++++	+ +	M +	+ +	+++	M +	M +	+ +	M +	+++	++++	+++	М +	++++	+++	+++	+++	++++	M +	+ +	40 48
++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+ +	+ +	+ +	+ +	X + +	+ +	+ +	+ +	+ +	x + +	+ +	+ +	+ +	X + +	1 2 1 48 48
+		+ + X		+		+									+				+	+	+			+	2 1 1 10
+++++	+++	+ +	+++	+ M	+++	++++	+++	+++	+++	+++	+++	+++	+	+++	++++	+++	+++	++++	++++	+++	+++	+ +	+ M	+ +	48 45
+ x	+	+ X	+	+	+	+	+ X	+	+ X	+	+	+	+	+ x	+	+	+	+	+ X	+	+ X	+	+	+	48 3 7 4 2
	2 4 2 1 + + + + + + + + + + + + +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																							

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: CHAMBER CONTROL (Continued)

DAYS ON STUDY	4 5 9	5 8 2	6 0 6	6 5 7	6 6 5	6 7 9	6 7 9	6 9 0	6 9 3	6 9 6	6 9 6	7 1 4	7 1 4	7 3 1	7 3 1	7 3 2	7 3 3	7 3 3	7 3 3						
CARCASS ID	2 4 9 1	2 1 7 1	2 2 3 1	2 3 5 1	2 0 9 1	2 0 7 1	2 1 5 1	2 1 8 1	2 1 0 1	2 2 6 1	2 3 7 1	2 2 5 1	2 3 9 1	2 3 0 1	2 4 5 1	2 1 2 1	2 1 3 1	2 1 4 1	2 2 8 1	2 2 9 1	2 4 3 1	2 4 4 1	2 0 8 1	2 1 1 1	2 2 2 1
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large, cecum Intestine large, cecum Intestine large, colon Intestine large, colon Intestine small, elum Intestine small, duodenum Polyp adenomatous Intestine small, leum Intestine small, leum Intestine small, leum Intestine small, jejunum Liver Hemangiosarcoma Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Mesentery Pancreas Salivary glands Stomach, forestomach Stomach, glandular	M + + + + + + + + + + + + + + + + + + +	+ +++++ +++ +M+++		+ x	+		+ X		+	+	+ X	+		+	+	+							+ x		+ + X + X
CARDIOVASCULAR SYSTEM Heart	+	+															-								
ENDOCRINE SYSTEM Adrenal gland Extra adrenal tissue, lymphoma Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic Carcinoma Parathyroid gland Pituitary gland Pars distais, adenoma Thyroid gland	+ + + + + +	+ MM++++++			_, .,								++++						+ x						
GENERAL BODY SYSTEM																									
GENITAL SYSTEM Ovary Adenoma Uterus Hemangnosarcoma, metastatic, spleen Polyp stromal Sarcoma stromal	++	+ +		+ + X			+			+	+	+		+	+	+ +	+ X	++		+	+	+	+		+++

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 10 ppm

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: 10 ppm (Continued)

DAYS ON STUDY	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	TOTAL:
CARCASS ID	$ \begin{array}{c} 2 \\ 2 \\ 4 \\ 1 \end{array} $	2 2 7 1	2 3 8 1	2 4 0 1	2 4 1 1	2 4 2 1	2 0 2 1	2 0 6 1	2 2 0 1	2 2 1 1	2 3 6 1	2 5 0 1	2 0 1 1	2 0 3 1	2 0 4 1	2 0 5 1	2 1 6 1	2 1 9 1	2 3 1 1	2 3 2 1	2 3 3 1	2 3 4 1	2 4 6 1	2 4 7 1	2 4 8 1	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large Intestine large, cecum Intestine large, colon Intestine small Intestine small, duodenum Polyp adenomatous Intestine small, leum Intestine small, leum Intestine small, leum Intestine small, leum Intestine small, jejunum Liver Hemangiosarcoma Hemangiosarcoma Hepatocellular carcinoma Hepatocellular carcinoma Hepatocellular carcinoma Mesentery Pancreas Salvary glands Stomach, forestomach Stomach, glandular				++	+												+ X + + + + +	+		~	+	+ X				1 2 2 2 1 6 3 1 2 1 6 1 2 1 6 1 2 1 2 3 3 1 2 3 3 1 3 3 3 3 3 3 3 3
CARDIOVASCULAR SYSTEM Heart																										2
ENDOCRINE SYSTEM Adrenal gland Extra adrenal tissue, lymphoma Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic Carcinoma Parathyroid gland Pituitary gland Pars distalis, adenoma Thyroid gland				* x										*					+ X							3 2 2 3 1 1 5 3 2
GENERAL BODY SYSTEM None		·							·							••••••										
GENITAL SYSTEM Ovary Adenoma Uterus Hemangiosarcoma, metastatic, spleen Polyp stromal Sarcoma stromal	+	+ +	+	+	+	+	÷	* X +	+		+	+ +	++	+	+	+	+	+	+	+	+	+	+ X	+	+	14 1 37 1 1 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: 10 ppm (Continued)

DAYS ON STUDY	4 5 9	5 8 2	6 0 6	6 5 7	6 6 5	6 7 9	6 7 9	6 9 0	6 9 3	6 9 6	6 9 6	7 1 4	7 1 4	7 3 1	7 3 1	7 3 2	7 3 3	7 3 3	7 3 3						
CARCASS ID	2 4 9 1	2 1 7 1	2 2 3 1	2 3 5 1	2 0 9 1	2 0 7 1	2 1 5 1	2 1 8 1	2 1 0 1	2 2 6 1	2 3 7 1	2 2 5 1	2 3 9 1	2 3 0 1	2 4 5 1	2 1 2 1	2 1 3 1	2 1 4 1	2 2 8 1	2 2 9 1	2 4 3 1	2 4 4 1	2 0 8 1	2 1 1 1	2 2 2 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node, mandibular Lymph node, mesenteric Spleen Hemangoosarcoma Thymus	+ + + + + + + + +	+ + M + + M		+ + X	+ + + +		+ x		+	+	+ + +	+	+ + +	* x	+ +										
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangtoma	M +	+ + X	· · · · -		+	*	+		+	* x				+			+					+		+	+
MUSCULOSKELETAL SYSTEM Bone	+	+													+				<u>,</u>	+	+				
NERVOUS SYSTEM Brain	+	+								·												_			
RESPIRATORY SYSTEM Larynx Lung Alveolar/bronchiolar adenoma Hepatocellular carcinoma, metastatic Nose	M + +	++++++		+	+	+	+	++	++	++	+	++	+	+	+	+	+	+	+	+	+	++	+	++	++
Trachea SPECIAL SENSES SYSTEM	+	+									<u> </u>														
None URINARY SYSTEM Kidney Hemangiosarcoma, metastatic, spleen Urinary bladder	+++	+++		* X	+				+													·			+
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+		+	+ X	+	+	+	* X	+	+ X	* x	+ X	+	+	+	+	+	+	+	+	+	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: 10 ppm (Continued)

DAYS ON STUDY	7 3 3	7 3 3	7 3 3	7 9 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL.												
CARCASS ID	2 2 4 1	2 2 7 1	2 3 8 1	2 4 0 1	2 4 1 1	2 4 2 1	2 0 2 1	2 0 6 1	2 2 0 1	2 2 1 1	2 3 6 1	2 5 0 1	2 0 1 1	2 0 3 1	2 0 4 1	2 0 5 1	2 1 6 1	2 1 9 1	2 3 1 1	2 3 2 1	2 3 3 1	2 3 4 1	2 4 6 1	2 4 7 1	2 4 8 1	TISSUES TUMORS
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Lymph node, mesenteric Spleen Hemangiosarcoma Thymus					+						+							+								2 8 1 6 13 3 2
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, fibrosarcoma Subcutaneous tissue, hemangioma		+	+			+	+						+					+	+			+				$\begin{array}{c}1\\20\\2\\1\end{array}$
MUSCULOSKELETAL SYSTEM Bone				+	+		+	+			+											+		+		12
NERVOUS SYSTEM Brain																										2
RESPIRATORY SYSTEM Larynx Lung Aiveolar/bronchiolar adenoma Hepatocellular carcinoma, metastatic Nose Trachea	+	++	* * +	++	++	++	+	+	++	+	++	+	+	+	+	+	+	* *	+	+	+ +	+ X +	+	+	++	1 49 2 1 49 2
SPECIAL SENSES SYSTEM																										
URINARY SYSTEM Kidney Hemangrosarcoma, metastatic, spleen Urinary bladder																			· <u> </u>		+					7 1 2
SYSTEMIC LESIONS Multiple organs Lymphoma maignant histiocytic Lymphoma maignant mixed Lymphoma maignant undifferentiated cell type	+	+	+	+	+ X	+	+	+	+	+	+ x	+	+	+	+	+	+	+ X	+	+	+ X	+	+	+	+	49 2 5 2

					-				_																
DAYS ON STUDY	0 0 3	0 4 2	1 4 8	1 4 8	1 4 8	1 4 8	1 4 8	1 4 8	3 5 0	4 6 4	6 0 3	6 1 6	6 6 7	6 7 2	6 7 4	7 2 8	7 3 1	7 3 1	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2	7 3 2
CARCASS ID	1 1 0 1	1 2 0 1	1 2 2 1	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 1 \end{array} $	1 2 4 1	1 3 7 1	1 3 8 1	1 3 9 1	1 3 4 1	1 0 5 1	1 1 9 1	1 1 3 1	1 0 2 1	1 4 0 1	1 3 2 1	1 1 8 1	1 1 5 1	1 3 0 1	1 1 2 1	1 1 4 1		1 2 9 1	1 4 3 1	1 4 4 1	1 4 5 1
ALIMENTARY SYSTEM Esophagus Gallbladder Intestine large Intestine large, colon Intestine large, colon Intestine small, generum Intestine small, duodenum Intestine small, duodenum Intestine small, jeunum Liver Hepatoceilular adenoma	+ A A +	M M M M	+ + + + + M + + M M +	M + + + + M + + M M +	+ + + M + M + + M M +	+ + + M + + + M + + M + + M + + M + + M + M	+++M+M++MM+	+ + + + + M + M M +	A A A	+ A + M A A + A A A + A A A +	* + + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ A +++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	* * * * * + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++ M +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
Mesentery Plasma cell tumor malignant Pancreas Salivary glands Plasma cell tumor malignant Stomach Stomach, forestomach Stomach, glandular Tooth	+ + + M+	+ + + + M	+ + + + M +	+ + + M +	+ M + M + M +	+++++	+++++	+ + + + M		+++++	++ +++	+++++	+++++	+ + + + +	+ ++ +++	+ X + + X + + + +	+++++	+++++	+++++	++ +++	++ +++	+++++	+ + + + +	+ + + + + +	+ + + +
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	A	+	м	+	+	+	+	+	+	+	+	+	+	+	+	+	+
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic Parathyroid gland Phutary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland	+ + + + + + M + + M	+ + + + M + +	+ + + + M + M	+ + + + + M + M	+ + + + + M + +	+ + + + M + +	+ + + + M M M	+ + + + + M + M	A A A	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+ + M + +	+ + + + M + +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + M + +	+ + + + M + +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + +
GENERAL BODY SYSTEM Tissue, NOS GENITAL SYSTEM Chtoral gland Ovary Plasma cell tumor malignant	M	 	+	+	м	+	+	+		+	+	+	м	+	+	+ x	+	+	+	+	M	+	+	+	+
Uterus Plasma cell tumor malignant	+	M	+	М	+	М	+	+		+	+	+	М	+	+	+ X	+	+	+	+	+	+	+	+	+

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE IN THE TWO-YEARINHALATION STUDY OF VINYL TOLUENE: 25 ppm

TABLE D2.	INDIVIDUAL A	NIMAL TU	JMOR F	PATHOLOGY	OF	FEMALE	MICE:	25	ppm
				(Continued)				

