

3-Month Toxicity Studies of Tetravalent and Pentavalent Vanadium Compounds in Hsd:Sprague Dawley SD Rats and B6C3F1/N Mice via Drinking Water Exposure

Background

- Vanadium is a naturally occurring metal and exists in various oxidation states from -1 to +5
- Vanadium +3 to +5 species are considered the most stable, however, oxidation-reduction in the environment and following ingestion are likely • Natural processes (e.g., volcanic eruptions) and anthropogenic sources (e.g., fly
- ash from coal fired power plants) release vanadium to the environment • Industrial waste containing vanadium is also imported into the United States for use in steel production
- Exposure to vanadium may occur via ingestion
- Vanadyl sulfate is sold as a dietary supplement for diabetes and high cholesterol
- Sodium metavanadate was selected for study as a representative pentavalent species, a potential drinking water contaminant
- There is uncertainty regarding the human health implications for long term exposure to vanadium ingestion
- NTP performed 14-day toxicity studies of tetravalent (+4; vanadyl sulfate) and pentavalent (+5; sodium metavanadate) compounds in rats and mice (Figure 1)

Figure 1. Chemical Structures of the Soluble Vanadium Compounds Tested Vanadvl Sulfate Sodium Metavanadate

 $\bar{O} = S = \bar{O} O = V^{2+}$

 Na^+

Methods **Animal Model and Exposure** Time-mated F0 Hsd:Sprague Dawley SD rats (n=16/group) were exposed to vanadyl sulfate or sodium metavanadate via drinking water beginning on GD6 • Groups of 15 male and 15 female F1 animals were exposed during gestation, lactation and 13-weeks post-weaning (5 animals for biological sampling) • Groups of 10 male and 10 female B6C3F1/N mice were exposed to vanadyl sulfate or sodium metavanadate for 13 weeks via drinking water Drinking water concentrations were selected based on 14-day data; concentrations for vanadyl sulfate (31% vanadium) ranged from 21-335 mg/L, and from 31-500 mg/L for sodium metavanadate (41% vanadium) • Figure 2 illustrates the overlap in *total vanadium* concentration (mg/L) between the compounds Figure 2. Drinking Water Concentrations of Compounds and Vanadium 0 21 42 Vanadyl Sulfate (mg/L) • • • Sodium 500 250 Metavanadate (mg/L) 🧯 🧴 150 200 Vanadium (mg/L) **Endpoints Collected** • Rats

- Gestational, lactational F0 body weights, F1 body weights
- Fertility, fecundity, pup survival
- Water consumption
- Clinical pathology, organ weights, histopathology (still under evaluation)
- Measurement of vanadium concentration in plasma and urine
- At the end of the 13-week post-weaning exposure period, 5 rats per sex per group, for both compounds, were placed in metabolism cages (24 hours) for collection of urine
- After 24 hours, rats were euthanized and blood was collected
- Mice
 - Survival, body weights, water consumption
 - Hematology, organ weights, histopathology (still under evaluation)
- Analysis of Urine and Plasma for Total Vanadium
- Speciation of vanadium in biological fluids was not possible, thus total vanadium was measured
- Samples were thawed, processed by acid digestion with heat, spiked with
- internal standard (praseodymium) and diluted with DI H₂O for analysis
- Samples were analyzed using inductively-coupled plasma-mass spectrometry on a Thermo X-Series, ThermoFisher Scientific (Waltham, MA)

Outcome
0.155 ng/mL
5.00 ng/mL
2.5 - 2,500 ng/mL
Accuracy ² : -1.4 to 5.1%
Accuracy: 8.0-17.3%
Precision ³ : $\leq 1.8\%$
Accuracy: 3.0-17.3%
Precision: $\leq 3.1\%$
97.7 - 126%,
100 - 122% of Day 0

¹ Data presented are for plasma only; a similar validation was conducted for urine (data not shown) ² Accuracy was determined as relative error ³ Precision was determined as relative standard deviation

