Lung - Emphysema

comment:
Pulmonary emphysema ( Figure 1

Emphysema can result from a number of causes. Various proteases (e.g., porcine pancreatic elastase, papain, and human neutrophils elastase), endotoxin, cigarette smoke, and other agents have been used in rodents to model emphysema in humans. Inflammatory lesions may produce overinflation of the lungs by obstructing airways and allowing inhalation but hindering exhalation (the "ball and valve effect"); this must be differentiated from true emphysema. Sendai virus has been reported to cause emphysema in neonatal rats, presumably as a result of epithelial necrosis and inflammation, though infection by this agent is now rare due to modern animal husbandry practices.
recommendation:
Lung - Emphysema should be diagnosed and assigned a severity grade. Associated lesions, such as inflammation, should be diagnosed separately. If the lesion is considered to be an artifact, emphysema should not be diagnosed, but a tissue note may be entered to that effect.related links:
Lung - Bronchiectasisreferences:
Braber S, Koelink PJ, Henricks PA, Jackson PL, Nijkamp FP, Garssen J, Kraneveld AD, Blalock JE, Folkerts G. 2011. Cigarette smoke-induced lung emphysema in mice is associated with prolyl endopeptidase, an enzyme involved in collagen breakdown. Am J Physiol Lung Cell Mol Physiol 300:L255-L265. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/21112944
Castleman WL. 1992. Effects of infectious agents and other factors on the lungs. In: Pathobiology of the Aging Rat, Vol 1 (Mohr U, Dungworth DL, Capen CC, eds). ILSI Press, Washington, DC, 181-191.
Clauss M, Voswinckel R, Rajashekhar G, Sigua NL, Fehrenbach H, Rush NI, Schweitzer KS, Yildirim AÖ, Kamocki K, Fisher AJ, Gu Y, Safadi B, Nikam S, Hubbard WC, Tuder RM, Twigg HL, Presson RG, Sethi S, Petrache I. 2011. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. J Clin Invest 121:2470-2479. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/21576822
Lanzetti M, Lopes AA, Ferreira TS, de Moura RS, Resende AC, Porto LC, Valenca SS. 2011. Mate tea ameliorates emphysema in cigarette smoke-exposed mice. Exp Lung Res 37:246-257. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/21210748
Mahadeva R, Shapiro SD. 2002. Chronic obstructive pulmonary disease 3: Experimental animal models of pulmonary emphysema. Thorax 57:908-914. Full Text: http://thorax.bmj.com/content/57/10/908.full
Pires KM, Bezerra FS, Machado MN, Zin WA, Porto LC, Valença SS. 2011. N-(2-mercaptopropionyl)-glycine but not allopurinol prevented cigarette smoke-induced alveolar enlargement in mouse. Respir Physiol Neurobiol 175:322-330. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/21187166
Renne, R, Brix A, Harkema J, Herbert R, Kittle B, Lewis D, March T, Nagano K, Pino M, Rittinghausen S, Rosenbruch M, Tellier P, Wohrmann T. 2009. Proliferative and nonproliferative lesions of the rat and mouse respiratory tract. Toxicol Pathol 37(suppl):5S-73S. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/20032296
Stemmer KL, Bingham E, Barkley W. 1975. Pulmonary response to polyurethane dust. Environ Health Perspect 11:109-113. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/1175548
Tátrai E, Brózik M, Náray M, Adamis Z, Ungváry G. 2001. Combined pulmonary toxicity of cadmium chloride and sodium diethyldithiocarbamate. J Appl Toxicol 21:101-105. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/11288132
Triantaphyllopoulos K, Hussain F, Pinart M, Zhang M, Li F, Adcock I, Kirkham P, Zhu J, Chung KF. 2011. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol 300:L691-L700. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/21355040
Volonte D, Galbiati F. 2009. Caveolin-1, cellular senescence and pulmonary emphysema. Aging (Albany NY) 1:831-835. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/20157570
Web page last updated on: December 07, 2015