DAYS ON STUDY	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	73	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	7 3 5	TOTAL:
CARCASS ID	1 0 7 1	1 0 8 1	1 0 9 1	1 1 1 1	1 2 5 1	1 2 6 1	1 2 7 1	1 4 1 1	1 4 2 1	1 0 4 1	1 0 6 1	1 2 1 1	1 3 3 1	1 3 5 1	1 3 6 1	1 0 1 1	1 0 3 1	1 1 6 1	1 1 7 1	1 3 1 1	1 4 6 1	1 4 7 1	1 4 8 1	1 4 9 1	1 5 0 1	TISSUES TUMORS
ALIMENTARY SYSTEM Esophagus Galibiadder Intestine large, cecum Intestine large, colon Intestine large, rectum Intestine small, duodenum Intestine small, duodenum Intestine small, ileum Intestine small, ileum Liver Hepatocellular adenoma	+ M + + + + + + + + + + + + + + + + + +	++++++++ X	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	* * * * * * * + + + + + + + + + + + + +	+++++++++++	+ M + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+M+++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + M +	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	47 42 47 43 46 40 47 47 44 39 37 49 2
Mesentery Plasma cell tumor malignant Pancreas Salivary glands Plasma cell tumor malignant Stomach Stomach, forestomach Stomach, glandular Tooth	+++++++	+ + + +	+++++	+ + + +	+ + + + +	++++++	+ + + + + +	+ + + +	+ + + +	+ + + +	+ + + + + + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+++++++	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + +	+ + + + + +	2 1 49 48 1 49 45 47 1
CARDIOVASCULAR SYSTEM Heart	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	48
ENDOCRINE SYSTEM Adrenal gland, cortex Adrenal gland, medulla Islets, pancreatic Parathyroid gland Pituitary gland Pars distalis, adenoma Pars intermedia, adenoma Thyroid gland	+++++++++++++++++++++++++++++++++++++++	++++ + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + M + +	+ + + + M + +	+ + + + + + + + + + + + + + + + + + +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	* + + + + + +	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++++++++++++++++++++++++++++++++++	+ + + + M + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + M + +	++++ + M+	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + + M + X M	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + X +	49 47 47 25 47 2 1 42
GENERAL BODY SYSTEM Tissue, NOS	-				+																<u> </u>					1
GENITAL SYSTEM Clitoral gland Ovary Plasma cell tumor malignant Uterus Plasma cell tumor malignant	+++	++	++	+ +	++	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	+ + +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	++	+ +	+ +	1 44 1 45 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: 25 ppm (Continued)

DAYS ON			-						0		·		6									7		-	
STUDY	0 0 3	0 4 2	4 8	4 8	48	4 8	4 8	4 8	5 0	6 4	6 0 3	6 1 6	6 6 7	6 7 2	7 4	28	3 1	3 1	3 2	32	32	32	32	32	3 2
CARCASS ID	1 1 0 1	1 2 0 1	1 2 2 1	1 2 3 1	1 2 4 1	1 3 7 1	1 3 8 1	1 3 9 1	1 3 4 1	1 0 5 1	1 1 9 1	1 1 3 1	1 0 2 1	1 4 0 1	1 3 2 1	1 1 8 1	1 1 5 1	1 3 0 1	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \end{array} $	1 1 4 1	1 2 8 1	1 2 9 1	1 4 3 1	1 4 4 1	1 4 5 1
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Plasma cell tumor malgnant Lymph node, mesenteric Spieen Thymus	M + M + M	M + M M + M	+++ + M++	+ + + + M + +	+ + + M M + +	+ + + M M + +	+ + + + M + +	+ + + + M + +	AA	+ + M + M	+++ ++ M	+ + + M M + +	+++++++	+ + + + M + +	+ + + + + M	+ + + + X M + M	+ + + + M + + +	+++++++++++++++++++++++++++++++++++++++	+++++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+ + + + + + + + + + + + + + + + + + +	++++++
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, sarcoma	M +	M +	M +	+ +	M +	M M	+ +	+ +		+++	++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ M	+ +	+++	+++	+ +
MUSCULOSKELETAL SYSTEM Bone	м	м	+	+	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	A	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
RESPIRATORY SYSTEM Larynx Plasma cell tumor malignant Lung Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pleura, mediastinum, plasma cell tumor malignant	M +	+ +	+ +	M +	M +	M +	M +	M +	A	M + X	+ +	+ +	++	+ +	+ +	+ + + +	+ +	++	+ +	M +	+ +	+ + X	+ +	+ +	+++
Nose Trachea Plasma cell tumor malignant	++++	I +	+ M	+ +	+ +	+ +	+ +	+ +		+ +	+ +	+ +	+ +	+ +	+ +	+ + X	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +
SPECIAL SENSES SYSTEM Harderaa gland Carcinoma Lacrimal gland																				+		* X			
URINARY SYSTEM Kidney Urinary bladder	+ M	+ M	+ M	+ M	+ M	+ M	+ M	 м	A A	++++	++++	+++	+ M	++++	++++	++++	+++	++++	++++	+++	+++	+ +	+++	++++	+ +
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+	+	+		+	+ X	+	+ x	+ X	+ X	+	+	+	+	+	+	* x	+	* X	+

DAYS ON STUDY	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 3	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 4	7 3 5	TOTAL									
CARCASS ID	1 0 7 1	1 0 8 1	1 0 9 1	1 1 1 1	1 2 5 1	1 2 6 1	1 2 7 1	1 4 1 1	1 4 2 1	1 0 4 1	1 0 6 1	1 2 1 1	1 3 3 1	1 3 5 1	1 3 6 1	1 0 1 1	1 0 3 1	1 1 6 1	1 1 7 1	1 3 1 1	1 4 6 1	1 4 7 1	1 4 8 1	1 4 9 1	1 5 0 1	TISSUES
HEMATOPOIETIC SYSTEM Bone marrow Lymph node Lymph node, mandibular Plasma cell tumor malignant Lymph node, mesenterc	+ + + 1	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + + M	++++++	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++	++++++	+ + +	++++++	+ + + M	+ + +	++++++	++++++	++++++	++++++	+ + +	+ + + M	++++++	+ + + M	47 49 43 1 32
Spleen Thymus	++++	, + +	+ +	+++	+ +	+ +	+ M	, + +	+ +	+ +	+ +	+ +	++	+ +	+ +	+++	+ +	+ +	+ +	+ +	++	+ +	++	+ +	+++	49 42
INTEGUMENTARY SYSTEM Mammary gland Skin Subcutaneous tissue, sarcoma	++++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+++	+ +	+ +	+++	+ +	+ +	+ +	+ +	+++	+++	+++	+ +	+ +	44 47 1
MUSCULOSKELETAL SYSTEM Bone	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	47
NERVOUS SYSTEM Brain	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	49
RESPIRATORY SYSTEM Larynx Plasma cell tumor malignant Lung	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	M +	+	+	+	+	+	40 1 49
Alveolar/bronchiolar adenoma Alveolar/bronchiolar carcinoma Pleura, mediastinum, plasma cell tumor	x				,				•	•	x		•		,	·				•	•			•	·	22
malignant Nose Trachea Plasma cell tumor malignant	+++	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ +	+ M	+ +	+ +	+ +	+ +	+ +	1 48 47 1
SPECIAL SENSES SYSTEM Hardenan gland Carcinoma Lacrimal gland					+	+								+								_	+			1 1 5
URINARY SYSTEM Kidney Urinary bladder	++++	+ +	+++	++++	+ +	+++	++	++	+++	++	+++	+ +	+++	+ +	++++	++	+ +	+ +	++	+++	++++	++++	+ +	++++	+ +	49 40
SYSTEMIC LESIONS Multiple organs Lymphoma malignant histiocytic Lymphoma malignant lymphocytic Lymphoma malignant mixed Lymphoma malignant undifferentiated cell type	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+ X	+	+	+	+	+	+	+	+	+	+	+	49 2 4 1 1

TABLE D2. INDIVIDUAL ANIMAL TUMOR PATHOLOGY OF FEMALE MICE: 25 ppm (Continued)

TABLE D3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATIONSTUDY OF VINYL TOLUENE

.iver: Hepatocellular Adenoma			
Overall Rates (a)	4/48 (8%)	(b) 2/16 (13%)	2/49 (4%)
Adjusted Rates (c)	10.5%		4.9%
Terminal Rates (d)	3/36 (8%)		1/34 (3%)
Day of First Observation	692		42
Life Table Test (e)	002		P = 0.371N
Logistic Regression Test (e)			P = 0.233N
Fisher Exact Test (e)			P = 0.329 N
liver: Hepatocellular Carcinoma			
Overall Rates (a)	6/48 (13%)	(b) 3/16 (19%)	0/49 (0%)
Adjusted Rates (c)	15.5%		0.0%
Terminal Rates (d)	4/36 (11%)		0/34 (0%)
Day of First Observation	692		
Life Table Test (e)			P = 0.025 N
Logistic Regression Test (e)			P = 0.026N
Fisher Exact Test (e)			P = 0.012N
liver: Hepatocellular Adenoma or Carcinom	1a.		
Overall Rates (a)	9/48 (19%)	(b) 5/16 (31%)	2/49 (4%)
Adjusted Rates (c)	23.4%		4.9%
Terminal Rates (d)	7/36 (19%)		1/34 (3%)
Day of First Observation	692		42
Life Table Test (e)			P = 0.039 N
Logistic Regression Test (e)			P = 0.021 N
Fisher Exact Test (e)			P = 0.023N
.ung: Alveolar/Bronchiolar Adenoma or Car			
Overall Rates (a)	3/48 (6%)	2/49 (4%)	4/49 (8%)
Adjusted Rates (c)	8.0%	5.4%	11.0%
Terminal Rates (d)	2/36 (6%)	2/37 (5%)	3/34 (9%)
Day of First Observation	714	731	464
Life Table Tests (e)	P = 0.362	P = 0.490N	P = 0.458
Logistic Regression Tests (e)	P = 0.363	P = 0.495N	P = 0.464
Cochran-Armitage Trend Test (e)	P = 0.410		_
Fisher Exact Test (e)		P = 0.490N	P = 0.512
Pituitary Gland/Pars Distalis: Adenoma	9/40 (170)	(L) 9/5 (00%)	9/47 (49)
Overall Rates (a)	8/46 (17%)	(b) 3/5 (60%)	2/47 (4%) 6 19
Adjusted Rates (c) Terminal Rates (d)	21.6%		6.1%
Day of First Observation	6/34 (18%) 700		2/33 (6%) 731
Life Table Test (e)	700		P = 0.060 N
Life Table Test (e) Logistic Regression Test (e)			P = 0.060 N P = 0.068 N
Fisher Exact Test (e)			P = 0.068 N P = 0.042 N
r isner Bract Test (C)			r — 0.04214
Circulatory System: Hemangiosarcoma Overall Rates (f)	0/48 (0%)	4/49 (8%)	0/50 (0%)
Adjusted Rates (c)	0.0%	4/49 (8%) 9.5%	0.0%
Terminal Rates (d)	0.0% 0/36 (0%)	9.5% 2/37 (5%)	0/34(0%)
Day of First Observation	0/30(0%)	657	0/0%(0%)
Life Table Tests (e)	P = 0.558N	P = 0.072	(a)
THE TANK TESPS (6)		P = 0.072 P = 0.063	(g) (~)
Logistic Regression Tests (e) Cochran-Armitage Trend Test (e)	P = 0.538N P = 0.503N	P = 0.003	(g)

.

TABLE D3. ANALYSIS OF PRIMARY NEOPLASMS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chamber Control	10 ppm	25 ppm
Circulatory System: Hemangioma or He	emangiosarcoma		······································
Overall Rates (f)	1/48 (2%)	5/49 (10%)	0/50 (0%)
Adjusted Rates (c)	2.8%	11.4%	0.0%
Terminal Rates (d)	1/36 (3%)	2/37 (5%)	0/34(0%)
Day of First Observation	731	582	
Life Table Tests (e)	P = 0.348N	P = 0.119	P = 0.511N
Logistic Regression Tests (e)	P = 0.297 N	P=0.098	P = 0.511N
Cochran-Armitage Trend Test (e)	P = 0.292N		
Fisher Exact Test (e)		P = 0.107	P = 0.490N
Hematopoietic System: Lymphoma, All	Malignant		
Overall Rates (f)	16/48 (33%)	9/49 (18%)	8/50 (16%)
Adjusted Rates (c)	37.0%	21.2%	20.8%
Terminal Rates (d)	9/36 (25%)	4/37 (11%)	4/34 (12%)
Day of First Observation	672	665	603
Life Table Tests (e)	P = 0.095 N	P = 0.101 N	P = 0.105 N
Logistic Regression Tests (e)	P = 0.076 N	P = 0.072N	P = 0.089N
Cochran-Armitage Trend Test (e)	P = 0.037 N		
Fisher Exact Test (e)		P = 0.073 N	P = 0.039N

(a) Number of tumor-bearing animals/number of animals examined microscopically at the site

(b) Incomplete sampling of tissues

(c) Kaplan-Meier estimated tumor incidences at the end of the study after adjusting for intercurrent mortality

(d) Observed tumor incidence in animals killed at the end of the study

(e) Beneath the control incidence are the P values associated with the trend test. Beneath the dosed group incidence are the P values corresponding to pairwise comparisons between that dosed group and the controls. The life table analysis regards tumors in animals dying prior to terminal kill as being (directly or indirectly) the cause of death. The incidental tumor test regards these lesions as nonfatal. The Cochran-Armitage and Fisher exact tests compare directly the overall incidence rates. A negative trend or a lower incidence in a dosed group than in controls is indicated by (N).

(f) Number of tumor-bearing animals/number of animals examined grossly at the site

(g) No P value is reported because no tumors were observed in the 25-ppm and control groups.