⁴ Stability presented as percent of day 0

Precision: < 2.6%

G. Roberts¹, K. Elsass², D. Fallacara², K. Levine³, J. Harrington³, S. Waidyanatha¹, M. Hooth¹, V. Godfrey-Robinson¹, B. Sparrow², M. Stout¹ ¹ Division of the National Toxicology Program, NIEHS, Research Triangle Park, NC, USA, ² Battelle Memorial, Columbus, OH, USA, ³ RTI International, Research Triangle Park, NC, USA

Results for Hsd:Sprague Dawley SD Rats

Disclaimer: Information shown below have not been subjected to the NTP data review processes (e.g. evaluations). Some data from the studies, including histopathology are still under evaluation.

	Sodium Metavanadate						
	 Survival There was no impact on survival during gestation Moribundity resulted in removal of F0 animals during parturition and throughout lactation in the 250 and 500 mg/L groups Lower pup survival was observed in 500 mg/L pups from PND 1-10; survival after PND 10 was similar between exposed groups and controls 						
168 mg/L335 mg/L $13.3 \pm 0.8 (15)$ $12.8 \pm 0.7 (15)$ $96.52 \pm 2.09 (15)$ $99.11 \pm 0.89 (15)$ $13.1 \pm 0.8 (15)$ $12.7 \pm 0.7 (15)$	Table 4. F1 Litter Data for Sodiu 0 mg/L Live Pups PND 0 12.3 ± 0.3 % Live Birth 95.09 ± 3 Live Pups PND 4 ² 11.8 ± 0.9 Survival PND 1-4 (%) 93.75 ± 6 Survival PND 4-7 (%) 100 ± 0.0 Survival PND 7-10 (%) 100 ± 0.0	So T TIm Metavanadate Exposed Rat31.3 mg/L5 (16) $10.9 \pm 1.1 (14)$ 5 (16) $97.99 \pm 1.43 (14)$ 9 (16) $10.2 \pm 1.2 (14)$ 5.25 (16) $92.06 \pm 7.13 (14)$ 0 (15) $100 \pm 0.0 (12)$ 0 (15) $100 \pm 0.0 (12)$	$\frac{\text{ts}^{1}}{62.5 \text{ mg/L}}$ $12.4 \pm 1.0 (16)$ $98.66 \pm 0.97 (16)$ $12.1 \pm 1.1 (16)$ $93.75 \pm 6.25 (16)$ $100 \pm 0.0 (14)$ $99.11 \pm 0.89 (14)$	125 mg/L $12.1 \pm 1.2 (16)$ $91.36 \pm 6.19 (16)$ $13.4 \pm 0.6 (14)$ $91.77 \pm 6.61 (15)$ $99.11 \pm 0.89 (14)$ $100 \pm 0.0 (14)$	250 mg/L $10.5 \pm 1.2 (13)$ $98.05 \pm 1.35 (12)$ $11.1 \pm 1.0 (11)$ $98.59 \pm 0.95 (11)$ $100 \pm 0.0 (11)$ $100 \pm 0.0 (11)$	500 mg/L 7.6 \pm 1.2 (15) 73.06 \pm 9.64 (15) 6.3 \pm 1.5 (12) 68.75 \pm 13.46 (12) 81.25 \pm 12.38 (8) 85.71 \pm 14.29 (7)	
extation $ \begin{array}{c} $	 ¹ Data represent averages ± SEM (N, litters ² Average live pups on PND 4 before litters Body weights There were lower body weights in dams d gestation and lactation that was proportion sodium metavanadate exposure Body weight effects were only seen in pup 500 mg/L At the end of the study for F1 pups (13-we post weaning), lower body weights were s males at ≥ 125 mg/L (-10 to -20%) and in females at 500 mg/L (-12%) 	s) is were standardized Figure 4. F0 Body F0 Gesta nal to ps at eeks seen in $200 \frac{10}{5} \frac{10}{10}$	Weights During G ation 350 300 250 15 20 25 0	estation and F0 and F1 F0 Lactation	I Body Weights Dur 100 100 10 10 10 10 10	ing Lactation 1 Lactation	
