https://ntp.niehs.nih.gov/go/articles2023

Articles by Topic and Agency

Tools:
ArticleTopicAgency
Filter by Topic:Filter by Agency:
Federal agency needs and requirements for nanomaterials toxicity testing

Engineered nanomaterials (ENMs) come in a wide array of shapes, sizes, surface coatings, and compositions, and often possess novel or enhanced properties compared to larger sized particles of the same elemental composition. To ensure the safe commercialization of products containing ENMs, it is important to thoroughly understand their potential risks. Given that ENMs can be created in an almost infinite number of variations, it is not feasible to conduct in vivo testing on each type of ENM. Instead, new approach methodologies (NAMs) such as in vitro or in chemico test methods may be needed, given their capacity for high-throughput testing, lower cost, and ability to provide information on toxicological mechanisms. However, the different behaviors of ENMs compared to dissolved chemicals may challenge safety testing of these substances using NAMs. The ICCVAM Nanomaterials Workgroup queried ICCVAM member agencies about what types of ENMs are of agency interest and whether there is agency-specific guidance for ENMs toxicity testing (Petersen et al. 2022). To support the ability of NAMs to provide robust results in ENM testing, two key issues in the usage of NAMs, namely dosimetry and interference/bias controls, are thoroughly discussed.

CPSC, DoD, EPA, FDA, ICCVAM, NIEHS, NIOSH, NIST
Validation of 96-well EASA assay to detect potential skin sensitizers

The electrophilic allergen screening assay (EASA) is a promising in chemico method to identify substances that covalently bind to skin proteins, the first key event in the AOP for skin sensitization. This assay assesses the depletion of either of two probe molecules in the presence of a test compound. The initial version of the EASA, developed by the NIOSH, used a cuvette format, which presented multiple measurement challenges such as low throughput and the inability to include adequate control measurements. Scientists with the NISTCPSC, and NIEHS redesigned the EASA into a 96-well plate format that incorporates in-process control measurements to quantify key sources of variability each time the assay is run (Petersen et al. 2022). The paper also describes a measurement science approach that provides steps that can be taken during assay development to increase confidence of in chemico assays and other new approach methodologies (NAMs) by characterizing sources of variability and potential biases and incorporating in-process control measurements.

A subsequent validation study assessed intra- and interlaboratory of the 96-well EASA assay. In addition to the CPSC/NIST lead lab, laboratories sponsored by FDA, DoD, and NIEHS participated in the validation study. Each participating laboratory tested 10 positive and negative control substances and 20 reference chemicals. Within- and between-laboratory reproducibility met performance criteria established by the validation management team. A report of the validation study has been prepared and a peer review of the study will be conducted in 2024.

AOP, Skin Sensitization CPSC, DoD, FDA, NIEHS, NIOSH, NIST
Showing 1 to 2 of 2 entries (filtered from 180 total entries)