TABLE D4.	HISTORICAL	INCIDENCE	OF	HEPATOCELLULAR	NEOPLASMS IN	FEMALE B6C3F ₁
				MICE (a)		•

	Incidence in Controls						
Study	Adenoma	Carcinoma	Adenoma or Carcinoma				
listorical Incidence for Chai	mber Controls at Battelle Pacif	ic Northwest Laborator	ies				
Propylene oxide	1/50	2/50	3/50				
lethyl methacrylate	7/50	0/50	7/50				
Propylene	0/50	2/50	2/50				
,2-Epoxybutane	2/50	2/50	4/50				
Dichloromethane	2/50	1/50	3/50				
Ethylene oxide	1/49	5/49	6/49				
Bromoethane	3/50	2/50	5/50				
Tetrachloroethylene	3/48	1/48	4/48				
TOTAL	19/397 (4.8%)	15/397 (3.8%)	34/397 (8.6%)				
SD(b)	4.28%	2.97%	3.37%				
lange (c)							
High	7/50	5/49	7/50				
Low	0/50	0/50	2/50				
Dverall Historical Incidence	for Untreated Controls						
TOTAL	100/1,683 (5.9%)	(d) 68/1,683 (4.0%)	(d) 163/1,683 (9.7%)				
SD (b)	3.75%	2.30%	4.25%				
Range (c)							
High	8/49	4/48	10/49				
Low	0/50	0/49	2/50				

(a) Data as of March 1, 1989, for studies of at least 104 weeks
(b) Standard deviation
(c) Range and SD are presented for groups of 35 or more animals.
(d) Includes one hepatoblastoma

	Chambe	r Control	10 pp	m	25 pp	m
nimals initially in study	50	<u></u>	50		50	
nimals removed	50		50		50	
nimals examined histopathologically	48		49		50	
LIMENTARY SYSTEM						
Gallbladder	(38)		(2)		(42)	
Dilatation	1	(3%)	1	(50%)		
Infiltration cellular, lymphocytic	2	(5%)			1	(2%)
Intestine large, cecum	(45)		(2)		(43)	
Peyer's patch, hyperplasia, lymphoid		(2%)				(2%)
Intestine large, colon	(47)		(2)		(46)	
Serosa, inflammation, chronic active, multifo		(2%)				
Intestine small	(46)	(10)	(6)	(100)	(47)	
Peyer's patch, hyperplasia, lymphoid		(4%)		(17%)	(4.4)	
Intestine small, duodenum	(45)		(3)		(44)	
Serosa, ileum, jejunum, inflammation, chronic active, multifocal		(2%)				
Liver	(48)	(2)07	(16)		(49)	
Angiectasis, focal	(40)			(6%)	(40)	
Clear cell focus			•	(0,0)	1	(2%)
Cytomegaly, focal						(2%)
Eosinophilic focus	1	(2%)			-	(,
Fatty change, diffuse		(2%)			1	(2%)
Granuloma, multifocal	2	(4%)				
Hematocyst			1	(6%)		
Hematopoietic cell proliferation, multifocal	3	(6%)				(2%)
Hemorrhage, multifocal					1	(2%)
Hepatodiaphragmatic nodule		(2%)				
Infarct		(2%)				
Infiltration cellular, lymphocytic, diffuse		(2%)				(0~)
Infiltration cellular, lymphocytic, multifocal		(10%)				(6%)
Infiltration cellular, mixed cell		(2%)				(2%)
Inflammation, subacute, multifocal		(17%)				(10%)
Necrosis, multifocal		(4%)			1	(2%)
Vacuolization cytoplasmic, diffuse		(2%) (2%)			1	(2%)
Vacuolization cytoplasmic, multifocal Bile duct, hyperplasia, focal		(2%) (2%)			1	(270)
Bile duct, hyperplasia, focal Bile duct, hyperplasia, multifocal	I	(270)	1	(6%)		
Centrilobular, necrosis, diffuse	1	(2%)		(6%)		
Centrilobular, necrosis, multifocal		(2%)		(0,0)		
Portal, inflammation, chronic	-	(270)	1	(6%)		
Mesentery	(8)		(3)	(0,0)	(2)	
Infiltration cellular, lymphocytic, multifocal		(25%)	(+)		(
Infiltration cellular, mixed cell		(25%)				
Fat, necrosis, focal			1	(33%)		
Fat, necrosis, multifocal				(67%)		
Pancreas	(47)		(3)		(49)	
Cytomegaly, multifocal		(4%)				
Hypertrophy, focal		(2%)			-	(0.0
Infiltration cellular, lymphocytic, focal		(2%)				(2%)
Infiltration cellular, lymphocytic, multifocal		(19%) (2%)			4	(8%)
Infiltration cellular, mixed cell, multifocal Inflammation, chronic active		(2%) (4%)			1	(2%)
Acinus, atrophy	_	(4%)				(2%) (4%)
Pharynx	(1)				2	
Palate, ulcer, chronic		(100%)				
Salivary glands	(48)		(1)		(48)	
Hyperplasia, lymphoid			<u>,-</u> /			(2%)
Infiltration cellular, lymphocytic, focal	1	(2%)				
Infiltration cellular, lymphocytic, multifocal		(67%)				(44%)
Inflammation, chronic, focal					1	(2%)
Inflammation, chronic active, focal	1	(2%)				

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

	Chambe	er Control	10 pp	om	25 pp	m
ALIMENTARY SYSTEM (Continued)					. <u> </u>	
Stomach, forestomach	(47)		(3)		(45)	
Hyperplasia, squamous, diffuse	((-)			(2%)
Inflammation, chronic active, focal	1	(2%)				
Stomach, glandular	(47)		(3)		(47)	
Developmental malformation	1	(2%)				
Infiltration cellular, lymphocytic, multifocal					1	(2%)
Inflammation, chronic active, focal					1	(2%)
Tooth	(1)				(1)	
Developmental malformation					1	(100%)
Pulp, inflammation, chronic active, focal	1	(100%)				
CARDIOVASCULAR SYSTEM						<u></u>
Heart	(48)		(2)		(48)	
Bacterium		(2%)	(2)			
Cardiomyopathy	-				2	(4%)
Inflammation, chronic active, multifocal	1	(2%)			-	
Aortic valve, thrombus	1	(2%)				
Atrium left, thrombus	1	(2%)			1	(2%)
Mitral valve, inflammation, chronic active,						
focal		(2%)				
Pericardium, infiltration cellular, mixed cell,						
multifocal		(2%)				
Valve, pigmentation, hemosiderin, multifoca		(2%)				
Ventricle, mineralization, focal		(2%)				
Ventricle, necrosis, subacute, focal	1	(2%)				
ENDOCRINE SYSTEM						
Adrenal gland	(47)		(3)		(49)	
Accessory adrenal cortical nodule		(13%)	(•)			(4%)
Capsule, hyperplasia, diffuse		(28%)	1	(33%)		(24%)
Capsule, hyperplasia, multifocal		(70%)		(33%)		(65%)
Capsule, inflammation, chronic active, focal	1	(2%)				
Adrenal gland, cortex	(47)		(2)		(47)	
Angiectasis, multifocal					1	(2%)
Atrophy, focal					1	(2%)
Degeneration, fatty, focal	2	(4%)				
Hyperplasia, focal	1	(2%)			2	(4%)
Hypertrophy, focal	1	(2%)			1	(2%)
Medulla, hematopoietic cell proliferation,						
multifocal	1	(2%)				
Adrenal gland, medulla	(45)		(2)		(47)	
Amyloid deposition						(2%)
Hyperplasia, focal		(4%)				(2%)
Islets, pancreatic	(47)	(0~)	(3)		(49)	00
Atrophy, multifocal		(2%)	-	(00~)		(2%)
Hyperplasia, multifocal		(15%)		(33%)		(6%)
Parathyroid gland	(29)	(00)	(1)		(25)	(0 01)
Infiltration cellular, lymphocytic, focal		(3%)	2 — 1			(8%)
Pituitary gland	(46)	(150)	(5)		(47)	
Pars distalis, angiectasis, focal		(15%)				
Pars distalis, hyperplasia, focal		(9%)				
Pars distalis, hyperplasia, multifocal		(2%)				
Pars distalis, hypertrophy, focal		(2%)	(0)		(10)	
Thyroid gland	(48)	(90)	(2)		(42)	
Infiltration cellular, lymphocytic, focal		(2%)				
Inflammation, chronic active, focal		(2%)			~	(ECC)
Follicle, cyst Follicular cell, hyperplasia, focal		(2%)			2	(5%)
Follicular cell, hyperplasia, focal Follicular cell, hyperplasia, multifocal		(2%)			•	(901)
romeutar cen, nyperplasia, mutulocal	2	(4%)			1	(2%)

	Chamber Control		10 ppm		25 ppm	
ENERAL BODY SYSTEM	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u>, t. in</u>		<u></u>
	<u> </u>					
ENITAL SYSTEM						
Clitoral gland	(1)				(1)	(100~)
Cyst, multifocal	(10)					(100%)
Ovary	(46)	(90)	(14)	(70)	(44)	
Abscess, multiple	1	(2%)	1	(7%)	•	(2%)
Angiectasis Atrophy	1	(2%)			1	(2%)
Cyst		(20%)	٩	(64%)	4	(9%)
Hemorrhage, focal		(4%)	0		-	(0,0)
Hyperplasia, diffuse	2	(4,0)			1	(2%)
Infiltration cellular, lymphocytic	2	(4%)	1	(7%)	•	(= /0 /
Thrombus		(2%)	-	(1,0)		
Periovarian tissue, infiltration cellular,	-	(1,0)				
lymphocytic	4	(9%)				
Uterus	(48)	/	(37)		(45)	
Abscess, single		(2%)	(2.)			
Adenomyosis	1	(2%)				
Angiectasis	1	(2%)				
Dilatation	2	(4%)	5	(14%)	12	(27%)
Hemorrhage, acute	1	(2%)				
Hyperplasia, cystic	36	(75%)	29	(78%)	2 9	(64%)
Inflammation, chronic, diffuse					1	(2%)
Inflammation, chronic active, multifocal	1	(2%)				
Metaplasia, squamous					1	(2%)
Thrombus		(2%)				
Serosa, cyst	1	(2%)				
HEMATOPOIETIC SYSTEM						
Bone marrow	(47)		(2)		(47)	
Hypoplasia, focal	(41)		(2)			(2%)
Myeloid cell, hyperplasia	1	(2%)			-	(2.0)
Lymph node	(48)	· ·	(8)		(49)	
Hyperplasia, lymphoid		(2%)	(1)		()	
Bronchial, depletion lymphoid, diffuse	1	(2%)				
Bronchial, hyperplasia, lymphoid					2	(4%)
Bronchial, hyperplasia, plasma cell	1	(2%)			1	(2%)
Mediastinal, hemorrhage	1	(2%)				
Mediastinal, hyperplasia, lymphoid					2	(4%)
Mediastinal, hyperplasia, plasma cell		(2%)				
Lymph node, mandibular	(45)		(1)		(43)	
Hyperplasia, lymphoid		(9%)			3	(7%)
Hyperplasia, plasma cell		(7%)				1001
Hyperplasia, re cell	1	(2%)			1	(2%)
Infiltration cellular, polymorphonuclear,		(90)				
diffuse Bigmontation homosidarin diffuse		(2%) (2%)			9	(5%)
Pigmentation, hemosiderin, diffuse Lymph node, mesenteric		(2%)	(6)		(32)	
Hematopoietic cell proliferation	(38)			(33%)	(02)	
Hemorrhage	2	(8%)		(50%)		
Hyperplasia, lymphoid		(11%)	J			
Hyperplasia, plasma cell		(3%)				
Hyperplasia, re cell		(3%)				
Spleen	(47)		(13)		(49)	
Angiectasis		(2%)			(10)	
Congestion	-	.=,			1	(2%)
Depletion lymphoid						(4%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THETWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