Gestation, Lactation and Post-weaning ng/L 41.9 mg/L83.8 mg/L168 mg/L335 mg/L 3 ± 0.9 41.1 ± 1.4 37.0 ± 1.5 31.4 ± 1.2 26.9 ± 0.9 ± 0.1 5.8 ± 0.4 10.6 ± 0.4 18.3 ± 0.5 31.3 ± 0.9 0 ± 1.0 63.0 ± 1.9 61.6 ± 1.8 57.4 ± 1.8 54.1 ± 1.4 ± 0.1 8.9 ± 0.2 17.5 ± 0.4 33.0 ± 0.9 62.8 ± 1.4 2 ± 0.8 27.5 ± 0.8 25.4 ± 0.8 24.5 ± 0.6 21.6 ± 0.4 ± 0.1 3.7 ± 0.1 6.9 ± 0.2 13.7 ± 0.3 25.1 ± 0.4 0 ± 0.3 22.4 ± 0.9 20.4 ± 0.7 21.0 ± 0.7 17.6 ± 0.4 ± 0.1 4.4 ± 0.1 8.2 ± 0.3 16.6 ± 0.4 29.8 ± 0.6	 Water and chemical consumption There was lower water consumption in the 250 and 500 mg/L groups during gestation lactation and post-weaning for male and female F1 offspring Due to lower water consumption, chemical consumption in the higher groups was slightly less than dose-proportional 	GDTable 5. Water and VaaStudy Phasen,Gestation (GD6-21)alLactation (PND 1-13)F1 Males (PND 28-119)F1 Females (PND 28-119)	anadyl Sulfate Con Measurement Water (g/day) Chemical (mg/kg/day) Water (g/day) Chemical (mg/kg/day) Water (g/day) Chemical (mg/kg/day) Water (g/day) Chemical (mg/kg/day)	PND sumption During Gest 0 mg/L 31.3 mg/L 39.8 ± 1.0 37.8 ± 1.6 $$ 4.2 ± 0.2 64.1 ± 3.0 64.3 ± 1.1 $$ 6.7 ± 0.1 24.3 ± 1.3 28.5 ± 0.5 $$ 2.7 ± 0.1 21.3 ± 0.2 21.3 ± 1.0 $$ 3.0 ± 0.1	Eation, Lactation and 62.5 mg/L125 mg/L 38.4 ± 1.3 8.3 ± 0.2 33.5 ± 1.3 14.7 ± 0.5 66.7 ± 1.1 14.0 ± 0.3 62.7 ± 1.1 27.0 ± 0.6 28.6 ± 0.5 5.4 ± 0.1 25.3 ± 0.7 10.3 ± 0.4 21.6 ± 0.5 6.4 ± 0.1 20.3 ± 0.7 12.3 ± 0.2	PND I Post-weaning 250 mg/L 500 mg/L 3 27.8 \pm 1.4 23.5 \pm 0.7 5 25.0 \pm 1.2 42.74 \pm 1.1 1 55.9 \pm 2.8 53.5 \pm 4.0 5 50.0 \pm 2.7 99.5 \pm 7.7 7 21.5 \pm 0.4 15.8 \pm 0.9 4 18.0 \pm 0.4 35.9 \pm 1.4 7 15.6 \pm 0.6 12.6 \pm 0.5 2 18.7 \pm 0.7 40.2 \pm 4.5	
Analysis for Total Vanado Figure 5. Total Vanadium Concentration in Plasma and Metavanadate or Vanadyl Sulfate (100 150 100 500 0 500 Vanadyl Sulfate 100 500 0 1000 Vanadium Consumed (ug/day) Based on the calculated amount of vanadium consumed and the there was higher absorption and exposure for animals expos (Figure 5), when consuming a similar amount of vanadium consumed of vanadium consumed and the	lium in Plasma and Urine nd Urine in Male Rats Exposed to Sodium 3500 3000 3	$\frac{\operatorname{Table 7. Plast}}{\operatorname{Drinking Water 4}}$ Sodium $\frac{\operatorname{Metavanadate (mg)}}{\operatorname{Metavanadate (mg)}}$ $\frac{\operatorname{O}_{31.3}}{62.5}$ 125.0 250.0 $\frac{\operatorname{O}_{31.3}}{62.5}$ 125.0 250.0 $\frac{\operatorname{O}_{250.0}}{125.0}$ $\frac{250.0}{250.0}$ ¹ Pup toxicity durft ² V (mg/L) calculat ³ Final week of the ⁴ V consumed calculat ⁵ Data presented a	ma and Urine Vana Concentrations $g/L)^1$ V (mg/L)^2012.825.651.3102.5012.825.651.3102.5ing lactation resulted in tated as 41% of sodium meters and the study (PND 112-119)culated as [water consumate average (n=3-5) \pm state	Adium (V) Concentratio Water (g/day)³ V ($\mu g/g$ 25.7 0.0 26.7 342.2 26.7 342.2 26.2 670.6 23.3 1194.1 18.7 1917.8 20.7 0.0 21.2 272.0 20.2 517.9 19.9 1017.8 14.9 1524.2 insufficient animals in the 500 netavanadate by molecular we and (g/day)*V concentration (and deviation)	on in Rats Exposed Vanadium C $g/day)^4$ Plasma 0.0 ± 0.0 28.4 ± 6.2 65.4 ± 13.3 121.3 ± 7.0 202.1 ± 28.1 0.0 ± 0.0 27.8 ± 6.7 72.2 ± 20.5 165.5 ± 37.7 297.9 ± 24.8 O mg/L group to populate to eight mg/L)]; assumes drinking	to Sodium Metavanadate Concentration (ug/L) ⁵ Urine 0.0 ± 0.0 120.0 ± 32.2 588.2 ± 75.6 1437.9 ± 195.8 2376.0 ± 575.6 0.0 ± 0.0 65.1 ± 40.9 214.9 ± 71.8 1026.6 ± 580.0 1588.0 ± 140.1 he biological sampling cohort	
