Eye, Vitreous - Fibrosis





comment:
Various insults to the vitreous (penetrating injury, inflammation, etc.) can result in reactive vascularization and organization with proliferation of vitreal fibrous connective tissue (vitreal scar or fibrous membrane formation). In early fibrosis, loose fibrous connective tissue fills the vitreous space ( Figure 1







Reactive retinal pigment epithelium (RPE) cells may migrate transretinally into the vitreous ( Figure 5


recommendation:
Vitreous fibrosis should be diagnosed and assigned a severity grade. If pertinent to the characterization of a treatment-related effect, the morphology and distribution of the fibrous tissue (e.g., epiretinal membranes) should be described in the narrative. The pathologist should exercise judgment in deciding whether to diagnose only vitreal inflammation or vitreal fibrosis in a given animal, or whether to diagnose both. Features such as RPE cell migration and cartilaginous and osseous metaplasia should not be diagnosed separately, though they can be described in the pathology narrative.references:
Bringmann A, Wiedemann, P. 2009. Involvement of Müller glial cells in epiretinal membrane formation. Graefes Arch Clin Exp Ophthalmol 247:865-883. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/19415318
Frame SR, Slone TW. 1966. Nonneoplastic and neoplastic changes in the eye. In: Pathobiology of the Aging Mouse, Vol 2 (Mohr U, Dungworth DL, Capen CC, Carlton WW, Sundberg JP, Ward JM, eds). ILSI Press, Washington, DC, 97-103.
Hogg PA, Grierson I, Hiscott P. 2002. Direct comparison of the migration of three cell types involved in epiretinal membrane formation. Invest Ophthalmol Vis Sci 43:2749-2757. Full Text: http://tpx.sagepub.com/content/35/2/252.full
Mecklenburg L, Schraermeyer U. 2007. An overview on the toxic morphological changes in the retinal pigment epithelium after systemic compound administration. Toxicol Pathol 35:252-267. Full Text: http://tpx.sagepub.com/content/35/2/252.full
National Toxicology Program. 1992. NTP TR-407. Toxicology and Carcinogenesis Studies of C.I. Pigment Red 3 (CAS No. 2425-85-6) in F344/N Rats and B6C3F1 Mice (Feed Studies). NTP, Research Triangle Park, NC. Abstract: https://ntp.niehs.nih.gov/go/7694
National Toxicology Program. 1992. NTP TR-415. Toxicology and Carcinogenesis Studies of Polysorbate 80 (CAS No. 9005-65-6) in F344/N Rats and B6C3F1 Mice (Feed Studies). NTP, Research Triangle Park, NC. Abstract: https://ntp.niehs.nih.gov/go/7710
National Toxicology Program. 2001. NTP TR-501. Toxicology and Carcinogenesis Studies of p, p'-Dichlorodiphenyl Sulfone (CAS No. 80-07-9) in F344/N Rats and B6C3F1 Mice (Feed Studies). NTP, Research Triangle Park, NC. Abstract: https://ntp.niehs.nih.gov/go/14880
Saika S, Kono-Saika S, Ohnishi Y, Sato M, Muragaki Y, Ooshima A, Flanders KC, Yoo J, Anzano M, Liu C-Y, Kao W W-Y, Roberts AB. 2004. Smad3 signaling is required for epithelial-mesenchymal transition of lens epithelium after injury. Am J Pathol 164:651-663. Abstract: https://www.ncbi.nlm.nih.gov/pubmed/14742269
Smith RS. 2002. Choroid, lens, and vitreous. In: Systematic Evaluation of the Mouse Eye: Anatomy, Pathology, and Biomethods (Smith RS, John SWM, Nishina PM, Sundberg JP, eds). CRC Press Boca Raton, FL, 161-193.
Smith RS, Hawes NL, Chang B, Nishina PM. 2002. Retina. In: Systematic Evaluation of the Mouse Eye: Anatomy, Pathology, and Biomethods (Smith RS, John SWM, Nishina PM, Sundberg JP, eds). CRC Press, Boca Raton, FL, 195-225.
Yoshitomi K, Boorman GA. 1990. Eye and associated glands. In: Pathology of the Fischer Rat: Reference and Atlas (Boorman GA, Eustis SL, Elwell MR, Montgomery CA, MacKenzie WF, eds). Academic Press, San Diego, CA, 239-260. Abstract: https://www.ncbi.nlm.nih.gov/nlmcatalog/9002563
Web page last updated on: October 29, 2014