(er Control	10 pp	m	25 ppm	
HEMATOPOIETIC SYSTEM						
Spleen (Continued)	(47)		(13)		(49)	
Hematopoietic cell proliferation	6	(13%)	6	(46%)		
Hyperplasia, lymphoid	6	(13%)			2	(4%)
Hyperplasia, plasma cell					1	(2%)
Infarct	1	(2%)			1	(2%)
Pigmentation, hemosiderin	3	(6%)				
Capsule, abscess, chronic	1	(2%)				
Capsule, ectopic tissue	1	(2%)				
Capsule, fibrosis, focal	1	(2%)				
Thymus	(40)		(2)		(42)	
Angiectasis, multifocal					1	(2%)
Cyst, multiple					1	(2%)
Depletion lymphoid	3	(8%)				(5%)
Ectopic parathyroid gland	2	(5%)				(5%)
Hyperplasia, lymphoid	1	(3%)			3	(7%)
Epithelial cell, hyperplasia	1	(3%)				
NTEGUMENTARY SYSTEM		<u></u>				
Mammary gland	(47)		(1)		(44)	
Ectasia, multifocal		(2%)	(1)			(2%)
Hyperplasia, diffuse		(4%)			1	
Infiltration cellular, mixed cell, multifocal		(2%)				
Inflammation, chronic, diffuse		(2%)				
Inflammation, chronic active, diffuse		(2%)				
Skin	(46)	(1,0)	(20)		(47)	
Infiltration cellular, lymphocytic, focal	,	(2%)	(20)		(41)	
Inflammation, chronic, diffuse		(2%)				
Inflammation, chronic active, diffuse		(2%)			2	(4%)
Subcutaneous tissue, edema		(2%)	1	(5%)	-	(4,0)
Subcutaneous tissue, hemorrhage, acute	•	(2,0)		(5%)		
MUSCULOSKELETAL SYSTEM						
Bone	(47)		(12)		(47)	
Fibrous osteodystrophy		(150%)		(83%)		(17%)
Joint, inflammation, chronic, focal		(15%) (2%)	10	(00%)	0	(17%)
	1	(2%)				
NERVOUS SYSTEM						
Brain	(48)		(2)		(49)	
Hemorrhage, acute, focal		(2%)				
Hydrocephalus		(2%)				
Inflammation, acute, focal		(2%)				
Mineralization, multifocal	29	(60%)	1	(50%)	16	(33%)
RESPIRATORY SYSTEM		· · · · · · · · · · · · · · · · · · ·				
Larynx	(40)		(1)		(40)	
Inflammation, chronic		(3%)	(1)			
Inflammation, chronic active		(5%)				
Lung	(48)		(49)		(49)	
Crystals	(10)			(8%)		(2%)
Edema			•			(2%)
Infiltration cellular, lymphocytic, multifoca	1 9	(19%)	10	(20%)		(14%)
Infiltration cellular, histiocytic, diffuse		(4%)	10	,		(4%)
Infiltration cellular, histiocytic, focal		(2%)	4	(8%)	-	
Infiltration cellular, histiocytic, multifocal	•			(12%)	4	(8%)
	1	(2%)	Ū	· • •		= ,
Infiltration cellular, mixed cell, diffuse						
Infiltration cellular, mixed cell, diffuse Inflammation, chronic active, focal	1	(2,0)	1	(2%)		
Infiltration cellular, mixed cell, diffuse Inflammation, chronic active, focal Alveolar epithelium, hyperplasia, focal		(2%)		(2%) (2%)	1	(2%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

С	hambe	r Control	10 pp	om	25 pp	m
RESPIRATORY SYSTEM						
Lung (Continued)	(48)		(49)		(49)	
Alveolus, inflammation, chronic active,						
multifocal		- ···	1	(2%)	1	(2%)
Artery, inflammation, acute, multifocal	1	(2%)				
Bronchiole, hyperplasia, focal				(2%)		
Bronchiole, hyperplasia, multifocal			1	(2%)		
Bronchiole, inflammation, chronic active, focal					1	(2%)
Bronchiole, alveolus, inflammation, chronic			-	(10~)		(00)
active, focal			5	(10%)	1	(2%)
Bronchiole, alveolus, inflammation, chronic active, multifocal			0	(18%)	95	(71%)
Mediastinum, infiltration cellular,			9	(18%)	30	(1170)
lymphocytic, multifocal	2	(4%)				
Peribronchiolar, inflammation, chronic active,	4	(4.10)				
multifocal	1	(2%)				
Pleura, inflammation, chronic active, multifoca		(2%)				
Nose	(48)	(- ·• /	(49)		(48)	
Exudate	(10)			(4%)	(10)	
Foreign body	1	(2%)	-	(10)		
Lumen, crystals	-				3	(6%)
Mucosa, inflammation, chronic	1	(2%)			-	(= ,
Mucosa, inflammation, chronic active		(6%)	49	(100%)	47	(98%)
Nasolacrimal duct, hyperplasia	_				1	(2%)
Nasolacrimal duct, inflammation, acute	1	(2%)				
Nasolacrimal duct, inflammation, chronic	3	(6%)			2	(4%)
Olfactory epithelium, atrophy, focal	1	(2%)				
Respiratory epithelium, hyperplasia	5	(10%)	49	(100%)	47	(98%)
Trachea	(48)		(2)		(47)	
Edema					1	(2%)
Inflammation, chronic	1	(2%)				
Metaplasia, squamous, multifocal					1	(2%)
SPECIAL SENSES SYSTEM				·		
Eve	(2)					
Atrophy	1	(50%)				
Cornea, neovascularization	1	(50%)				
Lacrimal gland	(10)				(5)	
Infiltration cellular, lymphocytic	1	(10%)				
Infiltration cellular, lymphocytic, focal	1	(10%)			2	(40%)
Infiltration cellular, lymphocytic, multifocal		(60%)			2	(40%)
Infiltration cellular, mixed cell, multifocal	1	(10%)				
URINARY SYSTEM						
Kidney	(48)		(7)		(49)	
Cyst		(2%)				
Infiltration cellular, lymphocytic, multifocal		(46%)			7	(14%)
Capsule, inflammation, chronic active	2	(4%)			_	
Cortex, regeneration, multifocal					2	(4%)
Cortex, epithelium, hyperplasia, atypical,						(0 ~)
multifocal	-	(8.4)			1	(2%)
Medulla, epithelium, karyomegaly, multifocal		(2%)				
Urinary bladder	(45)	(1.00)	(2)		(40)	
Infiltration cellular, lymphocytic, focal		(4%)				(8%)
Infiltration cellular, lymphocytic, multifocal		(42%)				(23%)
Infiltration cellular, mixed cell, multifocal	1	(2%)				(3%)
Perforation		(90)				(3%) (5%)
Serosa, inflammation, chronic	1	(2%)			2	(5%)

TABLE D5. SUMMARY OF THE INCIDENCE OF NONNEOPLASTIC LESIONS IN FEMALE MICE IN THE
TWO-YEAR INHALATION STUDY OF VINYL TOLUENE (Continued)

Vinyl Toluene (mixed isomers), NTP TR 375 160

APPENDIX E

RESULTS OF SEROLOGIC ANALYSIS

Methods

Rodents used in the Carcinogenesis Program of the National Toxicology Program are produced in optimally clean facilities to eliminate potential pathogens that may affect study results.

Data from animals surviving 24 months were collected from 5/50 randomly selected control animals of each sex and species. The blood from each animal was collected and clotted, and the serum was separated. The serum was cooled on ice and shipped to Microbiological Associates' Comprehensive Animal Diagnostic Service for determination of the viral antibody titers. The following tests were performed:

	Hemagglutination <u>Inhibition</u>	Complement <u>Fixation</u>	ELISA
Mice	Reo 3 (reovirus type 3) Poly (polyoma virus) MVM (minute virus of mice)	LCM (lymphocytic chorio- meningitis virus)	MHV (mouse hepatitis virus) PVM (pneumonia virus of mice) GDVII (Theiler's encephalo- myelitis virus) Ectro (infectious ectromelia) Sendai
Rats	PVM KRV (Kilham rat virus) H-1 (Toolan's H-1 virus)	RCV (rat coronavirus)	Sendai

Results

No positive titers were observed in any of the control animals tested at the end of the studies.

APPENDIX F

INGREDIENTS, NUTRIENT COMPOSITION, AND CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION

Pellet Diet: October 1981 to October 1983

(Manufactured by Zeigler Bros., Inc., Gardners, PA)

		PAGE
TABLE F1	INGREDIENTS OF NIH 07 RAT AND MOUSE RATION	164
TABLE F2	VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION	164
TABLE F3	NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION	165
TABLE F4	CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION	166

TABLE F1. INGREDIENTS OF NIH 07 RAT AND MOUSE RATION (a)

Ingredients (b)	Percent by Weight		
Ground #2 yellow shelled corn	24.50		
Ground hard winter wheat	23.00		
Soybean meal (49% protein)	12.00		
Fish meal (60% protein)	10.00		
Wheat middlings	10.00		
Dried skim milk	5.00		
Alfalfa meal (dehydrated, 17% protein)	4.00		
Corn gluten meal (60% protein)	3.00		
Soy oil	2.50		
Dried brewer's yeast	2.00		
Dry molasses	1.50		
Dicalcium phosphate	1.25		
Ground limestone	0.50		
Salt	0.50		
Premixes (vitamin and mineral)	0.25		

(a) NCI, 1976; NIH, 1978

(b) Ingredients ground to pass through a U.S. Standard Screen No. 16 before being mixed

	Amount	Source
Vitamins		<u></u>
Α	5,500,000 IU	Stabilized vitamin A palmitate or acetate
D ₃	4,600,000 IU	D-activated animal sterol
K ₃	2.8 g	Menadione
d-a-Tocopheryl acetate	20,000 IŬ	
Choline	560.0 g	Choline chloride
Folic acid	2.2 g	
Niacin	30.0 g	
d-Pantothenic acid	18.0 g	d-Calcium pantothenate
Riboflavin	3.4 g	•
Thiamine	10.0 g	Thiamine mononitrate
B ₁₂	4,000 µg	
Pyridoxine	1.7 g	Pyridoxine hydrochloride
Biotin	140.0 mg	d-Biotin
Minerals		
Iron	120.0 g	Iron sulfate
Manganese	60.0 g	Manganous oxide
Zinc	16.0 g	Zincoxide
Copper	4.0 g	Copper sulfate
Iodine	1.4 g	Calcium iodate
Cobalt	0.4 g	Cobalt carbonate

TABLE F2. VITAMINS AND MINERALS IN NIH 07 RAT AND MOUSE RATION (a)

(a) Per ton (2,000 lb) of finished product

TABLE F3. NUTRIENT COMPOSITION OF NIH 07 RAT AND MOUSE RATION (a)

	Deviat	1011	Range	Number of Samples	
Protein (percent by weight)	23.5 ± 0.73		22.2-24.9	25	
Crude fat (percent by weight)	4.9 ±	0.54	3.3-5.7	25	
Crude fiber (percent by weight)	3.3 ±	0.25	2.9-3.8	25	
Ash (percent by weight)	6.5 ±	0.46	5.7-7.31	25	
Amino Acids (percent of total die	et)				
Arginine	1.323 ±		1.21-1.39	4	
Cystine	$0.310 \pm$		0.218-0.400	4	
Glycine	$1.155 \pm$		1.06-1.21	4	
Histidine	$0.572 \pm$	0.030	0.530-0.603	4	
Isoleucine	0.910 ±	0.033	0.881-0.944	4	
Leucine	1.949 ±	0.065	1.85-1.99	4	
Lysine	$1.279 \pm$	0.075	1.20-1.37	4	
Methionine	$0.422 \pm$		0.306-0.699	4	
Phenylalanine	0.909 ±		0.665-1.04	4	
Threonine	$0.844 \pm$		0.824-0.886	4	
Tryptophan	0.187	0.020	0.171-0.211	3	
Tyrosine	0.187 $0.631 \pm$	0.004	0.566-0.769	4	
Valine	$1.11 \pm$		1.05-1.17	4	
Essential Fatty Acids (percent of	total diet)				
Linoleic	2.44		2.37-2.52	3	
Linolenic	0.274		0.256-0.308	3	
Arachidonic	0.008			1	
Vitamins					
Vitamin A (IU/kg)	12,052 ±		4,100-24,000	25	
Vitamin D (IU/kg)	4,650 ±		3,000-6,300	2	
a-Tocopherol (ppm)	41.53 ±	7.52	31.1- 48.9	4	
Thiamine (ppm)	16.4 ±	2.17	13.0-21.0	25	
Riboflavin (ppm)	7.5 ±	0.96	6.1-8.2	4	
Niacin (ppm)	85.0 ±	14.20	65.0-97.0	4	
Pantothenic acid (ppm)	29.3 ±	4.6	23.0-34.0	4	
Pyridoxine (ppm)	7.6 ±	1.5	5.6-8.8	4	
Folic acid (ppm)		0.88	1.8-3.7	4	
Biotin (ppm)	$0.27 \pm$		0.21-0.32	4	
Vitamin B_{12} (ppb)	$21.0 \pm$		11.0-38.0	$\overline{4}$	
Choline (ppm)	$3,302.0 \pm$		3,200-3,430	4	
Minerals					
Calcium (percent)	1.27 ±		1.11-1.44	25	
Phosphorus (percent)	0.98 ±	0.05	0.88-1.1	25	
Potassium (percent)	0.862 ±	0.10	0.772-0.970	3	
Chloride (percent)	$0.546 \pm$		0.442-0.635	4	
Sodium (percent)	0.311 ±		0.258-0.350	4	
Magnesium (percent)	$0.169 \pm$		0.151-0.181	4	
Sulfur (percent)	0.316 ±		0.270-0.420	4	
Iron (ppm)	$447.0 \pm$		409-523	4	
Manganese (ppm)	90.6 ±		81.7-95.5	4	
Zinc (ppm)	53.6 ±			4	
Copper (ppm)			46.1-58.6	4	
	$10.77 \pm 2.95 \pm$		8.09-15.39 1.52-3.82	4	
Iodine (ppm) Chromium (ppm)	$2.95 \pm 1.81 \pm$		1.44-2.09	4	

(a) One to four lots of feed analyzed for nutrients reported in this table were manufactured during 1983-85.