/N Mice	Conclusions						
Sodium Metavanadateand Body Weightse mouse in the 500 mg/L group was removed from study in weatterminationP1, male body weights were -26% vs. controls in the 500 mg/L group was removed for study in weatcontrols; females were -23% and -14% vs. controls for 500 and 2Figure 7. B6C3F1/N Body Weights44 <td colsp<="" th=""><th>ek 3, all other animals survived group, all others were within 250 mg/L, respectively </th><th> Vanadyl sulfate, up to 335 maining gestation and lactatic Dams/pups exposed to sodia noribundity at birth, failure Lower body weights were obtudy termination, 13 weeks Plasma and urine collected Based on calculation of plasma and urine is high Levels of vanadium in modulum consumption Sodium metavanadate in drang/L in adult B6C3F1/N m Mice exposed to higher increases in erythrocytes </th><th>ng/L in drinking on, and their pup um metavanadat to thrive, and h observed in dams s post-weaning from rats expose vanadium consu- ner for animals e nales and female inking water resu- ice concentrations of (125, 150, 500 r s and reticulocyte</th><th>water, was well tole is during lactation are e at 250 and 500 mg igher moribundity d during gestation and d to both compound imption, the amount xposed to sodium me s were similar when ulted in lower body of sodium metavanace mg/L) concentrations es and deceases in h</th><th>erated in adult mich and up to 13 weeks g/L in drinking wa uring lactation ad lactation, and in ls were evaluated of vanadium abso- netavanadate compo- taking into accoun- weights and water late also had lowers of sodium metav- nematocrit and her</th><th> c and time-mated rats post-weaning iter exhibited n pups continuing until for total vanadium orbed and present in pared to vanadyl sulfate unt compound and r consumption at 500 er thymus weights vanadate exhibited moglobin </th></td>	<th>ek 3, all other animals survived group, all others were within 250 mg/L, respectively </th> <th> Vanadyl sulfate, up to 335 maining gestation and lactatic Dams/pups exposed to sodia noribundity at birth, failure Lower body weights were obtudy termination, 13 weeks Plasma and urine collected Based on calculation of plasma and urine is high Levels of vanadium in modulum consumption Sodium metavanadate in drang/L in adult B6C3F1/N m Mice exposed to higher increases in erythrocytes </th> <th>ng/L in drinking on, and their pup um metavanadat to thrive, and h observed in dams s post-weaning from rats expose vanadium consu- ner for animals e nales and female inking water resu- ice concentrations of (125, 