U.S. flag

An official website of the United States government

Dot gov

The .gov means it's official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Share This:

2,2'4,4'-Tetrabromodiphenyl ether (5436-43-1)

DOI: https://doi.org/10.22427/NTP-DATA-DTXSID3030056


Study Results


Genetic Toxicology

An overview of Genetic Toxicology Bacterial Mutagenicity study conclusions related to 2,2'4,4'-Tetrabromodiphenyl ether (5436-43-1).
Bacterial Mutagenicity
View
  • Negative

Citation Information


NTP. 2,2'4,4'-Tetrabromodiphenyl ether (5436-43-1). Chemical Effects in Biological Systems (CEBS). Research Triangle Park, NC (USA): National Toxicology Program (NTP).

Publications


Ryan KR, Sirenko O, Parham F, Hsieh JH, Cromwell EF, Tice RR, Behl M. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology. 2016 Mar;53:271-281. doi: 10.1016/j.neuro.2016.02.003. Epub 2016 Feb 4. PMID: 26854185
Behl M, Rice JR, Smith MV, Co CA, Bridge MF, Hsieh JH, Freedman JH, Boyd WA. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans. Toxicol Sci. 2016 Dec;154(2):241-252. doi: 10.1093/toxsci/kfw162. Epub 2016 Aug 26. PMID: 27566445
Sirenko O, Grimm FA, Ryan KR, Iwata Y, Chiu WA, Parham F, Wignall JA, Anson B, Cromwell EF, Behl M, Rusyn I, Tice RR. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol. 2017 May 1;322:60-74. doi: 10.1016/j.taap.2017.02.020. Epub 2017 Mar 1. PMID: 28259702
Nyffeler J, Dolde X, Krebs A, Pinto-Gil K, Pastor M, Behl M, Waldmann T, Leist M. Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol. 2017 Nov;91(11):3613-3632. doi: 10.1007/s00204-017-1977-y. Epub 2017 May 5. PMID: 28477266
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci. 2019 Jan 1;167(1):58-76. doi: 10.1093/toxsci/kfy218. PMID: 30169818
Alzualde A, Behl M, Sipes NS, Hsieh JH, Alday A, Tice RR, Paules RS, Muriana A, Quevedo C. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance. Neurotoxicol Teratol. 2018 Nov-Dec;70:40-50. doi: 10.1016/j.ntt.2018.10.002. Epub 2018 Oct 9. PMID: 30312655
Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A. Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci. 2019 Mar 1;168(1):225-240. doi: 10.1093/toxsci/kfy291. PMID: 30521027
Zhang S, Ireland D, Sipes NS, Behl M, Collins ES. Screening for neurotoxic potential of 15 flame retardants using freshwater planarians. Neurotoxicol Teratol. 2019 May-Jun;73:54-66. doi: 10.1016/j.ntt.2019.03.003. Epub 2019 Mar 31. PMID: 30943442
Shockley KR, Cora MC, Malarkey DE, Jackson-Humbles D, Vallant M, Collins BJ, Mutlu E, Robinson VG, Waidyanatha S, Zmarowski A, Machesky N, Richey J, Harbo S, Cheng E, Patton K, Sparrow B, Dunnick JK. Transcriptomic data from the rat liver after five days of exposure to legacy or emerging brominated flame retardants. Data Brief. 2020 Aug 5;32:106136. doi: 10.1016/j.dib.2020.106136. eCollection 2020 Oct. PMID: 32904430
Hogberg HT, de Cássia da Silveira E Sá R, Kleensang A, Bouhifd M, Cemiloglu Ulker O, Smirnova L, Behl M, Maertens A, Zhao L, Hartung T. Organophosphorus flame retardants are developmental neurotoxicants in a rat primary brainsphere in vitro model. Arch Toxicol. 2021 Jan;95(1):207-228. doi: 10.1007/s00204-020-02903-2. Epub 2020 Oct 19. PMID: 33078273
Klose J, Pahl M, Bartmann K, Bendt F, Blum J, Dolde X, Förster N, Holzer AK, Hübenthal U, Keßel HE, Koch K, Masjosthusmann S, Schneider S, Stürzl LC, Woeste S, Rossi A, Covaci A, Behl M, Leist M, Tigges J, Fritsche E. Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biol Toxicol. 2022 Oct;38(5):781-807. doi: 10.1007/s10565-021-09603-2. Epub 2021 May 10. PMID: 33969458
Emond C, DeVito MJ, Birnbaum LS. A PBPK model describing the pharmacokinetics of γ-HBCD exposure in mice. Toxicol Appl Pharmacol. 2021 Oct 1;428:115678. doi: 10.1016/j.taap.2021.115678. Epub 2021 Aug 11. PMID: 34390738
Jarema KA, Hunter DL, Shaffer RM, Behl M, Padilla S. Acute and developmental behavioral effects of flame retardants and related chemicals in zebrafish. Neurotoxicol Teratol. 2015 Nov-Dec;52(Pt B):194-209. doi: 10.1016/j.ntt.2015.08.010. Epub 2015 Sep 5. PMID: 26348672
Behl M, Hsieh JH, Shafer TJ, Mundy WR, Rice JR, Boyd WA, Freedman JH, Hunter ES 3rd, Jarema KA, Padilla S, Tice RR. Use of alternative assays to identify and prioritize organophosphorus flame retardants for potential developmental and neurotoxicity. Neurotoxicol Teratol. 2015 Nov-Dec;52(Pt B):181-93. doi: 10.1016/j.ntt.2015.09.003. Epub 2015 Sep 18. PMID: 26386178
Developmental Exposure to Low Concentrations of Two Brominated Flame Retardants, BDE-47 and BDE-99, Causes Life-Long Behavioral Alterations in Zebrafish Lilah Glazer, Corinne N. Wells, Meghan Drastal, Kathryn-Ann Odamah, Richard E. Galat, Mamta Behl, Edward D. Levin.
Neurotoxicology (2017). DOI: https://doi.org/10.1016/j.neuro.2017.09.007 PMID: 28935585
Comparative toxicity and liver transcriptomics of legacy and emerging brominated flame retardants following 5-day exposure in the rat Keith R Shockley, Michelle C Cora, David E Malarkey, Daven Jackson-Humbles, Molly Vallant, Brad J Collins, Esra Mutlu, Veronica G Robinson, Surayma Waidyanatha, Amy Zmarowski, Nicholas Machesky, Jamie Richey, Sam Harbo, Emily Cheng, Kristin Patton, Barney Sparrow, June K Dunnick

Toxicology Letters (2020) DOI: https://doi.org/10.1016/j.toxlet.2020.07.016 PMID: 32679240

GEO: GSE153366

Study Data


Toxicity and Carcinogenicity Studies


5-Day Evaluation of the Toxicity (C98090C-01) of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (5436-43-1) in Sprague Dawley Rats Exposed via Gavage
Gestational Day 6 - Postnatal Day 21 Evaluation of the Toxicity (C20208) of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (5436-43-1) in BALB/c Mice Exposed via Gavage
Gestational Day 6 - Postnatal Day 21 Evaluation of the Toxicity (C20208) of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (5436-43-1) in BALB/c Mice Exposed via Gavage
Gestational Day 6 - Postnatal Day 21 Evaluation of the Toxicity (C20208) of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) (5436-43-1) in Tg.rasH2/CB6F1 Mice Exposed via Gavage

Genetic Toxicology Studies


Genetic Toxicity Evaluation of 2,2',4,4'-Tetrabromodiphenyl Ether (BDE-47) in Salmonella/E.coli Mutagenicity Test or Ames Test. Study A90466
Summary Data