TABLE F4.	CONTAMINANT	LEVELS I	N NIH 07	RAT A	ND MOUSE	RATION

Contaminants	Mean ± Standard Deviation	Range	Number of Samples
Arsenic (ppm)	0.53 ± 0.13	0.27-0.77	25
Cadmium (ppm) (a)	< 0.1		25
Lead (ppm)	0.80 ± 0.64	0.33-3.37	25
Mercury (ppm) (a)	< 0.05		25
Selenium (ppm)	0.29 ± 0.06	0.14-0.38	25
Aflatoxins (ppb) (a)	<5	0.11 0.000	25
Nitrate nitrogen (ppm) (b)	9.2 ± 4.7	0.1-22.0	25
Nitrite nitrogen (ppm) (b)	2.3 ± 1.92	<0.1-7.2	25
BHA (ppm) (c)	5.1 ± 4.9	2.0-17.0	25
BHT (ppm) (c)	2.9 ± 2.7	<1.0-12.0	25
Aerobic plate count (CFU/g) (d)	$44,180 \pm 35,870$	5,500-130,000	25
Coliform (MPN/g) (e,f)	11.5 ± 20.1	<3-93	23
Coliform (MPN/g) (g)	32.8 ± 91.7	<3-460	24
		< 3-400	25 25
<i>E. coli</i> (MPN/g) (h) Total nitrosamines (ppb) (i)	<3 4.0 ± 2.6	0000	25 25
		0.8-9.3	
N-Nitrosodimethylamine (ppb) (i)	3.1 ± 2.5	0.8-8.3	25
N-Nitrosopyrrolidine (ppb)	1.14 ± 0.47	0.9-2.9	25
Pesticides (ppm)			
a-BHC (a,j)	< 0.01		25
β-BHC (a)	< 0.02		25
Y-BHC (a)	< 0.01		25
δ-BHC (a)	< 0.01		25
Heptachlor (a)	< 0.01		25
Aldrin (a)	< 0.01		25
Heptachlor epoxide (a)	< 0.01		25
DDE (a)	< 0.01		25
DDD(a)	< 0.01		25
DDT(a)	< 0.01		25
HCB(a)	< 0.01		25
Mirex (a)	< 0.01		25
Methoxychlor (k)	< 0.05	0.06 (7/26/83)	25
Dieldrin (a)	< 0.01		25
Endrin (a)	< 0.01		25
Telodrin (a)	< 0.01		25
Chlordane (a)	< 0.05		25
Toxaphene (a)	<0.1		25
Estimated PCBs (a)	<0.2		25
Ronnel (a)	< 0.01		25
Ethion (a)	<0.02		25
Trithion (a)	<0.02		25
Diazinon (a)	<0.1		25
Methyl parathion (a)	<0.02		25
Ethyl parathion (a)	<0.02		25
Malathion (l)	0.10 ± 0.10	< 0.05-0.45	25
Endosulfan I (m)	< 0.01	< 0.00-0.40	23
Endosulfan I (m) Endosulfan II (m)	< 0.01		23
Endosulfan sulfate (m)	< 0.03		23

~

TABLE F4. CONTAMINANT LEVELS IN NIH 07 RAT AND MOUSE RATION (Continued)

(a) All values were less than the detection limit, given in the table as the mean.

(b) Source of contamination: alfalfa, grains, and fish meal

(c) Source of contamination: soy oil and fish meal

(d) CFU = colony-forming unit

(e) MPN = most probable number

(f) Mean, standard deviation, and range exclude one very high value of 460 MPN/g obtained for the lot produced on September 23, 1982.

(g) Mean, standard deviation, and range include the high value given in footnote (g).

(h) All values were less than 3 MPN/g.

(i) All values were corrected for percent recovery.

(j) BHC = hexachlorocyclohexane or benzene hexachloride

(k) One observation was above the detection limit. The value and the date it was obtained are given under the range.

(l) Twelve lots contained more than 0.05 ppm.

(m) Two lots (October 26, 1981, and November 25, 1981) were not analyzed for endosulfan I, endosulfan II, or endosulfan sulfate.

APPENDIX G

CHEMICAL CHARACTERIZATION, GENERATION, AND MONITORING OF CHAMBER CONCENTRATIONS OF VINYL TOLUENE FOR THE TOXICOLOGY STUDIES

TABLE (IDENTITY AND SOURCE OF VINYL TOLUENE USED IN THE INHALATION STUDIES	170
TABLE (G 2	GENERATION OF CHAMBER CONCENTRATIONS IN THE INHALATION STUDIES OF VINYL TOLUENE	173
TABLE (DISTRIBUTION OF MEAN DAILY CONCENTRATIONS OF VINYL TOLUENE DURING THE TWO-YEAR INHALATION STUDIES	174

PAGE

APPENDIX G. CHEMICAL CHARACTERIZATION

PROCUREMENT AND CHARACTERIZATION OF VINYL TOLUENE

Vinyl toluene (mixed isomers), referred to in this Technical Report as vinyl toluene, was manufactured by Dow Chemical Company (Midland, MI). One lot was obtained from Missouri Solvents and Chemical Company, and two lots were obtained from Chem Central (Table G1). Purity and identity analyses were conducted at Midwest Research Institute (MRI) (Kansas City, MO). MRI reports on the analyses performed in support of the vinyl toluene studies are on file at the National Institute of Environmental Health Sciences.

The identity of all lots as a mixture of m-vinyl toluene and p-vinyl toluene was confirmed by spectroscopic analyses. The infrared and ultraviolet/visible spectra agreed with the literature spectra (Sadtler Standard Spectra); the nuclear magnetic resonance spectrum was consistent with that expected for a mixture of m-vinyl toluene and p-vinyl toluene (representative spectra are presented in Figures G1 and G2).

The purity of all lots was determined by elemental analysis, Karl Fischer water analysis, the American Society for Testing and Materials (ASTM) visual turbidity test for polymers in styrene (limit of detection, 0.001% polymer), semiquantitative determination of the t-butylcatechol inhibitor by visual color comparison after the addition of 1 N sodium hydroxide, and gas chromatography. Gas chromatography was performed with flame ionization detection, a nitrogen carrier, and either a GP 5% SP1200/1.75% Bentone 34 column (system 1) or a helium carrier and a Grade AA Carbowax 20M capillary column (system 2). The vinyl toluene isomers were quantitated with system 1 against a standard solution of p-vinyl toluene, with o-xylene as an internal standard. The m-isomer was quantitated by a comparison of peak areas with the p-isomer.

The results of elemental analysis of lot no. CH910 were in agreement with the theoretical value for carbon and were slightly low for hydrogen. Karl Fischer analysis indicated the presence of 0.015% water. *t*-Butylcatechol was present at approximately 70 ppm. No observable polymer was present. Gas chromatography with system 1 indicated two major peaks and six impurities, four before and two after the major peaks. *p*-Vinyl toluene and *m*-vinyl toluene represented 31.6% and 68.4%, respectively, of the mixture. The area of impurity peaks totaled 0.22% of the combined area of the two major peaks. Gas chromatography by system 2 did not resolve the *m*- and *p*-isomers. Fourteen impurities, 8 before and 6 after the major peak, totaled 0.64% of the major peak area.

Fifteen-Day Studies	Thirteen-Week Studies	Two-Year Studies
Lot Numbers CH910	CH910	CC012981; C010483
Date of Initial Use 8/20/80		12/1/81; 8/4/83
Supplier (a) Missouri Solvents and Chemical Company (Kansas City, MO)	Same as 15-d studies	Chem Central (Dallas, TX)

TABLE G1. IDENTITY AND SOURCE OF VINYL TOLUENE USED IN THE INHALATION STUDIES

(a) Dow Chemical Co. (Midland, MI) was the manufacturer of all lots.

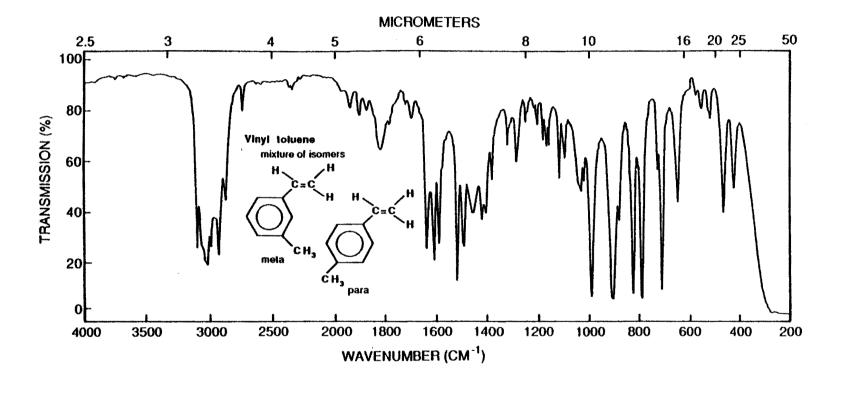
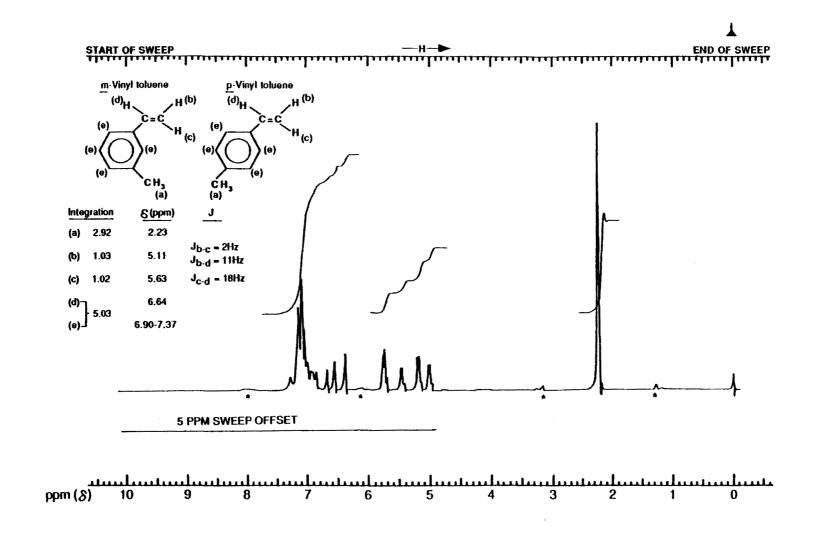



FIGURE G1. INFRARED ABSORPTION SPECTRUM OF VINYL TOLUENE (LOT NO. CC012981)

The results of elemental analysis of lot no. CC012981 were in agreement with the theoretical values for carbon and hydrogen. Karl Fischer analysis indicated the presence of 0.026% water. *t*-Butylcatechol was present at approximately 30 ppm. No observable polymer was present. Gas chromatography with system 1 indicated two major peaks and five impurities, four before and one after the major peaks. *p*-Vinyl toluene and *m*-vinyl toluene represented 35.0% and 64.8% of the material, respectively. The area of impurity peaks totaled 0.55% of the combined area of the major peaks. Gas chromatography with system 2 did not resolve the *m*- and *p*-isomers; 11 impurities were observed, 8 before and 3 after the major peak, with a combined relative area of 0.72%.

The results of elemental analysis of lot no. C010483 were in agreement with the theoretical values for carbon and hydrogen. Karl Fischer analysis indicated the presence of 0.0086% water. *t*-Butylcatechol was present at approximately 30 ppm. No observable polymer was present. Gas chromatography with system 1 indicated two major peaks and four impurities, three before and one after the major peaks. *p*-Vinyl toluene and *m*-vinyl toluene represented 31.5% and 71.4% of the material, respectively. The combined relative area of the four impurities totaled 0.27%. Gas chromatography with system 2 did not resolve the *m*- and *p*-isomers. Ten impurities were observed, totaling 0.59% of the major peak area.

Stability studies performed by gas chromatography with the same column as previously described for system 1, with o-xylene as an internal standard, indicated that vinyl toluene was stable as a bulk chemical when stored protected from light for 2 weeks at temperatures up to 25° C. Results of periodic analysis by infrared spectroscopy, gas chromatography, determination of inhibitor concentration, and polymer concentration indicated no significant degradation of the study material throughout the studies.