150, 500 r s and reticulocyte</th> <th>water, was well tole is during lactation are e at 250 and 500 mg igher moribundity d during gestation and d to both compound imption, the amount xposed to sodium me s were similar when ulted in lower body of sodium metavanace mg/L) concentrations es and deceases in h</th> <th>erated in adult mich and up to 13 weeks g/L in drinking wa uring lactation ad lactation, and in ls were evaluated of vanadium abso- netavanadate compo- taking into accoun- weights and water late also had lowers of sodium metav- nematocrit and her</th> <th> c and time-mated rats post-weaning iter exhibited n pups continuing until for total vanadium orbed and present in pared to vanadyl sulfate unt compound and r consumption at 500 er thymus weights vanadate exhibited moglobin </th>	ek 3, all other animals survived group, all others were within 250 mg/L, respectively 	 Vanadyl sulfate, up to 335 maining gestation and lactatic Dams/pups exposed to sodia noribundity at birth, failure Lower body weights were obtudy termination, 13 weeks Plasma and urine collected Based on calculation of plasma and urine is high Levels of vanadium in modulum consumption Sodium metavanadate in drang/L in adult B6C3F1/N m Mice exposed to higher increases in erythrocytes 	ng/L in drinking on, and their pup um metavanadat to thrive, and h observed in dams s post-weaning from rats expose vanadium consu- ner for animals e nales and female inking water resu- ice concentrations of (125, 150, 500 r s and reticulocyte	water, was well tole is during lactation are e at 250 and 500 mg igher moribundity d during gestation and d to both compound imption, the amount xposed to sodium me s were similar when ulted in lower body of sodium metavanace mg/L) concentrations es and deceases in h	erated in adult mich and up to 13 weeks g/L in drinking wa uring lactation ad lactation, and in ls were evaluated of vanadium abso- netavanadate compo- taking into accoun- weights and water late also had lowers of sodium metav- nematocrit and her	 c and time-mated rats post-weaning iter exhibited n pups continuing until for total vanadium orbed and present in pared to vanadyl sulfate unt compound and r consumption at 500 er thymus weights vanadate exhibited moglobin
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$22.0 \pm 0.7 \qquad 40.6 \pm 1.3$ $2.8 \pm 0.0 \qquad 2.1 \pm 0.1$ $3 \qquad 25.3 \pm 0.8 \qquad 42.7 \pm 1.1$	Acknowledgments					
weights and hematology sweights were lower in sodium metavanadate-exposed mice; 25	50 mg/L (male) and 500 mg/L and $500 mg/L$	s work was conducted under supported by the Intramura	er the auspices of al Program of the	f the National Toxico e NIH, NIEHS unde	ology Program	ST HUMAN SERVIC	

There were increases in erythrocytes (17-25% at 500 mg/L) and reticulocytes (38-50% at 500 mg/L) and small deceases in hematocrit and hemoglobin in males and females exposed to sodium metavanadate

HHSN273201400015C and HHSN273201400022C