GENERATION AND MONITORING OF CHAMBER CONCENTRATIONS

Vapor Generation System

During the short-term studies, vinyl toluene was metered from a reservoir via a precision pump into a J-tube containing $\frac{1}{4}$ -inch glass beads. Compressed air, heated to 150°-160° C for the 15-day studies or 60°-70° C for the 13-week studies, was passed through the system. The vinyl toluene vapor then entered the airstream at the top of the chamber (Hazleton 2000[®], Lab Products, Inc.) and was mixed in the chamber plenum before entering the exposure area of the chamber. During the 2-year studies, the 100- and 300-ppm vapor generation systems were the same as previously described for the 13-week studies. For the 10- and 25-ppm generation systems, dry filtered air at ambient temperature was precisely metered, via needle valves, through small type C sintered glass frits immersed in liquid vinyl toluene contained in gas dispersion bottles. Vinyl toluene vapor was transported with carrier air into secondary flasks where it was further diluted with filtered air, mixed, and then channeled to the appropriate intake port of the study chambers (Table G2). An individual generator was used for each chamber.

TABLE G2. GENERATION OF CHAMBER CONCENTRATIONS IN THE INHALATION STUDIES OF VINYL TOLUENE

Fifteen-Day	Thirteen-Week	Two-Year	Two-Year
Studies	Studies	Studies (rats)	Studies (mice)
The liquid chemical was me- tered into a vaporization sys- tem. Heated compressed air at 150° 160° C was delivered at 30-50 liters/min by a heat torch into the system.	Same as 15-d studies. Air was heated to 60°-70° C.	Same as 15-d studies. Air was heated to 70° C.	Dry filtered air at ambient temperature was metered through liquid chemical. Vinyl toluene vapor and air were transferred to second- ary flasks and then to the intake port of the study chamber via Teflon [®] lines.

Vapor Concentration Monitoring

The concentration of vinyl toluene in the chambers and the exposure room was monitored by an automatic sampling system coupled to a gas chromatograph (Varian 2700) equipped with a flame ionization detector and a 3% SP2250 column (100% Carbowax 20M-TPA column for the short-term studies). The chromatographic conditions during the 2-year studies involved the use of a nitrogen carrier at 30 ml/minute and injector, column oven, and detector temperatures of 200° C, 75° C, and 250° C, respectively. The gas chromatographic system was standardized daily by manually injecting prepared solutions of vinyl toluene in *n*-hexane. Samples from the study chamber atmospheres were pulled by a vacuum pump from the chambers. A series of valves controlled by a hard-wired program directed the samples either to the gas chromatographic system or to the exhaust. Flow through all sampling lines was continuous. During the 2-year studies, each study chamber atmosphere, a sample of the control chamber atmosphere, and a sample of workroom air were analyzed every 30 minutes. The distribution of the mean daily concentrations in the chambers is summarized in Table G3.

TABLE G3. DISTRIBUTION OF MEAN DAILY CONCENTRATIONS OF VINYL TOLUENE DURING THETWO-YEAR INHALATION STUDIES

Range of Concentration	Number of Days Mean Within Range			
(percent of target)			100 ppm	
>120	3	1	0	0
110-120	20	8	13	3
90-110	466	485	479	489
80-90	8	3	4	2
<80	1	1	0	0
Not exposed (a)	4	4	3	5

 $(a) \, Number \, of \, days \, animals \, not \, exposed \, because \, of \, equipment \, failure \, or \, analytical \, malfunctions$

APPENDIX H

GENETIC TOXICOLOGY

OF VINYL TOLUENE

		PAGE
TABLE H1	MUTAGENICITY OF VINYL TOLUENE IN SALMONELLA TYPHIMURIUM	179
TABLE H2	INDUCTION OF TRIFLUOROTHYMIDINE RESISTANCE BY VINYL TOLUENE IN MOUSE L5178Y/TK LYMPHOMA CELLS	180
TABLE H3	INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY VINYL TOLUENE	181
TABLE H4	INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS BY VINYL TOLUENE	183

METHODS

Salmonella Protocol: Testing was performed as reported by Ames et al. (1975) with modifications listed below and described in greater detail by Zeiger et al. (1987) and Mortelmans et al. (1986). Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, TX). The study chemical was incubated with the Salmonella typhimurium tester strains (TA98, TA100, TA1535, and TA1537) either in buffer or S9 mix (metabolic activation enzymes and cofactors from Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver) for 20 minutes at 37° C before the addition of soft agar supplemented with L-histidine and D-biotin and subsequent plating on minimal glucose agar plates. Incubation was continued for an additional 48 hours.

Chemicals were tested in four strains. Each test consisted of triplicate plates of concurrent positive and negative controls and of at least five doses of the study chemical. The high dose was limited by toxicity or solubility but did not exceed 1 mg/plate. All negative assays were repeated.

A positive response was defined as a reproducible, dose-related increase in histidine-independent (revertant) colonies in any one strain/activation combination. An equivocal response was defined as an increase in revertants which was not dose related, not reproducible, or of insufficient magnitude to support a determination of mutagenicity. A response was considered negative when no increase in revertant colonies was observed after chemical treatment.

Mouse Lymphoma Protocol: The experimental protocol is presented in detail by McGregor et al. (1988) and follows the basic format of Clive et al. (1979). All study chemicals were supplied as coded aliquots from Radian Corporation (Austin, TX). The highest dose of the study compound was determined by solubility or toxicity and did not exceed 100 μ g/ml. Mouse L5178Y/TK lymphoma cells were maintained at 37° C as suspension cultures in Fischer's medium supplemented with 2 mM L-glutamine, 110 μ g/ml sodium pyruvate, 0.05% pluronic F68, antibiotics, and heat-inactivated horse serum; normal cycling time was about 10 hours. To reduce the number of spontaneously occurring trifluoro-thymidine (Tft)-resistant cells, subcultures were exposed once to medium containing thymidine, hypoxanthine, methotrexate, and glycine for 1 day, to thymidine, hypoxanthine, and glycine for 1 day, and to normal medium for 3-5 days. For cloning, horse serum content was increased and Noble agar was added. Freshly prepared S9 metabolic activation factors were obtained from the liver of either Aroclor 1254-induced or noninduced male F344 rats.

All doses within an experiment, including concurrent positive and solvent controls, were replicated. Treated cultures contained 6×10^6 cells in 10 ml of medium. Incubation with the study chemical continued for 4 hours, after which time the medium plus chemical was removed and the cells were resuspended in 20 ml of fresh medium and incubated for an additional 2 days to express the mutant phenotype. Cell density was monitored so that log phase growth was maintained. After the 48-hour expression period, 3×10^6 cells were plated in medium and soft agar supplemented with Tft for selection of Tft-resistant cells (TK^{+/+}), and 600 cells were plated in nonselective medium and soft agar to determine cloning efficiency. Plates were incubated at 37° C under 5% carbon dioxide for 10-12 days. All data were evaluated statistically for both trend and peak response. Both responses had to be significant (P<0.05) for a chemical to be considered capable of inducing Tft resistance; a single significant response led to an "equivocal" conclusion, and the absence of both a trend and a peak response resulted in a "negative" call.

Minimum criteria for accepting an experiment as valid and a detailed description of the statistical analysis and data evaluation are presented in Myhr et al. (1985). This assay was performed without S9.

Chinese Hamster Ovary Cytogenetics Assays: Testing was performed as reported by Galloway et al. (1987) and is described briefly below. Chemicals were sent to the laboratories as coded aliquots from Radian Corporation (Austin, TX). Chemicals were tested in cultured Chinese hamster ovary (CHO) cells for induction of sister chromatid exchanges (SCEs) and chromosomal aberrations both in the presence and absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 and cofactor mix. Cultures were handled under gold lights to prevent photolysis of bromodeoxyuridine (BrdU)-substituted DNA. Each test consisted of concurrent solvent and positive controls and of at least three doses of the study chemical; the high dose was limited by toxicity or solubility but did not exceed 5 mg/ml.

In the SCE test without S9, CHO cells were incubated for 26 hours with the study chemical in McCoy's 5A medium supplemented with 10% fetal bovine serum, L-glutamine (2 mM), and antibiotics. BrdU was added 2 hours after culture initiation. After 26 hours, the medium containing the study chemical was removed and replaced with fresh medium plus BrdU and colcemid, and incubation was continued for 2 more hours. Cells were then harvested by mitotic shake-off, fixed, and stained with Hoechst 33258 and Giemsa. In the SCE test with S9, cells were incubated with the chemical, serum-free medium, and S9 for 2 hours. The medium was then removed and replaced with medium containing BrdU and no study chemical; incubation proceeded for an additional 26 hours, with colcemid present for the final 2 hours. Harvesting and staining were the same as for cells treated without S9.

In the chromosomal aberration test without S9, cells were incubated in McCoy's 5A medium with the study chemical for 8 hours; colcemid was added, and incubation was continued for 2 hours. The cells were then harvested by mitotic shake-off, fixed, and stained with Giemsa. For the chromosomal aberration test with S9, cells were treated with the study chemical and S9 for 2 hours, after which the treatment medium was removed and the cells were incubated for 10 hours in fresh medium, with colcemid present for the final 2 hours. Cells were harvested in the same manner as for the treatment without S9.

For the SCE test, if significant chemical-induced cell cycle delay was seen, incubation time was lengthened to ensure a sufficient number of scorable cells. The harvest time for the chromosomal aberration test was based on the cell cycle information obtained in the SCE test; if cell cycle delay was anticipated, the incubation period was extended approximately 5 hours.

Cells were selected for scoring on the basis of good morphology and completeness of karyotype $(21 \pm 2 \text{ chromosomes})$. All slides were scored blind, and those from a single test were read by the same person. For the SCE test, 50 second-division metaphase cells were usually scored for frequency of SCEs per cell from each dose; 100 first-division metaphase cells were scored at each dose for the chromosomal aberration test. Classes of aberrations included simple (breaks and terminal deletions), complex (rearrangements and translocations), and other (pulverized cells, despiralized chromosomes, and cells containing 10 or more aberrations).

Statistical analyses were conducted on both the slopes of the dose-response curves and the individual dose points. An SCE frequency 20% above the concurrent solvent control value was chosen as a statistically conservative positive response. The probability of this level of difference occurring by chance at one dose point is less than 0.01; the probability for such a chance occurrence at two dose points is less than 0.001. Chromosomal aberration data are presented as percentage of cells with aberrations. As with SCEs, both the dose-response curve and individual dose points were statistically analyzed. A statistically significant (P < 0.003) trend test or a significantly increased dose point (P < 0.05) was sufficient to indicate a chemical effect.

RESULTS

Vinyl toluene did not induce gene mutations in *S. typhimurium* strains TA98, TA100, TA1535, or TA1537 when tested in a preincubation protocol at doses up to 1,000 µg/plate with or without Aroclor 1254-induced male Sprague Dawley rat or Syrian hamster liver S9 (Zeiger et al., 1987; Table H1). In the mouse lymphoma assay for induction of Tft resistance in L5178Y cells, vinyl toluene gave a positive response in two trials conducted without S9 at the highest doses tested; these doses also produced severe toxicity, as evidenced by a relative total growth of less than 10% (McGregor et al., 1988; Table H2). Vinyl toluene was not tested in the mouse lymphoma assay with S9. In cytogenetic tests with CHO cells, vinyl toluene did not induce SCEs or chromosomal aberrations in either the presence or the absence of Aroclor 1254-induced male Sprague Dawley rat liver S9 (Tables H3 and H4).

a	-				ts/Plate (b)		<u> </u>
Strain	Dose (µg/plate)) $\frac{-S9}{\text{Trial 1}}$		<u>+ 10% S9</u> Trial 1	(hamster) Trial 2	<u>+ 10%</u> Trial 1	<u>S9 (rat)</u> Trial 2
	(µg/plate)		111ai 2				
TA100	0	151 ± 10.0	137 ± 7.4	216 ± 9.3	140 ± 7.5	214 ± 9.7	146 ± 8.1 129 ± 5.7
	3.3		119 ± 4.7	216 ± 4.4	167 ± 7.9	190 ± 7.8	124 ± 4.7
	10	169 ± 3.2	132 ± 12.7	213 ± 7.1	170 ± 9.5	202 ± 10.1	130 ± 4.0
	33	163 ± 7.1	122 ± 3.2	216 ± 23.8	171 ± 3.2	227 ± 12.0	141 ± 5.8
	100	157 ± 25.9	132 ± 1.7	222 ± 3.3	168 ± 11.5	220 ± 11.7	128 ± 4.1
	333	165 ± 12.5	127 ± 10.1	189 ± 8.8	172 ± 6.0	Toxic	
	1,000	Toxic					
Trial sur Positive		Negative 1,423 ± 77.5	Negative 1,254 ± 31.9	Negative 1,680 ± 64.7	Negative 2,507 ± 173.1	Negative 2,719 ± 231.9	Negative 2,265 ± 36.3
TA1535	0	17 ± 0.6	8 ± 1.8	18 ± 3.6	13 ± 0.3	19 ± 1.2	10 ± 1.2
	3.3		8 ± 0.0	24 ± 3.2	9 ± 1.0	25 ± 0.3	11 ± 2.0
	10	15 ± 2.4	8 ± 1.3	16 ± 2.6	11 ± 2.0	25 ± 2.1	10 ± 3.1
	33	19 ± 0.9	7 ± 1.0	20 ± 0.6	12 ± 2.6	14 ± 4.9	10 ± 2.5
	100	17 ± 4.0	7 ± 1.5	15 ± 1.2	10 ± 1.8	18 ± 4.2	11 ± 1.5
	333	1 ± 0.9	2 ± 0.7	18 ± 4.0	12 ± 1.7	29 ± 1.0	10 ± 2.3
	1,000	0 ± 0.0					
Trial sur Positive	mmary control (c)	Negative 699 ± 72.5	Negative 642 ± 9.8	Negative 406 ± 53.2	Negative 253 ± 16.7	Negative 278 ± 44.0	Negative 209 ± 7.0
TA1537	0	11 ± 3.5	5 ± 1.0	15 ± 0.9	9 ± 2.3	15 ± 1.8	11 ± 1.3
IAIUUI	1		0 ± 1.0	10 ± 0.5	J _ 2.0 	6 ± 0.9	
	3.3		5 ± 0.3	11 ± 0.7	9 ± 1.2	12 ± 2.3	6± 0.6
	10	18 ± 0.3	4 ± 1.0	15 ± 1.5	6 ± 1.2	12 ± 2.0 16 ± 0.9	8 ± 0.9
	33	15 ± 0.9	3 ± 0.3	10 ± 1.0 11 ± 1.2	8 ± 1.5	10 ± 0.0 12 ± 2.7	5 ± 1.3
	100	11 ± 2.3	4 ± 1.2	15 ± 1.2	6 ± 0.9	14 ± 2.3	7 ± 1.0
	333	2 ± 0.7	2 ± 0.3	10 ± 2.7	8 ± 2.0	Toxic	
	1,000	0 ± 0.0					
Trial su	mmary	Negative	Negative	Negative	Negative	Negative	Negative
Positive	control (c)	465 ± 44.5	253 ± 68.4	173 ± 10.0	226 ± 55.7	211 ± 8.8	185 ± 39.6
TA98	0	19 ± 1.7	13 ± 2.9	38 ± 3.3	17 ± 0.9	30 ± 5.7	24 ± 2.6
	3.3		9 ± 1.9	30 ± 5.7	17 ± 1.2	32 ± 4.9	18 ± 1.5
	10	16 ± 3.0	8 ± 0.0	45 ± 2.7	16 ± 2.5	40 ± 2.2	14 ± 0.9
	33	24 ± 2.4	10 ± 1.5	40 ± 3.0	17 ± 3.2	35 ± 3.0	10 ± 2.0
	100	22 ± 2.5	9 ± 1.5	43 ± 1.5	12 ± 0.7	36 ± 4.3	17 ± 4.0
	333 1,000	16 ± 1.3 Toxic	8 ± 1.2	34 ± 4.2	9 ± 0.9	26 ± 2.8	6 ± 1.0
Trial su	mmary	Negative	Negative	Negative	Negative	Negative	Negative
	control(c)	182 ± 24.9	357 ± 36.5	553 ± 64.6	$1,542 \pm 45.0$	391 ± 44.1	$1,545 \pm 112.3$

TABLE H1. MUTAGENICITY OF VINYL TOLUENE IN SALMONELLA TYPHIMURIUM (a)

(a) Study performed at Case Western Reserve University. The detailed protocol is presented in Zeiger et al. (1987). Cells and study compound or solvent (dimethyl sulfoxide) were incubated in the absence of exogenous metabolic activation (-S9) or with Aroclor 1254-induced S9 from male Syrian hamster liver or male Sprague Dawley rat liver. High dose was limited by toxicity or solubility but did not exceed 10 mg/plate; 0 µg/plate dose is the solvent control.

(b) Revertants are presented as mean \pm standard error from three plates.

(c) Positive control; 2-aminoanthracene was used on all strains in the presence of S9. In the absence of metabolic activation, 4-nitro-o-phenylenediamine was used with TA98, sodium azide was used with TA100 and TA1535, and 9-aminoacridine was used with TA1537.

Compound	Concentration (µg/ml)	Cloning Efficiency (percent)	Relative Total Growth (percent)	Tft-Resistant Cells	Mutant Fraction (c)
Trial 1		, , ,		in	
Dimethyl sulfoxide		80.3 ± 11.3	100.3 ± 13.0	96.8 ± 10.8	42.8 ± 7.0
Vinyl toluene	12.5 25 50 100	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$71.0 \pm 13.0 \\ 88.5 \pm 0.5 \\ 69.0 \pm 7.0 \\$	$\begin{array}{r} 88.0 \pm 13.0 \\ 99.5 \pm 11.5 \\ 123.5 \pm 14.5 \\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Methyl methanesulfonate	9 15	27.0 ± 4.0	22.0 ± 5.0	559.5 ± 33.5	(d) 708.0 ±145.0
Trial 2					
Dimethyl sulfoxide (e)		65.5 ± 2.1	100.0 ± 3.6	137.5 ± 5.7	70.5 ± 4.6
Vinyl toluene	10 (f) 20 (f) 40 60 (f) 80	$\begin{array}{cccc} 65.0\pm & 8.0\\ 68.3\pm & 3.4\\ 60.7\pm & 0.9\\ 45.5\pm & 5.5\\ \text{Lethal} \end{array}$	$\begin{array}{rrrr} 100.0 \pm & 9.0 \\ 66.0 \pm & 3.5 \\ 34.7 \pm & 5.5 \\ 5.5 \pm & 0.5 \\ & & & \\ \end{array}$	$\begin{array}{rrrr} 120.5 \pm & 9.5 \\ 134.7 \pm & 7.5 \\ 185.7 \pm & 10.5 \\ 417.0 \pm & 2.0 \\ & & \end{array}$	$\begin{array}{rrrr} 62.0 \pm & 3.0 \\ 66.3 \pm & 5.3 \\ 102.0 \pm & 5.0 \\ (d) 311.0 \pm & 40.0 \\ \end{array}$
Methyl methanesulfonate	e 15	23.0 ± 2.0	19.5 ± 0.5	255.0 ± 8.0	(d) 378.5 ± 49.5
Trial 3					
Dimethyl sulfoxide (f)		68.3 ± 7.9	100.0 ± 6.8	110.7 ± 17.5	54.0 ± 2.3
Vinyl toluene	(f) 40 (f) 45 (f) 50 (f) 55 (f) 60 (f) 65	$58.3 \pm 6.2 \\ 62.0 \pm 6.6 \\ 65.7 \pm 5.7 \\ 69.3 \pm 11.4 \\ 54.3 \pm 5.8 \\ Lethal$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 47.3 \pm & 6.2 \\ 62.7 \pm & 9.8 \\ 61.7 \pm & 8.1 \\ 79.0 \pm & 13.9 \\ 240.3 \pm & 54.8 \\ \end{array}$	$\begin{array}{rrrrr} 28.3 \pm & 6.4 \\ 33.3 \pm & 2.2 \\ 31.3 \pm & 2.2 \\ 38.3 \pm & 3.2 \\ (d) 146.3 \pm & 29.6 \\ \end{array}$
Methyl methanesulfonate	e 15	20.5 ± 3.5	17.0 ± 3.0	165.0 ± 20.0	(d) 283.5 \pm 79.5

TABLE H2. INDUCTION OF TRIFLUOROTHYMIDINE RESISTANCE BY VINYL TOLUENE IN MOUSE L5178Y/TK LYMPHOMA CELLS (a,b)

(a) Study performed at Inveresk Research International. The experimental protocol is presented in detail by McGregor et al. (1988) and follows the basic format of Clive et al. (1979). The highest dose of study compound is determined by solubility or toxicity and may not exceed 5 mg/ml. All doses are tested in duplicate, unless otherwise indicated; the average for the tests is presented in the table. Cells (6×10^{5} /ml) were treated for 4 hours at 37° C in medium, washed, resuspended in medium, and incubated for 48 hours at 37° C. After expression, 3×10^{6} cells were plated in medium and soft agar supplemented with trifluorot thymidine (Tft) for selection of Tft-resistant cells, and 600 cells were plated in nonselective medium and soft agar to determine the cloning efficiency.

(b) Mean \pm standard error from replicate trials of approximately 1×10^6 cells each. All data are evaluated statistically for both trend and peak response (P<0.05 for at least one of the three highest dose sets). Both responses must be significantly (P<0.05) positive for a chemical to be considered capable of inducing Tft resistance. If only one of these responses is significant, the call is "equivocal"; the absence of both trend and peak response results in a "negative" call.

(c) Mutant fraction (frequency) is a ratio of the Tft-resistant cells to the cloning efficiency, divided by 3 (to arrive at MF per 1×10^6 cells treated); MF = mutant fraction.

(d) Significant positive response; occurs when the relative mutant fraction (average MF of treated culture/average MF of solvent control) is greater than or equal to 1.6.

(e) Data presented are the results of four tests.

(f) Data presented are the results of three tests.

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
59 (c)				<u></u>	<u> </u>	<u></u>		
Trial 1Summary: Neg	ative							
Dimethyl sulfoxide		50	1,046	461	0.44	9.2	27.0	
Vinyl toluene	1.6	50	1,043	442	0.42	8.8	27.0	95.7
·	5	50	1,046	431	0.41	8.6	27.0	93.5
	16	50	1,049	457	0.44	9.1	27.0	98.9
	50	50	1,048	431	0.41	8.6	27.0	93.5
Mitomycin C	0.001	50	1,047	719	0.69	14.4	27.0	156.5
Trial 2Summary: Neg	ative							
Dimethyl sulfoxide		50	1,045	459	0.44	9.2	26.0	
Vinyl toluene	5	50	1,049	431	0.41	8.6	26.0	93.5
	10	50	1,042	454	0.44	9.1	26.0	98.9
	25	6	125	54	0.43	9.0	26.0	97.8
	50	50	1,049	441	0.42	8.8	26.0	95.7
	75	50	1,043	467	0.45	9.3	26.0	101.1
	100	Õ						
	150	2	42	30	0.71	15.0	26.0	163.0
Mitomycin C	0.0008	10	205	118	0.58	11.8	26.0	128.3
	0.005	10	209	318	1.52	31.8	26.0	345.7
Trial 3Summary: Neg	ative							
Dimethyl sulfoxide		50	1,046	480	0.46	9.6	26.0	
Vinyl toluene	25	50	1,046	516	0.49	10.3	26.0	107.3
•	50	50	1,046	459	0.44	9.2	26.0	95.8
	75	50	1,041	485	0.47	9.7	(d) 35.5	101.0
	100	50	1,041	554	0.53	11.1	(d) 35.5	115.6
Mitomycin C	0.0008	50	1,047	641	0.61	12.8	26.0	133.3
-	0.005	10	209	310	1.48	31.0	26.0	322.9
S9 (e)								
Trial 1Summary: Neg	gative							
Dimethyl sulfoxide		50	1,046	392	0.37	7.8	26.0	
Vinyl toluene	5	50	1,049	388	0.37	7.8	26.0	100.0
• • • • • • • • • • • • • • • • • • • •	16	50	1,041	420	0.40	8.4	26.0	107.7
	50	50	1,043	367	0.35	7.3	26.0	93.6
Cyclophosphamide	0.3	50	1,047	708	0.68	14.2	26.0	182.1
	0.6	10	210	208	0.99	20.8	26.0	266.72

TABLE H3. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS
BY VINYL TOLUENE (a)

TABLE H3. INDUCTION OF SISTER CHROMATID EXCHANGES IN CHINESE HAMSTER OVARY CELLS BY VINYL TOLUENE (Continued)

Compound	Dose (µg/ml)	Total Cells	No. of Chromo- somes	No. of SCEs	SCEs/ Chromo- some	SCEs/ Cell	Hours in BrdU	Relative SCEs/Cell (percent) (b)
S9 (e)								
Trial 2Summary: Neg	ative							
Dimethyl sulfoxide		50	1,039	403	0. 39	8.1	26.0	
Vinyl toluene	10 25 50 75	50 50 50 50	1,041 1,045 1,034 1,040	402 360 440 410	0.39 0.34 0.43 0.39	8.0 7.2 8.8 8.2	26.0 26.0 26.0 26.0	98.8 88.9 108.6 101.2
Cyclophosphamide	0. 3 0. 6	50 10	1,0 46 210	$\begin{array}{c} 562 \\ 142 \end{array}$	0.5 4 0.68	11.2 14.2	26.0 26.0	138.3 175.3

(a) Study performed at Environmental Health Research and Testing, Inc. SCE = sister chromatid exchange; BrdU = bromodeoxyuridine. A detailed description of the SCE protocol is presented by Galloway et al. (1987). Briefly, Chinese hamster ovary (CHO) cells weré incubated with study compound or solvent as described in (c) and (e) below, and cultured for sufficient time to reach second metaphase division. Cells were then collected by mitotic shake-off, fixed, air dried, and stained.

(b) SCEs/cell of culture exposed to study chemical relative to those of culture exposed to solvent.

(c) In the absence of S9, CHO cells were incubated with study compound or solvent for 2 hours at 37° C. Then BrdU was added, and incubation was continued for 24 hours. Cells were washed, fresh medium containing BrdU and colcemid was added, and incubation was continued for 2-3 hours.

(d) Because some chemicals induce a delay in the cell division cycle, harvest times are occasionally extended to maximize the proportion of second division cells available for analysis.

(e) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37° C. Cells were then washed, and medium containing BrdU was added. Cells were incubated for a further 26 hours, with colcemid present for the final 2-3 hours. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

			- S9 (b)			+ S9 (c)					
Do (µg/		Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	Dose (µg/ml)	Total Cells	No. of Abs	Abs/ Cell	Percent Cells with Abs	
Harvest tin	ne: 12.0	h			<u> </u>	Harvest time: 13	.3 h			<u> </u>	
Dimethy	yl sulfor	cide				Dimethyl sulf	oxide				
•		100	0	0.0	0.0	v	100	1	0.01	1.0	
Vinyl to	luene					Vinyl toluene					
-	1.6	100	1	0.01	1.0	5	100	1	0.01	1.0	
	5	100	2	0.02	2.0	16	100	1	0.01	1.0	
1	6	100	0	0.00	0.0	50	100	0	0.00	0.0	
5	0	100	2	0.02	2.0						
Sumi	mary: 1	Negative				Summary:	Negative				
Mitomy	cin C					Cyclophospha	mide				
•	0.125	100	5	0.05	5.0	15	100	10	0.10	10.0	
	0.25	100	27	0.27	19.0	50	50	28	0.56	48.0	

TABLE H4. INDUCTION OF CHROMOSOMAL ABERRATIONS IN CHINESE HAMSTER OVARY CELLS
BY VINYL TOLUENE (a)

(a) Study performed at Environmental Health Research and Testing, Inc. Abs = aberrations. A detailed presentation of the technique for detecting chromosomal aberrations is found in Galloway et al. (1987). Briefly, Chinese hamster ovary cells were incubated with study compound or solvent as indicated in (b) and (c). Cells were arrested in first metaphase by addition of colcemid and harvested by mitotic shake-off, fixed, and stained in 6% Giemsa.

(b) In the absence of S9, cells were incubated with study compound or solvent for 8-10 hours at 37° C. Cells were then washed, and fresh medium containing colcemid was added for an additional 2-3 hours followed by harvest.

(c) In the presence of S9, cells were incubated with study compound or solvent for 2 hours at 37°C. Cells were then washed, medium was added, and incubation was continued for 8-10 hours. Colcemid was added for the last 2-3 hours of incubation before harvest. S9 was from the liver of Aroclor 1254-induced male Sprague Dawley rats.

Vinyl Toluene (mixed isomers), NTP TR 375 184

APPENDIX I

LIVER WEIGHTS OF RATS AND MICE IN THE FIFTEEN-DAY AND THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE

TABLE I		WEIGHTS OF TOLUENE	RATS	IN '	THE	FIFTEEN-DAY INHALATION STUDIES OF	186
TABLE I		 WEIGHTS OF TOLUENE	RATS	IN '	THE	THIRTEEN-WEEK INHALATION STUDIES OF	186
TABLE I		WEIGHTS OF TOLUENE	MICE	IN '	THE	FIFTEEN-DAY INHALATION STUDIES OF	187
TABLE	-	 WEIGHTS OF TOLUENE	MICE	IN '	THE	THIRTEEN-WEEK INHALATION STUDIES OF	187

PAGE

Concentration (ppm)	Number Weighed	Necropsy Body Weight (grams)	Liver Weight (mg)	Liver Weight/ Body Weight (mg/g)
ALE				
0	5	211 ± 3	$11,500 \pm 400$	54 ± 1.8
200	5	203 ± 2	$11,500 \pm 180$	57 ± 0.4
400	5	**183 ± 3	**9,800 ± 230	53 ± 0.4
800	5 5	**183 ± 3	$11,500 \pm 270$	**63 ± 0.4
1,300	5	**171 ± 2	$*12,500 \pm 180$	**73 ± 0.9
EMALE				
0	5	144 ± 1	$7,400 \pm 130$	51 ± 0.4
200	5	$**132 \pm 1$	7.100 ± 130	$*54 \pm 0.9$
400	5	$**129 \pm 1$	**5,700 ± 89	$**44 \pm 0.4$
800	5	$**131 \pm 1$	$*6.800 \pm 130$	52 ± 0.4
1,300	5	$**125 \pm 1$	$**8.600 \pm 180$	$**69 \pm 1.3$

TABLE II. LIVER WEIGHTS OF RATS IN THE FIFTEEN-DAY INHALATION STUDIES OF VINYL TOLUENE (a)

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955). *P<0.05

**P<0.01

TABLE 12. LIVER WEIGHTS OF RATS IN THE THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE (a)

Concentration (ppm)	Number Weighed	Necrop Body We (grams	ight	Liver Weight (mg)	Liver Weight/ Body Weight (mg/g)
IALE					
0	10	375 ±	10.5	$14,809 \pm 738$	39.5 ± 1.66
25	10	$375 \pm$	7.5	$16,400 \pm 710$	43.6 ± 1.37
60	10	372 ±	6.5	$15,998 \pm 535$	43.0 ± 1.29
160	10	$353 \pm$	6.3	$15,476 \pm 581$	43.8 ± 1.27
400	10	346 ±	8.7	$15,139 \pm 508$	43.9 ± 1.51
1,000	10	**302 ±	9.8	$15,950 \pm 537$	**52.9 ± 1.55
EMALE					
0	10	214 ±	4.9	8.078 ± 483	38.0 ± 2.41
25	10	$212 \pm$	4.3	$8,239 \pm 417$	38.8 ± 1.55
60	10	209 ±	3.3	$8,551 \pm 296$	41.0 ± 1.30
160	10	$204 \pm$	1.2	8.227 ± 313	40.4 ± 1.54
400	10	$201 \pm$	2.2	$8,391 \pm 525$	41.7 ± 2.37
1,000	10	**189 ±	3.7	$9,121 \pm 236$	$**48.3 \pm 1.51$

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955). **P<0.01

Concentration (ppm)	Number Weighed	Necropsy Body Weight (grams)	Liver Weight (mg)	Liver Weight/ Body Weight (mg/g)
ALE		<u></u>		
0	5	26.4 ± 0.45	$1,360 \pm 36$	52 ± 1.34
10	5	$*27.8 \pm 0.09$	$1,500 \pm 40$	54 ± 1.34
25	5	$*27.6 \pm 0.18$	$*1,530 \pm 31$	56 ± 1.34
50	5 5 5	26.0 ± 0.31	$1,470 \pm 31$	57 ± 0.89
100	5	27.2 ± 0.31	$1,510 \pm 63$	55 ± 1.79
200	2	26.5 ± 0.35	$**1,720 \pm 0$	**65 \pm 0.71
EMALE				
0	5	24.8 ± 0.09	1.410 ± 18	57 ± 0.89
10	5	23.6 ± 0.45	$**1.220 \pm 40$	**52 ± 1.34
25		24.8 ± 0.40	$**1,220 \pm 13$	**49 ± 0.45
50	5 5 5 5	$**22.6 \pm 0.31$	$1,360 \pm 22$	60 ± 0.45
100	5	23.8 ± 0.27	$**1,200 \pm 22$	**50 ± 0.89
200	5	23.6 ± 0.45	$1,520 \pm 54$	$**64 \pm 1.34$

TABLE I3. LIVER WEIGHTS OF MICE IN THE FIFTEEN-DAY INHALATION STUDIES OF VINYL TOLUENE (a)

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955). *P < 0.05

**P<0.01

Concentration (ppm)	Number Weighed	Necropsy Body Weight (grams)	Liver Weight (mg)	Liver Weight/ Body Weight (mg/g)
IALE				<u></u>
0	9	33.1 ± 0.70	1.547 ± 209	46.5 ± 6.13
10	5	33.4 ± 1.12	1.624 ± 64	48.7 ± 1.96
25	10	$**29.1 \pm 0.53$	$1,509 \pm 56$	52.0 ± 2.09
60	4	$**29.0 \pm 0.41$	$1,470 \pm 62$	50.7 ± 1.69
160	8	$**26.5 \pm 0.46$	$1,206 \pm 71$	45.6 ± 2.80
ÉMALE				
0	10	27.6 ± 0.79	$1,457 \pm 94$	52.9 ± 3.25
10	8	25.8 ± 0.56	$1,343 \pm 74$	52.2 ± 2.89
25	10	**24.0 ± 0.39	$1,231 \pm 45$	51.4 ± 1.88
60	10	$**23.8 \pm 0.36$	*1,151 ± 78	48.3 ± 3.19
160	10	$**23.2 \pm 0.33$	$**1,088 \pm 66$	46.9 ± 2.77

TABLE 14. LIVER WEIGHTS OF MICE IN THE THIRTEEN-WEEK INHALATION STUDIES OF VINYL TOLUENE (a)

(a) Mean \pm standard error; P values vs. the controls by Dunnett's test (Dunnett, 1955).

*P<0.05 **P<0.01

Vinyl Toluene (mixed isomers), NTP TR 375 188

r

APPENDIX J

AUDIT SUMMARY

The pathology specimens, experimental data, study documents, and draft NTP Technical Report No. 375 for the 2-year studies of vinyl toluene in rats and mice were audited for the National Institute of Environmental Health Sciences (NIEHS) at the National Toxicology Program (NTP) Archives. The audit included review of :

- (1) All records concerning animal receipt, quarantine, randomization, and disposition prior to the start of dosing.
- (2) All inlife records including protocol, correspondence, animal identification, animal husbandry, environmental conditions, dosing external masses, mortality, and serology.
- (3) Body weight and clinical observation data; all data were scanned before individual data for the random 10% sample in each study group were reviewed in detail.
- (4) All study chemical records.
- (5) All postmortem records for individual animals concerning date of death, disposition code, condition code, tissue accountability, correlation of masses or clinical signs recorded at or near the last inlife observation with gross observations and microscopic diagnoses, consistency of data entry on necropsy record forms, and correlation between gross observations and microscopic diagnoses.
- (6) Inventory for wet tissue bags from all animals and residual wet tissues from a random 20% sample of animals in each study group, plus other relevant cases, to evaluate the integrity of individual animal identity and the thoroughness of necropsy and trimming procedure performance.
- (7) Blocks and slides of tissues from a random 20% sample of animals from each study group, plus animals with less than complete or correct identification, to examine for proper inventory, labeling, matching of tissue sections, and preservation.
- (8) All microscopic diagnoses for a random 10% sample of animals, plus 100% of the changes in diagnoses made to preliminary pathology tables, to verify their incorporation into the final pathology tables.
- (9) The extent of correlation between the data, factual information, and procedures for the 2-year studies as presented in the draft Technical Report and the study records available at the NTP Archives.

Procedures and events for the exposure phase of the studies were documented adequately by records at the Archives. Review of the archival records indicated that protocol-specified procedures for animal care were followed adequately. Records that documented the generation, analysis, distribution, and delivery of doses to animals were complete and accurate.

Data entries on necropsy forms were made adequately. The thoroughness for observation of external potential masses for rats and mice combined were poor inlife (>69% of the external masses noted at necropsy had an inlife correlate) and good at necropsy (>95% of the external masses recorded inlife correlated with a necropsy observation). The date of death recorded at necropsy for each unscheduled-death animal had matching entries among the inlife records for 152/160 rats and 85/89 mice; the differences in date-of-death entries for 2 rats involved 3 months and 1 week, and the remaining 20 differences involved 1 day. The reason for animal removal recorded among the inlife records was in agreement with the disposition code recorded at necropsy for 299/300 rats and all mice. The condition code for each animal was consistent with the disposition code and gross observations assigned at necropsy.

An individual animal identifier (ear tag) was present and correct in the residual tissue bag for 61/62 rats and 45/45 mice examined. A total of 6 untrimmed potential lesions were found in the wet tissues of 45 mice examined, and none were found in those of 62 rats. Intestinal segments were opened adequately. Each gross observation made at necropsy had a corresponding microscopic diagnosis for all but 12 in rats and 6 in mice; after microscopic review of the slides involved in these noncorrelations, only 3 were considered to be discrepencies. Blocks and slides were present, and corresponding tissue sections matched each other properly. All post-Pathology Working Group changes in diagnoses had been incorporated into the final pathology tables. The P values and incidences of neoplasms given in the Technical Report were the same as those in the final pathology tables at the Archives.

This summary describes general audit findings and the extent to which data and factual information presented in the Technical Report are supported by records at the NTP Archives. Full details are presented in audit reports that are on file at the NIEHS.

191 Vinyl Toluene (mixed isomers), NTP TR 375

☆ U.S. GOVERNMENT PRINTING OFFICE : 1990 0 - 259-958 : QL 3